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Method

Empirical potentials
(force fields)

Effective medium
theory and
embedded atom
method

Extended Hiickel
method,
empirical tight-
binding,

bond order
potentials

Semi-empirical
quantum chemical
methods

(e.2. MNDO)

Harris functional

Range of
Applicability

Organic molecules,
liquids, polymers,
ionic compounds,
silicates

Metals (bulk,
surfaces, interfaces)
without directional
bonding

Covalent
compounds, e.g.
organic molecules,
semiconductors
and transition metal
compounds

Organic molecules,

some inorganic
systems

All atoms

Number of
Atoms

Several
millions

Several
hundred
thousand

Several
thousand

Several
hundred (*)

Several
hundred (%)

Obtainable
Properties

Molecular structures,
densities,
compressibilities,
vibrational properties
(infrared spectra)
diffusion, adsorption

Atomistic structures,
diffusion, segregation,
mechanical properties

Atomistic structures,
diffusion, segregation,
mechanical properties;
electrical and optical
properties

Atomistic structures,
heats of formation,
charges,

electronic and optical
properties

Bonding topologies for

unknown systems,
estimation of electrical

and optical properties

Applications of DFT

Methodological
Characteristics

Atomrspecific parameters
electrons not treated
explicitly,
computationally fast,
limited predictive
capabilities

Includes local electron
density in total energy, best
used for noble metals

[ncludes quantum
mechanical description of
electronic structures, relies
on empirical parameters

Atomrspecific parameters,
well tested for organic
molecules

No adjustable empirical
parameters, no self-
consistency required;
based on density functional
theory
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Method

Density functional
theory

Hartree-Fock

Hartree-Fock +
second order
perturbation (MP2)

Coupled cluster,

configuration
interaction, and

other correlated ab
initio methods

Quantum Monte
Carlo methods

Range of
Applicability

All atoms, solids,
surfaces, interfaces,
molecules, clusters

organic and main -
group inorganic
compounds,
molecular and ionic
crystals

Mostly small
organic molecules

Small organic and
inorganic
molecules

Small organic and
inorganic molecules
and clusters

Number of
Atoms

A few
hundred (*)

One
hundred (*)

A few tens

About ten
atoms

A few tens
of atoms

Obtainable
Properties

Ground state structures,

thermochemical
properties (e.g. binding
energies, ), vibrational
properties, electrical,
optical, and magnetic
properties, some
dynamical properties

Ground state and
transition state
structures,
thermochemical
properties (e.g. binding
energies, ), vibrational
properties

Structures and
thermochemical
properties

Structures and binding

energies

Structures and binding
energies

Applications of DFT

Methodological
Characteristics

Most commonly used
electronic structure method
in solid state physics, good
overall performance, no
systematic improvements
towards exact result

Most commonly used ab
initio quantum chemical
method, very well tested for
organic molecules,
conceptual difficulties with
metals

Fairly high accuracy still
reasonable computational
effort

High computational effort,
benchmark quality results,
systematic (but slow)

convergence towards exact
solution

Still in research stage, only
single-point energies,
possibly Eromising for
accurate benchmarks

Kristjan Haule, 2015



RUtgerS Computational Physics- 2015

Method

Pseudopotential
plane wave

Full-potential
linearized

augmented
plane wave

Linearized
muffin-tin orbital

Full-potential
linearized
muffin-tin orbital

Augmented
spherical wave

Linear
combination of
atomic orbitals

Acronym

FLAPW

LMTO

FP-LMTO

ASW

LCAO

Systems

Periodic
structures,
metals, semi-
conductors,
insulators

Periodic
structures and
thin films; all
bonding types

Close-packed
periodic
structures

Close-packed
and open
periodic
structures

same as

LMTO

Periodic
structures,
molecules,
and clusters;
molecules on
surfaces

Atom types

All main
group
elements and
transition
metals; not
well tested
for rare-earth
and actinides

All atoms of
the periodic
table
including
rare earth
atoms and
actinides

All atoms

All atoms

All atoms

All atoms

Obtainable
Properties

Crystallographic
structures, binding
energies, phonon
spectra, elastic

constants, band gaps,

band offsets

Crystallographic
structures, binding
energies, elastic
constants, energy
band structures,
work functions,
core level shifts,
magnetic moments,
magneto-optical
properties, hyperfine
fields, field gradients

Energy band
structures,
substitutional
energies, electrical,
magnetic and optical
properties

same as LMTO +

geometry
optimizations

same as LMTO

Crystal and molecular
structures,

binding energies,
energy band
structures,

band gaps,

core level shifts

Methodological
Characteristics

Only valence electrons
treated explicitly,
systematic convergence
of basis set,
computationally efficient

All-electron method,
includes relativistic
effects explicitly, highly
flexible basis set, no
shape approximation to
the potential (“full-
potential " method)

Often used in connection
with atomic-sphere-
approximation (ASA),
computationally fast, but
restricted to close-packed

solids

More accurate than

LMTO-ASA, but
computationally more
demanding

Similar to LMTO

Implemented with
Gaussians, Slater-type-
orbitals, and numerical
atomic orbitals

Applications of DFT
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Few points about the periodic solid:

e Any translation of a Bravais lattice can be written
as an integral multiple of primitive vectors
R = nja; + nqay + nzas.

Here a; are primitive translations.

< -

a;

a4

e The reciprocal lattice vectors K = n1b; + nobs + n3bs also form a Bravais lattice

as Xas
al-(ag ><a3)

and the reciprocal primitive vectors are b; = 27 and permutations.

Kristjan Haule, 2015 —5—-
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e Any periodic function in a crystal satisfying f(r + R) = f(r), has nonzero Fourier
components only for reciprocal lattice vectors K.
Example: Nuclear position, electron density,..

e The wave function in a solid satisfies the Bloch theorem Wy (1) = %1 (r) where
ux (r) is periodic function u(r + R) = u(r). Momentum k is a good quantum
number. (Translation comutes with Hamiltonian).

e Any momentum can be written as a sum of a vector from a first Brillouin zone
k = }Z’,—llbl + K,—Zbg + ]@—ibg and reciprocal lattice vector K, i.e. ¢ = k + K. Here

Kristjan Haule, 2015 —6—
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NNV, is number of all lattice points in z-th direction and n; is integer between 0 and
N; — 1. Obviously, number of k-points is the same as number of lattice points.

e Effective potential Ve s ¢ (1) is periodic therefore

(@' |Verpla) = /
chystal

= Sy_orxVers(K). (1)

ei(q_q/)rVeff(r)dr = Z ei(q_q/)R/ ei(q_q/)r/Veff(r/)dr/
R Q

cell

By writing ¢(r) = »__ e' U Cyand V(r) = > 5 e®¥Vi the Schroedinger
equation becomes

1
[§(k + K)* — ek] Ck+k + Z Vk-k/Ckik = 0. @)
K/

Note that vector k from first Brillouin zone does not couple to any other k’ from the first
Brillouin zone. Only reciprocal vectors K and K’ couple. Hamiltonian can thus be
considered a matrix in Hk (k) with k as parameter (H is periodic operator).

The wave function can thus be written as

wk(r) _ Z 6i(k+K)er+K _ 6z'kr Z eiKer—l—K _ 6z’kruk(r) (3)
K K

Kristjan Haule, 2015 —7-



RUtgerS Computational Physics- 2015 Applications of DFT

where uy (1) is periodic (Bloch theorem).

Plane waves

Plane waves are the simplest possible bases for the DFT calculation and are becoming

more and more popular due to their simplicity and increase in computational power.

e Plane waves are good when potential is slowly varying — not so many plane waves

needed

e Core electrons in the inner shell can not be described by reasonable (finite) number of

plane waves.

e |dea: Divide electrons into core and valence electrons and describe the effect of core
electrons and nucleous on valence electrons as a pseudopotential.
— empirical pseudopotentials

— Norm-conserving ab inito pseudopotentials

— ultrasoft pseudopotentials

Kristjan Haule, 2015
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Some all-electron methods
e Linear Muffin Tin Oritals (LMTO)
e Linear Augmented Plane Wave method (LAPW)
e Full-potential Linear Muffin Tin Oritals (LMTO) - Savrasov’s LMTART

e Full-potential Linear Augmented Plane Wave method (LAPW) - Wien2k code

Kristjan Haule, 2015 —-9-
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Units used in calculation

Two conventions are very popular in DFT community: Hartree and Rydberg — sometimes

confusion in units.
We will always use Hartree units in which Hydrogen ground state energy is -0.5 as opoosed

to Rydberg units wehere hydrogen ground state energy is -1Ry=-13.6058eV.

The Schroedinger equation of hydrogen is

h? Ze?
(—5-Vi— =2 =ey @)
m r
If we introduce dimensionless variables 7 = r/ao and € = 5/50
2 - e 7
— VQ — —OT = £0€ 5
( Qma% ag T )Y 0=y ©)

Choosing Bohr-radius as unit of length ag = /% /(me3) = 0.5292A we are left with

1 =9 A . Eoao -~
(V- Fl =" (6)

Kristjan Haule, 2015 —-10-
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2
. €
In Hartree convention one chooses £g = ﬁ

Applications of DFT

= 1H = 27.2114eV leading to

1~ A
—IV? - D = & 7
(=3 )Y =&y (7)
2
Alternatively, one can choose € = 2670 = 1Ry = 13.6057eV and the Schroedinger
0
equation than takes the form
~ 27 .
(—V? — 7)¢ =y (8)

Kristjan Haule, 2015 11—
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ugmented Plane Wave Method

(APW)

|s today probably most precise method in its full potential linear form (Win2k).
It is somewhat involved and therefore harder extendable for purposes like Car-Parinelo
molecular dynamics.

Basic idea:

e divide the space into spheres around each nucleous (Muffin Tins) and the rest

e The potential slowly varying in the interstitial — CgD Q O O
use plane waves ( > < > < ) ( >

(Interstitals).

e In Muffin Tin spheres, use atomic-like basis functions

(Solve Schroedinger equation for the atom)

Kristjan Haule, 2015 —12—
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The solution for DFT equations in crystal is constructed as a linear combination (linear
differential equation) of the APW basis functions

ZAK )XictK (T) (©)

where

APW (1) _ etk K)r r> S

Xtk S, Ok +K)gple,r)  r<S

Here L stands for [, m and ¢ 1 (¢, r) is solution of the atomic Schroedinger equation

wr(e,r) =" YL ()i (e, )

1d*  I(l+1
(_§W‘|‘%+VKS( ) —¢e)ry(r) =0 (11)

Energy ¢ is determined from the solution of the problem H, = ey and € = €.

Hence equations became nonlinear (although we are solving linear differential equation).

Kristjan Haule, 2015 —-13-
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Basis functions have one matching parameter C'r,and

can therefore be match only in value. When applying
the kinetic energy operator, one needs to take the | ; o
discontinuity of the derivative into account. \ f \ [

There exist a well known expansion of a plane wave in spherical coordinates

= 47rZz Gilgr)Yi (@)Y (%) (12)

where j; are spherical Bessel functions. Matching in value at » = S than fixes parameters
Cr to

. Yr(a)
C =4 L= 13
r(a) = 47 (qr) I1(e.9) (13)
The secular equation in APW base takes the form
> RN H — axlxie K YAk (k) = 0. (14)

K
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The integral can be separated into three terms
e Muffin Tin (MT) part
e Interstitial (I) part
e derivative discontinuity part (DDT)

The MT part vanishes because the base function is already solution of the Schroedinger
equation.

The interstitial region contributes

PIQ’K — /dre_i(k+K/)r(H — €k>€i(k+K)r = / dre_i(k—'_K/)r(H _ 6k>€'L'(lc—|-K)r-
I v,

cell

_/ dre—i(k—l—K’)r<H . €k>€z’(k—|—K)r (15)
r<S

The first integral can be extended over the whole space because H is periodic. We get

1
Py = Vcell(§(k +K)? + Vis (K = K') — e1)0xk (16)
In the second part, we use the above expansion of plane wave and get
1 5
Pire = (5(k+ K)* + V(K - K') — ¢y ) 4 / jo(|IK — K'|r)r*dp7)

. JU
Kristjan Haule, 2015 —15—-
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475?51 (K — K'[S)

1 2 1
5 (k+K) +VKS(K_K/)_81<) K - K/

3

The interstitial contribution is therefore

(18)

1 47527 (IK — K'|S
PII{,K:(§(k+K)2+VI§S(K—K’)—sk) <6KK/— ™57 | >) (19)

Vcell|K — K/‘

The last contribution due to discontinuous derivative can be evaluated using Green’s identity

/V[Xfoj]dr:]{ ijxde:/ foijerr/ xijQder (20)
1% Sv 1% 1%

Integral over space V' needs to divided into MT part and the interstitals. We see that the
operator V2 needs to act on left and right, i.e., VX7 V x; when evaluating volume
integrals. This changes the above term to more symmetric form

(k + K)? — (k + K)(k + K’). In addition, on the boundary between the two regions
we get an additional contribution

" | 9 ., 0 )
PDDT——SQ/dQXZ-(r:S,r) [§Xj(7“:5 1) — 8TX](T'—SJr r)| (21)

Kristjan Haule, 2015 —16—
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To evaluate this term, we first rewrite it using logarithmic derivative

1 (3’ s,
PRET = 55° [ d0(S.00x(5.9) [ nlos (r = S7.8) = o (s (r = 5.5)
2 or or
(22)
The logarithmic derivatives are 9 1n x (S7)/0r = ¢;(S) /¢ (S) and
Olnx(ST)/0r = j3/(¢S)/71(qS). The angle integral df gives as nonzero contribution
only if L; = L therefore the derivative discontinuity contribution is

DDT

1 / . 2 d % >
PR _2552(47r)2jl(|k+K|S)gl(|k+K|S)YL(k+K)YL(k+K)ADlK/S (23)

where ADl,K is dimensionless logarithmic derivative

s () _sller Kio)
=5 (55~ s -

Using another well known relation

Z Ylm(q)Ylm(q/) — Pl(q . fl’) (29)

Kristjan Haule, 2015 —17—-
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we finally get
218 . e NS
PR = & > @+ )5k + K'|9)5(k + K[S)Pi((k + K') - (k+K))AD; k. (26)

Vieelr z

The secular equation of APW method reads

Z(HK’K — exOxk)Ax =0 (27)
K
where
45?51 (JK — K'[S)
Oy = 0 ; — 2
K'K KK VooulK — K/ (28)
1
Hyx = (5(1{ +K)(k+K') +Vi(K - K))Okk + PR (29)

A serious problem with this method is that the Schroedinger equation is non-linear and is
therefore numerically less stable to solve. The non-linear term is hidden in the logarithmic
derivative ADZ,K which depends on the solution of the Schroedinger equation wl(r) at

energy € = €.

Kristjan Haule, 2015 —-18-
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Linear Augmented Plane Wave

Method (LAPW)

The basic idea of any method starting with L (LAPW or LMTO) is to solve the Schroedinger
equation for fixed energy F/,, rather than for the eigen-energy cx = € ( which would need
to be determined self-consistently). To keep the good precision of the solution, one

expands the solution of the Schroedinger equation in Taylor series (usually only to the linear
order), i.e.,

(e, r) = hi(Ey) + (e — E,/)%zm(E,/, r)=vi(Ey) + (€ - EV)¢Z(EV7 r) (30)

This energy derivative has very nice properties

e Since the atomic Hamiltonian does not depend on € and (H — €); = 0, we have

(H — &)ty = 1.
e The vawe function ) is normalized (1/;|1);) = 1, therefore zh and 1); are orthohonal
— (i) = 0.

Kristjan Haule, 2015 —19-
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By including zp in the basis, one can achieve accuracy of the total energy of the order of
(Ac)? where Ac is € — E,,. The resulting wave function is correct up to Ae. At first it
looks like the choice of E,, has to be close to the actual energy i to get good results. It
turns out, however, that the solution is not very sensitive to the choice of £/, as long as it is
not very far from the center of the band (€y ). In practical calculation £, is usually chosen
to be in the center of the occupied part of the band.

The classical choice of the LAPW basis functions is
Tl — 57 ARk 2L (k + K|r) Yy (k+ K)YL(8) 7> S
(7

N
ZLYL(f‘)[aL(kJrK)wz( )+ br (k + K)o (r)] r <5

Here L stands for [, m and v;(r) is solution of the atomic Schroedinger equation at fixed

Xk+K(r) = (31)

energy F/,,
1d> I(l+1)
(_§W+T+VKS( r) — E,)ri(r) =0 (32)
1d> I(l+1 :
(et D Vs - Bardi =) @9

In classical method, we have two matching parameters ar,(k + K) and b7, (k + K),

Kristjan Haule, 2015 —20-
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therefore Y+ K (I) can be made continuous and differentiable at the muffin-thin sphere S.
The two conditions are satisfied with the following 2 X 2 linear system of equations

a amil dah(S) = (S)
L - " v*k K dr Y1 l
( > e Y7 (k + K) (

1 Ji1(lk + K|S)
by — () w8 ) v ()L (S)

— %LZ(S)%%DZ(S) ( %jl(““i' K|S)

Note that in practice the sum over L is limited to rather small [. These LAPW basis
functions are in practice not strictly continuous. One can correct that by the trick of Soler &
Williams http://link.aps.org/doi/10.1103/PhysRevB.40.1560.

From the differential equation for ) and ¢ and after integration by parts, one can derive
the following identity
D1(S)-L 1 (S) — Ga(S)-Lin(S) = = 39
dr dr S2

This leads to the simplified expression

ar, At

_ G4 R) hi1(S) Lgi(lk + K|S) — L4jy(S)5i(|k + KIS)
br SV L b (9)5u(|k + K[S) — ¢u(S) <Lk + K|S)

The linear method is more robust, numerically easier to solve and also has "nicer” basis

Kristjan Haule, 2015 —21-
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functions which are continuos in slope.

The solution is again a linear combination of basis functions

Ve =) xri(r) Ak (k) (37)
K
with coefficients Ak determined from the solution of the secular equation
Z<XK’+k|H — ek|xk+k)Ax (k) = 0. (38)
K

For convenience, we will choose zero of energy at the linearization energy E,, so that
/
£ — €k — By

> (Ixxr4xlH = By xk1x) — e (xx +klxk1k)) Ak (k) = 0. (39)
K

We thus have three terms to evaluate
e Muffin tin part HM,%; = <XK’—|—k‘H E, ‘XK—|—k>
e Interstitial part H K = <XK’—|—k|H — E,,\XKH{}

e The total overlap matrix Ox'x = (XK’/4+k|XK1k)-

Kristjan Haule, 2015 —22—
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The MT part is

Higw = > {ap(k+K) +br(k+K)|H — Ey|ar(k + K)ir + br(k + K)ijr)
L
= o ek (k Kby (ke + K) 4 b (k + K (k + K) (40)

Using relation Eq. (25), we can further simplify

(20 + 1) 1
Hix = 7T54‘—/|_ ZP K—|—k>>§<al,K’bl,K‘|‘al,Kbl,K’>
where
: d d - .
az,KZZM(S)%]z(kJFKS)— %M(S)]z(kJFKS) (41)
d , d .
bk = WM(S)MHKS)—wz(5>531(k+K8) (42)

Kristjan Haule, 2015 —23—
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The interstitial is again evaluated by integrating first over whole space and subtracting
integral within Muffin-tin

1 : / 1 .
HII</K == V /dre_z(k+K )r(_§v2 -+ VKS — EV)QZ(K+k)r (43)
1 2 dr i(K—K’)I‘
= (Q(k—l—K) + Vks — E,) Ve —
| 4w S%j1 (K — K'|S)
= (=(k+K)?*+ Vgs — E,)(6xx’ —
(2( + K)* + Vks ) (kK VK — K| )

Finally the overlap is

475%5 (|JK — K'|S
.]1(| /‘ )) (44)
Vcell|K - K ‘

+ > lan(k+ K )y + b (k + K')iy|ar (k + K)ibr + br,(k + K)on)
3

Oxk = (kg —

475%71 (K — K'|S)
Vcell|K — K/|

+3 " ah (k+ K)ag (k + K) + b}, (k + K )bz (k + K) (¢ ]9))

= OKK' —

Kristjan Haule, 2015 —24—



RUtgerS Computational Physics- 2015 Applications of DFT

and using Eq. (25) we get

Owre — _ AnSTH (K — K'|S)
K'K KK Vcell|K—K’|
Am(20 4+ 1
SV

) Zpl((f{’ i f<) : (K + R))(al,K/al,K + bl,K’bl,K<¢l|¢l>)
l

Kristjan Haule, 2015 —25—
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The results of the above calculation can be grouped together as follows:

Z(HK’K — €LOK/K)AK =0

K
Oxk = Owk+ ) PrK, K)(axax+ bk b (W)
l
p 1
Hxx = Hiox+ Zsz(K 7K)§(al,K’bl,K + a kb k)
l
Olw — Surr — AmS%j1 (K — K'|S)
K Vcell|K - K/|
KK = Z[( + K) +(k+K>]+VK8—Eu Ok
, A2+ 1) oy e
PEK. K) = TCED p R LRy (K 4 R)

S4V

o = Bi(8) Sk + KIS) — (Sl [k + KIS)

d d
bk = ——i(S)ii([k + K|S) — 1 (S) ——ji([k + K|S)

Kristjan Haule, 2015
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The equations were symmetrized Hxk' — = (HKK/ + Hy k) for numerical efficiency.
Chemical potential

The chemical potential is defined by requiring the number of electrons to be equal to the
number of occupied states

N/2=Y flewp — ) (53)
k,p

Here IV is the number of valence electrons and factor two comes from spin.
Electron Density

The solution of the LAPW equations which corresponds to the p-th eigenvalue 8i IS
Yip(r Z AR (k)i (r) (54

the electron density takes the form

p(r) = > flewp — )|l Zf eip — 1) ) AR () AR () Xie i (1) X x¢ ()

kp KK’
= ) flewp — 1) Y A (Kwkk (k, r) A% (k) (55)
kp KK’

Kristjan Haule, 2015 —27—
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Inside the MT sphere, we can average charge over the angle

df)
wig (k1) = / e —— Xkt K (T)Xk+K(T) (56)
resulting in
1 : :
wig: (k,1) = 47T73}<(K',K)[al,w¢l(7“) + by i (r)] o ki (r) + by (r)]
(57)
The interstitial region contributes
| R YT
wicker (k, 1) = e T (58)
The final result for the electronic charge weight is
ei(K—K/)r
B v r>.S5
wkk' (k,r) = PEK' K)

ol xi(r) + bl,K’¢l(T)][al,K¢z(T) + bz,K¢l(T)] r<.S

In case of Muffin-Tin approximation, the charge in the interstitials is approximated by a

constant. The integral over the space gives exactly OII<K,. The weight in the interstitial is
thus equal to overlap in the interstitals.

Kristjan Haule, 2015 —28—
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One can check that the volume integral of wk k- (k, r) is the total overlap matrix O k.
Since the eigenvectors in this non-ortgonormal base are ortogonalized in the following way
ATOA, we get the total charge per momentum per band quantum number kp to be exactly
unity.

The electron charge is finally

p(r) = Z fexp — w) Ak (K)wkk (k, r) Ag (k) (59)

which can also be written as

o(r) = ——Im/dwf Z ZKK’ AIZ[?;’( Jwkk (k, I')AZI?((k)

B W+ U — Ekp

(60)
kp, KK’

For actual calculation, it is good idea to separate radial loop from the k-loop to speed up the
calculation. It is obvious that the radial functions 1); and v; depend only on [ and radius but
not on K, k or p. Therefore we will define the following weight functions

wy =Y AR (K ke PEK, K)a, g Ay (k) (61)
KK’

Kristjan Haule, 2015 —29—-
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wl(éy)l = Y AR &)k Pr(K, K)b kA (k)
KK’
+ Y AR Kb kPR (K K)ok AR (k) (62)
KK’
wy =Y AR (k)b PRK K)by k Al (k) (63)
KK’
wy = AL (K)Of kA (K) (64
KK’

These sums can be done by matrix multiplication using very efficients LAPACK routines.
After determination of the chemical potential, the weights can be compressed

wi =" flewp — nuiy, (65)
kp
and the electron charge can finally be obtained by
pM(r) = Z wy Gy (r) e (r) + wp ()i (r) + w4 () ()66
pI (r) = 1 w) (67)
‘/z'nterstitial

Kristjan Haule, 2015 -30-
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Muffin-Tin zero

There is another important detail when doing self-consistent calculation. In every step,
potential tends to change quite dramatically and is very hard to achieve self-consistency if
we do not fix zero of the potential - the chemical potential varies dramatically and core
states with them. The way it is usually done is by requiring that the potential is zero at the
Muffin-Tin boundary.

From total electronic charge we calculate Hartree potential by solving Poisson equation and
also add exchange-correlation potential in exactly the same way as in atom calculation (see
previos lecture). Finally we add nucleous contribution Z/r to Hartree and exchange
potential to get total Vi s. And the requirement is that Vi s (.S) = 0. Note that this is not
an approximation but oly our choice of zero for the potential.

Lattice sums

It is important to find chemical potential precisely and therefore one needs to use many k
points in first Brillouin zone. Due to group operations, only a small subset of k-points is
independent (irreducible part of 1st BZ). It is therefore a good idea to use only the
irreducible points and assign them weights wy. For cubic lattices, there are 48 space group
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operations that commute with . They are of the form
(a,b,¢) = (—a,b,c), (a,—b,c),---(b,a,c),(—c,—b,a) (68)

Each permutation of components of a vector gives an equivalent vector. There are 3! = 6
possibilities. In addition, each component can have either + or minus sign resulting in

23 = 8 possibilities. Together thus 3! 23 = 48 equivalent vectors. Thus for most of
non-special points, ther are 48 equivalnet points and we need to calculate only for one
point and multiply the result by 48. Special points have lower weight. For example,

I' = (0,0, 0) point has smallest weight equal to 1.

Tetrahedron method

The above "improved” summation is called special points method. There exists more
advanced method to calculate integral over k£ points called Tetrahedron Method of Lambin
and Vigneron. Basic idea is to interpolate energies linearly between two k-points and
"pretend” we do calculation for infinite number of k-points and can therefore integrate over

k.

First step consist of dividing 1st Brillouin zone into tetrahedra which fill up whole space.
Each thrahedra has 4 corners in 3 dimensions. The energy is thus interpolated
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E=F +a(Fy—FE1)+b(Es — FEy)+ c(E4s — E1), where a, b and ¢ run between 0
and 1 when visiting corners of tetrahedra.

For electron density and chemical potential we need integral of the form

H C
Imz / dw—% (69)
" o W — €k
and for density of states the form is
Cx
Im 70
) e (70)
k
The integral is then written as the sum over all tetrahedra and integral in the interior of
tetrahedra. o o
Im) ——= ) Bk —K (71)
k Wtk tertahedra ¥ tertaherda Wk

The trick is to separately lineraly interpolate nominator and denominator as follows

/ P Lk
tertaherda W — €k
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6/1 dcfl—cdbfl—b—cda Cy 4+ a(Cy — C1) +b(C3 — C1) + ¢(Cy — C) |
W — El — CL(E2 — El) — b(Eg — El) — C(E4 — E1

/

= (1711 4 Caorg + Cs1r3 + Cyry

Weights r; are the same for each function C'x and can be calculated ones for many
quantities. The expression for DOS weights is

1 1—c 1—b—c
—a—b— i i bo; i
7”¢:6/ dc/ db/ da l-a ¢)0i,1 + adi2 + bdi;3 + iy
0 0 w— Ey —a(Ey — E1) — b(Es — Ey) — ¢(Ey — En)

(73)

and for density

i oo 0 0 0 w—FE1 +a(Ey — E,) +b(Ez — E1) +c(Ey4 — Ey)

(74)

The integrals are analytic and a closed expression can be written down

=> Y i (75)
Hk:;éz,j Ek — F; ) Ej o E@

J#1
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where
lv(z) =z |1 —xlog |1+ — (76)
xr
3 > E1
q1 = O(Eg<w<Ej)ws  ©O(Ez<w<Ep)wj n O(Ey4<w<Ep)w] < B (77)
4E%2E32E42 4E%3E23E43 4E%4E24E34
. > Fio
q2 = O(Ez3<w<Eg)wj  O(E4<w<Eg)wj n O(E]<w<Ej)w] < B, (78)
4E§3E43E13 AE3,E34E14 AE3| E31Ey4q
i > E3
q3 = O(BEy4<w<E3)wj . O(Ej<w<E3z)wi n ©(Eg<w<E3)ws < B (79)
AEZ,FE14FEo4 AEZ| By1 Egq AE2,FE40E19
. > Fy
qa = O(E1<w<Eg)w]  ©O(Eg<w<Ej)wi  O(Ez<w<E4)wj < B, (80)
4E%, E21 E3q 4E3,E12E39 4E23E13E23
Here we used w; = w — E;, Eij =F, — Ej.
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1 Putting it all together

This is the band structure obtained for the C++ program with only few hundred lines of
code. The dots show the APW calculation (first part of the lecture where linearization
LAPW is not yet done). The full curve correspond to the non-self consistent calculation of
band structure with LAPW where the potential was obtained with the fit to experiments (see
Thissen book). Finally, the dotted line corresponds to the fully-self consistent calculation

with LAPW. The chemical potential is marked with the dashed line.
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Cuwith LAPW
#K (59), #k(8x8x8), a=6.8219117

0.3

—V frorﬁ exp

- salf-consistent
o  APW
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Python and C++ code can be downloaded from the webpage under src directory.

of DFT
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