## H2 molecule

Hamiltonian of $\mathrm{H}_{2}^{+}$molecule is

$$
\begin{equation*}
H=-\frac{\hbar \nabla^{2}}{2 m}-\frac{q^{2}}{4 \pi \epsilon_{0} r_{1}}-\frac{q^{2}}{4 \pi \epsilon_{0} r_{2}}+\frac{q^{2}}{4 \pi \epsilon_{0} R} \tag{1}
\end{equation*}
$$

Let's introduce dimensionless units

$$
\begin{align*}
& \frac{H}{R y} \rightarrow H  \tag{2}\\
& r_{B}^{2} \nabla^{2} \rightarrow \nabla^{2}  \tag{3}\\
& \left(\frac{r_{1}}{r_{B}}, \frac{r_{2}}{r_{B}}, \frac{R}{r_{B}}\right) \rightarrow\left(r_{1}, r_{2}, R\right) \tag{4}
\end{align*}
$$

using Hydrogen energy $R y=\frac{m q^{4}}{8 h^{2} \epsilon_{0}^{2}}$ and Bohr radius $r_{B}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m q^{2}}$. We get

$$
\begin{equation*}
H=-\nabla^{2}-\frac{2}{r_{1}}-\frac{2}{r_{2}}+\frac{2}{R} \tag{5}
\end{equation*}
$$

We will use prolate coordinate system (http://en.wikipedia.org/wiki/Prolate_spheroidal_coordinates), in which the Hamiltonian of the dimers leads to a separable diff. equation.


The prolate coordinate system is defined by (see Wikipedia):

$$
\begin{align*}
& \xi=\frac{r_{1}+r_{2}}{R}  \tag{6}\\
& \eta=\frac{r_{1}-r_{2}}{R}  \tag{7}\\
& \left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
\frac{R}{2} \sqrt{\xi^{2}-1} \sqrt{1-\eta^{2}} \cos \phi \\
\frac{R}{2} \sqrt{\xi^{2}-1} \sqrt{1-\eta^{2}} \sin \phi \\
\frac{R}{2} \xi \eta
\end{array}\right)  \tag{8}\\
& d V=\left(\frac{R}{2}\right)_{\text {Kristian Haule, 2012 }}^{3}\left(\xi^{2}-\eta^{2}\right) d \xi d \eta d \phi \tag{9}
\end{align*}
$$

$$
\begin{gather*}
\eta \in[-1,1] \text { and } \xi \in[1, \infty]  \tag{10}\\
\nabla^{2}=\frac{4}{R^{2}\left(\xi^{2}-\eta^{2}\right)}\left[\frac{\partial}{\partial \xi}\left(\xi^{2}-1\right) \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\left(1-\eta^{2}\right) \frac{\partial}{\partial \eta}+\frac{1}{\xi^{2}-1} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{1-\eta^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right] \\
\nabla=\mathbf{e}_{\xi} \frac{2}{R} \sqrt{\frac{\xi^{2}-\eta^{2}}{\xi^{2}-1}} \frac{\partial}{\partial \xi}+\mathbf{e}_{\eta} \frac{2}{R} \sqrt{\frac{\xi^{2}-\eta^{2}}{1-\eta^{2}}} \frac{\partial}{\partial \eta}+\mathbf{e}_{\phi} \frac{2}{R} \frac{1}{\sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)}} \frac{\partial}{\partial \phi} \tag{11}
\end{gather*}
$$

If the distance from the molecule is large, $\xi$ is large, and we can then approximate
$\mathbf{r}=\left(\sqrt{1-\eta^{2}} \cos \phi, \sqrt{1-\eta^{2}} \sin \phi, \eta\right) R \xi / 2$. Hence, it becomes clear that $\eta \approx \cos \theta$ in spherical coordinate systems, and $\xi \approx 2 r / R$.

We want to solve

$$
\left(-\nabla^{2}-\frac{2}{r_{1}}-\frac{2}{r_{2}}+\frac{2}{R}\right) \psi=E \psi
$$

We look for the solution with the following separable ansatz

$$
\begin{equation*}
\psi(\xi, \eta, \phi)=\left(\xi^{2}-1\right)^{m / 2} X(\xi)\left(1-\eta^{2}\right)^{m / 2} Y(\eta) e^{ \pm i m \phi} \tag{12}
\end{equation*}
$$

Inserting the ansatz into diff. equation leads to

$$
\begin{gather*}
\frac{4}{R^{2}\left(\xi^{2}-\eta^{2}\right)}\left[2(m+1) \xi X^{\prime}(\xi)+\left(\xi^{2}-1\right) X^{\prime \prime}(\xi)\right] Y+ \\
\frac{4}{R^{2}\left(\xi^{2}-\eta^{2}\right)}\left[-2(m+1) \eta Y^{\prime}(\eta)+\left(1-\eta^{2}\right) Y^{\prime \prime}(\eta)\right] X+ \\
\quad\left(\frac{4}{R(\xi+\eta)}+\frac{4}{R(\xi-\eta)}+\left(E-\frac{2}{R}\right)\right) X Y=0 \tag{13}
\end{gather*}
$$

Here we used $X^{\prime}(\xi) \equiv d X / d \xi$ and $X^{\prime \prime}(\xi) \equiv d^{2} X / d \xi^{2}$.
Differential equation can be set into a separable form

$$
\begin{array}{r}
\frac{1}{X}\left[2(m+1) \xi X^{\prime}(\xi)+\left(\xi^{2}-1\right) X^{\prime \prime}(\xi)\right]+ \\
\frac{1}{Y}\left[-2(m+1) \eta Y^{\prime}(\eta)+\left(1-\eta^{2}\right) Y^{\prime \prime}(\eta)\right]+ \\
\left(2 R \xi-\left(\xi^{2}-\eta^{2}\right) p^{2}\right)=0 \tag{14}
\end{array}
$$

where we introduced parameter $p$ :

$$
p^{2}=-\frac{R^{2}}{4}\left(E-\frac{2}{R}\right)
$$

The final form of the normal differential equations is

$$
\begin{align*}
& \left(\xi^{2}-1\right) X^{\prime \prime}(\xi)+2(m+1) \xi X^{\prime}(\xi)+\left(-p^{2} \xi^{2}+A+2 R \xi\right) X=0  \tag{15}\\
& -\left(1-\eta^{2}\right) Y^{\prime \prime}(\eta)+2(m+1) \eta Y^{\prime}(\eta)+\left(-p^{2} \eta^{2}+A\right) Y=0 \tag{16}
\end{align*}
$$

The boundary conditions are

$$
\begin{array}{r}
\psi(\xi \rightarrow \infty)=0 \\
\nabla \psi<\infty \tag{18}
\end{array}
$$

The second diff.equation has even-odd symmetry. This is due to the fact that $\eta \rightarrow-\eta$ leaves equation unchanged. Hence, solution has to be even $(Y(-\eta)=Y(\eta))$ or odd $(Y(-\eta)=-Y(\eta))$. The standard name for odd (even) functions is "gerade" ("ungerade"). The boundary condition for ungerade functions is $Y^{\prime}(0)=0$ and for gerade is $Y(0)=0$. The second boundary condition is arbitrary, but we will choose $Y(1)=1$ for simplicity. We will later normalize the function.

At large distance the wave function has to vanish, hence $X(\xi \rightarrow \infty)=0$. For the kinetic energy to be finite everywhere, a quick look at the $\nabla$ operator shows that $X^{\prime}(\xi=1)=0$.

We hence have the following boundary conditions

$$
\begin{align*}
& X(\xi \rightarrow \infty)=0  \tag{19}\\
& X^{\prime}(\xi=1)=0  \tag{20}\\
& Y(\eta=1)=1  \tag{21}\\
& Y(\eta=0)=0 \quad \text { or } \quad Y^{\prime}(\eta=0)=0 \tag{22}
\end{align*}
$$

We will use double-shooting method to find $p$ and $A$ for the bound states.
We will solve diff. equation $Y(\eta)$ to get connection between $p$ and $A$, i.e., $A(p)$. We will solve $X(\xi)$ to pick $p$ that correspdonds to a bounded state.

We need a good guess for parameters $p$ and $A$. At small distance (equivalent to $\mathrm{He}^{+}$ion) these parameters are

$$
\begin{align*}
& \lim _{R \rightarrow 0} A=-l(l+1)  \tag{23}\\
& \lim _{R \rightarrow 0} p=0 \tag{24}
\end{align*}
$$

where $l$ is angular momentum eigenvalue of He ion.
When atoms are far apart, $E=-1,-1 / 4, \ldots$ and hence $p=R / 2, R / 4, \ldots$ The
ground state will have largest $p$, which will be slighly larger than $R / 2$ because delocalization of electron leads to lower energy when ions get close together. We will look for possible solutions in the interval $p \in[R / 2+0.6, \ldots R / 4]$. We notice that $p$ can be smaller (but positive) for high-excited states.

At finite separation, $A$ grows and is largest for the groundstate. For small $p, A\left(p^{2}\right)$ has an expansion in power series, which looks like $A\left(p^{2}\right)=-l(l+1)+p^{2} / 3+\ldots$. A good interval for values of $A$ is $A \in\left[p^{2} / 2+p^{3} / 2-l(l+1), \ldots,-l(l+1)\right]$.

Below we sketch algorithm

- Create a good mesh for solving diff. equation in variables $\xi$ and $\eta$. A good choice for $\eta$ is linear mesh (with 50 points). (Be careful and do not put point at $|\eta|=1$, but rather at $|\eta|=1-\delta$ with $\delta \approx 10^{-7}$. For $\xi$ we will use logarithmic mesh $\xi \in\left[1+\delta, \xi_{\text {max }}\right]$, where $\xi_{\max } \approx 30 / p$. A mesh with 200 point is sufficient.
- First we will find value of $A$ at constant $p$ (i.e., $A(p)$ ), which satisfies diff. equation $Y(\eta)$. This will be achieved by the shooting method: parameter $A$ will be varied (on linear mesh) between $p^{2} / 2+p^{3} / 12$ and $-l_{\max }\left(l_{\max }+1\right)$ (we will use $l_{\max }=2$ in this expression, and we will use 10 points only). Once a change of sign in $Y(0)$ $\left[Y^{\prime}(0)\right]$ is detected for ungerade [gerade] state, we use root finding routine to
determine $A(p)$.
For numeric integration of $Y(\eta)$ we need initial conditions. You can use $Y(1)=1$ and $Y^{\prime}(1)=\left(p^{2}-A\right) /(2(m+1))$. This is because

$$
\begin{equation*}
Y^{\prime \prime}(\eta)=\frac{2(m+1) \eta Y^{\prime}(\eta)+\left(A-p^{2} \eta^{2}\right) Y}{1-\eta^{2}} \tag{25}
\end{equation*}
$$

hence $Y^{\prime \prime}(1)$ is finite only if $Y^{\prime}(1)=-\left(A-p^{2}\right) /(2 m+1)$.

- Once $A(p)$ is determined, we integrate equation for $X(\xi)$ to see if current value of $p$ is such that satisfies the boundary condistion. We will start integrating from $\xi=\infty$ down to $\xi=1$ and we will look for function with $X^{\prime}(\xi=1)=0$. We will need to vary $p$ to find such function. This will be done in the outside loop.
- The outside loop iterates through a set of linearly distributed values for parameter $p$ between $R / 2+0.6$ and $R / 4$. When the above described shooting methods detects a sign-change in $X^{\prime}(\xi=1)$, it calls root-finding routine to determine $p$ to high accuracy. The bound states are saved in a list.
- Once parameters $A$ and $p$ are determined, we recompute $Y(\eta)$ and $X(\xi)$. We create an interpolating object for $\left(\xi^{2}-1\right)^{m / 2} X(x i)$ and $\left(1-\eta^{2}\right)^{m / 2} Y(\eta)$, such that
$\psi(\xi, \eta, \phi)$ can be calculated at any point.
- For ploting the 2D density plot of the wave function, we generate a regular mesh of cartesian $[x, z]$ points. We compute prolate coordinates $[\xi, \eta, \phi]$ from cartesian vector $[x, y, z]$ from

$$
\begin{align*}
& \widetilde{r}=\frac{\sqrt{x^{2}+y^{2}+z^{2}}}{R / 2}  \tag{26}\\
& \widetilde{z}=\frac{z}{R / 2}  \tag{27}\\
& s q=\sqrt{\left(1+\widetilde{r}^{2}\right)^{2}-4 \widetilde{z}^{2}}  \tag{28}\\
& \xi=\sqrt{\left(1+\widetilde{r}^{2}+s q\right) / 2}  \tag{29}\\
& \eta=\sqrt{\left(1+\widetilde{r}^{2}-s q\right) / 2} \operatorname{sign}(z)  \tag{30}\\
& \phi=\arctan (y, x) \tag{31}
\end{align*}
$$

The transformation from prolate to cartesian coordinates is simpler

$$
\begin{align*}
& \widetilde{\rho}=\sqrt{\xi^{2}-1} \sqrt{1-\eta^{2}}  \tag{32}\\
& (x, y, z)=(\widetilde{\rho} \cos \phi, \widetilde{\rho} \sin \phi, \xi \eta) R / 2 \tag{33}
\end{align*}
$$

We evaluate $\psi(\mathrm{r})$ and plot a density plot.
We choose $R=2$, which is very close to equilibrium distance of $H_{2}^{+}$. We first evaluate a few lowest energy gerade states at $m=0$ :

$$
\begin{aligned}
& 1 \sigma_{g}:(p, A, E)=(1.48501486965,0.811729880903,-1.20526916309) \\
& 2 \sigma_{g}:(p, A, E)=(0.849562360518,0.248475561369,0.278243795591) \\
& 3 \sigma_{g}:(p, A, E)=(0.596209803892,0.120381543784,0.644533869744)
\end{aligned}
$$

and ungerade states at $m=0$ :

$$
\begin{aligned}
& 1 \sigma_{u}:(p, A, E)=(1.15545267065,-1.18688803994,-0.33507087412) \\
& 2 \sigma_{u}:(p, A, E)=(0.714744398137,-1.691702919,0.489140445332) \\
& 3 \sigma_{u}:(p, A, E)=(0.524110147939,-1.83466895941,0.725308552828)
\end{aligned}
$$

and finally $m=1$ gives:

$$
\begin{aligned}
& 1 \pi_{g}:(p, A, E)=(0.926036766069,0.174948548517,0.142455907889) \\
& 1 \pi_{u}:(p, A, E)=(0.673353143116,-3.80488326247,0.546595544656)
\end{aligned}
$$






