Graphene band structure and Density of states

Compute and plot the graphene band-structure and its density of states.

- plot bands in the path $M \rightarrow \Gamma \rightarrow K$ (see Fig. 2 for details)
- plot Density of states for $t=1$ and
$-t^{\prime}=0$
$-t^{\prime}=-1 / 12$
$-t^{\prime}=1 / 12$

Graphene is a single layer of graphite and is arranged in honeycomb lattice structure (See figure below).

In a tight-binding approximation, the nearest neighbout hopping integral is $t \sim 2.7 \mathrm{eV}$ and next nearest neighbour $t^{\prime} \ll t$.

The honeycomb lattice structure is not a Bravais lattice, but needs to be treated as lattice with a two atoms in the basis (The smallest unit cell containes two atoms).

Figure 1: The lattice structure of graphene is a honeycomb lattice.

Possible choice of the Bravais unite vectors is shown in Figure 1

$$
\begin{align*}
& \vec{a}_{1}=a\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \tag{1}\\
& \vec{a}_{2}=a\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \tag{2}
\end{align*}
$$

The reciprocal lattice vectors then become

$$
\begin{align*}
\vec{b}_{1} & =\frac{4 \pi}{a \sqrt{3}}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \tag{3}\\
\vec{b}_{2} & =\frac{4 \pi}{a \sqrt{3}}\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \tag{4}
\end{align*}
$$

The reciprocal lattice is again honeycomb lattice but is rotated for 90 degrees with respect to the direct lattice.

Figure 2: The reciprocal lattice and possible choice for the first Brillouin zone.

In the tight-binding approximation, the hopping Hamiltonian takes the form

$$
H=\left(\begin{array}{ll}
H_{11} & H_{12} \tag{5}\\
H_{12}^{*} & H_{11}
\end{array}\right)
$$

where the hopping integrals are

$$
\begin{align*}
H_{11} & =-t^{\prime}\left(e^{i \vec{k} \vec{a}_{1}}+e^{i \vec{k} \vec{a}_{2}}+e^{i \vec{k}\left(\vec{a}_{1}-\vec{a}_{2}\right)}+e^{i \vec{k}\left(\vec{a}_{2}-\vec{a}_{1}\right)}+e^{-i \vec{k} \vec{a}_{1}}+e^{-i \vec{k} \vec{a}_{2}}\right)(6) \\
& =-2 t^{\prime}\left[\cos \left(\vec{k} \vec{a}_{1}\right)+\cos \left(\vec{k} \vec{a}_{2}\right)+\cos \left(\vec{k}\left(\vec{a}_{1}-\vec{a}_{2}\right)\right)\right] \tag{7}\\
H_{12} & =-t\left(1+e^{i \vec{k}\left(\vec{a}_{1}-\vec{a}_{2}\right)}+e^{-i \vec{k} \vec{a}_{2}}\right) \tag{8}\\
\left|H_{12}\right|^{2} & =t^{2}\left[3+2 \cos \left(\vec{k} \vec{a}_{1}\right)+2 \cos \left(\vec{k} \vec{a}_{2}\right)+2 \cos \left(\vec{k}\left(\vec{a}_{1}-\vec{a}_{2}\right)\right)\right] \tag{9}
\end{align*}
$$

The eigenvalues of the Hamiltonian matrix $\epsilon_{\vec{k}}$ are

$$
\begin{equation*}
\epsilon_{\vec{k}}=-t^{\prime} \alpha(\vec{k}) \pm t \sqrt{3+\alpha(\vec{k})} \tag{10}
\end{equation*}
$$

where

$$
\alpha(\vec{k})=2 \cos \left(\vec{k} \vec{a}_{1}\right)+2 \cos \left(\vec{k} \vec{a}_{2}\right)+2 \cos \left(\vec{k}\left(\vec{a}_{1}-\vec{a}_{2}\right)\right)
$$

To compute Density of states, we can take the Brillouin zone marked with green in Fig. 2.

The momentum \vec{k} is then

$$
\begin{equation*}
\vec{k}=\frac{q_{x}}{2 \pi} \vec{b}_{1}+\frac{q_{y}}{2 \pi} \vec{b}_{2} \tag{11}
\end{equation*}
$$

whith $q_{x} \in[-\pi, \pi]$ and $q_{y} \in[-\pi, \pi]$.
The dispersion becomes

$$
\begin{gathered}
\epsilon(q)=-t^{\prime} \alpha(q) \pm t \sqrt{3+\alpha(q)} \\
\alpha\left(q_{x}, q_{y}\right)=2 \cos \left(q_{x}\right)+2 \cos \left(q_{y}\right)+2 \cos \left(q_{x}-q_{y}\right)
\end{gathered}
$$

The density of states is defined by

$$
\begin{equation*}
D(\omega)=\sum_{\vec{k} \in 1 B Z} \delta\left(\omega-\epsilon_{\vec{k}}\right)=\sum_{q_{i} \in[-\pi, \pi]} \delta\left(\omega-\epsilon_{q}\right) \tag{12}
\end{equation*}
$$

The algorithm might proceed as follows

- prepare vector $D(\omega)$ of size $N_{b i n} \sim 100$ which will store the number of points with the energy in certain small interval $\left[\omega-\frac{\Delta \omega}{2}, \omega+\frac{\Delta \omega}{2}\right]$.
- Initialized the vector $D(\omega)$ to zero.
- compute energies ϵ_{q} on a dense mesh $\left(\left(q_{x}, q_{y}\right)=200 \times 200\right.$ or even 2000×2000) and add add unity to the interval $D(\omega)$ for which $\omega-\frac{\Delta \omega}{2}<\epsilon_{q}<\omega+\frac{\Delta \omega}{2}$.
- Normlize the vector $D(\omega)$ such that $\int D(\omega) d \omega=1$
- Print and plot $D(\omega)$

