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Few points about the periodic solid:

• Any translation of a Bravais lattice can be written

as an integral multiple of primitive vectors

R = n1a1 + n2a2 + n3a3.

Here ai are primitive translations.

• The reciprocal lattice vectors K = n1b1 + n2b2 + n3b3 also form a Bravais lattice

and the reciprocal primitive vectors are b1 = 2π a2×a3

a1·(a2×a3)
and permutations.
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• Any periodic function in a crystal satisfying f(r+R) = f(r), has nonzero Fourier

components only for reciprocal lattice vectors K.

Example: Nuclear position, electron density,..

• The wave function in a solid satisfies the Bloch theorem Ψk(r) = eikruk(r) where

uk(r) is periodic function u(r+R) = u(r). Momentum k is a good quantum

number. (Translation comutes with Hamiltonian).

• Any momentum can be written as a sum of a vector from a first Brillouin zone

k = n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3 and reciprocal lattice vector K, i.e. q = k+K. Here
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Ni is number of all lattice points in i-th direction and ni is integer between 0 and

Ni − 1. Obviously, number of k-points is the same as number of lattice points.

• Effective potential Veff (r) is periodic therefore

〈q′|Veff |q〉 =

∫

Ωcrystal

e
i(q−q′)r

Veff (r)dr =
∑

R

e
i(q−q′)R

∫

Ωcell

e
i(q−q′)r′

Veff (r
′)dr′

= δq−q′,KVeff (K). (1)

By writing ψ(r) =
∑

q e
iqrCq and V (r) =

∑

K eiKrVK the Schroedinger

equation becomes
[

1

2
(k+K)2 − εk

]

Ck+K +
∑

K′

VK−K′Ck+K′ = 0. (2)

Note that vector k from first Brillouin zone does not couple to any other k′ from the first

Brillouin zone. Only reciprocal vectors K and K′ couple. Hamiltonian can thus be

considered a matrix in HK,K′(k) with k as parameter (H is periodic operator).

The wave function can thus be written as

ψk(r) =
∑

K

ei(k+K)rCk+K = eikr
∑

K

eiKrCk+K = eikruk(r) (3)
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where uk(r) is periodic (Bloch theorem).

Plane waves

Plane waves are the simplest possible bases for the DFT calculation and are becoming

more and more popular due to their simplicity and increase in computational power.

• Plane waves are good when potential is slowly varying → not so many plane waves

needed

• Core electrons in the inner shell can not be described by reasonable (finite) number of

plane waves.

• Idea: Divide electrons into core and valence electrons and describe the effect of core

electrons and nucleous on valence electrons as a pseudopotential.

– empirical pseudopotentials

– Norm-conserving ab inito pseudopotentials

– ultrasoft pseudopotentials
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Some all-electron methods

• Linear Muffin Tin Oritals (LMTO)

• Linear Augmented Plane Wave method (LAPW)

• Full-potential Linear Muffin Tin Oritals (LMTO) - Savrasov’s LMTART

• Full-potential Linear Augmented Plane Wave method (LAPW) - Wien2k code
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Units used in calculation

Two conventions are very popular in DFT community: Hartree and Rydberg → sometimes

confusion in units.

We will always use Hartree units in which Hydrogen ground state energy is -0.5 as opoosed

to Rydberg units wehere hydrogen ground state energy is -1Ry=-13.6058eV.

The Schroedinger equation of hydrogen is

(−
~
2

2m
∇2 −

Ze20
r

)ψ = εψ (4)

If we introduce dimensionless variables r̃ = r/a0 and ε̃ = ε/ε0

(−
~
2

2ma20
∇̃2 −

e20
a0

Z

r̃
)ψ = ε0ε̃ψ (5)

Choosing Bohr-radius as unit of length a0 = ~
2/(me20) = 0.5292Å we are left with

(−
1

2
∇̃2 −

Z

r̃
)ψ =

ε0a0
e20

ε̃ψ. (6)
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In Hartree convention one chooses ε0 =
e20
a0

≡ 1H = 27.2114eV leading to

(−
1

2
∇̃2 −

Z

r̃
)ψ = ε̃ψ. (7)

Alternatively, one can choose ε0 =
e20
2a0

≡ 1Ry = 13.6057eV and the Schroedinger

equation than takes the form

(−∇̃2 −
2Z

r̃
)ψ = ε̃ψ. (8)
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Augmented Plane Wave Method

(APW)

Is today probably most precise method in its full potential linear form (Win2k).

It is somewhat involved and therefore harder extendable for purposes like Car-Parinelo

molecular dynamics.

Basic idea:

• divide the space into spheres around each nucleous (Muffin Tins) and the rest

(Interstitals).

• The potential slowly varying in the interstitial →

use plane waves

• In Muffin Tin spheres, use atomic-like basis functions

(Solve Schroedinger equation for the atom)
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The solution for DFT equations in crystal is constructed as a linear combination (linear

differential equation) of the APW basis functions

ψk(r) =
∑

K

AK(k)χAPW
k+K (r) (9)

where

χAPW
k+K (r) =







ei(k+K)·r r > S
∑

LCL(k+K)ψL(ε, r) r < S
(10)

Here L stands for l,m and ψL(ε, r) is solution of the atomic Schroedinger equation

ψL(ε, r) = iLYL(r̂)ψl(ε, r)

(−
1

2

d2

dr2
+
l(l + 1)

2r2
+ VKS(r)− ε)rψl(r) = 0 (11)

Energy ε is determined from the solution of the problemHψk = εkψk and ε = εk.

Hence equations became nonlinear (although we are solving linear differential equation).
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Basis functions have one matching parameterCLand

can therefore be match only in value. When applying

the kinetic energy operator, one needs to take the

discontinuity of the derivative into account.

There exist a well known expansion of a plane wave in spherical coordinates

eiqr = 4π
∑

L

iljl(qr)Y
∗
L (q̂)YL(r̂) (12)

where jl are spherical Bessel functions. Matching in value at r = S than fixes parameters

CL to

CL(q) = 4πjl(qr)
Y ∗
L (q̂)

ψl(ε, S)
(13)

The secular equation in APW base takes the form

∑

K

〈χAPW
k+K′ |H − εk|χ

APW
k+K 〉AK(k) = 0. (14)
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The integral can be separated into three terms

• Muffin Tin (MT) part

• Interstitial (I) part

• derivative discontinuity part (DDT)

The MT part vanishes because the base function is already solution of the Schroedinger

equation.

The interstitial region contributes

P I
K′K =

∫

I

dre−i(k+K
′)r(H − εk)e

i(k+K)r =

∫

Vcell

dre−i(k+K
′)r(H − εk)e

i(k+K)r

−
∫

r<S

dre−i(k+K
′)r(H − εk)e

i(k+K)r
(15)

The first integral can be extended over the whole space becauseH is periodic. We get

P I,1
K′K = Vcell(

1

2
(k+K)2 + V I

KS(K−K′)− εk)δKK′ (16)

In the second part, we use the above expansion of plane wave and get

P I,2
K′K = (

1

2
(k+K)2 + V I

KS(K−K′)− εk) 4π

∫ S

0

j0(|K−K′|r)r2dr(17)
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= (
1

2
(k+K)2 + V I

KS(K−K′)− εk)
4πS2j1(|K−K′|S)

|K−K′|
(18)

The interstitial contribution is therefore

P I
K′K = (

1

2
(k+K)2 + V I

KS(K−K′)− εk)

(

δKK′ −
4πS2j1(|K−K′|S)

Vcell|K−K′|

)

(19)

The last contribution due to discontinuous derivative can be evaluated using Green’s identity
∫

V

∇[χ∗
i∇χj ]dr =

∮

SV

χ∗
i∇χjdS =

∫

V

∇χ∗
i∇χjdr+

∫

V

χ∗
i∇

2χjdr (20)

Integral over space V needs to divided into MT part and the interstitals. We see that the

operator ∇2 needs to act on left and right, i.e., ∇χ∗
i∇χj when evaluating volume

integrals. This changes the above term to more symmetric form

(k+K)2 → (k+K)(k+K′). In addition, on the boundary between the two regions

we get an additional contribution

PDDT
K′K =

1

2
S2

∫

dΩχ∗
i (r = S, r̂)

[

∂

∂r
χj(r = S−, r̂)−

∂

∂r
χj(r = S+, r̂)

]

(21)
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To evaluate this term, we first rewrite it using logarithmic derivative

PDDT
K′K =

1

2
S2

∫

dΩχ∗
i (S, r̂)χj(S, r̂)

[

∂

∂r
ln(χj(r = S−, r̂))−

∂

∂r
ln(χj(r = S+, r̂))

]

(22)

The logarithmic derivatives are ∂ lnχ(S−)/∂r = ψ′
l(S)/ψl(S) and

∂ lnχ(S+)/∂r = j′l(qS)/jl(qS). The angle integral dΩ gives as nonzero contribution

only if Li = Lj therefore the derivative discontinuity contribution is

PDDT
K′K =

∑

L

1

2
S2(4π)2jl(|k+K

′|S)jl(|k+K|S)YL(k̂+ K̂
′)YL(k̂+ K̂)∆Dl,K/S (23)

where ∆Dl,K is dimensionless logarithmic derivative

∆Dl,K = S

(

ψ′
l(S)

ψl(S)
−
j′l(|k+K|S)

jl(|k+K|S)

)

. (24)

Using another well known relation

∑

m

Ylm(q̂)Ylm(q̂′) =
2l + 1

4π
Pl(q̂ · q̂′) (25)
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we finally get

PDDT
K′K =

2πS

Vcell

∑

l

(2l + 1)jl(|k+K
′|S)jl(|k+K|S)Pl((k̂+ K̂

′) · (k̂+ K̂))∆Dl,K. (26)

The secular equation of APW method reads

∑

K

(HK′K − εkOK′K)AK = 0 (27)

where

OK′K = δKK′ −
4πS2j1(|K−K′|S)

Vcell|K−K′|
(28)

HK′K = (
1

2
(k+K)(k+K′) + V I

KS(K−K′))OK′K + PDDT
K′K (29)

A serious problem with this method is that the Schroedinger equation is non-linear and is

therefore numerically less stable to solve. The non-linear term is hidden in the logarithmic

derivative ∆Dl,K which depends on the solution of the Schroedinger equation ψl(r) at

energy ε = εk.
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Linear Augmented Plane Wave

Method (LAPW)

The basic idea of any method starting with L (LAPW or LMTO) is to solve the Schroedinger

equation for fixed energyEν rather than for the eigen-energy εk = ε ( which would need

to be determined self-consistently). To keep the good precision of the solution, one

expands the solution of the Schroedinger equation in Taylor series (usually only to the linear

order), i.e.,

ψl(ε, r) = ψl(Eν) + (ε− Eν)
∂

∂ε
ψl(Eν , r) ≡ ψl(Eν) + (ε−Eν)ψ̇l(Eν , r) (30)

This energy derivative has very nice properties

• Since the atomic Hamiltonian does not depend on ε and (H − ε)ψl = 0, we have

(H − ε)ψ̇l = ψl.

• The vawe function ψ is normalized 〈ψl|ψl〉 = 1, therefore ψ̇l and ψl are orthohonal

→ 〈ψ̇l|ψl〉 = 0.
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By including ψ̇ in the basis, one can achieve accuracy of the total energy of the order of

(∆ε)2 where ∆ε is εk − Eν . The resulting wave function is correct up to ∆ε. At first it

looks like the choice of Eν has to be close to the actual energy εk to get good results. It

turns out, however, that the solution is not very sensitive to the choice of Eν as long as it is

not very far from the center of the band 〈εk〉. In practical calculationEν is usually chosen

to be in the center of the occupied part of the band.

The classical choice of the LAPW basis functions is

χk+K(r) =







1√
V
ei(k+K)·r =

∑

L
4πil√

V
jl(|k+K|r)Y ∗

L (k̂+ K̂)YL(r̂) r > S
∑

L YL(r̂)[aL(k+K)ψl(r) + bL(k+K)ψ̇l(r)] r < S
(31)

Here L stands for l,m and ψl(r) is solution of the atomic Schroedinger equation at fixed

energyEν

(−
1

2

d2

dr2
+
l(l + 1)

2r2
+ VKS(r)− Eν)rψl(r) = 0 (32)

(−
1

2

d2

dr2
+
l(l + 1)

2r2
+ VKS(r)− Eν)rψ̇l(r) = ψl(r) (33)

In classical method, we have two matching parameters aL(k+K) and bL(k+K),
Kristjan Haule, 2015 –20–
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therefore χk+K(r) can be made continuous and differentiable at the muffin-thin sphere S.
The two conditions are satisfied with the following 2× 2 linear system of equations




aL

bL



 =
4πil

√
V
Y

∗
L(k̂ + K̂)





d
dr
ψ̇l(S) −ψ̇l(S)

− d
dr
ψl(S) ψl(S)





1

ψl(S) d
dr
ψ̇l(S) − ψ̇l(S) d

dr
ψl(S)





jl(|k + K|S)

d
dr
jl(|k + K|S)



 (34)

Note that in practice the sum over L is limited to rather small l. These LAPW basis

functions are in practice not strictly continuous. One can correct that by the trick of Soler &

Williams http://link.aps.org/doi/10.1103/PhysRevB.40.1560.

From the differential equation for ψ and ψ̇, and after integration by parts, one can derive

the following identity

ψ̇l(S)
d

dr
ψl(S)− ψl(S)

d

dr
ψ̇l(S) =

1

S2
(35)

This leads to the simplified expression




aL

bL



 =
4πil

S2
√
V
Y ∗

lm(k̂+ K̂)





ψ̇l(S)
d

dr
jl(|k+K|S)− d

dr
ψ̇l(S)jl(|k+K|S)

d

dr
ψl(S)jl(|k+K|S)− ψl(S)

d

dr
jl(|k+K|S)



 (36)

The linear method is more robust, numerically easier to solve and also has ”nicer” basis
Kristjan Haule, 2015 –21–
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functions which are continuos in slope.

The solution is again a linear combination of basis functions

ψk =
∑

K

χK+k(r)AK(k) (37)

with coefficientsAK determined from the solution of the secular equation

∑

K

〈χK′+k|H − εk|χK+k〉AK(k) = 0. (38)

For convenience, we will choose zero of energy at the linearization energyEν so that

ε′k = εk − Eν

∑

K

(〈χK′+k|H − Eν |χK+k〉 − ε′k〈χK′+k|χK+k〉)AK(k) = 0. (39)

We thus have three terms to evaluate

• Muffin tin partHMT
K′K ≡ 〈χMT

K′+k|H − Eν |χ
MT
K+k〉

• Interstitial partHI
K′K ≡ 〈χI

K′+k|H − Eν |χ
I
K+k〉

• The total overlap matrix OK′K ≡ 〈χK′+k|χK+k〉.
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The MT part is

HMT
K′K =

∑

L

〈aL(k+K
′)ψl + bL(k+K

′)ψ̇l|H − Eν |aL(k+K)ψl + bL(k+K)ψ̇l〉

=
1

2

∑

L

a∗L(k+K
′)bL(k+K) + b∗L(k+K

′)aL(k+K) (40)

Using relation Eq. (25), we can further simplify

HMT
K′K =

4π(2l + 1)

S4V

∑

l

Pl((K̂
′ + k̂) · (K̂+ k̂))

1

2
(al,K′bl,K + al,Kbl,K′)

where

al,K = ψ̇l(S)
d

dr
jl(|k+K|S)−

d

dr
ψ̇l(S)jl(|k+K|S) (41)

bl,K =
d

dr
ψl(S)jl(|k+K|S)− ψl(S)

d

dr
jl(|k+K|S) (42)
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The interstitial is again evaluated by integrating first over whole space and subtracting

integral within Muffin-tin

HI
K′K =

1

V

∫

dre−i(k+K′)r(−
1

2
∇2 + VKS − Eν)e

i(K+k)r
(43)

= (
1

2
(k+K)2 + VKS − Eν)

∫

dr

V
ei(K−K′)r =

= (
1

2
(k+K)2 + VKS − Eν)(δKK′ −

4πS2j1(|K−K′|S)

V |K−K′|
)

Finally the overlap is

OK′K = (δKK′ −
4πS2j1(|K−K′|S)

Vcell|K−K′|
) (44)

+
∑

L

〈aL(k+K′)ψl + bL(k+K′)ψ̇l|aL(k+K)ψl + bL(k+K)ψ̇l〉

= δKK′ − 4πS2j1(|K−K
′|S)

Vcell|K−K′| +

+
∑

L

a∗L(k+K
′)aL(k+K) + b∗L(k+K

′)bL(k+K)〈ψ̇l|ψ̇l)〉
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and using Eq. (25) we get

OK′K = δKK′ − 4πS2j1(|K−K
′|S)

Vcell|K−K′| +

+
4π(2l+ 1)

S4V

∑

l

Pl((K̂
′ + k̂) · (K̂+ k̂))(al,K′al,K + bl,K′bl,K〈ψ̇l|ψ̇l〉)
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The results of the above calculation can be grouped together as follows:
∑

K

(HK′K − ε′kOK′K)AK = 0 (45)

OK′K = OI
K′K +

∑

l

Pk

l (K
′,K)(al,K′al,K + bl,K′bl,K〈ψ̇l|ψ̇l〉) (46)

HK′K = HI
K′K +

∑

l

Pk

l (K
′,K)

1

2
(al,K′bl,K + al,Kbl,K′) (47)

OI
K′K = δKK′ − 4πS2j1(|K−K

′|S)
Vcell|K−K′| (48)

HI
K′K =

{

1

4

[

(k+K)2 + (k+K
′)2

]

+ VKS − Eν

}

OI
K′K (49)

Pk

l (K
′,K) =

4π(2l+ 1)

S4V
Pl((K̂

′ + k̂) · (K̂+ k̂)) (50)

al,K = ψ̇l(S)
d

dr
jl(|k+K|S)− d

dr
ψ̇l(S)jl(|k+K|S) (51)

bl,K =
d

dr
ψl(S)jl(|k+K|S)− ψl(S)

d

dr
jl(|k+K|S) (52)
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The equations were symmetrizedHKK′ → 1
2 (HKK′ +HK′K) for numerical efficiency.

Chemical potential

The chemical potential is defined by requiring the number of electrons to be equal to the

number of occupied states

N/2 =
∑

k,p

f(εkp − µ) (53)

Here N is the number of valence electrons and factor two comes from spin.

Electron Density

The solution of the LAPW equations which corresponds to the p-th eigenvalue εpk is

ψkp(r) =
∑

K

Ap
K(k)χk+K(r) (54)

the electron density takes the form

ρ(r) =
∑

kp

f(εkp − µ)|ψkp|2 =
∑

kp

f(εkp − µ)
∑

KK′
Ap∗

K′(k)A
p

K
(k)χ∗

k+K′(r)χk+K(r)

≡
∑

kp

f(εkp − µ)
∑

KK′
Ap∗

K′(k)wKK′(k, r)Ap

K
(k) (55)
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Inside the MT sphere, we can average charge over the angle

wMT
KK′(k, r) =

∫

dΩ

4π
χ∗
k+K′(r)χk+K(r) (56)

resulting in

wMT
KK′(k, r) =

1

4π
Pk
l (K

′,K)[al,K′ψl(r) + bl,K′ψ̇l(r)][al,Kψl(r) + bl,Kψ̇l(r)]

(57)

The interstitial region contributes

wI
KK′(k, r) =

1

V
ei(K−K′)r

(58)

The final result for the electronic charge weight is

wKK′(k, r) =







ei(K−K′)r

Vcell
r > S

Pk
l (K

′,K)
4π [al,K′ψl(r) + bl,K′ ψ̇l(r)][al,Kψl(r) + bl,Kψ̇l(r)] r < S

In case of Muffin-Tin approximation, the charge in the interstitials is approximated by a

constant. The integral over the space gives exactly OI
KK′ . The weight in the interstitial is

thus equal to overlap in the interstitals.
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One can check that the volume integral of wKK′(k, r) is the total overlap matrix OKK′ .

Since the eigenvectors in this non-ortgonormal base are ortogonalized in the following way

A†OA, we get the total charge per momentum per band quantum number kp to be exactly

unity.

The electron charge is finally

ρ(r) =
∑

kp,KK′

f(εkp − µ)Ap∗
K′(k)wKK′(k, r)Ap

K(k) (59)

which can also be written as

ρ(r) = −
1

π
Im

∫

dωf(ω)
∑

kp,KK′

∑

KK′ A
p∗
K′(k)wKK′(k, r)Ap

K(k)

ω + µ− εkp
(60)

For actual calculation, it is good idea to separate radial loop from the k-loop to speed up the

calculation. It is obvious that the radial functions ψl and ψ̇l depend only on l and radius but

not on K, k or p. Therefore we will define the following weight functions

w
(0)
kpl =

∑

KK′

A∗p
K′(k)al,K′Pk

l (K
′,K)al,KA

p
K(k) (61)
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w
(1)
kpl =

∑

KK′

A∗p
K′(k)al,K′Pk

l (K
′,K)bl,KA

p
K(k)

+
∑

KK′

A∗p
K′(k)bl,K′Pk

l (K
′,K)al,KA

p
K(k) (62)

w
(2)
kpl =

∑

KK′

A∗p
K′(k)bl,K′Pk

l (K
′,K)bl,KA

p
K(k) (63)

w
(I)
kp =

∑

KK′

A∗p
K′(k)O

I
K′KA

p
K(k) (64)

These sums can be done by matrix multiplication using very efficients LAPACK routines.

After determination of the chemical potential, the weights can be compressed

w
(x)
l =

∑

kp

f(εkp − µ)w
(x)
kpl (65)

and the electron charge can finally be obtained by

ρMT (r) =
1

4π

∑

l

w
(0)
l ψl(r)ψl(r) + w

(1)
l ψl(r)ψ̇l(r) + w

(2)
l ψ̇l(r)ψ̇l(r)(66)

ρI(r) =
1

Vinterstitial
w(I)

(67)
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Muffin-Tin zero

There is another important detail when doing self-consistent calculation. In every step,

potential tends to change quite dramatically and is very hard to achieve self-consistency if

we do not fix zero of the potential - the chemical potential varies dramatically and core

states with them. The way it is usually done is by requiring that the potential is zero at the

Muffin-Tin boundary.

From total electronic charge we calculate Hartree potential by solving Poisson equation and

also add exchange-correlation potential in exactly the same way as in atom calculation (see

previos lecture). Finally we add nucleous contribution Z/r to Hartree and exchange

potential to get total VKS . And the requirement is that VKS(S) = 0. Note that this is not

an approximation but oly our choice of zero for the potential.

Lattice sums

It is important to find chemical potential precisely and therefore one needs to use many k

points in first Brillouin zone. Due to group operations, only a small subset of k-points is

independent (irreducible part of 1st BZ). It is therefore a good idea to use only the

irreducible points and assign them weights wk. For cubic lattices, there are 48 space group
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operations that commute with H . They are of the form

(a, b, c) → (−a, b, c), (a,−b, c), · · · (b, a, c), (−c,−b, a) (68)

Each permutation of components of a vector gives an equivalent vector. There are 3! = 6

possibilities. In addition, each component can have either + or minus sign resulting in

23 = 8 possibilities. Together thus 3! 23 = 48 equivalent vectors. Thus for most of

non-special points, ther are 48 equivalnet points and we need to calculate only for one

point and multiply the result by 48. Special points have lower weight. For example,

Γ = (0, 0, 0) point has smallest weight equal to 1.

Tetrahedron method

The above ”improved” summation is called special points method. There exists more

advanced method to calculate integral over k points called Tetrahedron Method of Lambin

and Vigneron. Basic idea is to interpolate energies linearly between two k-points and

”pretend” we do calculation for infinite number of k-points and can therefore integrate over

k.

First step consist of dividing 1st Brillouin zone into tetrahedra which fill up whole space.

Each thrahedra has 4 corners in 3 dimensions. The energy is thus interpolated
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E = E1 + a(E2 −E1) + b(E3 −E1) + c(E4 −E1), where a, b and c run between 0

and 1 when visiting corners of tetrahedra.

For electron density and chemical potential we need integral of the form

Im
∑

k

∫ µ

−∞
dω

Ck

ω − εk
(69)

and for density of states the form is

Im
∑

k

Ck

ω − εk
(70)

The integral is then written as the sum over all tetrahedra and integral in the interior of

tetrahedra.

Im
∑

k

Ck

ω − εk
=

∑

tertahedra

∫

tertaherda

d3k
Ck

ω − εk
(71)

The trick is to separately lineraly interpolate nominator and denominator as follows
∫

tertaherda

d3k
Ck

ω − εk
(72)
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= 6

∫ 1

0

dc

∫ 1−c

0

db

∫ 1−b−c

0

da
C1 + a(C2 − C1) + b(C3 − C1) + c(C4 − C1)

ω − E1 − a(E2 − E1)− b(E3 − E1)− c(E4 − E1)

≡ C1r1 + C2r2 + C3r3 + C4r4

Weights ri are the same for each function Ck and can be calculated ones for many

quantities. The expression for DOS weights is

ri = 6

∫ 1

0

dc

∫ 1−c

0

db

∫ 1−b−c

0

da
(1− a− b− c)δi,1 + aδi,2 + bδi,3 + cδi,4

ω − E1 − a(E2 − E1)− b(E3 − E1)− c(E4 − E1)
(73)

and for density

qi = 6

∫

µ

−∞
dω

∫ 1

0

dc

∫ 1−c

0

db

∫ 1−b−c

0

da
(1 − a − b − c)δi,1 + aδi,2 + bδi,3 + cδi,4

ω − E1 + a(E2 − E1) + b(E3 − E1) + c(E4 − E1)
(74)

The integrals are analytic and a closed expression can be written down

ri =
∑

j 6=i

ω − Ej
∏

k 6=i,j(Ek − Ej)
lv

(

ω − Ej

Ej − Ei

)

(75)
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where

lv(x) = x

[

1− x log

(

1 +
1

x

)]

(76)

q1 =







1
4 ω > E1

Θ(E2<ω<E1)ω4
2

4E2
12E32E42

+
Θ(E3<ω<E1)ω4

3
4E2

13E23E43
+

Θ(E4<ω<E1)ω4
4

4E2
14E24E34

ω < E1

(77)

q2 =







1
4 ω > E2

Θ(E3<ω<E2)ω4
3

4E2
23E43E13

+
Θ(E4<ω<E2)ω4

4
4E2

24E34E14
+

Θ(E1<ω<E2)ω4
1

4E2
21E31E41

ω < E2

(78)

q3 =







1
4 ω > E3

Θ(E4<ω<E3)ω4
4

4E2
34E14E24

+
Θ(E1<ω<E3)ω4

1
4E2

31E41E21
+

Θ(E2<ω<E3)ω4
2

4E2
32E42E12

ω < E3

(79)

q4 =







1
4 ω > E4

Θ(E1<ω<E4)ω4
1

4E2
41E21E31

+
Θ(E2<ω<E4)ω4

2
4E2

42E12E32
+

Θ(E3<ω<E4)ω4
3

4E2
43E13E23

ω < E4

(80)

Here we used ωi = ω − Ei , Eij = Ei − Ej .
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1 Putting it all together

This is the band structure obtained for the C++ program with only few hundred lines of

code. The dots show the APW calculation (first part of the lecture where linearization

LAPW is not yet done). The full curve correspond to the non-self consistent calculation of

band structure with LAPW where the potential was obtained with the fit to experiments (see

Thissen book). Finally, the dotted line corresponds to the fully-self consistent calculation

with LAPW. The chemical potential is marked with the dashed line.
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Python and C++ code can be downloaded from the webpage under src directory.
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