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Phys-i-cal Math-e-ma-tics, n.

Pronunciation: Brit. /'fizzki ma8(s) matiks /, U.S. /'fizak(a)l maeB(a) maadiks/

Frequency (in current use): .0®

1. Physical mathematics is a fusion of mathematical
and physical ideas, motivated by the dual, but

equally central, goals of elucidating the laws of nature
at their most fundamental level, together with
discovering deep mathematical truths.
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Some Physical Questions

1. Given a QFT what is the spectrum of the

Hamiltonian?
and how do we compute forces,

scattering amplitudes? More generally, how can
we compute expectation values of operators ?

2. Find solutions of Einstein’s equations,

and how can we solve Yang-Mills equations on
Einstein manifolds?



Exact results are hard to come by
in nontrivial situations ...

’

But theories with extended supersymmetry’
in spacetime dimensions < 4 have led to a
wealth of results answering these kinds of

guestions.

(These developments are also related to
explaining the statistical origin of black hole

entropy —
but that is another topic for another time ....)



Cornucopia For Mathematicians

Provides a rich and deep
mathematical structure.

Gromov-Witten Theory, Hogalogical Mirror
Symmep&F Knot Homy ﬂ!ﬁ'ﬁu conditions on

derivedge Ns\rogram, Hitchin
system MR S, construction % W\ perkahler

metrics nd, phic bundles, mod paces of flat
connecti ller theory

quiver representg W F) Bfants & four-manifolds,
mOtiViC Donaldson'ThO =k [ NS onstruction of affine Lie algebras, McKay

correspondence, ..........



The Importance Of BPS States

Much progress has been driven by trying to
understand a portion of the spectrum of the
Hamiltonian —the BPS spectrum’ —

BPS states are special quantum states in a
supersymmetric theory for which we can
compute the energy exactly.

So today we will just focus on the BPS
spectrum in d=4, N=2 field theory.
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Definition Of d=4, A=2 Field Theory

There are many examples of d=4, N=2 field
theories

A d=4, N=2 field theory is a field theory such

that the Hilbert space of quantum states is a
representation of the d=4, N=2 super-Poincare

algebra.

..... So what is the
d=4, N=2 super-Poincare algebra??



d=4,N=2 Poincaré Superalgebra
(Tor mathematicians )
Super Lie algebra § — 50 -+ 51
s = poin(1, 3) ®u(2)r ® R?

central
2 ~
IRcentral — C

Generato@ “N=2 central charge”

st =1(2;2)41 @ (2%;2)_1]r

Sym®s! — transl® R2 . . C s°

C



d=4,N=2 Poincaré Superalgebra
(fO@Wm%)

N=1 Supersymmetry:

There is an operator Q on the Hilbert space

{Q,Q"}=2H

N=2 Supersymmetry:

There are two operators Q,, Q, on the Hilbert space
Ty
{Qi, Q;} =20, ;H

{Q1,Q2} =£2)



Constraints on the Theory

Representation theory:

Field and particle multiplets

Hamiltonians:

Typically depend on very few parameters
for a given field content.

BPS Spectrum:

Special subspace in the Hilbert space of states



Example: N=2 Super-Yang-I\/IiIIs For U(K)

Gauge fields: Q
1 2
/ \
Doublet of gluinos: wl a
Complex scalars Qz\‘ /Ql
(Higgs fields): 2

All are K x K anti-Hermitian matrices (i.e. in u(K))

—1
Gauge transformations: @ — g ~Pg



Hamiltonian Of A/=2 U(K) SYM

The Hamiltonian is completely determined,
up to a choice of Yang-Mills coupling e,’

H=e;? [, Tt (E2 + B2+ \Dcp\?)
+eg” [rs Tt ([0, 01]?)

Energy is a sum of squares.

Energy bounded below by zero.
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Classical Vacua
Classical Vacua: Zero energy field configurations.

=52 [rs Tr (E’z + B2 + |D'go|2)

+eg” Jgs Tr ([0, ¢1]?)
E=B=0 @ = cnst.

0,0l =0 =
P = Diag{a’17°'°7aK}

Any choice of a,,...a, € C is a vacuum!



Quantum Moduli Space of Vacua

The continuous vacuum degeneracy is

an exact property of the quantum theory:

(Vac|p|Vac) = Diag{aq,...,ak}

The quantum vacuum is not unique!

Manifold of qguantum vacua 3

Parametrized by the complex numbers a,, ...., a,



Gauge Invariant Vacuum Parameters
us := (Vac(u)|Tr(¢®)|Vac(u))
B:={u:=(u1,...,ug)}

Physical properties depend on

the choice of vacuum u € @.

We will illustrate this by studying the properties
of "dyonic particles” as a function of u.



Spontaneous Symmetry Breaking
(Vac(u)|p|Vac(u)) = Diag{aq,...,ax}
broken to:

U(K) w—) (](1)%
( Tor mat/fematz’cz'an&)

¢ isin the adjoint of U(K): stabilizer of a
generic ¢ € u(K) is a Cartan torus



Physics At Low Energy Scales: LEET

Only one kind of light comes out of the flashlights
from the hardware store....

Most physics experiments are described very accurately by
using (quantum) Maxwell theory (QED). The gauge group is
U(1).

The true gauge group of electroweak forces is SU(2) x U(1)

The Higgs vev sets a scale: (¢) = 246GeV
The stabilizer subgroup of <> is U(1) of E&M.

At energies << 246 GeV we can describe physics
using Maxwell’s equations + small corrections:



N=2 Low Energy U(1)* Gauge Theory

Low energy effective theory (LEET) is
» described by an V=2 extension of

Maxwell’s theory with gauge group U(1)X

K different electric”’ and
p K different "magnetic” fields:

El BI I=1,....K

& their V=2 superpartners
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Electro-magnetic Charges

The theory will also contain “"dyonic particles’” —
particles with electric and magnetic charges for

the fields Bl Bl 7 _ ... K
(Magnetic, Electric) Charges:
1
Y = (p 7QI)

Dirac @n wa/gm,, Uzue veckors
quantization: Y are in a symplectic fattice 1.




(Y1,72) = pige.r — P11 € Z



BPS States: The Definition

Superselection sectors: H = @WEF%W

In the sector J(, the central charge operator
@ is just a c-number Z, € C

Bogomolny bound: In sector J(,

E>12,|




The Central Charge Function

As a function of y the N=2 central charge is linear

Z71+’Y2 — Z’Yl T Z’Yz

This linear function is also a function of u € 3:
BPS _
On #; E =1Zy(u)

(In fact, it is a holomorphic function of u € 3.)

So the mass of BPS particles depends on u € B.



Coulomb Force Between Dyons

—

"n e — ®

F = (qei a0 +per;p’)

o A nontrivial function of u € B
CrJg (u)

It can be computed from Z (u)

Physical properties depend on

the choice of vacuum u € 3.



0 What can d=4,%=2 do for you?

"> ] Review: d=4, N=2 field theory
@ Definition, Representations, Familtonians
e The Vacuwm ud Spontancons Symmetry Breaking |

e BPS States: Monopoles & Dyone

e Sedbeng - Wetten [heory
O -

29



So far, everything I've said
follows fairly straightforwardly
from general principles.



General d=4, N=2 Theories

1. A moduli space B of quantum vacua,

(a.k.a. the "Coulomb branch™).

The low energy dynamics are described by an
effective =2 abelian gauge theory.

2. The Hilbert space is graded by an integral
lattice of charges, I, with integral

anti-symmetric form. There is a BPS subsector
with masses given exactly by |Z (u)].



But how do we compute
Z,(u) as a function of u ?



Seiberg-Witten Paper

seiberg & Witten (1994) found a - £XE
way for the case of SU(2) SYM.

Z,(u) can be computed in terms of the periods
of a meromorphic differential form A on a
Riemann surface 2 both of which depend on u.

S @
u = (Try?)
B -~




In more concrete terms: there is an integral
formula like:

Zy(u) = §,\/ % + % + Ldz

v is a closed curve...

Because of the square-root there are different branches —
So the integral can be nonzero, and different choices of y
lead to different answers...

And, as realized in the 19t Century by Abel, Gauss, and
Riemann, such functions (and line integrals) with branch
points are properly understood in terms of surfaces with
holes - Riemann surfaces.
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The Promise of Seiberg-Witten Theory: 1/2

So Seiberg & Witten showed how to determine

the LEET exactly as a function of u, at least for
G=SU(2) SYM.

They also gave cogent arguments for the exact

BPS spectrum of this particular theory:
d=4, =2 SYM with gauge group G=SU(2).

Their breakthrough raised the hope that in
general d=4 N=2 theories we could find many

kinds of exact results.



The Promise of Seiberg-Witten Theory: 2/2

Promise 1: The LEET: Compute Z (u).

Promise 2: Exact spectrum of the
Hamiltonian on a subspace of Hilbert space:
the space of BPS states.

Promise 3: Exact results for path integrals —
including insertions of "defects” such as 'line
operators,” surface operators’”’, domain walls,



Promise 1: The LEET: Compute Z (u).

Extensive subsequent work showed

that the SW picture indeed generalizes
to all known d=4, N=2 field theories:



Z,(u) are periods of a
meromorphic
differential form on X

v,
-

B

°u

But, to this day, there is no general

algorithm for computing =, for a
given d=4, N=2 field theory.



But what about Promise 2:
Find the BPS spectrum?

In the 1990’s the BPS spectrum was only

determined in a handful of cases...

( SU(2) with (V=2 supersymmetric) quarks flavors: N;=1,2,3,4, for
special masses: Bilal & Ferrari)

Knowing the value of Z, (u) in the sector I,
does not tell us whether there are, or are not,

BPS particles of charge . It does not tell us if
JC, 5> is zero or not.



In the past 8 years there has been a
great deal of progress in

understanding the BPS spectra in a
large class of other V=2 theories.

One key step in this progress has been a
much-improved understanding of the
“wall-crossing phenomenon.”
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Recall the space of BPS states is:
HEPS = {4 By = | Z,(u) Y}

It is finite dimensional.

It depends on u, since Z (u) depends on u.
More surprising:

Even the dimension can depend on u !



BPS Index

As in the index theory of Atiyah & Singer, 78"

is Z, graded by (-1)F so there is an index, in
this case a Witten index, which behaves much

better:
T Q(y) = Trgees(—1)27s

J; is any generator of so(3)

Formal arguments prove: )(y) is invariant

under change of parameters such as the
choice of u ...




Index Of An Operator: 1/4
(fO/bﬁ/w;_yéMW)
Suppose T is a linear operator
depending on parameters u € B

I, :V —-W

If V. and W are finite-dimensional Hilbert spaces then:

dim(ker T},) — dim(ker T!) = dimV — dimW




Index Of An Operator: 2/4

Example: Suppose V=W is one-dimensional.

T.(Y)=up vueC YevVv

U # 0 dim(ker T, ) = dim(ker 7}}) = 0

uw =20 dim(ker T},) = dim(ker T}) = 1

Tu = (sin?z'u,) sinru(lu) siff(zu)) Ind(Ty) =3-2=1



Index Of An Operator: 3/4

Now suppose T, is a family of
linear operators between two
infinite-dimensional Hilbert spaces

dim(ker T},) — dim(ker T/ ) = dimH; — dim#Ho
= 00 — OO
Still the LHS makes sense for suitable

(Fredholm) operators and is invariant under
continuous deformations of those operators.




Index Of An Operator: 4/4

The BPS index is the index of the
supersymmetry operator Q on
Hilbert space.

(In the weak-coupling limit it is also the index
of a Dirac operator on moduli spaces of magnetic
monopoles.)



The Wall-Crossing Phenomenon

But even the index can
depend onu!!

How can that be ?

BPS particles can form
bound states which are
themselves BPS!

71 @




‘gm' Denef’s Boundstate Radius Formula

ny U ‘|—Z’y U
Ri2(u) = (v1,72) QIr‘n(Zil EU)sz((“))l*>

The Z’s are functions of the moduli ue @

So the moduli space of vacua @
Is divided into two regions:

Im(Z:1Z35) >0 OR Im(Z:Z35) <0






Wall of Marginal Stability
! u

| ms
Consider a path of |/
vacua crossing the wall: u, " u

R

Exact binding energy:

Lyt ()] = (|2, (w)] + |2, (w)]) <0

MS(v1,72) = ulZy, (u) || Zy,(u)}



The Primitive Wall-Crossing Formula

(Denef & Moore, 2007; several precursors)

Z1+2Z
R0 = (’71772> ZIIml(Z1zzL)

Crossing the wall: Im(Z,23) — 0

—71Q " b

AH =HP" @ HBPS @ HEFS

2J12 + 1 = [(71,72)



Non-Primitive Bound States

But this is not the full story, since the same
marginal stability wall holds for charges
N,v, and N, vy, for N, N, >0

The primitive wall-crossing formula assumes the
charge vectors v, and vy, are primitive vectors.

Y1 @



WCF

In 2008 K & S wrote a wall-crossing formula

for Donaldson-Thomas invariants of Calabi-Yau
manifolds.... But stated in a way that could apply
to BPS indices” in more general situations.

We needed a physics argument for why
their formula should apply to d=4, N=2

field theories.



There are now several physical derivations
explaining that the KSWCF is indeed the
appropriate formula for general boundstates.

In my view -- the best derivation uses "line
operators” — or more properly - "line defects.”

Gaiotto, Moore, Neitzke 2010; Andriyash, Denef, Jafferis, Moore 2010



m‘ Political Advertisement  uas

1

ive WCF
br d=4 was
Moore in
e full WCF
ontsevich

There are other physical

derivations of the KSWCF due to
Cecotti & Vafa and
Manschot, Pioline, & Sen.
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Interlude: Defects in Local QFT

The very notion of "'what is a quantum field
theory” is evolving...

It no longer suffices just to know the
correlators of all local operators.

Extended operators’” or defects” have been
playing an increasingly important role in recent
years in quantum field theory.

Defects are local disturbances supported on
submanifolds of spacetime.



Examples of Defects

Example 1: d=0: Local Operators

Example 2: d=1: 'Line operators”

Gauge theory
Wilson line: WR(@ = IrpPexp fe A

Example 3: Surface defects: Couple a
2-dimensional field theory to an ambient
4-dimensional theory.




Wy %
My- }(?)
Jelf
MOUSERNONS
/ \k\’o‘s wene Mey, I\‘;
T N

The KINC'S €Y% e realil

much large™ tha
HIS poittt*
g bat @ P”

shewing that .
coula,see n

7n
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Defects Within Defects

Mathematically — related to N-categories....

62
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Wall-Crossing: Only half the battle...

The wall crossing formula only describes the
CHANGE of the BPS spectrum across a wall of
marginal stability.

It does NOT determine the BPS spectrum!

This problem has been solved for a large class
of d=4 N=2 theories known as

“theories of class S”’






An important part of the GMN project focused
on a special class of d=4, N=2 theories,

the theories of class S.

(“S” is for six )



The six-dimensional theories

Claim, based on string theory constructions:

There is a family of stable interacting field theories, S[g],

with six-dimensional (2,0) superconformal symmetry.
(Witten; Strominger; Seiberg).

These theories have not been constructed — even by
physical standards - but some characteristic properties of

these hypothetical theories can be deduced from their
relation to string theory and M-theory.

These properties will be treated as axiomatic.
(c.f. Felix Klein lectures in Bonn). Later - theorems.



Theories Of Class S

d=6 superconformal —————— =4 N =2
theory - theory

Most natural’”’ theories are of class S:

For example, SU(K) N=2 SYM
coupled to quark flavors”.

But there are also (infinitely many) theories of class S
with no (known) Lagrangian (Gaiotto, 2009).



gn these theories many Jo/guj/u@af q/umn/lﬁi/{?m,

have eﬁegxm/t QMWJ:))(A@M in Levmas o%
%mcum M’W’ and J/%vf conneclions.

—

Relations to many interesting mathematical topics:

Moduli spaces of flat connections, character varieties,

Teichmuller theory, Hitchin systems, integrable
systems, Hyperkahler geometry ...




Surface Defects In Theories Of Class S

ze(C

For each z € C we have a surface defect S,

S, is a 1+1 dimensional QFT in M13,
It couples to the ambient four-dimensional
theory.



S, has BPS solitons o’
and they have an N=2

lit
central charge as well. o /

Surface defect

The behavior of d=2 BPS solitons on the
surface defects S, turns out to encode the
spectrum of d=4 BPS states.

The key construction involves
“spectral networks”




What are Spectral Networks ?
( For mat/ﬂematz'cz’an&)
Spectral networks are combinatorial

objects associated to a covering of Riemann
surfaces 2~ — C, with differential A on X




(fO@f/v?_afﬁm%)
Spectral networks are defined, physically,
by considering BPS solitons on
the two-dimensional surface defect S,

Choose a phase ( = elV

SN: The set of points z € C so that there are
solitons in' s, with N=2 central charge of phase ¢

Can be constructed using local rules






When we vary the phase

¢ the network

changes continuously except at certain

critical phases d,

The critical networks encoc
the four-dimensional BPS s

e facts about
vectrum.

-or example, ¢, turns out to be the
phase of Z (u) of the d=4 BPS particle.



Movies:
http://www.ma.utexas.edu/users/neitzke/spectral-
network-movies/

Make your own: [Chan Park & Pietro Longhi]
http://het-math2.physics.rutgers.edu/loom/

Pl

W< 1,




Movies: http://www.ma.utexas.edu/users/neitzke/spectral-network-movies/

9 < d, 9>9,






Finding the BPS Spectrum

One can write very explicit formulae
for the BPS indices ()(y) in terms of
the combinatorics of the change of
the spectral network.

GMN, Spectral Networks, 1204.4824
GMN, Spectral Networks and Snakes, 1209.0866

Galakhov, Longhi, Moore: Include spin information



Mathematical Applications of
Spectral Networks

g M constucd a o/ﬂxb/he/m O{ﬁ coooinales on m/oﬁ/w& opaces O{ﬁ
ﬁa/t connections on G W/[ZI/LO[ZL W }(/[Zw ogwa/(e/z coodinates
o% (C’Wvl,vw/bom, g)wmm, gox/[zc and gomolzua/w/\z.

WKB asymptotics for first order matrix ODE’s:
d ) _
(hl + A) T =0

(generalizing the Schrodinger equation)

Spectral network = generalization of Stokes lines
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Conclusion: 3 Main Messages

1. Seiberg and Witten’s breakthrough in 1994,
opened up many interesting problems. Some were
quickly solved, but some remained stubbornly open.

But the past eight years has witnessed a renaissance
of the subject, with a much deeper understanding of
the BPS spectrum and the line and surface defects in

these theories.




Conclusions: Main Messages

2. This progress has involved nontrivial and

surprising connections to other aspects of Physical
Mathematics:

Hyperkahler geometry, cluster algebras, moduli
spaces of flat connections, Hitchin systems,
instantons, integrable systems, Teichmuller theory, ...
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Conclusions: Main Messages

3. There are nontrivial superconformal fixed points in
6 dimensions.

(They were predicted many years ago from string theory.)

We have seen that the mere existence of these theories leads
to a host of nontrivial results in quantum field theory.

Still, formulating 6-dimensional superconformal theories in a
mathematically precise way remains an outstanding problem
in Physical Mathematics.




A Central Unanswered Question

Can we construct S[g]?
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We will now show how susy line
defects give a physical
interpretation & derivation of
the Kontsevich-Soibelman
wall-crossing formula.

Gaiotto, Moore, Neitzke; Andriyash, Denef, Jafferis, Moore



Supersymmetric Line Defects

Our line defects willbeat R, x{0}c R'3

A supersymmetric line defect L
requires a choice of phase C( :

Example: L¢ = TrgPexp [p .5 ((Tle + A+ (p)

HL — @’YEF‘F’YOHLN

Physical picture for charge sector y: As if we inserted
an infinitely heavy BPS particle of charge y o1



Framed BPS States

E

—Re(z%/c:3+|z%|[ k> —Re(ny/C)

—Re(Z,/¢)

Framed BPS States are states in /| , which
saturate the bound.

Q(Le;y) =Ty, (—1)%



So, there are two kinds of BPS states:

Ordinary/vanilla:  (7; u)

Framed: Q( g;’)/)

Vanilla BPS particles of charge y,, can bind to framed
BPS states in charge sector y. to make new framed
BPS states:

yc Q @ ¢ Yh



Framed BPS Wall-Crossing 1/2

Particles of charge vy, bind to a ""core” of
charge y. at radius:

('Yha’)/c)
QIm(th (u)/¢)

So crossing a  BPS wall” defined by:
W, ==A{u|Z,, (u)/¢ € R_}

the bound state comes (or goes).

T —




Halo Picture

But, particles of charge y,, and indeed n v, for any
n>0 can bind in arbitrary numbers: they feel no
relative force, and hence there is an entire Fock space
of boundstates with halo particles of charges n v,.




Framed BPS Wall-Crossing 2/2

So across the BPS walls
Wy, ==A{u|Z,,(u)/¢ € R_}
entire Fock spaces of boundstates come/go.

Introduce Fock space creation operator” K
/7

for Fock space of a particle of charge v,: h

Suppose a path in Bcrosses walls W, , W, ,

KQ(’Yl)KQ(’Yz)



|
Derivation of the \:/vall-crossing formula

mZZ >0  MS(v1,72)  ImZiZ <0




The Kontsevich-Soibelman Formula

Q(T171+T2’Yz;—) — Q(?‘l’Yl-l-?“z’Yz;-l-)
H\‘ K’J"l'yl—l—?"z'yz - H/‘ Kr1’71+r2'72

|
s W

(D g



A Good Analogy
1 0 0 Q(vy2;+) 1 Q(y1+y2;+)
Se=0:1) g |

)9(')’1;+)
Q(v1;—) 1 0 1 Q(v1+v2;—)
0 1 0
0 0 1 0 0 1

)Qm;-)
Sy =5_ )

Q(y1;+) =Qv1;—)  Qy2s+) = Q25 —)

o= O
— O ==
o0 =
O = =
-0 O

TN
o
= =
oo

o O =
O = O
— D

Q71 +72;5+) = QU + 725 —)
+Q(y1; =) v2; —)



