RUtgerS Computational Physics- 2017 QMC

ntinuous Time Quantum Mon

Carlo

1 Overview

First let us separate the action into a solvable (not necessary quadratic) part and the rest
S = Sy + AS. Partition function and average of physical quantities can be computed from

7 = /D[wTw]e_SO_AS (1)

(A) = % / Dlylple 0254 (2)
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We expand the action in power series to get the series of Feyman-like diagrams
fople—S (=1 1)
Z = Z D[yple™ —=—(AS)" 3)

Monte Carlo sampling is used to sample over all possible diagrams. (there are usually
(2k)! terms at order k because different order of times leads to different diagrams).

e We do not introduce time discretization, hence the name continuous time Monte Carlo.

e We do not increase the Hibert space by ising spins or other Hubbard Stratonovich
fields.

e The Markov chain does not sample over ising configurations but rather over diagrams in

above power series.

Most commonly we weight the diagrams according to their contribution to 7, i.e.,

Weight|Diagram] = /D [iplle ~s0 { kl) (AS)* (4)

The typical contribution to (AS) contains a product of 2k fermionic operators which are
sampled.
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2 A simple toy example

Lets assume that we want to sample with Monte Carlo the following expression
fﬂ w(T)dT & 1 & &
Z = eJo =1+ [ w(r)dr + o dry | drw(m)w(re)+--- (5)
0 - Jo 0

If w(7) is a function (not a quantum mechanical action), we can of course compute the
integral exactly . But here we just want to see how Monte Carlo sampling can be set up if
w(T) is just a function like

w(t) = ale™™ + e PTT) (6)

We will take the Monte Carlo probability to be proportional to its contribution to Z.

If w is a constant, we have

P 1 1
Z:@fO ’U)(T)dT:1+w6+§w252+...+ywkﬁk+... (7)
For a configuration at order k, the Monte Carlo weight should obviously be
Bkwk
P x I (8)
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If w is time dependent, we will have a set of times 71, 7, - - -, T, at order k, and hence the
probability should be
k
w(T)w(me) -+ - wW(T
p o Brw(n)w(m) - w(n) o
k!
What is the average perturbation order and what is probability for order k?
Lets use the notation
B
= / w(T)dT (10)
0
The probability for order k is
Ik:
KT
Py = %= (11)
k=0 k!
The average perturbation order is
k co  Jk—1
ok 2= G
<k> T 00 Ik 68 Ik (12)
k=0 k! k=0 k!
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Algorithm

The n-th order integral will have n-points (called kinks) in the time evolution. The MC move
will either add another kink (going from order n to n + 1), or, it will remove a kink
(n — n — 1) from the current configuration. Here is a simple sketch:

X: | —t— : n=>5

0O T4 T2 T3 T4 75 3

0 11 T2 T3 T4 Trew T5 P

If we are adding the new time 7,,..,, and selecting it randomly in the interval [0, 3], the
probability to select the given time is T,¢q IS

dr
an—>Xn_|_1 — gew (13)

This is the trial step probability for adding a kink. To keep the detail balance, we will need to
equally likely removing a kink from the time evolution. We will randomly select one of the
existing kinks, and removing it. In this case we have the trial step probability

1
n-+1

an_|_1—>Xn — (14)
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On the other hand, the probability for configurations X,, and X,, 11 is

0p(Xy) =dmdry -+ -dr, w(m)w(m)- - w(rm,) (15)
0p(Xni1) =dmdry - - drpdTpew w(T)w(T2) - W(Th)W(Thew) (16)

So that the acceptance step probability to add a king is well defined and is:

AXn—>Xn+1 WX, - X, 510(Xn—|—1) (17)
AXn—l—l_>Xn an_>Xn—|—1 5p(Xn)
1 B drdr - drpdTnew w(T)w(m2) - w(Th)W(Thew) (18)
C n+ 1drew drdry -+ -dr, w(m)w(m)---w(T,)
_ Bw(Tnew) (19)
n+1
Similarly, to remove a kink at £ (going from order n — n — 1) has probability
AXn_>Xn—1 an—l_>Xn 510(Xn_1)
= (20)
AXn—1_>Xn an_>Xn—1 510(Xn)
_ ndndndry - dr - -dr, w(m)w(re) - cw(tk) - w(,) 0N
o 1 6 dTldTQ'“dTn w(Tl)w(TQ)“‘w(Tn) B Bw(Tk)
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0p(X) = dndrs - - -dryw(Ty, T2, -

f 1

T T2 T3 T4 s P
dp(X'") = drdrs - -

| 1 1 [ | 1 1

1 | 1 1 1 1

T1 T2 T3 T4 Thew Ts

P

n=5

5 d'T-nJ('ZT-”f .”_-?_U(T13 T2, 5 Tn; T‘HE"N‘)

QMC
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2.1 Deriving the impurity action

Skip this section if you are familiar with the quantum impurity model

The Hamiltonian for quantum impurity from previous lecture is

H = Z 60600600 + Ungrnoy + Z VopcOJCpJ + VOpCpJCOO- + Z epcpacpa
p>00 p>0,0
(21)
It is quadratic in bath operators ¢~ therefore they can be integrated out.

In the Feyman path integral representation we have
_ / Dyl Dche, e 52 ©2)

with atomic action

.= [ ar lz GLOE — 1+ o) + DBy ()] ()| (e
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and hybridization with the bath

AS = / dr Z [ Cho — 1+ €)Cpo + Vol cpe + Vo} Vo (24)
If we rewrite the second part of the acton in Matsubara representation
cp(T) = VT Y e T (w,), (25)
Wn
AS becomes
AS = Z :C;rgng(_iwn — U+ 6p)cpna + VOpwq];anna + V(;;)C]T)no'wnd](ZG)
PO, Wn
= Z :(C;L)na + (W)l ) (—iwn — p + €p)(Cpno + a(wn)Pns) (27)
PO, Wn

—@DLSC){T(—iwn — W+ Ep)awns]

Here we used shortcut notation ¢, (wy,) = ¢,y The equality between Eq. (26) and (27) is

exact provided

*
Vor

Wh, + 1 — €p

a(wn) = —
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The first term in AS is integrated out and gives an unimportant constant
I et T _
/ [ deldpne™n (0 Drmeon = det(g~)
pn

while the second term gives

AS= 3 g, o / i / ﬁdeTfE;WT)A(T_T/)%(T/) 28)
po,w " Wt ‘v 0 0 o 0
where
Voo, Vop
A(iw) = E P 29
(zw) w + u— €p (29)

p

is the retarded hybridization of the impurity with the bath of cunduction electrons.

The action therefore is

— —BTBT/ T (7 r(r—1' (7!
Z: /‘D[w’i‘lp]e Sa fO d fO d Zaa/ ¢a( )Aaa( )¢a( ) (30)

where S, is the atomic action.
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3 Details of continuous time QMC

3.1 Sampling over Kinks

It is now straighforward to expand action in powers of the hybridization

— 1 P P / / / :
Z:/D[wTw]e Sa;ﬁ [;/O dT/O A7’ o (T )wj;(T)Aaa/(T—T)] (31)

Here A(T — 7') is a real function (if no SO) and v/’s are grassman variables

We can regroup terms such that the local contribution is separated from the bath
contribution

k k k
7= [ Diutyle: > 5/ 5 []ar / 5 [T st S TT [ver (20 9]

ao’ 1=1

k

X H Aaia;(n, 7). (32)

1=1

It becomes clear that partition function is a product of two terms: the average of 1) operators
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over the cluster degrees of freedom, and average over the bath degrees of freedom A.

At the perturbation order k there are (2k)! terms (all possible permutations of 2k )
operators).

3.2 The toy model: at most two kinks, spinless fermions

We want to demonstrated the lowest order for spinless fermions. The generalization to an
arbitrary atom is trivial.

At the first order in perturbation theory, we have

B B
Z:/D[wTw]e_S“ <1+/0 dTS/O dTew(Te)A(TSTe)wT(TS)> (33)

The zeroth order term is just the solution of the atomic problem. Suppose the atomic
eigenstates are

H, |0) = Eqy|0) (34)
H,la) = E1 |1). (35)
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Then the zeroth order partition function is

7 — /DWTQMG—S@ — ¢ BEo0 | o—BE:

The first order term is

Zy = /06 dry /OB dre A(Ts — 7e) {/DWW]G_SW(%)W(TS)}

The term in the brackets {- - -} can be evaluated in the atomic eigenbasis:

{H(Ts < Te)Tr(e_ﬁHw(Te)wT (7s))
_9(7_8 > 7_6)-”(6_5H¢Jr (Ts)w(Te))}

or

{(9(7'5 < Te) Z (n|e= P eTellypeTeH Tl o Te =T 1)

n

—0(1s > Te) Z <n€6H€TSH¢T€TSH€TGH¢€T‘3H%>}

n

QMC

(36)

(37)

(38)

(39)
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and becomes
{007, < ro)emPPoe=(emm)E=E) (ojy|1) (1]u0)

07y > 7o )ePErem (=TI E D (114t 0) (0]y1) | (40)

We thus obtain
B B
Zl - / dTS/ dT@A(TS — 7_6) {9(7_5 < Te)e_ﬁEOB_(Te_TS)(El_EO)
0 0

—0(7s > Te)e_ﬁEle_(Ts_Te)(Eo_El)} (41)

Notice that hybridization is a fermionic function, i.e., A(—7) = —A(S — 7) and normally
is negative for positive 7 € [0...3] and negative for 7 € [—(...0]. We therefore see that
both terms in £ are positive, which is crucial for efficient Monte Carlo sampling.

Let’'s check an example. Suppose that A(7) = A §(7 = 07). This represents an atom
(not real quantum impurity) as the action becomes S = S, — foﬁ A (7)1 (7). This
means that the energy of the empty state is simply decreased by Fy — Fy — A. The
exact solution will have partition function Z = e PEo+BA + e‘ﬁEl, which can be
expanded to the first order Z = e PFo 4 e=BF1 L o= BEogA 4 ...

Kristjan Haule, 2017 —14—



RUtgerS Computational Physics- 2017 QMC

If we evaluate the EqQ. 41, we also get

B
Z1 = / drs A {e_ﬂEO} — BAe PFEO (42)
0
The single particle Green’s function of the quantum impurity model can be expressed by
0log Z
G(Te — Ts) = — 43
(7e = 75) OA(Ts — Te) 43)

This is because

B 8
Z=/DW¢] exp (Sa+/0 de/O dretp(Te) A(Ts %)W(%)) (44)

At the first order approximation for Z, we thus obtain the zeroth order approximation for GG

Taking the appropriate derivative of Eq. 41 (G = % %%), we get
1
Glre = 12) = = {0(r, < re)e PPoe=(re=r B
—0(7s > Te)e_ﬁEle_(Ts_Te)(EO_El)} (45)

which is the lowest order approximation for the single-particle Green’s function. It is known

Kristjan Haule, 2017 —15—
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under the name The Hubbard-I approximation.

3.3 The toy model: at most four kinks, spinless fermions

At the second order in perturbation theory, we have

B p p p
— %/0 del‘/O dTel/ deQ/ dTe2A(7_sl — 7-el)A(TsQ — 7_62)
[ Diwtile St (e ()

We can separate this integral into the region where 741 > 749 and where 741 < T42:
/ de1/ de2/ dm/ ATe2 A(Ts1 — Te1) A(Ts2 — Te2)
(Trp(1e1) T (T51)1 (Te2) 0T (752))
—a de1/ de2/ dm/ ATe2 A(Ts1 — Te1) A(Ta2 — Te2)
(Trp(Te1) YT (1)U (Te2) ¥ (152)),  (47)
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In the second term we will exchange 751 and 749 labels and we also realize that
foﬁ dTso fTZ drg] = foﬁ drs1 fOT“ dTs2, because both integrals correspond to the same

foﬁ dTs1 foﬁ d7529(751 > ng). We thus have

z2z—a del / d7es / dror / oA (rer — 7o) A (T3 — 7o)

(T (1)) YT (T61)(Te2)¥T (72)),,

+— del / d7es / dror / 7oA (res — 7o) A (Ta1 — 7o)
(T ()T (Ts2)(Te2)¥ " (T61)),  (48)

Now we realize that ZN(TSQ) and ) (Ts1) can be exchanged in the second term to make
the two products equal, and since these are fermionic operators, we will get a minus sign,

ZQ = _a d’7'81/ dTSQ/ dT€1/ dTeg (49)
2 Tsz Tel

(A(Tsl_Tel)A(Ts2 Te (’7'31 ’7'e2

< Tw(Tel)wT (Tsl)¢(7-62)¢T (7—82)>a (50)

l.e.,
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or

Loy = _a del/ deg/ dTel/ dTeo (51)

A(7_51 — 7-61) A(’7-81 — 7_62)
A(TSQ - 7_el) A(TS2 - 7-62)

(Tt (e )P (T1)1(Te2) ¥ (752)) (52)

Det

We just time-ordered creation operators. If we do the same with anhilation operators, we

would get

/ dTSl/ deg/ dTel/ dTeg (53)

7-81 - 7_el) A(7_31 - 7-62)

A(TS2 — 7_el) A(TS2 — 7-62)
(Trp (1)1 (T61) Y (Te2)T (72)),, (54)

Det
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Notice that time ordering is still enforced in the actual evaluation of the matrix elements,
(Trth (Te1) VT (T51) Y (Te2) ¢T ng)> , hence we could equivalently write

dTSl dTSQ dTel dTeg (55)

A(7_81 - 7_el) A(7-81 - 7-62)
A(7_52 — 7-61) A(TSQ — 7_62)

(T (re )T (1) 0 (20T (752)) (56)

Hence to simulate such integrals there are two ways to proceed. We can allow all times 7
to be unrestricted [0, 3] and have prefactor 1/(k!)?, or alternatively, work with sorted
times for anhilation operators (and creation operators) and remove the 1/(k!)? prefactor.

Det

Notice that such grouping of terms is particularly useful among operators which are of the
same type (spin T for example) because we have only a single matrix element to compute
out of (k!)2. Notice that such matrix elements in which 74 is exchanged by 7. for
example, have no relation to each other, and therefore we still need to compute of the order
(2k)!/(k!)? time ordered matrix elements.
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RUtgerS Computational Physics- 2017 QMC

When different spin-orbitals are involved, the determinants of hybridization have no-off
diagonal elements, hence we can simplify them as products of determinants for 1 and |,
spins (Dety (A)Det| (A)). But notice that single matrix element would represent only

(k4+!)?(ky!)?* terms, while the number of possible time ordered matrix elements is
((2k4 + 2k))1).

Kristjan Haule, 2017 —20—-
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3.4 Grouping terms into determinant

To avoid/reduce the “fermionic minus sign problem?”, it is important to group together of the
order of k! terms (at the perturbation order k) to take care of the time order of 1T (or 1))
operators. After such regrouping, one can avoid the sign problem in many important cases,
such as complex atom (including Hunds coupling) in medium. Because the bath is
non-interacting, one can expect that such grouping in possible. Let’s dive into it.

One way to understand that, is to notice that the generated terms in Eq. 32 correspond to
Feynman-diagrams in the representation of slave-particles, where each slave particle
projects the impurity to one of the atomic eigenstates.

It is clear that when for all pairs of 7;, 7',&-’ we have 7; < Ti/ (orT; > TZ-/) the Feyman diagram
has no crossing of the propagators. These terms correspond to the so called "Non-crossing
approximation” for the Anderson impurity model (there are also terms with not strictly
increasing or decreasing time order which do not lead to crossings either). Exchanging the
time order of kinks, leads to crossing of propagators. It is well known that crossing
diagrams have any sign while non-crossing diagrams have all the same sign and are
typically larger than the crossing terms.

Kristjan Haule, 2017 —21-
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In another words, by grouping into determinants one adds to any non-crossing diagram all

the corresponding non-crossing diagrams, hence substantially reducing the sign problem.

We first copy Eq. 32 and use the notation
1 _
<A>local — Z— /D[wTw]e %a A (57)

7, = /D[wTw]e_S“ (58)

to get

| B g B s
Z:ZGZE/O d7'1/0 d’rl---/o d’rk/o dt, Z

/
1Oy, O,

~

(War (1)L, (1) - Yar ()WL, (7))

X H Aq;a (Tis Ti)- (59)
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Next we combine crossing and non-crossing diagrams into a determinant, which can be

mathematically expressed by

— sz'/dﬁ/ dr, - - /di/ dr;,
1a1, ozk,ozk

x <T7'¢oz’1 (T{Wll (7_1) e wa;f (T]/g)wiék (Tk)>local X

( AoélOéll(TlaT{) Aoqoz (7'1,7‘2) \
e P

\ Aaka’l(TkaT{) Aaka;(TkaTl{C) )

Here Z,, f D[vT1p]e=5 and average is defined by
<O>local — Z_a fD ¢T¢ _SQO'

This is the central equation of the Continuous Time Monte Carlo sampling around the
atomic limit. To derive Eq. (60) from Eq. (59) one needs to permute time integration
variables 7 in all possible ways. Permutation of fermions gives minus sign in an odd
permutation. This minus sign can be absorbed in the minus sign of the product of

Kristjan Haule, 2017 —23—
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hybridizations, resulting in the determinant of hybridizations.

Any good quantum number of the atomic Hamiltonian can be used to simplify the large
determinant into product of determinants. For example, if the spin is preserved, we would
have a product of determinants for up and down spin. All matrix elements in which the
equivalent operators are exchanged, are identical, and hence can be compute all at once.

3.4.1 Discussion in grouping and relation to Feynman diagrams

Let’s take a look at the concrete example. The lowest nontrivial term is the second order

term of the form

Y)Y (r)YT () () Al — 1) A2 — 13). (61)

which is time ordered when T{ <711 < T2 < Té. We discussed the same product above.
When 77 is bigger than 7o, we get a contribution

— ()" (1) (TP (15) A(1y — 71) A(72 — 75). (62)
If we change the integration variable 71 <+ 72, we have
/ T T IN\NT__ o o
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The two terms can be groped together

B B
/ .. / dTidT{Ip(T{)wT(Tl)wT(TQ)¢(T£)A<7_1 — T{)A(TQ - Té) —

B B 1
| o [ andrivtiet v i) per
0 0

Diagrammatically, the two terms can be picture in the folowing way:

m m
5 o T 11

QMC

Alr—7i) Al —13) )

Kristjan Haule, 2017
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3.4.2 Algorithm

Sampling of the above diagrams (60) could be done in the following way:
e Randomly chose perturbation order k

e Generate k random times in the interval |0, 3] for anhilation operator and k& random

times for construction operator in the same interval.

e Evaluate the weight (partition function) for this particular configuration of times (let’s call
it a diagram although it is a collection of diagrams)

Zp = Zaﬁ@%; (T{)wl{l (11) - Yot (Té)wlk (Tk))1ocal X

[ A (11, 7]) Dayay(1,74) - \

X Det : (65)

K Aaka’l (TkaT{) Aaka;(TkaTé) )
The trace in ( - ->local should be properly time-ordered. The move should be accepted

th 1 habil onalta tion functi buti
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RUtgerS Computational Physics- 2017 QMC

This type of sampling woule be extremely inefficient. Exponentially many diagrams must be
visited with Monte Carlo importance sampling. To achieve that, a set of simple moves is
implemented which can be made sufficiently fast so that the large phase space is sampled
efficiently.

Configurations which are being sampled with Monte Carlo can be labeled by a set of times
corresponding to various anhilation or creation operators

0— : ! g W
t
T, T 15
! ! ! W
T, T 3 !
_ L|J+
Tl 'l'2 |

W

- ! 1 configuration
X
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Each application of the operator 1) makes a "kink” in the time evolution of the atom
therefore we will call kink to be application of any operator in the time evolution.

The times on each line can be time ordered and only the time ordered combination needs
to be visited. All the rest of the configurations are automatically included because of the
determinant of bath A in the expression which takes into account all possible ways of

/

connecting 7; with 7 through bath A(7; — 77).

The configurations X = [[70, 71, -+, Tk, [Ts T1, - - -, T1], - - -] can be visited with the
set of simple moves. The following are usually used:

® Insertion of one creation and one destruction operator of the same flavor (spin up or
spin down) at random times.

e Removal of two randomly choosen times 7; and ’7']’- where one corresponds to
anhilation and one to creation operator of the same flavor (up or down).

e Shift of one operator in time (shift of a kink).
e Insertion of multiple kinks

e Removal of multiple kinks

Kristjan Haule, 2017 —28—
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The detailed balance condition requires that the probability to insert two kinks at random
times 7, 7', being chosen uniformly in the interval [0, ), is

No \? Znew Prew
P.,gqa = min [( B Ny ) 1] (66)

E+1 Zoid Dota

where IV, is the number of baths, k is the current perturbation order (number of kinks/2),
Zew 1S the local matrix element

Znew = <Tf¢o¢,’new (Tfrlzew)w:&new (Tnew)wa’l (T{)wgl (1) -
o (Té)wlk (Tk))10cal (67)

and D,,cw /Dold is the ratio between the new and the old determinant of baths 2. The
factors of (8N} ) enter because of the increase of the phase space when adding kinks
(increase of the entropy) Similarly, the probability to remove two kinks, chosen randomly
between [1-- - k] is

k ? Znew Pnew
Premove = man [( ) 1] . (68)

BNy ) Zog Dog’
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One can explain these probabilities also as a product of trial-step probability wx _, x+ and
acceptance probability A x_, x-. The detail balance condition requires

AXQk—>X2k+2 L p(X2k+2) wX2k+2_>X2k:

= (69)
AX2k+2—>X2k IO(XQk) WX ok — Xokto

When adding two kinks X ey = Xogt2 has 2k + 2 kinks while X ;4 = Xof has 2k
kinks. The trial step probability for a random insertion in the [O, B] interval is

/
ATrnewdTy, ey

WXop—Xokta = 62

while removal of the two kinks, where we need to select one creation operator among
k + 1 creation operators, and one anhilation operator among k£ + 1 anhilation operators, is

1
WXoktr2—Xok (k I 1)2

The probability distribution p(X) is proportional to X’s contribution the partition function,
and is

,O(ng) =dr - didT{ .o dTl/CZQkDQk (70)

p(Xokt2) =dm - - - drdr] - - - d7y, dTpewdThew Z2k+2Dok42 (71)
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(72)

The net acceptance probability is therefore

2 /
AX2k+2—>X2k: . B dTnewdTy oy Z2k+2D2k 42

AXQk_>X2k—|—2 (k + 1>2dTn€wder/LewZQkD2k

which enters the above stated probability to add two kinks P, 44.

The only extra variable in the above equation is [V, which is the dimensionality of the bath.
For one-band model, [V is unity. In case the spin is not a good quantum number (like
superconductivity), than [V, would be 2 for the composite bath of 1 and | spins. In the
latter case, we would need to consider the off-diagonal hybridizations and off-diagonal
operators QD%%AN. In this case, we need to add one kink in the |0, 3] interval of the
T-spins or [O, B] interval of | spins. Effectively, the interval is thus increased by factor of
two (we have two choices). In general it increases by the dimensionality of the bath /V, and
the interval is thus of size 5.Vp.

To efficiently sample over a large Hilbert space of diagrams, we need to learn how to

Znew Dnew

compute the ratios Ze and Do with the “fast update” type of formulas.
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3.5 The local part of the partition function

Exact Diagonalization of the Atom/Cluster

To efficiently evaluate the atomic part of the partition function Z,,.,, one can diagonalize
the atomic part of the Hamiltonian, i.e., H, = Fy,|m).

It is also crucial to take into account the conservation of various quantum numbers, such as
the particle number, the total spin, and the total momentum of the atom/cluster states when
evaluating the atomic traces.

Typical contribution to the atomic part of the trace that needs to be evaluated at each Monte
Carlo step, takes the form

Zp = Tr (Tre etpa, ()L, (7)o ()0l () (79

— Z 6_(5_Té)Em1 (wan)mlmge_(Té_Tn)Emg (wln—l)m2m3 .
{m}

/
(wO‘Q )mn—lmn 6_(7-1 _Tl)Emn (w(tél )mnml 6_7_1 Eml

where the matrix elements are (¢}, )pm = (n|¥],.

m) and F,, are eigenvalues of the
atom. The actual order of operators in Eq. (73) depends on their time arguments and
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creation operator is not necessary followed by annihilation operator. Note that we are using
the Heisenberg representation for operators, i.e., 1o (7) = e"Haqp,e ™o,

This approach is extremely efficient for a single orbital and a few orbital model. In simple
one band model (or whenever 1) operator connects one atomic eigenstates with only one
atomic eigenstate), we need to multiply numbers only, and the entire product is either zero,
or just the exponent of the sum £ exp() |, —AT; I, ), where AT is the time interval
between kinks, and £, is the atomic eigenvalue in the chain product.

But when the complexity of the atom grows, the bottleneck becomes the fast growth in the
number of atomic states \m) (for example, single site DMFT for the f shell requires pld
states). Consequently, the matrix elements 1) are in general very large matrices and the
typical diagram order is inversely proportional to temperature therefore one typically needs
to multiply few hundred large matrices at each Monte Carlo step. It is clear that this is very
impractical and we need tricks like:

e Most of matrix elements vanish due to Pauli principle. A fast algorithm is needed to
determine which matrix elements are nonzero.

e Symmetries of the problem can be taken into account to reduce the size of the 1) matrix.
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accepted steps and the insertion or removal of a kink is very local-in-time operation. It
is convenient to store some of the product in Eq. 73 (in a priority queue or tree
structure, or just as linear chains) and when trying to insert a new kink, recompute only
log(n) products.

Concept of Superstates:

The eigenstates of the atom can be written in a form |V, S ; ), where N is total number
of electrons in the state (one band model has only 0,1,2), .S, is the 2z component of the total
spin and 7y stands for the rest of the quantum numbers.

The creation operator satisfies conservation laws, for example

YIIN,S,) = |N + 1, S, + o) because the creation operator is nonzero only between
Hilbert subspace of { N, S, }and {N + 1,5, + o}

In more general type of impurity problem one can have more quantum numbers and more
conservation laws: For example momentum can be a good quantum number and total
spin,... These conservation laws can greatly reduce the size of matrix (9% )., In the one
band model, it becomes a number and in 4-site impurity model, the largest matrix is it

12 X 6 after conservation laws are taken into account.
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{N, S} and treat the rest of the quantum numbers as internal degrees of freedom of a
atomic superstate |i) = |{IV, S, }). The superstate |¢) can be multidimensional state with
internal quantum numbers |m|7]). It is then clear that creation operator acting on a state
|7) gives a unique state |j) = 11 |4) and it is enough to store a single index array

Fod (z) = 7 to figure out how the Hilbert subspaces are visited under application of a
sequence of creation and annihilation operators such as in Eq. (73):

i1 — F (i) — - i, = F(4,_1). This sequence is very often truncated in few
steps only, due to the Pauli principle, i.e., because most of the sequences contain either
multiple application of the same creation or annihilation operator (Pauli principle) or
because they lead to a state outside the base (for example )| N = 0...) = 0 or

YIIN = maz...) = 0).

Once the nonzero matrix elements are found by this simple index lookup, the value of the
matrix element needs to be computed by matrix multiplication.

In general impurity problem, to compute the trace in Eq. (73) we start with unity matrix in
each subspace of a superstate \z) and apply both the time evolution operator e~ Em(mi—;)
(by multiplying each row of a matrix with its time evolution) and the kink (by multiplication

with the matrix (Ye )ymn Of (F1),mn). The operation of 1) brings us to the next superstate
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Fo‘(z) where we repeat both the time evolution and the kink application. After k steps, the
trace of a matrix gives the desired matrix element.

Storing the Time Evolution:

The number of kinks is proportional to inverse temperature 3 and kinetic energy of the
system (k) = 3| Ekin| (see Eq. (133)). It thus becomes large at low temperatures.
However, an insertion of a kink with large time difference (17 (7)1 (7") with large 7 — 7/)
has a very low probability. The reason is that Pauli principle forbids insertion of the pair
Wl (7)1 (7") if another kink of the same species « is between the two times (7, 77). At
the same time, A(7) is like G(7) peaked at small times 7 — 7’ and falls of at large times
making the long time intervals rare.

The insertion of a kink is thus fairly local in time operation, therefore it is convenient to store
a whole chain of products that appear in Eq. (73) from both sides, left and right, to make
trial step very cheap. It takes only few matrix multiplications (almost independent of
temperature) to compute the trace in Eq. (73). When the move is accepted, the trace needs
to be updated which takes somewhat more time. However, it turns out that the time
evolution far from the interval being inserted/removed, is typically changed in a trivial way
by just multiplication by a phase factor. Hence expensive multiplication far from the interval
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being inserted is very rarely done in practice.

More sophisticated techniques were implemented for storing these products (see for

QMC

example PRB B 90, 075149 (2014)) . One is the implementation of the skip list, or a binary

Fys x Fy x Fg x F5 x Fy x F3 x Fy x I} o

1"<><F7><F6XF5 . 1“1XE3XF2><F1

N

‘EgXF7 ,_\‘FGXF5 ‘F1XE3 ,_\‘FQXFl

T T )

FgXF7XF(;XF><F5XF1XE;XF2XFl
FSXF7XF6XFXF5 - [‘EXE;XFzXFl

Fy x Fr7 Fs X F X F5 FyxFs  Fy X F

Fy| Fy| Fo F| Fs| Fy ng Ry Fy

FIG. 2. (Color online) Top panel: Storage scheme for subprod-
ucts of matrices. The arrows store the products of matrices they
span over. The [ = 1 level stores the pair products, the [ = 2 their
products, and so on. Lower panel: The matrix F has been inserted in
the matrix product of the top panel and the products with a bold red
multiplication sign need to be calculated in order to obtain the total
product.

tree.
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3.6 The bath part of the partition function

The bath part of Z, denoted by D above, is

( Aozloz’l (7_177_{) Aozloz’g(TlvTé) \

D = Det (74)

K Aaka’l (TkzaT{) Aaka;(ﬂca’r]/g) )

When adding (removing) two kinks, one column and one row is added to (removed from)
D. It is numerically unstable to compute determinant of a large matrix. For the transition
probability, we need only the ratio Dnew/Dold. This ratio is simpler and numerically more
stable to compute.
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It turns out that more useful than matrix of A’s written above is its inverse

( Aozloz’l (7_177_{) AOHO/Q (Tl’Té)

\ Aoyar (70, 7))

Aaka; (Tkv 7_li:) )

QMC

(73)

We will see later that this matrix is directly connected to the local Green’s function. The

ratio of determinants can be equally simply expressed by this matrix

Dnew/Dold — Det(Mold)/Det(Mnew>-

In computer, we will store and manipulate only matrix M .
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Shermann Morrison formulas:

This formula is used for fast inversion of a matrix. If we have matrix a A and we change
A~ with adding u X v, the inversion of the results can be done in N? steps rather than

usual N3. The formula is

1
A1 “l=4A— A A 76
(A7 +u®v) oy (A © (04) (76)
Here u and v are vectors.
Further, determinants can be expressed by
Det(A™' +u®v)Det(A) =1+ vAu (77)
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3.6.1 Fast update for addition of a column and a row

We have a matrix M whichis (n — 1) x (n — 1) matrix. We change the matrix in the

following way

[ An
—1
My = . S (79)
\ Anl AnQ e Ann

Provided we know M, M,,.., can be obtained using the Shermann Morrison formulas.
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We will derive the equation in two steps. First we will define an intermediate matrix M,

which is given by

( 0\ [ Auw o)

— M_l 0 Agn

\o 0o 1) \an.-1)

{ A1n \
M1 A
= (80)
\ 0 0 N
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Second, M, ¢, is given by

—~—

Mt =M1+

new

[0

u

In the first step we have

where

( Av, )
M1 A

X (Anla An27 T |O) —
\ Anl An2 Ann )
u = (A1n7A2n7'°"Ann — 1) (82)
v=(0,0,---1]1) (83)
Mu = (LlnaLQna"'aAnn - 1) (84)
vM = (0,0,---]1) (85)
vMu=A,,, — 1 (86)
ng — Z le Al] (87)
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Using the above formula, it is easy to see that

[ L )

— 1 L2n

®(0707”"1):

P
In the second step we have

u = (0,0,---|1)
v=(Ap1,Aps2, - -|0)

M’UJ = (_Lln/Anna _LQn/Anna

QMC

_Lln/Ann \
_LQn/Ann

\ 0 0

vM = (Ru1, Rz, | — ¢/ Ann)

vMu = —q/Any

where

Lij = Z M Ay

’1/Ann)

/A
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R;; = ZAil M;; (95)
I<n
q = ZAnlLln = Z Apy My Ay, (96)
I<n 1'<n
Finally,
{ _Lln/Ann \
Mpew = M — ! ~Lan/Bon @ (Rn1, R | —q/Ann) (97)
new — 1_Q/Ann nl, Ln2, q nn
\ YAw

Combining the two equations for M and M., .., We have

( 0\ [ —pLin )

A —p Loy,
Myew = + b (98)

\0 0 |0 ) \ -pRu —pRwx | p |
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where matrix A and p are

1

—=Apn — q = Apn — Z ApiLy, = Apn — Z A My Apr (99)
P I<n n<n

Az’j — pLGan (100)

It is more efficient to express M,,c., by

( 0\ [ L)

M 0 Lo,
Mnew: —I_p ®(RnlaRn27°'°|_1) (101)

Lo 0 |0 \ -1

This is again the "rank 1” update formula and can be implemented by BLAS routine dger.

Finally, the ratio of determinants is

Det(M~YDet(M) = Apn (102)
—~ 1
Det(M} YDet(M) = DA (103)
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therefore

Dpew  Det(M) 1

= = —=A,, — ANV FTTVAN TS 104
Dold Det(Mnew> p ll’z<:n l ! l ( )

3.6.2 Removal of a row and a column

Original matrix M is n X n and we want to remove the coulmn and row number & in the
inverse of this matrix.

The formulas can again be derived by Shermann-Morrison formulas or can be checked by
mathematica

My M
MY = pNf, — R 105
where ¢ and 7 now do not need to run over index k. The ratio of determinants is
D Det(M
= M) M (106)

Dold B Det(Mnew)

In more general case, if we remove a column ¢ and a row j from A, the ratio of
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determinants is

Dnew
Doig

— (_1)chessboa7“dMij (107)

where (—1)0’16851’0‘1” is unity when the corresponding field (¢, j) on the chessboard is
dark, and is (—1) when this field is white.
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3.7 Green’s function Evaluation:

The local Green’s function can be computed in two ways:

e Directly from the local trace, i.e.,

1 — [P Hd
G(r1 — 1) = ETT(TTG fO T%—(ﬁ)l@i(ﬁ))
which can be evaluated just like to local trace above with the only difference of two
more kinks in the interval [O, 6] This requires Worm algorithm (two dangling ends i.e.,

Ira and Masha, correspond to ¢ and wT). This will not be further discussed here.

e Through the conduction electron green’s function using the same set of kinks as
needed for computing Z.

It is much more efficient to compute the electron Green’s function by the second method.
We first recognize that the impurity Green’s function can be computed by the logarithmic
derivative of Z ( Eq. 30) with respect to the hybridization A, i.e.,

0log Z
GB /B(Tz TJ) 5AIBIB’ (Tj . 7_/) ( )

1
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1 —Sa— BdT BdT/ T (A (r—7' o (77

where S, is the atomic action.

The derivative of the Eq. (60), which is sampled by the CTQMC, is
0 log(2) / /
= —Z dr, dr
o = 7 W Z,H [
al.. k

X<TT¢O/1 (T{)wlgl (7_1) ) (7_ ) ( )>local X
/Aala’l(ﬁﬁ{) \

Det (109)

y 1 0

\ AOék;Oé/l(Tk7T{) AOék:Oé (Tk’Tk) )

Next we recognize that the derivative of the determinant gives nonzero contribution when
App (T; — T!) appears in the determinant. In this case, the results is a similar

determinant, but with one column and one row removed from the determinant. The
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minus sign of a chessboard pattern when Agg/ (7; — 7;) is on the white field.

Let us use the notation

A=M"1= (110)
A(Tk,T/k)

and write the expression being sampled by CTQMC

522(?(_7 ~ 2z, Zk, Z H/ dn/ dr!

ay 1=0

(Tt (0L, (72) o, (T, (70) ot 3 Det(A)
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A+, /) .. A+ VA W é(qz. q:/)

\ A(r,7]) - | Aa—r-| - Alry, ) )

(1

Det (A) "

< (_ 1)chessboa7°d

-tk
N—"

We showed above that the removal of a column and a row gives the matrix element of the
inverse A~ = M at the center of the cross, i.e., M1 ;. (—1)chessboard.

Next we recognice that all terms but the ratio of determinats appear also in computing Z,
hence they are part of the Monte Carlo weight 13 5,. Hence during Monte Carlo sampling
we just need to sample the matrix element MT,/,TJ., le.,

G(r) —1j) ==Y WncMy .. (112)
MC
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We can Fourier transform each contribution to the Green’s function to obtain
. 1 — o
Giw) = — Z WMCB Z €T My e T (113)
MC i,]

We can thus sample Green’s function directly in imaginary frequency, rather then imaginary
time. This equation is the central equation of the approach since it relates the local Green’s
function with the quantities computed in QMC importance sampling.

The equation (113) shows that only matrix M = (é)_1 needs to be stored and
manipulated in the simulation.

To derive the formula for the impurity green’s function, we used the first order derivative of
Z with respect to the hybridization. If one perform the second order derivatives with respect
to the hybridization /A, we obtain formulas for the two particle susceptibilities. These are
important quantities that eneter many two particle physical observables, and are readily
available in the CTQMC approach.
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Fast Updates: The Green’s function can be updated in linear time (rather than quadratic).
When adding a construction and annihilation operator at 7 and 7, adding a column at 7,
and row at i, to matrix M ~ 1, leads to the following update formula for the local Green’s

function

Gnew — Gold . % Z o WTie Lje Z ste—z'wTjs . (114)
Js

Quantities L and R were defined above. It is clear from Eq. (114) that only linear amount of

Je

time is needed to update the local Green’s function.

When removing two kinks of construction and annihilation operators at 7, and 7., Green’s

functions are related by

1 . .
Gnew — Gold 4+ . Z o W Tie Mjeis Z Miejse_szjs . (115)
Js
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Finally, the exponential factors €*“7 do not need to be recomputed at each Monte Carlo
step since all “old” times can be stored and the exponents need to be computed only for the
new pair of times and only at each accepted move.

It is important that one can sample directly GG(iw) rather than G(7) to avoid discretization
error due to binning of G(7).

3.7.1 High Frequencies and Moments:

Similarly to the Hirsch-Fye QMC, the low frequency points of Green’s function converge
very fast to the exact value while the high-frequency points, when sampled directly, contain
a lot of noise. It is therefore not very useful to sample large frequencies in the above
described way. Usually we sample low frequency Matsubara points, while the
high-frequency are replaced by the high frequency moments of the self-energy computed
analytically. What is low frequency? A good rule of a tumb is that w, "** L ~ 10, where L
is the high frequency cutoff on the real axis. This results in (2n"** + 1)(w/B)L ~ 10 or
n™ ~ 3(B/L).

The high frequency moments of the self-energy are computed from the Green’s function
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moments, which, in general, take the following form

mi? = (=) ({[H, [H, - [H,va] - )0} }) (116

To compute the moments within the present approach, few operators need to be sampled in
simulation. In the one-band model, only density is required, but in more complicated
situation, higher order density-density and exchange terms enter. In general, Green’s
function moments can be expressed by the average of a few equal time operators.

It turns out that up to the second order in self-energy, the hybridization cancels out of the
expression, and therefore H in the above equation can be replaced by H,, which gives
extremely simple form for this moments in the local eigenbasis

mfﬁﬁf = Z(F Venn (FT) s (B, — Ey) (117)

n

_(FﬁT)mn(Fa)nm’(En - Em’)
my et =3 (F)mn(FP) s (B — By, (118)

n

‘i‘(FﬁT)mn(FQ)nm’ (En - Em’)Q-
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The lowest order self-energy moments can then be computed in the following way

Sas(00) = (MY — By (119)
245 = (mg %) — (m{P)2, (120)

3.8 Sampling of zero time quantities

Equal time operators like those in Eq. (117) and (118) can be straightforwardly computed in
simulation. Any cluster operator can be expressed in terms of Hubbard operators X ,,,,./,
which project to the cluster eigenbase, and matrix elements of the operator in the cluster
eigenbase

O = (m|Om") X, - (121)
To compute the expectation value of the operator, the following probabilities are needed

Prm' = (Xom!)- (122)
The expectation value of any cluster operator is then given by

(0) = (m|O|m') Py (123)

mm’
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To improve the sampling precision, operators are averaged over all times, i.e.,

B
p -1 / (X (70)) 0 (124)
B Jo

11 B I - _[” Hdr
= —— | dryTe[Tre Jo Y X i (T0)e Sy ]
Z B Jo

If the time 7 is between two kinks 7; < 79 < 7741 we have

1 (7 e Ti41 ° Hdr
S e [ e

TI+1

B
drTy[Tye” Jo BT e=Halr=m) o= Halmin=7) " S

Zp [l mo !
1 ey — 7 Har
LS S ol B s (141 = ) e
[ mo
Here
1 —FE, AT —FE_ /AT
Wi (AT) = — (127)
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To improve the speed in computation of local traces, the quantities

T1
(mole” Jo 9T |m)

are stored and regularly updated during simulation.

Further simplification is possible if operator () commutes with H,, because only the
diagonal probabilities £7,,,, are needed in this case. For example, the electron density 7 ¢
and average magnetization (SZ> are two important quantities which can be computed to
very high precision in this way. For example

ng = ZPm<m\]\Af|m> (128)

M =) Pn(m|S*|m) (129)
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Here diagonal probabilities are
A
Z 7 1 Z m0|e f HdT e—EmAn <m‘€ T4 ‘m0>

and are just the weighted sum of the local trace contributions we derived above to compute

the transition probabilities. The local trace in this notation is

1 (" Har _
2= L S tmole™ K 4 e B e s 7 g

mo,l

and becomes clear that the probability for each atomic state is proportional to the time each

atomic state "survives” in diagram.
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3.9 Sampling the total energy:

The average of the potential energy <V> can be computed from the average of the local
energy since

(Hioe) = Y Uaprs(Wlvhvstn) + 3 Eimpas(its)

afByd af
= (V) + Tr[Eimpn)] (130)

Kinetic energy of the general single site DMFT FE/;,, = Tr[HﬁGk] can be computed by
Eiin = Tr|AG| + Tr|[(1 + Ejpp)n] (131)
The total energy is therefore given by

(H) = (Hioe) + Tr[AG] + pn (132)

The first term H;,. can be computed very precisely in simulation. The sampled quantity
<O> is just the energy of an atomic state and can be simply obtained from the probabilities
for atomic states (Hioe) = D e ati—states £mom- Computing kinetic energy from the

Green’s function gives in general worse accuracy because the high-frequency behavior of
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computed tails is necessary. However, it is simple to show that the average value of the
perturbation order is related to the average of the kinetic energy

(k) = —%Tr[AG] (133)

where </<3> is the average perturbation order and 1’ is temperature. The later quantity is
directly sampled in the present algorithm and it is just the center of gravity of the histogram.

To show that we write expression for the average perturbation order

1
~Z / D[wtyle S)* (134)
— /D [)T9ple ™ Z AS)’“ 'AS = —(AS) (135)
which is equivalent to Eq. (133)
Finally, the total energy E is given by
Etot — <Hlocal> - T<k> + umn (136)

Krlstjan Haule 2017 —62—



RUtgerS Computational Physics- 2017 QMC

temperatures can be reached in this method, the entropy can be obtained by integrating the
specific heat.

3.10 Sampling of other Response Functions

A general one or two particle response function can be written in the form

X(Tl,TQ) = <T7-A(7'1)B(7'2)> (137)
This includes one particle green’s function and various type of susceptibilities.

We will start by rewriting the equation in the form of time evolution operator

1 [ T)AT — [ T)aT — & T)aT
X(leTQ): ETI‘ (e fo H(T)d A(7_1>6 le H(T)d B(TQ)e f72 H( )d) (138)

B
The time evolution e fo H(r)dr includes kinks due to hybridization which were addressed
above when sampling the partition function. In each diagram, we have 2k kinks and when
computing response functions, we need to add two more operators at any combination of

times 71, To.
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If the time lies between two kinks, lets say 7, < 71 < 7,41 and 77, < 7o < T}, 41 We

might rewrite

Tiq+1 Tig+1 '
B Z/ dTl/ d,7_2€zw(7'1—7'2) X (139)

l1,l2

_ [T dr — [Tt H(T)dr

Tr e fol H( )d e_Ha(Tl_Tll)A(Tl>€_Ha(Tll+l_T1)e le1_|_1 (140)
H(7)dr

e_Ha(TQ_Tl2)B(7_2)6—Ha(7_l2_|_1—7_2) fTZQ (141)

because we know there is no kink between 7;, and 7;, 1. Here H, is atomic part of
which can be exactly diagonalized H,|m) = E,,|m).

We can express any local operator in terms of the matrix elements of the atomic states, i.e.,

A=) m) A (M| (142)

Iserting the expansion of A and B we get
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. 1 T+l T2t Tl(iw—E +FE /)+TQ(—iw—E +FE /)
x(iw) = 75 Z Z dTy droe m T Sm nTEn’) % (143)

I1,l2 {m} "’ Th U
eEmTll_Em/7l1+1+En7l2_En’7—l2+1 % (144)
T — [T H(r)dr _ (" H(r)dr
(mole™ o HOT N A e Sl 1) By (0| S Imo) (145)
and after integration
1 eiWTll-l-l_EmATll L einll—Em/ATll
SN 146
X (iw) Zﬁzz "B T B (146)
ll,l2 {m}
e—iWTZ2+1—EnAT12 _ e_iWTlg_En’ATlg (147)
X
—w — B, + FE,,
[T — [Tl2 H(7)dr _ (" H(7)dr
(mole™Jo " O ) Ay e Sl 1) By (1 e I, mo)

where A7; = 7311 — 7;. This sum can be computed for each accepted diagram and
sampled over Monte Carlo generated Markov chain. Since one needs to compute double
sum over all kinks (1, [2) 5-times sum over all atomic state ({m }) for each Matsubara
frequency tw it becomes increasingly expensive for the complicated atoms or low
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temperature with large number of kinks.

The response function dramatically simplifies in the case matrix elements

Ay = Omm' A and By, = 0, By, are diagonal and constant for each superstate
(For example spin or charge susceptibiity). In this case, we can write

X Z zwnﬁ_l‘ . eiwnl e—iwn2+1 _ e—iwng AmBn y
B W — 1w
ll l2 {m}
— [T H(r)dr B A =2 H(dr
(mgle Jo im)e” "2 (mle T In) x (148)
— (" H)
e—EnATlQ <n|e fq2 T 7_|7n0>

szll_H . eiwnl e—iwn2+1 . e—iwn2

The last part is just the probability for the atomic state |m0>, i.e., P, therefore
Ay,

5 Z Fong Z W — W

1 lo

By,

Here A,,, is the value of the operator A in the interval [, 7;1.1] provided the time
evolution is started by state my.
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If A and B are the equal operators, we finally have

eszll_|_1 . ezwnl

1
=3 %0: P, Z — A,

[

and zero frequency is
2

BZPmO ZATZ miy

To compute this time evolution, we start with state mg where A takes value Amo and after
first kink, the state becomes m1 and A takes value A, ,...

For zero frequency response functions, the term in the brackets is the average value of A in
the imaginary time interval [O, 6] therefore one could symbolically write the above equation

/ dT\ (149)

which could be guessed from fluctuation-dissipation theorem.
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Examples of the CTQMC run (Coexistance of metallic and insulating solution in the
half-filled Hubbard model in D — 00
(=200
U=2.4
—— metal
| — insulator
£6=200
U=2.4
— metal
L= insulator
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Homework:

e Download the code from

http://www.physics.rutgers.edu/ haule/681/src_CTQMC/
e Compile the source code in subdirectory src

e Check the script 1iterate.py inthe run subdirectory. The script properly runs the
code creating necessary input files.

e Change parameters U and mu to sketch the phase diagram of the one band Hubbard
model in D — oo limit. Since we are interested in the phase diagram of the half-filled
model, mu should be always equal to U /2.

— Verify that for U = 2.4 and mu = 1.2 and beta = 100 two different solutions are
possible (coexistance of solutions)

— Slowly increase U and check when the metallic solution disappears.
— Slowly decrease U and check when insulating solution dissapears.
— Sketch the region where the two solutions coexist.

— Increase temperature and find the coexistence region for few temperatures.
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Some explanation of the input to CTQMC and its use

The script 1terate. py generates three input files for the impurity solver:
e PARAMS,
e bath hybridization function A (iw),

e atomic energies E,,, and matrix elements of {m|yT|n).

QMC
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A minimal PARAMS file can contain the following parameters (default values available)

De 1t a— Filename of the input bath function hybridization function
cix — Filename of the input file with atomic energies and matrix elements (m|y)7|n).

U — Coulomb repulsion (Slatter FO). Important remark: In cluster calculation, this parameter
has to be set to zero because the onsite Coulomb repulsion needs to be entered through the

eigenvalues of the atomic states.

mu — The chemical potential

beta — The inverse temperature

M — The total number of gmc steps (every trial step counts!)

nom — The number of imaginary frequency points treated by simulation
CleanUpdate— Number of gmc steps between clean updates

aom — To augment the high frequency tail of the self-energy with the low frequency
part, one needs to compute the value of (w42 ). If the statistics is very good, one
can just take the last matsubara point. If not, aom counts the number of frequency
points (to average over) to compute > (iwyqz )
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More options include:
e Gf — ("Gf.out”) Filename of the output green’s function G (iw)
e Sig — ("Sig.out”) Filename of the output self-energy Y (iw)
e Ntau — (500) Number of imaginary time 7 points to spline input hybridization function A(T).

e Nmax — (1024) Maximum number of kinks created during simulation (check the output

"Histogram.dat” if this number is sufficiently large)

e PChangeOrder— (0.9) Probability to change the order (as compared to move a kink): the ratio

between the step number 1&2 compared to step number 3.
e tsample — (50) How many gmc steps between two measurements.
e warmup — (500000) How many gmc steps before we start taking measurements
e CleanUpdate — (100000) How many steps before the clean update needs to be performed

e minM — (1e-10) Trace shuld always be larger than this minimal value when accepting the step (To

avoid singular contributions)

e minD — (1e-10) Determinant of hybridization should always be larger than this number when
accepting the step

e Ncout — (1000000) How often to output on the screen basic information about current state of the
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simuation

e Naver — (500000000) How often to output much more information about simulation (for

debugging purposes)
e TwoKinks — (0) Probability to try two kink step
e GlobalFlip — (-1) How often to try the global flip

e treshold — (1e-10) When computing the optimized atomic base, how small needs to be probability
to neglect contributions of an atomic state

e SampleGtau — (-1) How often to update G(7) by binning (not necessary since we have G (iw) -

used only for testing)

e sderiv — (0.1) Highest discrepancy in derivative allowed when matching the low frequency

(simulated) and high frequency (moment expansion) part of self-energy.

e minDeltat — (1e-7) A(7) is sometimes not causal due to numerical error. In this case we set it to

small value minDeltat.
e SampleSusc — (false) Spin and charge dynamic susceptibility are sampled in simulation
e nomb — (50) Number of bosonic frequencies when dynamic susceptibilities are computed

e som — (3) Similar to aom above but for suscpeptibility
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The so called cix file (the precise name is given in the PARAMS input file) contains the
information about the atomic states and how the atomic states are connected with
conduction baths.

The baths and atomic states are an abstract concept and gmc code does not know to which
particular quantum number a bath or an atomic states corresponds to. It is entirely
responsibility of the user to properly input the information needed and to be consistent with
the input. The QMC code does not know if the input is right and has no means to check
that. The input file should be internaly consistent. We will explain below what each line of
the input file means.

The input file starts with (lines with # are comments):

# Cix file for cluster DMFT with CTQMC

# cluster_size, number of states, number of baths, biggest m:
1 4 21

# baths, dimension, symmetry

0 1 00

1 1 00

The numbers in the first line are
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e cluster size: For single impurity problem, cluster size is 1.

e number of all atomic states considered is here 4, namely |0),

11, [2).

e number of bath components (here 2 because of spin 1 and spin J.). (Be careful: A

multidimensional bath counts as one bath).
e The largest dimension of the matrix {(m|yT|n).
In the next few lines, one needs to specify the dimension and the symmetry of each bath.
The four numbers in each line are:
e successive number of the bath (for example | has index 0 and 1 has index 1).
e The dimension of the bath

e The symmetry - if two baths are degenerate, they should have the same number. This
index tells the code how to construct a matrix of Aaﬁ from the column in the input file
Delta. 1inp. Inthis case, we have only one column (in addition to the column for the
frequency) in the input. This collumn is coppied twice on diagonal when constructing a
matrix A\.

e The symmetry of the bath as given to the global flip subroutine. The global flip
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subroutine will try to flip only baths for which this number is the same.

QMC

For more advanced example, we give 2 X 2 cluster of impurities in superconducting state:

# Cix file for cluster DMFT with CTQMC

# cluster _size,

4 84 o6 12
# baths,

0

o s w N

1

N S S

number of states,

dimension,

0
—0*

The first line contains

e Now the cluster size is 4

number of baths,

symmetry, global flip

3 —=1x
-3 1%

0

o s w DD

e |t turns out there are 84 superstates for 2 X 2 cluster.

e There are six baths in this case. How we choose them is explained below.

maximum mq
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e The largest matrix (m|iT|n) has dimension 12 x 6 so we give 12.

All the local quantities (Green’s function or hybridization or self-energy) are block diagonal
(in properly choosen basis) and there are 6 independent blocks in Nambu formalism.The
six lines above explain how are the three different input hybridization functions used to

construct an 8 X & matrix of hybridizations.
e the integer number gives the column number in the input file of hybridization,
e — means that the column has to be multiplied by -1 and
® *x means that the column needs to be complex conjugated.

The input file "Delta.inp” should actually contain 9 columns, the first is frequency, than we

have real and imaginary part of function named A, than real and imaginary part of

function A4, ....
The hybridization matrix is constructed and, according to the input file, takes the following
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form
Ag 0 0 0 0 0 0 0
0 —AS 0 0 0 0 0 0
0 0 Aq Ag 0 0 0 0
%k
o 0 0 Ag — AT 0 0 0 0
0 0 0 0 Aq —Ag 0 0
0 0 0 0 —Ag  —A7 0 0
\ 0 0 0 0 0 0 Ao 0
0 0 0 0 0 0 0 —AS

/

QMC

(150)

At the end of the simulation, the Green’s function and self-energy take the exact same

block diagonal form and the output Green’s function contains again 9 coulmns.

In terms of quantum numbers for this particular case (cluster momentum K and spin o),

we can write the block structure of the green’s function in the following way

\

( G (0,0y1 (iw) 0 0 0 0 0 0
0 —G (0,0, (—iw) 0 0 0 0 0
0 0 G (.0y1 (iw) G ynomal (@) 0 0 0 0
o — 0 0 anomal(zw) —G(ﬂ_70)\l/(—zw) 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

The six baths, or equivalently, the six lines in the cix file, correspond to

(151)
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cluster momentum K =
cluster momentum K =
cluster momentum K =
cluster momentum K =
cluster momentum K =

cluster momentum K =

,0), spin T.
,0), spin |.
7,0
0,7

) forms a two dimensional block shown above
) shows similar two dimensional block

m, ), spin T.

0
(0
(
(
(
(

T, ), spin .

From the above consideration, it is clear why the two central blocks have dimension 2 and

the rest dimension 1.

Next line of the input file for the one-band model is

# cluster energies for unique baths, eps[k]

0

and for the cluster of 2 X 2 impurities is

# cluster energies for non—-equivalent baths, eps[k]
-2 0 2 0
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For the one-band model, we specified above that the two baths are equivalent (no breaking
of spin symmetry). As a result only one impurity energy is needed. This impurity energy
can be absorbed into the chemical potential and therefore is not needed in the input file.

In the case of the cluster, we have Ay, A1, Ay and As. The real part of these functions in
infinity is in general not zero but approaches a constant. The input file, however, needs only
the dynamic part of A while the static part needs to be entered here. This static part (or
A(w = 00)) is the matrix of impurity levels.
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Next few lines list all atomic eigenstates, there occupancy [V, there momentum K, spin
S, and dimension. For the one band model, we have

# N K Sz size

1 0 0 0 1 2 3 0 0

2 1 0 -0.5 1 0 4 0 0.5
3 1 0 0.5 1 4 0 0 0.5
4 2 0 0 1 0 O 0 0

The sixth line ocntains the index array F'°T(3), i.e., the operator of the bath 0 acts on the
atomic state and leads to another atomic state. For example, F'°T(0) = 2. The next,
seventh column, contains similar index array, but for the bath number 1, i.e., F11(0) = 3.
It is important to understand how are these baths connected with the baths we specified
above.

We explained above how the matrix of hybridizations is constructed from the input file.
Each column (or row) in the hybridization matrix correspond to one bath (even if baths are
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equivalent). If the matrix of hybridizations takes the form

Ay 0

(152)
0 A

the operator with index 0 is zbi and operator with index 1 is wl

Finally, the last two columns stand for the energy of the atomic state and the total spin of
the atomic state.

When writing the energies, we can excluded two trivial contributions to the atomic energies
(but than we need to enter them through the PARAMS file):

e the shift in energies due to the chemical potential is trivially — /N and is added later by
the gmc code

e the splitting due to £y = U type of Coulomb repulsion adds to each atomic state an

energy contribution U N (N — 1)/2 and is also added by the gmc code. U is taken
from the PARAMS file.
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Much less trivial example of 2 X 2 cluster is given below:

# N K Sz size

1 0 0 0 1 3 0 5 0 7 0 9 0 0 0

2 1 0 -0.5 1 10 1 12 0 15 0 18 0 =2 0.5

3 1 0 0.5 1 0 0 13 0 16 0 19 0 -2 0.5

4 1 1 -0.5 1 12 0 10 1 18 0 15 0 0 0.5

5 1 1 0.5 1 13 0 0 0 19 0 16 0 0 0.5

6 1 2 -0.5 1 15 0 18 0 10 1 12 0 0 0.5

7 1 2 0.5 1 16 0 19 0 0 0 13 0 0 0.5

8 1 3 -0.5 1 18 0 15 0 12 0 10 1 2 0.5

9 1 3 0.5 1 19 0 16 0 13 0 0 0 2 0.5

10 2 0 0 4 22 3 26 5 30 7 34 9 -3.10559821486 0 2.44076863934 12.
11 2 1 -1 2 25 4 21 2 33 8 29 6 -2 2 1

12 2 1 0 4 26 5 22 3 34 9 30 7 =2 -0.324555320337 2 12.
13 2 1 1 2 27 0 23 0 35 0 31 0 -2 2 1

14 2 2 -1 2 29 6 33 8 21 2 25 4 -2 1

=~ 0 DN
S~ S~
Il

3
~—
|

There are 84 superstates and can be generated by the exact diagonalization code. Each
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atomic state has the following good quantum numbers |i) = | N, K, S ) which are written
in the columns 2,3, and 4. The fifth column specifies how many eigenstates are combined
into this particular superstate |V, K, S ).

The cluster hybridization matrix written above is an 8 X 8 matrix. The column 7 in the
hybridization matrix defines an operator w'”. In this case, the eight operators are
enumerated so as to maich the structure of the hybridization matrix, namely
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M — wgoT
Wy = ooy
?t — wi&'OT
Vi = roy
ol =l
§ = Yon)
; — wjrm
g — wmri

QMC

(153)
(154)
(155)
(156)
(157)
(158)
(159)
(160)

The action of the above eight operators on each atomic state is specified in the columns

6-13. You can verify, for example

Pi|2) =Yl N =1,K=0,52=-1/2) = [N = 2,K = (r,0), 52 = 0) = [12)

Following the colum 13, the energies of all atomic states of a superstate are specified first,

and then the total spin .S for the same state. For example, if the state is two dimensional,
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one needs to specify two energies in columns 14 and 15 as well as spin .S in columns 16
and 17. A two dimensional state thus needs 17 columns of input while the three

dimensional state needs 19 columns...
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Following the enumeration of the atomic states, we specify the matrix elements of the w;r
between the blocks of two superstates. These matrices (F'“1),,,1,n = (j|(m/|9] |m)|i)
are very small and their size is equal to dimension of superstate 1 X dimension of
superstate 7. For the one band model, one has:

# matrix elements
1 2 1 1 1
1

b W NN
O O O = b O W
o oo+ B o
o oo+ B o

Each row of the above input specifies a matrix between the superstates. For each
superstate and each bath, we use one row.

The first column specifies the starting atomic superstate |7), the second line the resulting
atomic superstate |7> after appling operator wlv. The third and fourth column specify the
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dimension of both states. This is also the size of the matrix which follows. The full matrix

between the superstates 2 and j follows and is input row by row in a single line, i.e.,

5 (1,2,3,4) (161)
3 4

Let us explain the first two rows. The first row says: applying operator ¢1T to state |1> (first
column), we get state |2> (second column). The dimension of the first atomic state is 1
(third column) and dimension of the second is 1 (fourth column) therefore the matrix is

1 x 1. The single matrix elements is specified in column five. The second line stands for
bath number 2 and therefore explains: applying operator ¢2T to state \1) (first column), we
get state \3) (second column). The dimension of the first atomic state is 1 (third column)
and dimension of the second is 1 (fourth column) therefore the matrix is 1 X 1. The single

matrix elements is again specified in column five.
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The less trivial example of the 2 X 2 cluster is written below

# matrix elements

3

=

= =

=

AW W WWwwWwwwwNnNNDDNNDNNDNDRE R R R R e
= =
© O O O WO O O WO U1l ON FHF O O WO J o U O

1

P O OBk OFr OO0 O+ O OkFr B P O Fr O F O R O

1

O D ODN ODN O O O b O bdhO DB DdMMOBHEH O FH O F O

0.919901280179
1
0.707106781187

0.707106781187

-0.5

-0.707106781187

-0.707106781187

0.573634850322

0.573634850322

-0.5

-0.707106781187

0.573634850322

0.176804923698

-0.350030932463

0.413452607315

0.413452607315

-0.5

0.413452607315

QMC
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The rest of the input file specifies how is the high-frequency tail of the self-energy treated. If
H B1 word immediate follows matrix elements, we take Hubbard I -like scheme for the
high-frequency expansion (using gmc probabilities in the expansion) which is exact to the
second moment of the self-energy.

The states and matrix elements need to be repeated ones more. The reason is that one
could project out some states in the original input when the low-frequency data is sampled.
For high-frequency all states contribute and one needs to input here more atomic states in

case truncation of atomic states was performed above.

There is an alternative scheme available, namely entering the high-frequency expansion of
the self-energy by an arbitrary perl expression which can contain arbitrary complicated
operators as long as the matrix elements of the operator are specified in the cix file. This
scheme is seldom needed.
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