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1. Introduction

Linear algebra is of course very important in many areas of physics. Among them:

1. Tensor analysis - used in classical mechanics and general relativity.

2. The very formulation of quantum mechanics is based on linear algebra: The states in

a physical system are described by “rays” in a projective Hilbert space, and physical

observables are identified with Hermitian linear operators on Hilbert space.

3. The realization of symmetry in quantum mechanics is through representation theory

of groups which relies heavily on linear algebra.

For this reason linear algebra is often taught in physics courses. The problem is that

it is often mis-taught. Therefore we are going to make a quick review of basic notions

stressing some points not usually emphasized in physics courses.

We also want to review the basic canonical forms into which various types matrices

can be put. These are very useful when discussing various aspects of matrix groups.
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For more information useful references are Herstein, Jacobsen, Lang, Eisenbud, Com-

mutative Algebra Springer GTM 150, Atiyah and MacDonald, Introduction to Commutative

Algebra. For an excellent terse summary of homological algebra consult S.I. Gelfand and

Yu. I. Manin, Homological Algebra.

We will only touch briefly on some aspects of functional analysis - which is crucial to

quantum mechanics. The standard reference for physicists is:

Reed and Simon, Methods of Modern Mathematical Physics, especially, vol. I.

2. Basic Definitions Of Algebraic Structures: Rings, Fields, Modules, Vec-

tor Spaces, And Algebras

2.1 Rings

In the previous chapter we talked about groups. We now overlay some extra structure on

an abelian group R, with operation + and identity 0, to define what is called a ring. The

new structure is a second binary operation (a, b) → a · b ∈ R on elements a, b ∈ R. We

demand that this operation be associative, a · (b · c) = (a · b) · c, and that it is compatible

with the pre-existing additive group law. To be precise, the two operations + and · are

compatible in the sense that there is a distributive law:

a · (b+ c) = a · b+ a · c (2.1)

(a+ b) · c = a · c+ b · c (2.2)

Remarks

1. A ring with a multiplicative unit 1R such that a · 1R = 1R · a = a is called a unital

ring or a ring with unit. One needs to be careful about this because many authors

will simply assume that “ring” means a “ring with unit.” 1

2. If a · b = b · a then R is a commutative ring.

3. If R is any ring we can then form another ring, Mn(R), the ring of n × n matrices

with matrix elements in R. Even if R is a commutative ring, the ring Mn(R) will be

noncommutative in general if n > 1.

Example 1: A good example of a ring is R = Z with + and · being the usual notions of

addition and multiplication. Note that R is just a monoid, not a group with respect to ·.

Example 2: Another good example is R = Z/nZ again with + and · inherited from the

usual addition and multiplication on Z. As we have discussed many times, Z/nZ as an

Abelian group with + is isomorphic to the group of nth roots of unity where the Abelian

1Some authors use the term “rng” – pronounced “rung” - for a ring possibly without a unit. We will

not do that. Similarly, one can define a notion called a “rig” - which is a ring without negatives. That is,

it is an abelian monoid with the operation + and a compatible multiplication ·.
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group law is multiplication of complex numbers. Note that the ring structure is not so

natural in the latter picture. If we considered the nth roots of unity as isomorphic to Z/nZ
as a ring the multiplication law would be:

e2πi
k1
n · e2πi

k2
n = e2πi

k1k2
n (2.3)

It is well-defined and perfectly sensible. But it is not ordinary multiplication of complex

numbers!

Example 3: Let U ⊂ C be an open set in the complex plane and consider O(U), the set of

all holomorphic functions on U . This is a ring with the obvious addition and multiplication

of holomorphic functions. Note that we will not have inverses for the multiplication law

because some holomorphic functions on U will have zeroes in U .

2.2 Fields

Definition: A commutative ring R such that R∗ = R− {0} is also an abelian group with

respect to · is called a field.

Two examples of fields which we have used again and again are R and C.

Some important examples of rings which are not fields are

1. Z.

2. Z/NZ, when N is not prime.

3. If R is any ring then we can form the ring of polynomials with coefficients in

R, denoted R[x]. Iterating this we obtain polynomial rings in several variables

R[x1, . . . , xn]. Similarly, we can consider a ring of power series in x.

4. Let U be an open subset of the complex plane (or of Cn) then we can consider the

ring O(U) of holomorphic functions on U .

Some important examples of fields closely related to the above examples:

1. Q

2. Z/NZ, when N = p is prime.

3. For the ring of polynomials R[x] we can consider the associated field of fractions

p(x)/q(x) where q(x) is nonzero. This is an example of “localization.” ♣Check. R has to

be a PID? ♣

4. Let U be an open subset of the complex plane (or of Cn) then we can consider the

field M(U) of meromorphic functions on U .
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2.2.1 Finite Fields

A beautiful theorem in algebra (see, e.g. the book by Jacobsen) states that the finite fields

must have order q = pk which is a prime power. Moreover, up to isomorphism, the field is

unique and it is variously denoted as Fq or GF (q). For k = 1, i.e. q = p we can identify

Fp with Z/pZ.

For k > 1 the field Fpk is not to be confused with the ring Z/pkZ. For example

R = Z/4Z is not a field with the usual ring multiplication. For example 2 ∈ R∗ and

2 · 2 = 0mod4. One way to represent the field F4 is as a set

F4 = {0, 1, ω, ω̄} (2.4)

with the relations

0 + x = x ∀x ∈ F4

x+ x = 0 ∀x ∈ F4

1 + ω = ω̄

1 + ω̄ = ω

ω + ω̄ = 1

0 · x = 0 ∀x ∈ F4

1 · x = x ∀x ∈ F4

ω · ω̄ = 1

ω · ω = ω̄

ω̄ · ω̄ = ω

(2.5)

Note that although ω3 = ω̄3 = 1 you cannot identity ω with a complex number the third

root of unity: This field is not a subfield of C.

The field Fq can be identified with an “extension” field of Fp where the polynomial

equation Xq −X = 0 has q roots.

1. Finite fields are sometimes used to define special groups with interesting properties.

For example, it makes sense to speak of SL(n,Fq) and these finite groups have very

beautiful properties.

2. Finite fields are often used in the theory of classical and quantum error-correcting

codes.

2.3 Modules

Definition A module over a ring R is a set M with a multiplication R ×M → M such

that for all r, s ∈ R and v, w ∈M :

1. M is an abelian group wrt +, called “vector addition.”
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2. r(v + w) = rv + rw

3. r(sv) = (rs)v

4. (r + s)v = rv + sv

Axioms 2,3,4 simply say that all the various operations on R and M are compatible

in the natural way.

Remarks:

1. If the ring has a multiplicative unit 1R then we require 1R · v = v.

2. If the ring is noncommutative then one should distinguish between left and right

modules. Above we have written the axioms for a left-module. For a right-module

we have (v · r) · s = v · (rs).

3. There is an important generalization known as a bimodule over two rings R1, R2.

A bimodule M is simultaneously a left R1-module and a right R2-module. A good

example is the set of n ×m matrices over a ring R, which is a bimodule over R1 =

Mn(R) and R2 = Mm(R).

4. Any ring is a bimodule over itself. For a positive integer n we define the module Rn

of n-tuples of elements of R by componentwise addition and multiplication in the

obvious way. This is an R-bimodule and also an Mn(R) bimodule.

5. In quantum field theory if we divide up a spatial domain into two parts with a

codimension one subspace then the states localized near the division is a bimodule

for operators localized on the left and the right of the partition.

Examples:

1. Any Abelian group is a Z module, and any Z-module is just an Abelian group.

2. Meromorphic functions with a pole at some point z0 in the complex plane with order

≤ n. These form an important example of a module over the ring of holomorphic

functions.

2.4 Vector Spaces

Recall that a field is a commutative ring such that R∗ = R− {0} is also an abelian group.

Let κ be a field. Then, by definition a vector space over κ is simply a κ-module.

Written out in full, this means: ♣In the rest of the

notes we need to

change notation for

a general field from

k to κ since k is

often also used as

an integer or a

momentum. ♣

Definition . V is a vector space over a field κ if for every α ∈ κ, v ∈ V there is an element

αv ∈ V such that

1. V is an abelian group under +

– 9 –



2. α(v + w) = αv + αw

3. α(βv) = (αβ)v

4. (α+ β)v = αv + βv

5. 1v = v

for all α, β ∈ κ, v, w ∈ V

For us, the field κ will almost always be κ = R or κ = C. In addition to the well-worn

examples of Rn and Cn two other examples are

1. Recall example 2.9 of Chapter 1: If X is any set then the power set P(X) is an

Abelian group with Y1 + Y2 := (Y1− Y2)∪ (Y2− Y1). As we noted there, 2Y = ∅. So,

P(X) is actually a vector space over the field F2.

2.5 Algebras
♣Take material on

ideals below and

move it here. ♣So far we have taken abelian groups and added binary operations R × R → R to define a

ring and R ×M → M to define a module. It remains to consider the case M ×M → M .

In this case, the module is known as an algebra.

Everything that follows can also be defined for modules over a ring but we will state

the definitions for a vector space over a field. ♣Rewrite, and do

everything for

modules over a

ring?? ♣Definition An algebra over a field κ is a vector space A over κ with a notion of multipli-

cation of two vectors

A×A→ A (2.6)

denoted:

a1, a2 ∈ A→ a1 � a2 ∈ A (2.7)

which has a ring structure compatible with the scalar multiplication by the field. Con-

cretely, this means we have axioms:

i.) (a1 + a2)� a3 = a1 � a3 + a2 � a3

ii.) a1 � (a2 + a3) = a1 � a2 + a1 � a3

iii.) α(a1 � a2) = (αa1)� a2 = a1 � (αa2), ∀α ∈ κ.

The algebra is unital, i.e., it has a unit, if ∃1A ∈ A (not to be confused with the

multiplicative unit 1 ∈ κ of the ground field) such that:

iv.) 1A � a = a� 1A = a

In the case of rings we assumed associativity of the product. It turns out that this is

too restrictive when working with algebras. If, in addition, the product of vectors satisfies:

(a1 � a2)� a3 = a1 � (a2 � a3) (2.8)

for all a1, a2, a3 ∈ A then A is called an associative algebra.
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Remark: We have used the heavy notation� to denote the product of vectors in an algebra

to stress that it is a new structure imposed on a vector space. But when working with

algebras people will generally just write a1a2 for the product. One should be careful here

as it can (and will) happen that a given vector space can admit more than one interesting

algebra product structure.

Example 1 Mn(κ) is a vector space over κ of dimension n2. It is also an associative

algebra because matrix multiplication defines an algebraic structure of multiplication of

the “vectors” in Mn(κ).

Example 2 More generally, if A is a vector space over κ then End(A) is an associative

algebra. (See next section for the definition of this notation.)

In general, a nonassociative algebra means a not-necessarily associative algebra. In

any algebra we can introduce the associator

[a1, a2, a3] := (a1 · a2) · a3 − a1 · (a2 · a3) (2.9) eq:associator

Note that it is trilinear. There are important examples of non-associative algebras

such as Lie algebras and the octonions.

Definition A Lie algebra over a field κ is an algebra A over κ where the multiplication of

vectors a1, a2 ∈ A, satisfies in addition the two conditions:

1. ∀a1, a2 ∈ A:

a2 � a1 = −a1 � a2 (2.10) eq:LieDef-1

2. ∀a1, a2, a3 ∈ A:

((a1 � a2)� a3) + ((a3 � a1)� a2) + ((a2 � a3)� a1) = 0 (2.11) eq:LieDef-2

This is known as the Jacobi relation.

Now, tradition demands that the product on a Lie algebra be denoted not as a1 � a2

but rather as [a1, a2] where it is usually referred to as the bracket. So then the two defining

conditions (2.10) and (2.11) are written as:

1. ∀a1, a2 ∈ A:

[a2, a1] = −[a1, a2] (2.12)

2. ∀a1, a2, a3 ∈ A:

[[a1, a2], a3] + [[a3, a1], a2] + [[a2, a3], a1] = 0 (2.13)
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Remarks:

1. Note that we call [a1, a2] the bracket and not the commutator. It might well not be

possible to write [a1, a2] = a1 � a2 − a2 � a1 where � is some other multiplication

structure defined within A. Rather [·, ·] : A × A → A is just an abstract product

satisfying the two rules (2.10) and (2.11). Let us give two examples to illustrate the

point:

• Note that the vector space A ⊂Mn(κ) of anti-symmetric matrices is not closed

under normal matrix multiplication: If a1 and a2 are antisymmetric matrices

then (a1a2)tr = atr2 a
tr
1 = (−a2)(−a1) = a2a1 and in general this is not −a1a2.

So, it is not an algebra under normal matrix multiplication. But if we define

the bracket using normal matrix multiplication

[a1, a2] = a1a2 − a2a1 (2.14)

where on the RHS a1a2 means matrix multiplication. Since [a1, a2] is an anti-

symmetric matrix the product is closed within A. The Jacobi relation is then

inherited from the associativity of matrix multiplication. This Lie algebra is

sometimes denoted o(n, κ). It is the Lie algebra of an orthogonal group.

• Consider first order differential operators of C∞ functions on the line. These

will be written as D = f(x) d
dx + g(x) for smooth functions f(x), g(x). Then

the ordinary composition of two differential operators D1 ◦D2 is a second order

differential operator. Nevertheless if we take the difference:

[D1, D2] = (f1(x)
d

dx
+ g1(x))(f2(x)

d

dx
+ g2(x))− (f2(x)

d

dx
+ g2(x))(f1(x)

d

dx
+ g1(x))

=
(
f1f
′
2 − f2f

′
1

)
(x)

d

dx
+ (f1g

′
2 − f2g

′
1)(x)

(2.15)

we get a first order differential operator. It is obviously anti-symmetric and one

can check the Jacobi relation.

• In both these examples we embed the Lie algebra into a larger associative algebra

where the bracket can be written as [a1, a2] = a1�a2−a2�a1 with � the algebra

product that only closes within the larger algebra.

2. A Lie algebra is in general a nonassociative algebra. Indeed, using the Jacobi relation

we can compute the associator as:

[a1, a2, a3] = [[a1, a2], a3]− [a1, [a2, a3]] = [[a1, a2], a3] + [[a2, a3], a1] = −[[a3, a1], a2]

(2.16)

and the RHS is, in general, nonzero.

3. Note that the vector space of n×n matrices over κ, that is, Mn(κ) has two interesting

algebra structures: One is matrix multiplication. It is associative. The other is a
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Lie algebra structure where the bracket is defined by the usual commutator. It is

nonassociative. It is sometimes denoted gl(n, κ), and such a notation would definitely

imply a Lie algebra structure.

Exercise Opposite Algebra

If A is an algebra we can always define another algebra Aopp with the product

a1 �opp a2 := a2 � a1 (2.17)

a.) Show that �opp indeed defines the structure of an algebra on the set A.

b.) Consider the algebra Mn(κ) where κ is a field. Is it isomorphic to its opposite

algebra?

c.) Give an example of an algebra not isomorphic to its opposite algebra. ♣Need to provide

an answer here. ♣

Exercise Structure constants

In general, if {vi} is a basis for the algebra then the structure constants are defined by

vi · vj =
∑
k

ckijvk (2.18)

a.) Write out a basis and structure constants for the algebra Mn(k).

Exercise

a.) If A is an algebra, then it is a module over itself, via the left-regular representation

(LRR). a→ L(a) where

L(a) · b := ab (2.19)

Show that if we choose a basis ai then the structure constants

aiaj = c k
ij ak (2.20)

define the matrix elements of the LRR:

(L(ai))
k

j = ckij (2.21)

An algebra is said to be semisimple if these operators are diagonalizable.

b.) If A is an algebra, then it is a bimodule over A ⊗ Ao where Ao is the opposite

algebra.
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3. Linear Transformations

Definition

a.) A linear transformation or linear operator between two R modules is a map

T : M1 →M2 which is a group homomorphism with respect to +:

T (m+m′) = T (m) + T (m′) (3.1)

and moreover such that T (r ·m) = r · T (m) for all r ∈ R, m ∈M1.

b.) T is an isomorphism if it is one-one and onto.

c.) The set of all linear transformations T : M1 → M2 is denoted Hom(M1,M2), or

HomR(M1,M2) when we wish to emphasize the underlying ring R.

There are some algebraic structures on spaces of linear transformations we should

immediately take note of:

1. HomR(M1,M2) is an abelian group where the group operation is addition of linear

operators: T1 + T2.

2. Moreover HomR(M1,M2) is an R-module provided that R is a commutative ring.

3. In particular, if V1, V2 are vector spaces over a field k then Hom(V1, V2) is itself a

vector space over k.

4. If M is a module over a ring R then sometimes the notation

EndR(M) := HomR(M,M) (3.2)

is used. In this case composition of linear transformations T1 ◦ T2 defines a binary

operation on EndR(M), and if R is commutative this is itself a ring because

T1 ◦ (T2 + T3) = T1 ◦ T2 + T1 ◦ T3 (3.3)

and so forth.

5. In general if M is a module over a commutative ring R then EndR(M) is not a group

wrt ◦, since inverses don’t always exist. However we may define:

Definition The set of invertible linear transformations of M , denoted GL(M,R), is

a group. If we have a vector space over a field k we generally write GL(V ).

Example: For R = Z and M = Z ⊕ Z, the group of invertible transformations is

isomorphic to GL(2,Z). 2

2Warning: This is NOT the same as 2× 2 matrices over Z with nonzero determinant!
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A representation of an algebra A is a vector space V and a morphism of algebras

T : A→ End(V ). This means that

T (α1a1 + α2a2) = α1T (a1) + α2T (a2)

T (a1 � a2) = T (a1)� T (a2)
(3.4) eq:repalgebra

Remarks

1. We must be careful here about the algebra product � being used since, as noted

above, there are two interesting algebra structures on End(V ) given by composition

and by commutator. If we speak of a morphism of algebras what is usually meant by

� on the RHS of (3.4) is composition of linear transformations. However, if we are

speaking of a representation of Lie algebras then we mean the commutator. So, for

a Lie algebra a representation would satisfy

T ([a1, a2]) = T (a1) ◦ T (a2)− T (a2) ◦ T (a1) (3.5)

2. If we consider the algebra Mn(κ) with matrix multiplication as the algebra product

then a theorem states that the general representation is a direct sum (See Section

**** below) of the fundamental, or defining representation Vfund = κ⊕n. That is,

the general representation is

Vfund ⊕ · · · ⊕ Vfund (3.6)

If we have m summands then T (a) would be a block diagonal matrix with a on

the diagonal m times. This leads to a concept called “Morita equivalence” of alge-

bras: Technically, two algebras A,B are “Morita equivalent” if their categories of

representations are equivalent categories. In practical terms often it just means that

A = Mn(B) or vice versa. 3

3. On the other hand, if we consider Mn(κ) as a Lie algebra then the representation

theory is much richer, and will be discussed in Chapter **** below.

Exercise

Let R be any ring. Show that if M is an R[x]-module then we can associate to it an

R-module M together with a linear transformation T : M →M .

b.) Conversely, show that if we are given an R-module M together with a linear

transformation T then we can construct uniquely an R[x] module M.

Thus, R[x]-modules are in one-one correspondence with pair (M,T ) where M is an

R-module and T ∈ EndR(M).

3For proofs of these statements see, for example Drozd and Kirichenko, Fi-

nite Dimensional Algebras, Springer, or Appendix A of my lecture notes at

http://www.physics.rutgers.edu/∼gmoore/695Fall2013/CHAPTER1-QUANTUMSYMMETRY-OCT5.pdf
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4. Basis And Dimension

4.1 Linear Independence

Definition . Let M be a module over a ring R.

1. If S ⊂ M is any subset of M the linear span of S is the set of finite linear

combinations of vectors drawn from S:

L(S) := Span(S) := {
∑

rivi : ri ∈ R, vi ∈ S} (4.1) eq:linespan

L(S) is the smallest submodule of M containing S. We also call S a generating set of L(S).

2. A set of vectors S ⊂ M is said to be linearly independent if for any finite sum of

vectors in L(S): ∑
s

αsvs = 0 ⇒ αs = 0 (4.2)

3. A linearly independent generating set S for a module M is called a basis for M .

We will often denote a basis by a symbol like B.

Remarks:

1. A basis B need not be a finite set. However, all sums above are finite sums. In

particular, when we say that B generates V this means that every vector m ∈M can

be written (uniquely) as a finite linear combination of vectors in B.

2. To appreciate the need for restriction to a finite sums in the definitions above consider

the vector space R∞ of infinite tuples of real numbers (x1, x2, . . . ). (Equivalently, the

vector space of all functions f : Z+ → R.) Infinite sums like

(1, 1, 1, . . . )− (2, 2, 2, . . . ) + (3, 3, 3, . . . )− (4, 4, 4, . . . ) + · · · (4.3)

are clearly ill-defined.

3. For a finite set S = {v1, . . . , vn} we will also write

L(S) := 〈v1, . . . , vn〉 (4.4)

4.2 Free Modules

A module is called a free module if it has a basis. If the basis is finite the free module is

isomorphic to Rn for some positive integer n.

Not all modules are free modules, e.g.

1. Z/nZ is not a free Z-module. Exercise: Explain why.
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2. Fix a set of points {z1, . . . , zk} in the complex plane and a set of integers ni ∈ Z
associated with those points. The set of holomorphic on C−{z1, . . . , zk} which have

convergent Laurent expansions of the form

f(z) =
ai−ni

(z − zi)ni
+

ai−(ni−1)

(z − zi)ni−1
+ · · · (4.5)

in the neighborhood of z = zi, for all i = 1, . . . , k is a module over the ring of

holomorphic functions, but it is not a free module.

4.3 Vector Spaces
subsec:BasisVectorSpaces

One big simplification when working with vector spaces rather than modules is that they

are always free modules. We should stress that this is not obvious! The statement is false

for general modules over a ring, as we have seen above, and the proof requires the use of

Zorn’s lemma (which is equivalent to the axiom of choice).

Theorem 4.3.1:

a.) Every nonzero vector space V has a basis.

b.) Given any linearly independent set of vectors S ⊂ V there is a basis B for V with

S ⊂ B.

Proof : Consider the collection L of linearly independent subsets S ⊂ V . If V 6= 0 then

this collection is nonempty. Moreover, for every ascending chain of elements in L:

S1 ⊂ S2 ⊂ · · · (4.6)

the union ∪iSi is a set of linearly independent vectors and is hence in L. We can then

invoke Zorn’s lemma to assert that there exists a maximal element B ⊂ L. That is, it is a

linearly independent set of vectors not properly contained in any other element of L.

We claim that B is a basis. To see this, consider the linear span L(B) ⊂ V . If L(B) is

a proper subset of V there is a vector v∗ ∈ V − L(B). But then we claim that B ∪ {v∗} is

a linearly independent set of vectors. The reason is that if

α∗v∗ +
∑
w∈B

βww = 0 (4.7)

(remember: all but finitely many βw = 0 here) then if α∗ = 0 we must have βw = 0 because

B is a linearly independent set. But if α∗ 6= 0 then we can divide by it. (It is exactly at

this point that we use the fact that we are working with a vector space over a field κ rather

than a general modular over a ring R!!) Then we would have

v∗ = −
∑
w∈B

βw
α∗
w (4.8)
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but this contradicts the hypothesis that v∗ /∈ L(B). Thus we conclude that L(B) = V and

hence B is a basis.

To prove part (b) apply Zorn’s lemma to the set of linearly independent sets containing

a fixed linearly independent set S. ♠

Theorem 4.3.2: Let V be a vector space over a field κ. Then any two bases for V have

the same cardinality.

Proof : See Lang, Algebra, ch. 3 Sec. 5. Again the proof explicitly uses the fact that you

can divide by nonzero scalars.

By this theorem we know that if V has a finite basis {v1, . . . , vn} then any other basis

has n elements. (The basic idea is to observe that for any linearly independent set of m

elements we must have m ≤ n, so two bases must have the same cardinality.)

We call this basis-invariant integer n the dimension of V :

n := dimκV (4.9)

the dimension of V . If there is no finite basis then V is infinite-dimensional.

Remarks

1. Note well that the notion of dimension refers to the ground field. If κ1 ⊂ κ2 then the

notion of dimension over κ1 and κ2 will be different. For example, any vector space

over κ = C is, a fortiori also a vector space over κ = R. Let us call it VR. It is the

same set, but now the vector space structure on this Abelian group is just defined by

the action of real scalars. Then we will see that:

dimRV = 2dimCV (4.10)

We will come back to this important point in Section 9.

2. Any two finite dimensional vector spaces of the same dimension are isomorphic. How-

ever, it is in general not true that two infinite-dimensional vector spaces are isomor-

phic. However the above theorem states that if they have bases {vi}i∈I and {wα}α∈I′
with a one-one map I → I ′ then they are isomorphic.

3. The only invariant of a finite dimensional vector space is its dimension. One way

to say this is the following: Let VECT be the category of finite-dimensional vector

spaces and linear transformations. Define another category vect whose objects are

the nonnegative integers n = 0, 1, 2, . . . and whose morphisms hom(n,m) are m× n
matrices, with composition of morphisms given by matrix multiplication. (If n or m

is zero there is a unique morphism with the properties of a zero matrix.) We claim

that VECT and vect are equivalent categories. It is a good exercise to prove this.

4. Something which can be stated or proved without reference to a particular basis is

often referred to as natural or canonical in mathematics. (We will use these terms in-

terchangeably.) More generally, these terms imply that a mathematical construction
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does not make use of any extraneous information. Often in linear algebra, making a

choice of basis is just such an extraneous piece of data. One of the cultural differences

between physicists and mathematicians is that mathematicians often avoid making

choices and strive for naturality. This can be a very good thing as it oftentimes

happens that expressing a construction in a basis-dependent fashion obscures the

underlying conceptual simplicity. On the other hand, insisting on not using a basis

can sometimes lead to obscurity. We will try to strike a balance.

5. One of the many good reasons to insist on natural constructions is that these will

work well when we consider continuous families of vectors spaces (that is, when we

consider vector bundles). Statements which are basis-dependent will tend not to have

analogs for vector bundles, whereas natural constructions easily generalize to vector

bundles.

For those to whom “vector bundle” is a new concept a good, nontrivial, and ubiq-

uitous example is the following: 4 Consider the family of projection operators

P±(x̂) : C2 → C2 labeled by a point x̂ in the unit sphere in three dimensions:

x̂ ∈ S2 ⊂ R3. We take them to be

P±(x̂) =
1

2
(1± x̂ · ~σ) (4.11)

The images L±,x̂ of P±(x̂) are one-dimensional subspaces of C2. So, explicitly:

L±,x̂ := {P±v|v ∈ C2} (4.12) eq:SpinLines

For those who know about spin, if we think of C2 as a Qbit consisting of a spin-half

particle then L±,x̂ is the line in which the particle spins along x̂ (for the + case) and

along −x̂ (for the − case).

This is a good example of a “family of vector spaces.” More generally, if we have a

family of projection operators P (s) acting on some fixed vector space V and depend-

ing on some control parameters s valued in some manifold then we have a family of

vector spaces

Es = P (s)[V ] = Im(P (s)) (4.13)

parametrized by that manifold. If the family of projection operators depends “con-

tinuously” on s, (note that you need a topology on the space of projectors to make

mathematical sense of that) then our family of vector spaces is a vector bundle. In

fact, a theorem in bundle theory states that every vector bundle E over a manifold

M is isomorphic to

E = {(m,ψ)|ψ ∈ Im(P (m))} (4.14)

where P (m) is a continuously varying family of projection operators on a fixed vector

space CN for some N , that is a continuous map from M into the space of projection

operators on CN .

4Some terms such as “projection operator” are only described below, so the reader might wish to return

to this - important! - remark later.
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Returning to (4.12), since they are one-dimensional subspaces we can certainly say

that, for every x̂ ∈ S2 there are isomorphisms

ψ±(x̂) : L±,x̂ → C (4.15)

However, methods of topology can be used to prove rigorously that there is no

continuous family of such isomorphisms. Morally speaking, if there had been a nat-

ural family of isomorphisms one would have expected it to be continuous.

6. When V is infinite-dimensional there are different notions of what is meant by a

“basis.” The notion we have defined above is known as a Hamel basis. In a Hamel

basis we define “generating” and “linear independence” using finite sums. In a vector

space there is no a priori notion of infinite sums of vectors, because defining such

infinite sums requires a notion of convergence. If V has more structure, for example,

if it is a Banach space, or a Hilbert space (see below) then there is a notion of

convergence and we can speak of other notions of basis where we allow convergent

infinite sums. These include Schauder basis, Haar basis, . . . . In the most important

case of a Hilbert space, an orthonormal basis is a maximal orthonormal set. Every

Hilbert space has an orthonormal basis, and one can write every vector in Hilbert

space as an infinite (convergent!) linear combination of orthonormal vectors. See

K. E. Smith, http://www.math.lsa.umich.edu/∼kesmith/infinite.pdf

for a nice discussion of the issues involved.

4.4 Linear Operators And Matrices

Let V,W be finite dimensional vector spaces over κ. Given a linear operator T : V → W

and ordered bases {v1, . . . , vm} for V and {w1, . . . wn} for W , we may associate a matrix

M ∈Matn×m(k) to T :

Tvi =
n∑
s=1

Msiws i = 1, . . . ,m (4.16) eq:mtrx

Note! A matrix depends on a choice of ordered basis. The same linear transformation

can look very different in different bases. A particularly interesting example is,(
0 1

0 0

)
∼

(
x y

z −x

)
(4.17)

whenever x2 + yz = 0 and (x, y, z) 6= 0.

In general if we change bases

w̃s =
n∑
t=1

(g2)tswt

ṽj =
m∑
j=1

(g1)jivj

(4.18)
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then with respect to the new bases the same linear transformation is expressed by the new

matrix:

M̃ = g−1
2 Mg1. (4.19)

With the choice of indices in (4.16) composition of linear transformations corresponds

to matrix multiplication. If T1 : V1 → V2 and T2 : V2 → V3 and we choose ordered bases

{vi}i=1,...,d1

{ws}s=1,...,d2

{ux}x=1,...,d3

(4.20)

then

(T2 ◦ T1)vi =

d3∑
x=1

(M2M1)xiux i = 1, . . . , d1 (4.21)

where

(M2M1)xi =

d2∑
s=1

(M2)xs(M1)si (4.22)

Remarks

1. Left- vs. Right conventions: One could compose linear transformations as T1T2 and

then all the indices would be transposed... ♣explain more

clearly ♣

2. Change of coordinates and active vs. passive transformations. Given a choice of basis

{vi} of an n-dimensional vector space V there is a canonically determined system of

coordinates on V defined by

v =
∑
i

vix
i =

(
v1 · · · vn

)x
1

...

xn

 (4.23)

If we apply a linear transformation T : V → V then we can think of the transforma-

tion in two ways:

A.) We can say that when we move the vector v 7→ T (v) the coordinates of the vector

change according to

T (v) =
∑
i

T (vi)x
i =

∑
i

vix̃
i

(4.24)

with x̃
1

...

x̃n

 =

M11 · · · M1n

... · · ·
...

Mn1 · · · Mnn


x

1

...

xn

 (4.25)
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B.) On the other hand, we could say that the transformation defines a new basis

ṽi = T (vi) with

(
ṽ1 · · · ṽn

)
=
(
v1 · · · vn

)M11 · · · M1n

... · · ·
...

Mn1 · · · Mnn

 (4.26)

This leads to the passive viewpoint: We could describe linear transformations by

saying that they are just changing basis. In this description the vector does not

change, but only its coordinate description changes. In the passive view the new

coordinates of the same vector are gotten from the old by

v =
∑
i

ṽiy
i =

∑
i

vix
i (4.27)

and hence the change of coordinates is:

~y = M−1~x (4.28)

Exercise

Let V1 and V2 be finite dimensional vector spaces over κ. Show that

dimκHom(V1, V2) = (dimκV1)(dimκV2) (4.29)

Exercise

If n = dimV <∞ then GL(V ) is isomorphic to the group GL(n, κ) of invertible n×n
matrices over κ, but it is not canonically isomorphic.

Exercise

A one-dimensional vector space L (also sometimes referred to as a line) is isomorphic

to, but not canonically isomorphic to, the one-dimensional vector space κ.

Show that, nevertheless, the one-dimensional vector space Hom(L,L) is indeed canonically

isomorphic to the vector space κ.
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4.5 Determinant And Trace
♣Perhaps just move

the trace and

determinant to the

sections below

where we can give

natural definitions.

♣

Let V be finite-dimensional. Two important quantities associated with a linear transfor-

mation T : V → V are the trace and determinant.

To define the trace we choose any ordered basis for V so we can define a matrix Mij

relative to that basis. Then we can define:

tr (T ) := tr (M) :=
n∑
i=1

Mii (4.30) eq:trace-def

Then we note that if we change basis we have M → g−1Mg for g ∈ GL(n, κ) and the

above expression remains invariant thanks to cyclicity of the trace. This is a good example

where it is simplest to choose a basis and define the quantity, even though it is canonically

associated to the linear transformation.

For the determinant of T : V → V we can choose an ordered basis as before and define:

det(T ) := det(M) :=
1

n!

∑
σ∈Sn

εσ(1)···σ(n)M1σ(1) · · ·Mnσ(n) (4.31) eq:det-def1

One can show that det(M1M2) = det(M1)det(M2) and therefore under M → g−1Mg the

determinant is unchanged and therefore det(T ) is a natural quantity.

The determinant provides an example where there is a perfectly good natural definition

that never makes use of a choice of basis. One does need the anti-symmetric product of

vector spaces and the notion of an orientation. See below. it makes use of

Remarks:

1. Note well that the above definitions only apply to a linear transformation of a vector

space to itself: That is: T : V → V . If T : V →W is a linear transformation between

different vector spaces - even if they have the same dimension! - then there is no

natural notion of trace. There is a generalization of the notion of determinant. See

Section §24 below.

2. The notion of trace and determinant can be extended to certain special linear oper-

ators on infinite-dimensional vector spaces. For example, bounded linear operators

are traceclss if [***** SEE SECTION **** BELOW ]. For Fredholm operators on

Hilbert space there is a notion of Fredholm determinant.

Exercise

Prove that the expressions on the RHS of (??) are basis independent so that the

equations make sense.
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Exercise Standard identities

Prove:

1.) tr (M +N) = tr (M) + tr (N)

2.) tr (MN) = tr (NM)

3.) tr (SMS−1) = trM , S ∈ GL(n, k).

4.) det(MN) = detMdetN

5.) det(SMS−1) = detM

What can you say about det(M +N)?

Exercise Laplace expansion in complementary minors

Show that the determinant of an n× n matrix A = (aij) can be written as

detA =
∑
H

εHKbHcK (4.32)

Here we fix an integer p, H runs over disjoint subsets of order p, H = {h1, . . . , hp} and K

is the complementary set so that H qK = {1, . . . , n}. Then we set

bH := det(ai,hj )1≤i,j≤p (4.33)

cL = det(aj,kl)p+1≤j≤n,1≤l≤q (4.34)

p+ q = n and

εHK = sign

(
1 2 · · · p p+ 1 · · · n
h1 h2 · · · hp k1 · · · kq

)
(4.35)

5. New Vector Spaces from Old Ones

5.1 Direct sum
subsec:dirsum

Given two modules V,W over a ring we can form the direct sum. As a set we have:

V ⊕W := {(v, w) : v ∈ V,w ∈W} (5.1) eq:ds

while the module structure is defined by:

α(v1, w1) + β(v2, w2) = (αv1 + βv2, αw1 + βw2) (5.2) eq:dsii

valid for all α, β ∈ R, v1, v2 ∈ V,w1, w2 ∈ W . We sometimes denote (v, w) by v ⊕ w.

In particular, if the ring is a field these constructions apply to vector spaces.
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V_2

V_1

\vec 0 

Figure 1: R2 is the direct sum of two one-dimensional subspaces V1 and V2. fig:drctsum

If V,W are finite dimensional vector spaces then:

dim(V ⊕W ) = dimV + dimW (5.3)

Example 5.1.1:

Rn ⊕ Rm ∼= Rn+m (5.4)

Similarly for operators: With T1 : V1 →W1, T2 : V2 →W2 we define

(T1 ⊕ T2)(v ⊕ w) := T1(v)⊕ T2(w) (5.5)

for v ∈ V1 and w ∈W1.

Suppose we choose ordered bases:

1. {v(1)
1 , . . . , v

(1)
n1 } for V1

2. {v(2)
1 , . . . , v

(2)
n2 } for V2

3. {w(1)
1 , . . . , w

(1)
m1} for W1

4. {w(2)
1 , . . . , w

(2)
m2} for W2

Then, we have matrix representations M1 and M2 of T1 and T2, respectively. Among

the various bases for V1 ⊕ V2 and W1 ⊕W2 it is natural to choose the ordered bases:

1. {v(1)
1 ⊕ 0, . . . , v

(1)
n1 ⊕ 0, 0⊕ v(2)

1 , . . . , 0⊕ v(2)
n2 } for V1 ⊕ V2

2. {w(1)
1 ⊕ 0, . . . , w

(1)
m1 ⊕ 0, 0⊕ w(2)

1 , . . . , 0⊕ w(2)
m2} for W1 ⊕W2

With respect to these ordered bases the matrix of T1 ⊕ T2 will be block diagonal:(
M1 0

0 M2

)
(5.6) eq:DirectSumMatrix

But there are, of course, other choices of bases one could make.

Remarks:
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1. Internal and external direct sum. What we have defined above is sometimes known as

external direct sum. If V1, V2 ⊂ V are linear subspaces of V , then V1 +V2 makes sense

as a linear subspace of V . If V1 + V2 = V and in addition v1 + v2 = 0 implies v1 = 0

and v2 = 0, that is, if V1 ∩ V2 = {0} then we say that V is the internal direct sum of

V1 and V2. In this case every vector v ∈ V has a canonical decomposition v = v1 + v2

with v1 ∈ V1 and v2 ∈ V2 and hence there is a canonical isomorphism V ∼= V1 ⊕ V2.

Therefore, we will in general not distinguish carefully between internal and external

direct sum. Note well, however, that it can very well happen that V1 + V2 = V and

yet V1 ∩ V2 is a nonzero subspace. In this case V is most definitely not a direct sum!

As an extreme example, note that V + V = V but V ⊕ V is not isomorphic to V

unless V is the 0-vector space.

2. Subtracting vector spaces in the Grothendieck group. Since we can “add” vector

spaces with the direct sum it is a natural question whether we can also “subtract”

vector spaces. There is indeed such a notion, but one must treat it with care. The

Grothendieck group can be defined for any monoid. It can then be applied to the

monoid of vector spaces. If M is a commutative monoid so we have an additive

operator m1 + m2 and a 0, but no inverses then we can formally introduce inverses

as follows: We consider the set of pairs (m1,m2) with the equivalence relation that

(m1,m2) ∼ (m3,m4) if

m1 +m4 = m2 +m3 (5.7)

Morally speaking, the equivalence class of the pair [(m1,m2)] can be thought of as

the difference m1 −m2 and we can now add

[(m1,m2)] + [(m′1,m
′
2)] = [(m1 +m′1,m2 +m′2)] (5.8)

From the definition we easily see [(m,m)] = [(0, 0)]. Similarly, it is easy to see

that [(m2,m1)] + [(m1,m2)] = [(m1 + m2,m1 + m2)] = [(0, 0)]. (Note we used the

commutative property of the monoid addition.) Therefore [(m2,m1)] is the inverse

of [(m1,m2)]. Therefore, the set of equivalence classes [(m1,m2)] is an Abelian group

associated to the monoid M . It is usually denoted K(M). For example, if we apply

this to the monoid of nonnegative integers then we recover the Abelian group of all

integers.

This idea can be generalized to suitable categories. One setting is that of an ♣Need to check: Do

you need an abelian

category to define

K(C). More

generally we can

define K(C) for an

exact cagetory. Is

there a problem

with just using

additive categories?

Definition here

seems to make

sense. ♣

additive category C. What this means is that the morphism spaces hom(x1, x2) are

Abelian groups and the composition law is bi-additive, meaning the composition of

morhphisms

hom(x, y)× hom(y, z)→ hom(x, z) (5.9)

is “bi-additive” i.e. distributive: (f+g)◦h = f ◦h+g ◦h. In an additive category we

also have a zero object 0 that has the property that hom(0, x) and hom(x, 0) are the

trivial Abelian group. Finally, there is a notion of direct sum of objects x1⊕x2, that

is, given two objects we can produce a new object x1⊕x2 together with distinguished
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morphisms ι1 ∈ hom(x1, x1 ⊕ x2) and ι2 ∈ hom(x2, x1 ⊕ x2) so that

hom(z, x1)× hom(z, x2)→ hom(z, x1 ⊕ x2) (5.10)

defined by (f, g) 7→ ι1 ◦ f + ι2 ◦ f is an isomorphism of Abelian groups.

The category VECT of finite-dimensional vector spaces and linear transformations

or the category Mod(R) of modules over a ring R are good examples of additive

categories. In such a category we can define the Grothendieck group K(C). It is the

abelian group of pairs of objects (x, y) ∈ Obj(C)×Obj(C) subject to the relation

(w, x) ∼ (y, z) (5.11)

if there exists an object u so that the object w ⊕ z ⊕ u is isomorphic to y ⊕ x ⊕ u.

In the case of VECT we can regard [(V1, V2)] ∈ K(VECT) as the formal difference

V1 − V2. It is then a good exercise to show that, as Abelian groups K(VECT) ∼= Z.

(This is again essentially the statement that the only invariant of a finite-dimensional

vector space is its dimension.)

When we apply this construction to continuous families of vector spaces parametrized

by topological spaces we obtain a very nontrivial mathematical subject known as K-

theory. In particular, if M is a manifold and π1 : E1 → M and π2 : E2 → M are

two vector bundles it is possible to define E1 ⊕ E2. Each fiber is the direct sum, and

the fibers vary continuously. So the set VECT(M) of isomorphism classes of vector

bundles over M is a monoid. The corresponding Grothendieck group, denoted just

by K(M), is an important Abelian group associated to M known as the K-theory of

M . This Abelian group is a topological invariant of M . This is the beginning of a

very nontrivial and beautiful subject in mathematics known as K-theory.

In physics one way such virtual vector spaces arise is in Z2-graded or super-linear

algebra. See Section §23 below. Given a supervector space V 0 ⊕ V 1 it is natural to

associate to it the virtual vector space V 0 − V 1 (but you cannot go the other way -

why not?). Some important constructions only depend on the virtual vector space

(or, more generally, the virtual vector bundle, when working with families).
♣This exercise is

too easy, and it is

already answered in

text above. ♣

Exercise

Construct an example of a vector space V and proper subspaces V1 ⊂ V and V2 ⊂ V

such that

V1 + V2 = V (5.12)

but V1 ∩ V2 is not the zero vector space. Rather, it is a vector space of positive dimension.

In this case V is not the internal direct sum of V1 and V2.
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Exercise

1. Tr(T1 ⊕ T2) = Tr(T1) + Tr(T2)

2. det(T1 ⊕ T2) = det(T1)det(T2)

Exercise

a.) Show that there are natural isomorphisms

V ⊕W ∼= W ⊕ V (5.13)

(U ⊕ V )⊕W ∼= U ⊕ (V ⊕W ) (5.14)

b.) Suppose I is some set, not necessarily ordered, and we have a family of vector

spaces Vi indexed by i ∈ I. One can give a definition of the vector space:

⊕i∈IVi (5.15)

but to do so in general one should use the restricted product so that an element is a

collection {vi} of vectors vi ∈ Vi where in the Cartesion product all but finitely many vi
are zero. Define a vector space structure on this set.

Exercise

How would the matrix in (5.6) change if we used bases:

1. {v(1)
1 ⊕ 0, . . . , v

(1)
n1 ⊕ 0, 0⊕ v(2)

1 , . . . , 0⊕ v(2)
n2 } for V1 ⊕ V2

2. {0⊕ w(2)
1 , . . . , 0⊕ w(2)

m2 , w
(1)
1 ⊕ 0, . . . , w

(1)
m1 ⊕ 0} for W1 ⊕W2

5.2 Quotient Space

W ⊂ V is a vector subspace then

V/W (5.16)

is the space of equivalence classes [v] where v1 ∼ v2 if v1 − v2 ∈W . This is the quotient of

abelian groups. It becomes a vector space when we add the rule

α(w +W ) := αw +W. (5.17)

Claim: V/W is also a vector space. If V,W are finite dimensional then

dim(V/W ) = dimV − dimW (5.18)
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V

V+

V-ξ

ξ

Figure 2: Vectors in the quotient space R2/V , [v] = V +v. The quotient space is the moduli space

of lines parallel to V . fig:quotspace

We define a complementary subspace 5 to W to be another subspace W ′ ⊂ V so that

V is the internal direct sum of W and W ′. Recall that this means that every v ∈ V can be

uniquely written as v = w + w′ with w ∈W and w′ ∈W ′ so that V ∼= W ⊕W ′. It follows

from Theorem 4.3.1 that a complementary subspace to W always exists and moreover there

is an isomorphism:

V/W ∼= W ′ (5.19) eq:vwwprime

Note that given W ⊂ V there is a canonical vector space V/W , but there is no unique

choice of W ′ so the isomorphism (5.19) cannot be natural.

Warning! One should not confuse (as is often done) V/W with a subspace of V . If

V is an inner product space (see section *** below) then there is a notion of W⊥ ⊂ V .

If V is a complete inner product space with respect to a positive definite inner product

(i.e., if V is a Hilbert space) then the orthogonal projection theorem below shows that

V ∼= W ⊕W⊥. But without extra structure, such as an inner product there is no canonical

transverse space to W .

Exercise Practice with quotient spaces

a.) V = R2, W = {(α1t, α2t) : t ∈ R}. If α1 6= 0 then we can identify V/W ∼= R
via s → (0, s) + W . Show that the inverse transformation is given by (v1, v2) → s where

s = (α1v2 − α2v1)/α1. What happens if α1 = 0?

b.) If V = Rn and W ∼= Rm, m < n with W = {(x1, . . . , xm, 0, . . . , 0)}, when is

v1 +W = v2 +W?

5Please note, it is not a “complimentary subspace.” A “complimentary subspace” might praise your

appearance, or accompany snacks on an airplane flight.
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Exercise

Suppose T : V1 → V2 is a linear transformation and W1 ⊂ V1 and W2 ⊂ V2 are linear

subspaces. Under what conditions does T descend to a linear transformation

T̃ : V1/W1 → V2/W2 ? (5.20)

The precise meaning of “descend to” is that T̃ fits in the commutative diagram

V1
T //

π1

��

V2

π2

��
V1/W1

T̃ // V2/W2

(5.21)

5.3 Tensor Product

The (technically) natural definition is a little sophisticated, (see, e.g., Lang’s book Algebra,

and remark 3 below), but for practical purposes we can describe it in terms of bases:

Let {vi} be a basis for V , and {ws} be a basis for W . Then V ⊗W is the vector space

spanned by vi ⊗ ws subject to the rules:

(αv + α′v′)⊗ w = α(v ⊗ w) + α′(v′ ⊗ w)

v ⊗ (αw + α′w′) = α(v ⊗ w) + α′(v ⊗ w′)
(5.22) eq:dspp

for all v, v′ ∈ V and w,w′ ∈W and all scalars α, α′.

If V,W are finite dimensional then so is V ⊗W and

dim(V ⊗W ) = (dimV )(dimW ) (5.23)

In particular:

Rn ⊗ Rm ∼= Rnm (5.24)

We can similarly discuss the tensor product of operators: With T1 : V1 → W1, T2 :

V2 →W2 we define

(T1 ⊗ T2)(vi ⊗ wj) := (T1(vi))⊗ (T2(wj)) (5.25) eq:deftprd

Remarks

1. Examples where the tensor product occurs in physics are in quantum systems with

several independent degrees of freedom. In general two distinct systems with Hilbert

spaces H1,H2 have statespace H1⊗H2. For example, consider a system of N spin 1
2

particles. The Hilbert space is

H =

N times︷ ︸︸ ︷
C2 ⊗ C2 ⊗ · · · ⊗ C2 dimCH = 2N (5.26)
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2. In Quantum Field Theory the implementation of this idea for the Hilbert space

associated with a spatial manifold, when the spatial manifold is divided in two parts

by a domain wall, is highly nontrivial due to UV divergences.

3. In spacetimes with nontrivial causal structure the laws of quantum mechanics become

difficult to understand. If two systems are separated by a horizon, should we take

the tensor product of the Hilbert spaces of these systems? Questions like this quickly

lead to a lot of interesting puzzles.

4. Defining Tensor Products Of Modules Over Rings

The tensor product of modules over a ring R can always be defined, even if the

modules are not free and do not admit a basis. If we have no available basis then the

above low-brow approach will not work. One needs to use a somewhat more abstract

definition in terms of a “universal property.”

Consider any bilinear mapping f : V × W → U for any R-module U . Then the

characterizing (or “universal”) property of a tensor product is that this map f “factors

uniquely through a map from the tensor product.” That means, there is

(a) A bilinear map π : V ×W → V ⊗RW

(b) A unique linear map f ′ : V ⊗RW → U such that

f = f ′ ◦ π (5.27)

In terms of commutative diagrams

V ×W π //

f

&&

V ⊗RW

f ′

��
U

(5.28)

One then proves that, if a module V ⊗R W satisfying this property exists then it is

unique up to unique isomorphism. Hence this property is in fact a defining property

of the tensor product: This is the “natural” definition one finds in math books.

The above property defines the tensor product, but does not prove that such a thing

exists. To construct the tensor product one considers the free R-module generated

by objects v × w where v ∈ V,w ∈ W and takes the quotient by the submodule

generated by all vectors of the form:

(v1 + v2)× w − v1 × w − v2 × w (5.29)

v × (w1 + w2)− v × w1 − v × w2 (5.30)

α(v × w)− (αv)× w (5.31)

α(v × w)− v × (αw) (5.32)
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The projection of a vector v × w in this (incredibly huge!) module into the quotient

module are denoted by v ⊗ w.

An important aspect of this natural definition is that it allows us to define the tensor

product ⊗i∈IVi of a family of vector spaces labeled by a not necessarily ordered (but

finite) set I.

Exercise

Given any three vector spaces U, V,W over a field κ show that there are natural

isomorphisms:

a.) V ⊗W ∼= W ⊗ V
b.) (V ⊗W )⊗ U ∼= V ⊗ (W ⊗ U)

c.) U ⊗ (V ⊕W ) ∼= U ⊗ V ⊕ U ⊗W
d.) If T1 ∈ End(V1) and T2 ∈ End(V2) then under the isomorphism V1 ⊗ V2

∼= V2 ⊗ V1

the linear transformation T1 ⊗ T2 is mapped to T2 ⊗ T1.

e.) Show that T1 ⊗ 1 commutes with 1⊗ T2.

Exercise Practice with the ⊗ product

1. Tr(T1 ⊗ T2) = Tr(T1) · Tr(T2)

2. det(T1 ⊗ T2) = (detT1)dimV2 · (detT2)dimV1

Exercise Matrices For Tensor Products Of Operators

Let V,W be vector spaces over a field κ (or, more generally, free modules over a ring

R). Suppose that a linear transformation T (1) : V → V has matrix A1 ∈ Mn(R), with

matrix elements (A1)ij , 1 ≤ i, j ≤ n with respect to an ordered basis {v1, . . . , vn} and

T (2) : W → W has matrix A2 ∈ Mm(R) with matrix elements (A2)ab, 1 ≤ a, b ≤ m with

respect to an ordered basis {w1, . . . , wm}.
a.) Show that if we use the (“lexicographically”) ordered basis

v1 ⊗ w1, v1 ⊗ w2, . . . , v1 ⊗ wm, v2 ⊗ w1, . . . , v2 ⊗ wm, . . . , vn ⊗ w1, . . . , vn ⊗ wm (5.33)

Then the matrix for the operator T (1)⊗T (2) may be obtained from the following rule: Take

the n×n matrix for T (1). Replace each of the matrix elements (A1)ij by the m×m matrix

(A1)ij → ((A1)ij(A2)ab)1≤a,b≤m =

 (A1)ij(A2)11 · · · (A1)ij(A2)1m

...
...

...

(A1)ij(A2)m1 · · · (A1)ij(A2)mm

 (5.34)
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The result is an element of the ring

Mn(Mm(R)) ∼= Mnm(R) (5.35)

b.) Show that if we instead use the ordered basis

v1 ⊗ w1, v2 ⊗ w1, . . . , vn ⊗ w1, v1 ⊗ w2, . . . , vn ⊗ w2, . . . , v1 ⊗ wm, . . . , vn ⊗ wm (5.36)

Then to compute the matrix for the same linear transformation, T (1) ⊗ T (2), we would

instead start with the matrix A(2) and replace each matrix element by inserting that matrix

element times the matrix A(1). The net result is an element of The result is an element of

the ring

Mm(Mn(R)) ∼= Mmn(R) (5.37)

Since Mnm(R) = Mmn(R) we can compare to the expression in (a) and it will in

general be different.

c.) Using the two conventions of parts (a) and (b) compute(
λ1 0

0 λ2

)
⊗

(
µ1 0

0 µ2

)
(5.38)

as a 4× 4 matrix.

Exercise Tensor product of modules

The above universal definition also applies to tensor products of modules over a ring

R:

M ⊗R N (5.39)

where it can be very important to specify the ring R. In particular we have the very crucial

relation that ∀m ∈M, r ∈ R,n ∈ N :

m · r ⊗ n = m⊗ r · n (5.40)

where we have written M as a right-module and N as a left module so that the expression

works even for noncommutative rings. 6

These tensor products have some features which might be surprising if one is only

familiar with the vector space example.

a.) Q⊗Z Zn = 0

b.) Zn ⊗Z Zm = Z(n,m)

In particular Zp ⊗Z Zq is the 0-module if p, q are relatively prime.

6In general a left-module for a ring R is naturally isomorphic to a right-module for the opposite ring

Ropp. When R is commutative R and Ropp are also naturally isomorphic.
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5.4 Dual Space

Consider the linear functionals Hom(V, κ). This is a vector space known as the dual space.

This vector space is often denoted V̌ , or by V ∨, or by V ∗. Since V ∗ is sometimes used

for the complex conjugate of a complex vector space we will generally use the more neutral

symbol V ∨ ♣Eliminate the use

of V ∗. This is too

confusing. ♣One can prove that dimV ∨ = dimV so if V is finite dimensional then V and V ∨ must

be isomorphic. However, there is no natural isomorphism between them. If we choose a

basis {vi} for V then we can define linear functionals `i by the requirement that

`i(vj) = δij ∀vj (5.41)

and then we extend by linearity to compute `i evaluated on linear combinations of vj . The

linear functionals `i form a basis for V ∨ and it is called dual basis for V ∨ with respect to

the vi. Sometimes we will call the dual basis v̂i or v∨i .

Remarks:

1. It is important to stress that there is no natural isomorphism between V and V ∨.

Once one chooses a basis vi for V then there is indeed a naturally associated dual

basis `i = v̂i = v∨i for V ∨ and then both vector spaces are isomorphic to κdimV .

The lack of a natural isomorphism means that when we consider vector spaces in

families, or add further structure, then it can very well be that V and V ∨ become

nonisomorphic. For example, if π : E → M is a vector bundle over a manifold then

there is a canonically associated vector bundle π∨ : E∨ → M , known as the dual

bundle, whose fiber E∨m above a point m ∈M is the dual space of the fiber Em of E

above m. That is:

(E∨)m := (Em)∨ := Hom(Em, κ) (5.42)

In general E∨ and E are nonisomorphic vector bundles. As a simple example, let us

return to the two rank one complex line bundles π± : L± → S2 defined by the family

of projection operators P± = 1
2(1± x̂ ·~σ). The dual bundle to L+ is not isomorphic to

L+. So that this means is that, even though there is indeed a family of isomorphisms

ψ(x̂) : L+,~x
∼= L∨+,~x (5.43)

(because both sides are one dimensional vector spaces!) there is in fact no continuous

family of isomorphisms. One can prove this using the following facts: The topological

type of a complex line bundle over S2 is completely classified by its first Chern

class, which, in this case, is just an integer. It turns out that for a line bundle

c1(L∨) = −c1(L). Now c1(L±1) = ±1, so, in fact L∨+
∼= L−.

We remark that Dirac’s famous paper of 1931 showed (in modern terms) that the

wavefunction of an electron confined to a two-dimensional sphere surrounding a mag-

netic monopole of charge m is actually not a complex-valued function on the sphere

but rather a section of a line bundle. This means that for every x̂ ∈ S2 we have

ψ(x̂) ∈ (Lm)x̂ for a complex line bundle Lm → S2. The magnetic charge m is the

same as c1(Lm). In particular L± are the line bundles where an electron wavefunction

is valued in the presence of a magnetic monopole of charge ±1.
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2. Notation. There is also a notion of a complex conjugate of a complex vector space

which should not be confused with V ∨ (the latter is defined for a vector space over

any field κ). We will denote the complex conjugate, defined in Section §9 below,

by V . Similarly, the dual operator T∨ below is not to be confused with Hermitian

adjoint. The latter is only defined for inner product spaces, and will be denoted T †.

Note, however, that for complex numbers we will occasionally use z∗ for the complex

conjugate. ♣For consistency

you really should

use z̄ for the

complex conjugate

of a complex

number z

everywhere. ♣

3. If

T : V →W (5.44)

is a linear transformation between two vector spaces then there is a canonical dual

linear transformation

T∨ : W∨ → V ∨ (5.45)

To define it, suppose ` ∈W∨. Then we define T∨(`) by saying how it acts on a vector

v ∈ V . The formula is:

(T∨(`))(v) := `(T (v)) (5.46)

4. Note especially that dualization “reverses arrows”: If

V
T //W (5.47)

then

V ∨ W∨
T∨oo (5.48)

This is a general principle: If there is a commutative diagram of linear transformations

and vector spaces then dualization reverses all arrows.

♣Need exercise

relating

(A1 ⊗ A2)tr to

Atr1 ⊗ A
tr
2 . ♣

Exercise

If V is finite dimensional show that

(V ∨)∨ ∼= V (5.49)

and in fact, this is a natural isomorphism (you do not need to choose a basis to define it).

For this reason the dual pairing between V and V ∨ is often written as 〈`, v〉 to empha-

size the symmetry between the two factors.

Exercise Matrix of T∨

a.) Suppose T : V → W is a linear transformation, and we choose a basis {vi} for V

and {ws} for W , so that the matrix of the linear transformation is Msi.

– 35 –



Show that the matrix of T∨ : W∨ → V ∨ with respect to the dual bases to {vi} and

{ws} is the transpose:

(M tr)is := Msi (5.50)

b.) Suppose that vi and v′i are two bases for a vector space V and are related by v′i =∑
j Sjivj . Show that the corresponding dual bases `i and `′i are related by `′i =

∑
j Ŝji`j

where

Ŝ = Str,−1 (5.51)

c.) For those who know about vector bundles: If a bundle π : E →M has a coordinate

chart with Uα ⊂M and transition functions gEαβ : Uα ∩ Uβ → GL(n, κ) show that the dual

bundle has transition functions gE
∨

αβ = (gEαβ)−1,tr.

Exercise

Prove that there are canonical isomorphisms: 7

Hom(V,W ) ∼= V ∨ ⊗W. (5.52) eq:HomVW-iso

Hom(V,W )∨ ∼= Hom(W,V ) (5.53)

Hom(V,W ) ∼= Hom(W∨, V ∨) (5.54)

Although the isomorphism (5.52) is a natural isomorphism it is useful to say what it

means in terms of bases: If

Tvi =
∑
s

Msiws (5.55)

then the corresponding element in V ∨ ⊗W is

T =
∑
i,s

Msiv
∨
i ⊗ ws (5.56)

Exercise A Useful Canonical Isomorphism

Suppose that L is a one-dimensional space over κ. The field κ can itself be regarded

as a one-dimensional vector space over κ, but of course the isomorphism of L with κ is

not canonical. There is no canonical way to associate a nonzero vector v ∈ L to, say, the

element 1 ∈ κ.

7Answer : The second and third isomorphisms follow easily from the first. To establish the first note

that an element of V ∨⊗W certainly determines a linear transformation V →W by contraction of V ∨ with

V . Then, at least for finite dimensional vector spaces, you can just compare dimensions to check that this

is an isomorphism.
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Show, in two ways, that, nevertheless, the one-dimensional vector space

Homκ(L,L) (5.57)

is indeed canonically isomorphic with κ. 8

Exercise Natural definition of the trace

a.) Show that for any vector space V over κ there is a natural linear operator

ev : V ∨ ⊗ V → κ (5.58)

b.) Show that if V is finite-dimensional then there is a natural linear operator 9

1 : κ→ V ∨ ⊗ V (5.60)

c.) The composition ev◦1 defines an element of Homκ(κ, κ) but Homκ(κ, κ) is naturally

isomorphic to κ. Therefore, ev ◦ 1 can naturally be identified with an element of κ. Show

that it is just dimκV .

d.) If T : V → V and V is finite dimensional, consider the composition of linear

transformations:

κ
1 // V ∨ ⊗ V 1⊗T // V ∨ ⊗ V ev // κ (5.61)

This defines an element of Homκ(κ, κ) and is therefore, naturally, an element of κ. Show

that this is just the trace of T .

Exercise

If U is any vector space and W ⊂ U is a linear subspace then we can define

W⊥ := {`|`(w) = 0 ∀w ∈W} ⊂ U∨. (5.62)

8Answer : One way to do this is to note that if T ∈ Hom(L,L) then it must be of the form T (v) = αv

for some scalar α ∈ κ. So we send T → α. A second way to think about this is that Hom(L,L) ∼= L∨ ⊗ L.

Now, the one-dimensional space L∨ ⊗ L does have a canonical basis vector: Choose any nonzero vector

v ∈ L and define `v ∈ L∨ to be the linear transformation defined by `v(v) = 1. Then `v ⊗ v ∈ L∨ ⊗ L is in

fact independent of v. So we have a canonical isomorphism 1 : κ→ L∨ ⊗ L defined by 1(1) = `v ⊗ v.
9Answer :If one insists on complete naturality then the way to define this is to note that there is a unique

operator 1 such that

V
Id⊗1// V ⊗ V ∨ ⊗ Vev⊗Id // V (5.59)

is the identity matrix. If {vi} is a basis then we can say that 1(1) =
∑
i v
∨
i ⊗ vi. You can check that,

although we chose a basis
∑
i v
∨
i ⊗ vi does not depend on the choice of basis, and hence in that sense it is

still natural.
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Show that

a.) (W⊥)⊥ = W .

b.) (W1 +W2)⊥ = W⊥1 ∩W⊥2 .

c.) There is a canonical isomorphism (U/W )∨ ∼= W⊥.

Exercise Flags

♣Some good

exercises can be

extracted from the

snakes paper. ♣
6. Tensor spaces

Given a vector space V we can form

V ⊗n ≡ V ⊗ V ⊗ · · · ⊗ V (6.1)

Elements of this vector space are called tensors of rank n over V .

Actually, we could also consider the dual space V ∨ and consider more generally

V ⊗n ⊗ (V ∨)⊗m (6.2) eq:mxdtens

Up to isomorphism, the order of the factors does not matter.

Elements of (6.2) are called mixed tensors of type (n,m). For example

End(V ) ∼= V ∨ ⊗ V (6.3)

are mixed tensors of type (1, 1).

Now, if we choose an ordered basis {vi} for V then we have a canonical dual basis for

V ∨ given by {v̂i} with

v̂i(vj) = δij (6.4)

Notice, we have introduced a convention of upper and lower indices which is very convenient

when working with mixed tensors.

A typical mixed tensor can be expanded using the basis into its components:

T =
∑

i1,i2,...,in,j1,...,jm

T i1,i2,...,inj1,...,jmvi1 ⊗ · · · ⊗ vin ⊗ v̂
j1 ⊗ · · · ⊗ v̂jm (6.5)

We will henceforth often assume the summation convention where repeated indices are

automatically summed.

Recall that if we make a change of basis

wi = gj ivj (6.6)

(sum over j understood) then the dual bases are related by

ŵi = ĝ i
j ŵ

j (6.7)
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where the matrices are related by

ĝ = gtr,−1 (6.8)

The fact that g has an upper and lower index makes good sense since it also defines an

element of End(V ) and hence the matrix elements are components of a tensor of type (1, 1).

Under change of basis the (passive) change of components is given by

(T ′)
i′1,...,i

′
n

j′1,...,j
′
m

= g
i′1
k1
· · · gi

′
n
kn
ĝ `1
j′1
· · · ĝ `m

j′m
T k1,...,kn

`1,...,`m
(6.9)

This is the standard transformation law for tensors. ♣Comment on

”covariant” and

”contravariant”

indices. ♣6.1 Totally Symmetric And Antisymmetric Tensors

There are two subspaces of V ⊗n which are of particular importance. Note that we have a

homomorphism ρ : Sn → GL(V ⊗n) defined by

ρ(σ) : u1 ⊗ · · · ⊗ un → uσ(1) ⊗ · · · ⊗ uσ(n) (6.10)

on any vector in V ⊗n of the form u1 ⊗ · · · ⊗ un Then we extend by linearity to all vectors

in the vector space. Note that with this definition

ρ(σ1) ◦ ρ(σ2) = ρ(σ1σ2) (6.11)

Thus, V ⊗n is a representation of Sn in a natural way. This representation is reducible,

meaning that there are invariant proper subspaces. (See Chapter four below for a system-

atic treatment.)

Two particularly important proper subspaces are:

Sn(V ): These are the totally symmetric tensors, i.e. the vectors invariant under Sn.

This is the subspace where T (σ) = 1 for all σ ∈ Sn.

Λn(V ): antisymmetric tensors, transform into v → ±v depending on whether the

permutation is even or odd. These are also called n-forms. This is the subspace of vectors

on which T (σ) acts by ±1 given by T (σ) = ε(σ).

Remarks

1. A basis for ΛnV can be defined using the extremely important wedge product con-

struction. If v, w are two vectors we define ♣Note: Assumes κ

is characteristic

zero. Should say

what happens for

modules more

generally. ♣
v ∧ w :=

1

2!
(v ⊗ w − w ⊗ v) (6.12)

If v1, . . . , vn are any n vectors we define

v1 ∧ · · · ∧ vn :=
1

n!

∑
σ∈Sn

ε(σ)vσ(1) ⊗ · · · ⊗ vσ(n) (6.13)

Note that

vσ(1) ∧ · · · ∧ vσ(n) = sign(σ)v1 ∧ · · · ∧ vn (6.14)
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Thus, if we choose an ordered basis wi for V then ΛnV is spanned by the vectors:

wi1 ∧ · · · ∧ win i1 < i2 < · · · < in (6.15)

and thus if dimV = d then ΛnV has dimension
(
d
n

)
. In particular, Λd(V ) is one-

dimensional.

2. In quantum mechanics if V is the Hilbert space of a single particle the Hilbert space of

n identical particles is a subspace of V ⊗n. In three space dimensions the only particles

that appear in nature are bosons and fermions, which are states in Sn(V ) and Λn(V ),

respectively. In this way, given a space V of one-particle states - interpreted as the

span of creation operators {a†j} we form the bosonic Fock space

S•V = C⊕⊕∞`=1S
`V (6.16)

when the a†j ’s commute or the Fermionic Fock space

Λ•V = C⊕⊕∞`=1Λ`V (6.17)

when they anticommute. (The latter terminates, if V is finite-dimensional).

3. In chapter 4 we explain the beautiful Schur-Weyl duality theorem: If V Is the fun-

damental representation of GL(d, κ) then V ⊗n is a representation of Sn ×GL(d, κ).

That is, the Sn and GL(d, κ) representations commute. We can decompose this rep-

resentation into irreps of Sn. These irreps are labeled by Young diagrams with n

boxes. Then, as a representation of Sn, we have isotypical decomposition:

V ⊗n ∼= ⊕Y ∈YnD(Y )⊗R(Y ) (6.18)

where R(Y ) is the irrep of Sn associated to Y and D(Y ), which is a representation

of GL(d, κ) turns out to be an irreducible representation of GL(d, κ). Moreover,

considering all integers n we obtain ALL the finite-dimensional representations of

GL(d, κ). These statements also hold true if we replace GL(d,C) by U(d).

Exercise Decomposing V ⊗2

a.) Show that Λ2(V ) is given by linear combinations of vectors of the form x⊗y−y⊗x,

and S2(V ) is given by vectors of the form x⊗ y + y ⊗ x.

Show that 10

V ⊗2 ∼= S2(V )⊕ Λ2(V ) (6.19)

b.) If V1, V2 are two vector spaces show that

S2(V1 ⊕ V2) ∼= S2(V1)⊕ S2(V2)⊕ V1 ⊗ V2 (6.20)

Λ2(V1 ⊕ V2) ∼= Λ2(V1)⊕ Λ2(V2)⊕ V1 ⊗ V2 (6.21)
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♣Incorporate some

nice generalizations

of this from CSS

project with Jeff. ♣

Exercise Counting dimensions

Suppose V is finite dimensional of dimension dimV = d. It is of interest to count the

dimensions of Λn(V ) and Sn(V ). Think of Λ∗V and S∗V as Fock spaces of fermions and

bosons with oscillators spanning the vector space V .

a.) Show that ∑
n≥0

qndimΛn(V ) = (1 + q)d (6.22)

and therefore

dimΛn(V ) =

(
d

n

)
(6.23)

b.) Show that ∑
n≥0

qndimSn(V ) =
1

(1− q)d
(6.24)

and therefore

dimSn(V ) =

(
n+ d− 1

n

)
(6.25)

Remark The formula for the number of nth-rank symmetric tensors in d dimensions

involves multichoosing. In combinatorics we denote((
d

n

))
:=

(
n+ d− 1

n

)
=

(
n+ d− 1

d− 1

)
(6.26) eq:d-multichoose-n

and say “d multichoose n.” This is the number of ways of counting n objects from a set

of d elements where repetition is allowed and order does not matter. One standard proof

is the “method of stars and bars.” Suppose Ti1,...,in is a totally symmetric rank n tensor.

For a fixed set of indices i1, . . . , in, there will be a certain number of 1′s, 2′s, etc. So for

a completely symmetric tensor the value of Ti1,...,in is the value of T with the indices in

nondecreasing order: T1,...1,2,...,2,...,d,...,d. (What we wrote is a little misleading since the

number of, say, 2’s might actually be zero.) How many distinct values can there be? We

can imagine n + d− 1 slots, and we are to choose d− 1 of these slots as the position of a

bar. Then between the bars we insert 1’s, then 2’s, etc., reading from left to right. Thus,

the position of the bars completely determines the number of 1’s, 2’s, etc. and this is

how we are labeling the independent components T1,...1,2,...,2,...,d,...,d. Thus, the independent

components of a symmetric rank n tensor in d dimensions are in 1-1 correspondence with

a choice of (d − 1) slots out of a total of n + d − 1 slots. This is the binomial coefficient

(6.26).

10Answer : Λ2(V ) is the span of vectors of the form x⊗ y − y ⊗ x, while S2(V ) is the span of vectors of

the form x⊗ y + y ⊗ x. But we can write any x⊗ y as a sum of two such vectors in an obvious way.
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Expanding out the binomial coefficients a bit it is interesting to note that there is a

pleasing symmetry between the antisymmetric and symmetric cases:

dimΛn(V ) =

(
d

n

)
=
d(d− 1)(d− 2) · · · (d− (n− 1))

n!
(6.27)

dimSn(V ) =

((
d

n

))
=
d(d+ 1)(d+ 2) · · · (d+ (n− 1))

n!
(6.28)

♣Does this mean

that bosons in

negative numbers of

dimensions are

fermions? ♣

Exercise

a.) Let dimV = 2. Show that

dimSn(V ) = n+ 1 (6.29)

b.) Let d = dimV . Show that

S3(V )⊕ Λ3(V ) (6.30)

is a subspace of V ⊗3 of codimension 2
3d(d2 − 1) and hence has positive codimension for

d > 1.

Thus, there are more nontrivial representations of the symmetric group to account for.

These will be discussed in Chapter 4.

Exercise Linear Transformations

a.) If T : V → W is a linear transformation show that there are natural linear

transformations:

ΛkT : ΛkV → ΛkW (6.31)

SkT : SkV → SkW (6.32)

See chapter **** below where this is applied to define determinants and pfaffians in a

basis-independent way.

Exercise Generating functions for symmetric powers

Let V be a vector space over a field κ. It is sometimes useful to think of it as a

representation of a group G. Note that if we have R+ acting on V by scaling t : v 7→ λv

for t > 0 then Symj(V ) has the action of tj . We can form:

Sym•t (V ) := ⊕∞j=0t
jSymj(V ) (6.33)
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where we interpret Sym0(V ) = κ. Note that W ⊗ κ = W for any vector space over κ (or

representation of G, if κ is the trivial representation). So κ functions as an identity, and

in particular is an invertible vector space. The parameter t is put in as a bookkeeping

convenience. It keeps track of the scaling weight.

a.) Show that

Sym•t (V1 ⊕ V2) = Sym•t (V1)⊗ Sym•t (V2) (6.34)

b.) Using this show that:

Sym3(V1 ⊕ V2) = Sym3(V1) + Sym2(V1)V2 + V1Sym2(V2) + Sym3(V2) (6.35) eq:Sym3True

c.) Show that it makes sense to say for virtual spaces (or representations)

Sym•t (V1 	 V2) =
Sym•t (V1)

Sym•t (V2)
(6.36) eq:Diff

d.) Since κ is an invertible vector space, this makes sense by formally expanding the

denominator as a power series. For example, show that:

Sym2(V1 	 V2) = Sym2(V1)− V1V2 + V 2
2 − 2Sym2(V2) (6.37) eq:Sym2Virt

Sym3(V1	V2) = Sym3(V1)−Sym2(V1)V2−V1Sym2(V2)+V1V
2

2 +2Sym2(V2)V2−V 3
2 −Sym3(V2)

(6.38) eq:Sym3Virt

Sym•t (V1 	 κ) =
Sym•t (V1)

Sym•t (κ)
=

Sym•t (V1)

1 + t+ t2 + · · ·
= (1− t)Sym•t (V1) (6.39) eq:Diff

Symn+1(V − 1) = Symn+1(V )− Symn(V ) (6.40) eq:SimpleDiff

Exercise

Suppose a group G acts on a finite-dimensional vector space V and the action of ρ(g)

can be diagonalized so that V ∼= ⊕iLi with ρ(g) acting as gi on Li. Show that the characters

of the induced representation on Λk(V ) and Sk(V ) can be computed from

chΛ∗tV
ρ(g) =

∏
i

(1 + tgi) (6.41)

chS∗t V ρ(g) =
∏
i

1

1− tgi
(6.42)
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6.2 Algebraic structures associated with tensors
subsec:TensorAlgebra

There are a number of important algebraic structures associated with tensor spaces.

Definition For a vector space V over κ the tensor algebra TV is the Z-graded algebra

over κ with underlying vector space:

T •V := κ⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ · · · (6.43)

and multiplication defined by using the tensor product to define the multiplication

V ⊗k × V ⊗` → V ⊗(k+`) (6.44)

and then extending by linearity.

Remarks

1. In concrete terms the algebra multiplication is defined by the very natural formula:

(v1 ⊗ · · · ⊗ vk) · (w1 ⊗ · · · ⊗ w`) := v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ w` (6.45)

2. Note that we can define V ⊗0 := κ and V ⊗n = {0} when n is a negative integer

making

T •V = ⊕`∈ZV ⊗` (6.46)

into a Z-graded algebra. The vectors V are then regarded as having degree = 1.

Several quotients of the tensor algebra are of great importance in mathematics and

physics. ♣This discussion of

ideals really belongs

in the section on

algebras. Then you

can give standard

examples such as

subalgebra of Z of

integers divisible by

n. etc. ♣

Quite generally, if A is an algebra and B ⊂ A is a subalgebra we can ask if the vector

space A/B admits an algebra structure. The only natural definition would be

(a+B)� (a′ +B) := a� a′ +B (6.47)

However, there is a problem with this definition! It is not necessarily well-defined. The

problem is very similar to trying to define a group structure on the set of cosets G/H of

a subgroup H ⊂ G. Just as in that case, we can only give a well-defined product when

B ⊂ A satisfies a suitable condition. In the present case we need to know that, for all

a, a′ ∈ A and for all b, b′ ∈ B then there must be a b′′ ∈ B so that

(a+ b)� (a′ + b′) = a� a′ + b′′ (6.48)

Taking various special cases this implies that for all b ∈ B and all a ∈ A we must have

a� b ∈ B & b� a ∈ B (6.49)

Such a subalgebra B ⊂ A is known as a (left- and right-) ideal.

If we have a subset S ⊂ A then I(S), the ideal generated by S, also denoted simply

(S) is the smallest ideal in A that contains S. It exists because the intersection of two

ideals that contain S is an ideal that contains S and the set of ideals that contain S is

nonempty: A itself is an ideal.
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1. Symmetric algebra: This is the quotient of T •V by the ideal generated

S = {v ⊗ w − w ⊗ v|v, w ∈ V } (6.50)

It is denoted S•V , and as a vector space is

S•V = ⊕∞`=0S
`V (6.51)

If we denote the symmetrization of an elementary tensor simply by

v1 · · · vk :=
1

k!

∑
σ∈Sk

vσ(1) ⊗ · · · ⊗ vσ(k) (6.52)

then the product is simply

(v1 · · · vk) · (w1 · · ·w`) = v1 · · · vkw1 · · ·w` (6.53)

It is also the free commutative algebra generated by V . Even when V is finite

dimensional this is an infinite-dimensional algebra.

2. Exterior algebra: This is the quotient of T •V by the ideal I(S) generated by

S = {v ⊗ w + w ⊗ v|v, w ∈ V } (6.54)

It is denoted Λ•V , and as a vector space is

Λ•V = ⊕∞`=0Λ`V (6.55)

with product given by exterior product of forms

(v1 ∧ · · · ∧ vk) · (w1 ∧ · · · ∧ w`) := v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ w` (6.56)

When V is finite dimensional this algebra is finite dimensional.

3. Clifford algebra: Let Q be a symmetric quadratic form on V , and we assume that

V is a vector space over a field of characteristic not equal to two. Then the Clifford

algebra C`(Q) is the algebra defined by TV/I(S) where I(S) is the ideal generated

by

S = {v ⊗ w + w ⊗ v − 2Q(v, w)1κ|v, w ∈ V } (6.57)

This is an extremely important algebra in physics. For the moment let us just note

the following elementary points: If we choose a basis {ei} for V and Q(ei, ej) = Qij
then we can think of C`(Q) as the algebra over κ generated by the ei subject to the

relations:

eiej + ejei = Qij (6.58)

If Q can be diagonalized then we can choose a basis and we write

eiej + ejei = qiδij (6.59)
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Strictly speaking, when one speaks of a “Clifford algebra” it is understood that Q

is nondegenerate so the qi are all nonzero. The above construction makes sense for

any symmetric quadratic form. If Q = 0 we obtain what is known as the Grassmann

algebra. If Q is degenerate but nonzero one can separate the two cases and take a

tensor product since we have a canonical isomorphism 11

C`(Q1 ⊕Q2) ∼= C`(Q1)⊗̂C`(Q2) (6.60)

To go further it depends quite a bit one what field we are working with. If κ = C
and the qi 6= 0 we can change basis so that

eiej + ejei = 2δij (6.61)

This is, of course, the familiar algebra of “gamma matrices” and the Clifford algebras

are intimately related with spinors and spin representations, and a choice of gamma

matrices is a choice of representation of C`(Q). If κ = R the best we can do is choose

a basis so that

eiej + ejei = 2ηiδij (6.62)

where ηi ∈ {±1}. We note that if V is finite-dimensional then, as a vector space

C`(Q) ∼= ⊕dj=0ΛjV (6.63)

but this isomorphism is completely false as algebras. (Why?) Clifford algebras are

discussed in great detail in Chapter 10. For much more information about this crucial

case see

1. The classic book: C. Chevalley, The algebraic theory of spinors

2. The chapters by P. Deligne in the AMS books on Strings and QFT for mathe-

maticians.

3. Any number of online lecture notes. Including my own:

http://www.physics.rutgers.edu/∼gmoore/695Fall2013/CHAPTER1-QUANTUMSYMMETRY-

OCT5.pdf (Chapter 13)

http://www.physics.rutgers.edu/∼gmoore/PiTP-LecturesA.pdf (Section 2.3)

4. Universal enveloping algebra. Let V be a Lie algebra. (See Chapter 8(?) below.)

Then U(V ), the universal enveloping algebra is TV/I where I is the ideal generated

by v ⊗ w − w ⊗ v − [v, w].

Remarks

1. Explain coalgebra structures.

2. Explain about A∞ and L∞ algebra.

3. Koszul duality for quadratic algebras
11To do this right we need to regard the Clifford algebra as a Z2-graded, or super-algebra. Then we must

take the graded tensor product. See the references at the end of this remark for further explanation.
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6.2.1 An Approach To Noncommutative Geometry

One useful way of thinking about the symmetric algebra is that S•V ∨ is the algebra of

polynomial functions on V . Note that there is a natural evaluation map

Sk(V ∨)× V → κ (6.64)

defining a polynomial function on V . To make this quite explicit choose a basis {vi} for V

so that there is canonically a dual basis {v̂i} for V ∨. Then an element of Sk(V ∨) is given

by a totally symmetric tensor Ti1···ik v̂
i1 · · · v̂ik , and, when evaluated on a general element

xivi of V we get the number

Ti1···ikx
i1 · · ·xik (6.65)

so the algebraic structure is just the multiplication of polynomials.

Now, quite generally, derivation of an algebra A is a linear map D : A → A which

obeys the Leibniz rule

D(ab) = D(a)b+ aD(b) (6.66)

In differential geometry, derivations arise naturally from vector fields and indeed, the gen-

eral derivation of the symmetric algebra S•(V ∨) is given by a vector field

D =
∑
i

f i(x)
∂

∂xi
(6.67)

Now these remarks give an entree into the subject of noncommutative geometry : We

can also speak of derivations of the tensor algebra T •V . Given the geometrical interpreta-

tion of S•V it is natural to consider these as functions on a noncommutative manifold. We

could, for example, introduce formal variables xi which do not commute and still consider

functions of these. Then, vector fields on this noncommutative manifold would simply be

derivations of the algebra. In general, if noncommutative geometry the name of the game

is to replace geometrical concepts with equivalent algebraic concepts using commutative

rings (or fields) and then generalize the algebraic concept to noncommutative rings.

Remarks:

1. A very mild form of noncommutative geometry is known as supergeometry. We

discuss that subject in detail in Section §23 below. For now, note that our discussion

of derivations and vector fields has a nice extension to the exterior algebras.

7. Kernel, Image, and Cokernel

A linear transformation between vector spaces (or R-modules)

T : V →W (7.1)

is a homomorphism of abelian groups and so, as noted before, there are automatically three

canonical vector spaces:

kerT := {v : Tv = 0} ⊂ V. (7.2)
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imT := {w : ∃v w = Tv} ⊂W. (7.3)

and

imT ∼= V/kerT (7.4)

One defines exact sequences and short exact sequences exactly as for groups.

In linear algebra, since the target W is abelian we can make one new construction not

available for general groups. We define the cokernel of T to be the vector space:

cokT := W/imT. (7.5)

Remarks:

1. If V,W are inner product spaces then cokT ∼= kerT †. (See definition and exercise

below.) ♣Should say more

here, and explain

how cokernels are

relevant. How to

construct generator

from parity check

and vice versa using

orthogonal vectors.

♣

2. Classical Error-Correcting Codes. In the theory of classical error correcting codes a

linear [n, k] code is a k-dimensional subspace C ⊂ Fn2 . The codewords have n bits

and there are k independent bits with the potential to encode 2k messages. As an

example: The most elementary way to make sure you are not misunderstood is to

repeat yourself. The most elementary way to make sure you are not misunderstood is

to repeat yourself. The most elementary way to make sure you are not misunderstood

is to repeat yourself. The repetition code on one bit is an [r, 1] code where r is the

number of repetitions. It sends the bit 0 to (0, . . . , 0) and 1 to (1, . . . , 1). In general,

the [n, k] code can be thought of as being determined by a linear map:

G : Fk2 → Fn2 (7.6)

Choosing a standard basis for Fk2 and Fn2 the code is determined by a matrix G ∈
Matn×k(F2) called the generator matrix. It is often useful to think of C as the kernel

of a linear transformation

H : Fn2 → Fn−k2 (7.7)

so that the sequence

0 // Fk2
G // Fn2

H // Fn−k2
// 0 (7.8)

is exact. Again, choosing a standard basis we have a matrix H ∈ Mat(n−k)×n(F2)

such that H is of rank (n − k) and HG = 0. The matrix H is known as the parity

check matrix. It is quite useful because if there is an error in transmission and the

intended message m ∈ Fk2 is in fact y′ = G(m) + e, where e is an error then we can

sometimes diagonose the error and even correct it. To diagnose the error we apply

the parity check operator so that Hy′ = He. If Hy′ 6= 0 we can be sure that an

error has occured, so that Hy′ is called the error syndrome. 12 In good cases we can

12Of course, it is possible that and error e ∈ C has occurred. Part of the goal of constructing good

error-correcting codes is to make the vectors in C “extremely sparse” so that it is very unlikely to have

e ∈ C.
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even find e and subtract it to get y′ − e = G(m) and then deduce m. For example,

if the codewords are “far apart” and e is “small” then there will be a unique vector

y ∈ C which is closest to y′. Here the proper notion of distance is the Hamming

distance. If we know the generator matrix G then to construct H we need not just a

complementary subspace to Im(G) but the orthogonal one. If H is of the form

H =
(
A In−k

)
(7.9)

then

G =

(
Ik
−A

)
(7.10)

(this is valid over any field, such as Fq). For this, and much more, consult 13

Exercise

a.) If

0→ V1 → V2 → V3 → 0 (7.11)

is a short exact sequence of vector spaces, then V3
∼= V2/V1.

b.) Show that a splitting of this sequence is equivalent to a choice of complementary

subspace to V1 in V2.

Exercise The massless vectorfield propagator

Let kµ, µ = 1, . . . , d be a nonvanishing vector in Rd with its canonical Euclidean metric.

a.) Compute the rank and kernel of

Mµν(k) := kµkν − δµν~k2 (7.12)

In gauge theory, when we have restricted to the space of planewaves Aµ(k)eik·x the

kernel of Mµν(k) represent the gauge modes. The quotient represents the gauge invariant

information. For computations it is preferable to work with a subspace rather than a

quotient, so we choose a gauge to invert the propagator. Of course, the complementary

space is not unique. That is why there is a choice of gauge.

b.) Compute an inverse on the orthogonal complement (in the Euclidean metric) of

the kernel.

13Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge, section 10.4.1
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Exercise

Show that if T : V →W is any linear operator then there is an exact sequence

0→ kerT → V
T→ W → cokT → 0 (7.13)

7.1 The index of a linear operator

If T : V → W is any linear operator such that kerT and cokT are finite dimensional we

define the index of the operator T to be:

Ind(T ) := dimcokT − dimkerT (7.14)

For V and W finite dimensional vector spaces you can easily show that

IndT = dimW − dimV (7.15)

Notice that, from the LHS, we see that it does not depend on the details of T !

As an example, consider the family of linear operators Tλ : v → λv for λ ∈ C. Note

that for λ 6= 0

kerT = {0} cokT = V/V ∼= {0} (7.16)

but for λ = 0

kerT = cokT = V (7.17)

Both the kernel and cokernel change, but the index remains invariant.

As another example consider the family of operators Tλ : C2 → C2 given in the

standard basis by:

Tλ =

(
λ 1

0 λ

)
(7.18) eq:fmly

Now, for λ 6= 0

kerTλ = {0} cokTλ = C2/C2 ∼= {0} (7.19)

but for λ = 0

kerT0 = C ·

(
1

0

)
cokT0 = C2/C ·

(
1

0

)
(7.20)

and again the index is invariant.

In infinite dimensions one must be more careful. Clearly, one cannot define the index

to be dimW − dimV . However, there is a special class of operators on infinite-dimensional

Hilbert spaces for which dimcok(T ) and dimker(T ) are in fact finite-dimensional. These,

(with some extra technical constraints) are known as Fredholm operators. The index of

a Fredholm operator is then defined as dimcok(T ) − dimker(T ) and it turns out to be a

very interesting object. One important theorem in index theory is then that if Tλ is a

continuous family of Fredholm operators (where one defines a topology on the space of

Fredholm operators using the norm topology from operator algebra theory) then the index

is continuous, and hence, being an integer, is independent of λ.
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The index of an operator plays an essential role in modern mathematical physics. To

get an idea of why it is important, notice that in the finite-dimensional case, the RHS of

the above formula for the index does not refer to the details of T , and yet provides some

information on the number of zero eigenvalues of T and T †. One of the great achievements

of 20th century mathematics is the Atiyah-Singer index theorem and its many variants. A

special case of the theorem gives the index for important geometrical operators such as the

Dirac operator coupled to metrics and gauge fields defined on general (compact) manifolds.

The zero-modes of these operators often have great physical significance, but solving the

Dirac equation explicitly is completely out of the question. The index theorem expresses

the index in terms of certain topological invariants, and these topological invariants are

often readily computable.

Exercise

Compute the index of the family of operators:

Tu =

(
u u u2

sin(u) sin(u) sin2(u)

)
(7.21)

Find special values of u where the kernel and cokernel jump.

Exercise

Consider the usual harmonic oscillator operators a, a† acting on a separable Hilbert

space. (See below.) Compute the index of a and a†.

Consider the families of operators T = λa and T = λa† for λ ∈ C. Is the index

invariant?

References on the Atiyah-Singer theorem:

For physicists: Eguchi, Gilkey, Hanson, Physics Reports; Nakahara.

For mathematicians: Michelson and Lawson, Spin Geometry

8. A Taste of Homological Algebra

****************

NEED SOME INTRO. COHOMOLOGY AND HOMOLOGY MEASURE OBSTRUC-

TIONS. SOME HOMOLOGICAL ALGEBRA HAS APPEARED IN PHYSICS IN THE

PAST 20 YEARS.

There are many, many, textbooks on homological algebra. It is also generally covered

in textbooks on algebraic topology. Among the many, one of the clearest and easiest to

read is
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J.W. Vick, homology theory: an introduction to algebraic topology, Academic Press

****************

A module M over a ring R is said to be Z-graded if it is a direct sum over modules

M = ⊕n∈ZMn (8.1)

Physicists should think of the grading as a charge of some sort in some kind of “space of

quantum states.”

If the ring is Z-graded then also

R = ⊕n∈ZRn (8.2)

and moreover Rn · Rm ⊂ Rn+m. In this case it is understood that the ring action on the

module is also Z-graded so

Rn ×Mn′ →Mn+n′ (8.3)

*****************

EXAMPLES:

1. One good example are the differential forms on a manifold. The ring can be taken

to be the ring of smooth functions on a manifold X and Mn = Ωn(X) are the smooth

differential forms on X.

*****************

Definition Let M1,M2 be two Z-graded R-modules. We say that an R-module ho-

momorphism Φ : M1 →M2 is of degree k if

Φ : Mn
1 →Mn+k

2 (8.4)

for all n ∈ Z.

Put differently, we can introduce an operator CM which acts by multiplication by n on

Mn. In physical examples, it might be some kind of conserved charge on spaces of states.

For example, n might be “fermion number” of some quantum states. Then Φ : M1 → M2

is of degree k if

CM2Φ− ΦCM1 = kΦ (8.5)

*****************

EXAMPLES

*****************

A cochain complex is a Z-graded module together with a linear operator usually called

d : M → M or Q : M → M where Q2 = 0 and Q is “of degree one.” What this means

is that Q increases the degree by one, so Q take Mn into Mn+1. A degree one operator d

that squares to 0 is often called a differential.

A cochain complex is usually indicated as a sequence of modules Mn and linear maps

dn:

· · · //Mn−1 dn−1
//Mn dn //Mn+1 // · · · (8.6)
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with the crucial property that

∀n ∈ Z dndn−1 = 0 (8.7)

The sequence might be infinite or finite on either side. If it is finite on both sides then

Mn = 0 for all but finitely many n.

It is important to stress that the cochain complex is not an exact sequence. Indeed,

we can characterize how much it differs from being an exact sequence by introducing its

cohomology :

H(M,d) := kerd/imd (8.8)

This definition makes sense, because d2 = 0. Because the complex is Z-graded, and d has

degree one the cohomology is also Z-graded and we can define

Hn(M,d) := kerdn/imdn−1 (8.9)

Thus, the cohomology of a cochain complex is a Z-graded Abelian group.

Similarly, there is a notion of a chain complex and its corresponding homology. Now

we have a Z-graded module M over R and now we have an operator, again called the

differential and denoted ∂ of degree −1 which squares to zero ∂2 = 0. The only difference

from the cochain complex is that the degree is −1 and not +1. Denoting the components

of M of degree n by Mn we now have

· · · Mn−1
oo Mn

∂n
oo Mn+1

∂n+1

oo · · ·oo (8.10)

and again ∂n∂n+1 = 0. The homology of the chain complex is the Abelian group ker∂/im∂.

Again it is Z-graded, and the component of degree n is

Hn(M•, ∂) = ker∂n/im∂n+1 (8.11)

Given a cochain complex (Mn, d) one can always take the dual complex to obtain a

corresponding chain complex. We define Mn := Hom(Mn, R) and ∂ := d∨. Similarly, given

a chain complex we can produce a cochain complex. We discuss more about the duality

between chain and cochain complexes in section *** below.

Examples

1. Continuing with our example of differential forms. d : Ωk(X) → Ωk+1(X) is the

exterior derivative.

2. To an Abelian group A we can associate (nonuniquely) a cochain complex **** so

that A is isomorphic to the homology of this complex

3. Algebraic topology: singular (co-)homology.

4. DeRham cohomology

5. CW homology.
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6. Quiver representations.

7. Supersymmetric quantum mechanics and Morse theory.

8. Derived categories in theories of D-branes

8.1 The Euler-Poincaré principle

Suppose we have a finite cochain complex of vector spaces which we will assume begins at

degree zero. Thus

0 // V 0 d0
// V 1 d1

// · · · d
n−1
// V n // 0 (8.12)

with dj+1dj = 0.

Let us compare the dimensions of the spaces in the cochain complex to the dimensions

of the cohomology groups. We do this by introducing a Poincare polynomial

PV •(t) =
n∑
j=0

tjdimV j (8.13)

PH•(t) =
n∑
j=0

tjdimHj (8.14)

Now we claim that

PV •(t)− PH•(t) = (1 + t)W (t) (8.15) eq:MorseIn

where W (t) is a polynomial in t with nonnegative integer coefficients.

Proof : Let hj be the dimension of the cohomology. Then by choosing representatives

and complementary spaces we can find subspaces W j ⊂ V j of dimension wj so that ♣Need to explain

more about these

wj . ♣
dimV 0 = h0 + w0

dimV 1 = h1 + w0 + w1

dimV 2 = h2 + w1 + w2

...
...

dimV n = hn + wn−1

(8.16)

so W (t) = w0 + w1t+ · · ·+ wn−1tn−1.

Putting t = −1 we have the beautiful Euler-Poincaré principle:∑
(−1)idimV i =

∑
(−1)idimH i (8.17) eq:EulerChar

This common integer is called the Euler characteristic of the complex.

Remark: These observations have their origin in topology and geometry. Equation

(8.17) is related, among many other things, to the fact that one can compute topological

invariants of topological spaces by counting simplices in a simplicial decomposition, or in

other ways associated to (co)chain complexes. One way of getting such complexes, that is
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closely related to physics is via Morse theory. In Morse theory, you put a manifold on a

table as in figure

[NEED A FIGURE: RIEMANN SURFACE ON A TABLE]

If one considers a generic function h : M → R on a compact manifold one can look at

the critical points. These are points p ∈ M where dh(p) = 0. If all the critical points are

nondegenerate the one can speak of the number of independent directions along which h

decreases. This is called the Morse index. It turns out that the free vector space generated

by the critical points defines a complex - the Morse-Smale-Witten complex. Then equation

(8.15) implies the Morse inequalities: The number Nj of critical points with j downward

directions is always bigger than the Better number bj : We have Nj ≥ bj . Nevertheless∑
j(−1)jNj =

∑
j(−1)jbj = χ(M), the Euler character of M . In Witten’s interpretation,

the generators of the complex are the approximate ground states of a quantum system,

while bj measures the true number of ground states (of Fermion number j). The inequality

Nj ≥ bj has a very simple physical interpretation: Some approximate groundstates are

lifted due to instanton effects. 14

8.2 Chain maps and chain homotopies

Suppose (C, ∂C) and (D, ∂D) are two cochain complexes. A chain map is a homomorphism

of R-modules, f : C → D, of degree zero that commutes with the differentials. That is,

the diagram:

C
∂C //

f
��

C

f
��

D
∂D // D

(8.18)

commutes. Even more explicitly: “degree zero” means f : Cn → Dn is a homomorphism

of R-modules, for every n, that is, if preserves the degree and moreover f∂C,n = ∂D,nf .

This defines a “morphism of complexes”

Given a chain map, one automatically has a homomorphism of Abelian groups

f∗ : H∗(C, ∂C)→ H∗(D, ∂D) (8.19)

defined by

f∗([c]) := [f(c)]. (8.20) eq:InducedHomom

Of course, there are entirely analogous definitions for cochain complexes.

****************

PULLBACK AND PUSHFORWARD

****************

14The connection of Morse theory to supersymmetric quantum mechanics was discovered by Witten in

a classic paper, “Supersymmetry and Morse theory.” Witten’s interpretation has had enormous impact

on both physics and mathematics subsequently. For a recent exposition of the main ideas, together with

some extra details not spelled out in the original paper the reader might wish to consult chapter 10 of

https://arxiv.org/pdf/1506.04087.pdf.
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Exercise

Show that (8.20) is well-defined.

Definition Suppose that f1, f2 : C → D are chain maps. We say that an R-module

homomorphism T : C → D of degree −1 so that

dDT − TdC = f1 − f2 (8.21)

is a chain homotopy between f1 and f2

In diagrams we have

· · · //

fi

��

Cn−1
dn−1
C //

T

||
fi
��

Cn
dnC //

T

{{
fi
��

Cn+1 //

T

{{
fi
��

· · ·

· · · // Dn−1
dn−1
D // Dn

dnD // Dn+1 // · · ·

(8.22)

A key fact is that if there exists a chain homotopy between f1 and f2 then, on the

homology, we have (f1)∗ = (f2)∗. After all

(f1)∗([c]) := [f1(c)]

= [f2(c) + dDT (c)− T (dC(c))]

= [f2(c)]

(8.23)

where we pass to the third line because dC(c) = 0 and [x+ dD(y)] = [x] for any x and y.

An important special case of the above is where C = D and f1 = Id, or indeed any

invertible map. and f2 = 0. Then, it follows that the cohomology vanishes. This is a very

useful technique for proving that obstructions vanish.

GIVE EXAMPLE.

REMARKS: NEED TO EXPLAIN WHAT THIS HAS TO DO WITH HOMOTOPY.

EXAMPLES:

8.3 Exact sequences of complexes

Define SES of complexes. Then give the LES and describe the connecting homomorphism.

8.4 Left- and right-exactness
♣Probably should

generalize to

R-modules. Then

need to talk about

resolutions.... ♣

Suppose 15 that A,B,C are Abelian groups in an exact sequence:

0 // A
ι // B

π // C // 0 (8.24)

and let G be any Abelian group then we can ask what happens to the exact sequence when

we apply the functors A 7→ Hom(A,G) and A 7→ A ⊗ G. In general the exactness of the

sequence is only partially preserved.

15We are following a nice brief discussion in Bott and Tu, Differential Forms in Algebraic Topology,

Springer GTM 82
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We claim that

0 // Hom(C,G)
π∗ // Hom(B,G)

ι∗ // Hom(A,G) (8.25) eq:HomSeq

Here, if f : A→ B is a group homomorphism we can define f∗ : Hom(B,G)→ Hom(A,G)

by f∗(φ) := φ ◦ f . Note carefully that the map ι∗ is not necessarily surjective so we

are missing an arrow → 0 at the end of (8.25). In the jargon we say that the functor

A→ Hom(A,G) is left-exact.

Similarly, we claim that:

A⊗G ι⊗1 // B ⊗G π⊗1 // C ⊗G // 0 (8.26) eq:TensSeq

is exact, but again, note that we do not necessarily have injectivity of ι⊗ 1. In the jargon

we say that the functor A→ A⊗G is right-exact.

Ext and Tor are functors that measure the failure of the exactness of the above se-

quences.

Let C be any Abelian group. Then it has a free resolution: ♣Maybe for Tor we

should give injective

resolution? ♣

0 // R
ι // F

π // C // 0 (8.27)

where F is a free Abelian group. We just choose a set of generators for C and let F be

the free Abelian group on those generators. Then [see Jacobson, sec. 3.6] any subgroup of

a free Abelian group is free so R is a free Abelian group as well. Now we apply the above

discussion. We define

Ext(C,G) := cok(ι∗) = Hom(R,G)/imι∗ (8.28)

Tor(C,G) := ker(ι⊗ 1) (8.29)

Here is how this works in one of the simplest cases. We take C = Z/mZ. So we can take

R = Z and F = Z but ι : R→ F is multiplication by m, that is ι(x) = mx. Now let G = Z.

Then Hom(C,G) = 0 and Hom(F,G) = Hom(Z,Z) ∼= Z and Hom(R,G) = Hom(Z,Z) ∼= Z.

Now, what is ι∗ ? It turns out to be multiplication by m once again, so the cokernel is

Z/mZ, so

Ext(Zm,Z) ∼= Zm (8.30)

In this way, with a little patience, you can prove

Ext(Z/mZ,Z) ∼= Z/mZ
Ext(Z, G) = 0

Ext(Z/mZ,Z/nZ) ∼= Z/gcd(m,n)Z
Ext(Z/nZ, G) ∼= G/nG

(8.31)

******************************

Explain how Ext(A,G) classifies extensions. Hence the name.

Incorporate remarks from Moore-Segal 2.7.1; Bredon pp. 271-280.
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******************************

Let us consider a simple example of how Tor can arise. Again, we take C = Z/mZ, so

R = Z and F = Z and ι : R → F is multiplication by m, that is ι(x) = mx. Now taking

G = Z/nZ, equation (8.26) becomes

Z⊗ Zn
×m⊗1// Z⊗ Zn

π⊗1 // Zm ⊗ Zn // 0 (8.32) eq:Simple-Tor-Seq

So we need to work out the kernel of the homomorphism Zn → Zn given by φ(x) = mx.

That is, we should solve for x in

mx = 0 mod n (8.33)

If n = g · p and m = g · q with (p, q) = 1 then this is equivalent to

qx = 0modp (8.34)

but q is invertible modulo p so x = 0modp so the kernel is

{p+ nZ, 2p+ nZ, . . . , p · n
p

+ nZ} (8.35)

and so ker(ι⊗ 1) ∼= Z/gZ where g = gcd(m,n), and

Tor(Zn,Zm) ∼= Z(n,m) (8.36)

One can show that for Tor we have:

Tor(A,G) ∼= Tor(G,A)

Tor(Z/mZ,Z) = 0

Tor(Z,Z/mZ) = 0

Tor(Z,Z) = 0

Tor(Z/mZ,Z/nZ) ∼= Z/gcd(m,n)Z

(8.37)

Exercise A→ Hom(A,G) is contravariant and left-exact

Prove (8.25). 16

Exercise A→ A⊗G is covariant and right-exact

16Answer First, note that if π∗(φ) = 0 then φ(π(b)) = 0 for every b ∈ B. But every element c ∈ C is

of the form π(b) for some b therefore for every c ∈ C we have φ(c) = 0 therefore φ = 0. Therefore π∗ is

injective. Next, if ι∗(φ) = 0 for φ ∈ Hom(B,G) then φ(ι(a)) = 0 for every a ∈ A. Then we can choose a

section (not a splitting) s : C → B. Note that we can define φ̃ ∈ Hom(C,G) by φ̃(c) = φ(s(c)). Of course,

two sections will differ by s(c) = s′(c) + ι(f(c)) for some function f : C → A, but since φ(ι(f(c)) = 0 the

ambiguity does not matter and hence φ = π∗(φ̃).
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Prove equation (8.26). 17

Exercise Divisible Groups

Definition: A group G is said to be divisible if for every g ∈ G and every nonzero

integer n there is a g′ with ng′ = g. Sometimes, such groups are said to be injective.

Thus, for example, R and U(1) are divisible, but Z is not. ♣Need to write out

answers for this. ♣
a.) Show that if

0→ G→ I → J → 0 (8.38)

with I, J divisible groups then for a finite abelian group A:

0→ Hom(A,G)→ Hom(A, I)→ Hom(A, J)→ Ext(A,G)→ 0 (8.39)

b.) Apply part (a) to 0 → Z → R → U(1) → 0 to obtain Ext(A,Z) ∼= Hom(A,U(1)),

the Pontryagin dual of A.

c.) Show that if G is divisible then Ext(A,G) = 0 for all abelian groups A.

9. Relations Between Real, Complex, And Quaternionic Vector Spaces
sec:RealComplex

Physical quantities are usually expressed in terms of real numbers. Thus, for example, we

think of the space of electric and magnetic fields in terms of real numbers. In quantum

field theory more generally one often works with real vector spaces of fields. On the other

hand, quantum mechanics urges us to use the complex numbers. One could formulate

quantum mechanics using only the real numbers, but it would be terribly awkward to do

so. Quantum mechanics teaches us that complex vector spaces are a fundamental part

of reality. In physics and mathematics it is often important to have a firm grasp of the

relation between complex and real structures on vector spaces, and this section explains

that relation in excruciating detail.

9.1 Complex structure on a real vector space

Definition Let V be a real vector space. A complex structure on V is an R-linear map

I : V → V such that I2 = −1.

Choose a squareroot of −1 and denote it by i. If V is a real vector space with a

complex structure I, then we can define an associated complex vector space, which we will

17Answer : Choose a section s : C → B for π. Then any element
∑
i ci ⊗ gi ∈ C ⊗ G is in the image

of
∑
i s(ci) ⊗ gi ∈ B ⊗ G. Now suppose that (π ⊗ 1)(

∑
i bi ⊗ gi) =

∑
i π(bi) ⊗ gi = 0. Then, on the

one hand s(π(bi)) − bi = ι(ai) for some ai and hence
∑
i s(π(bi)) ⊗ gi =

∑
i ι(ai) ⊗ gi +

∑
i bi ⊗ gi. But∑

i s(π(bi))⊗gi = (s⊗1)(
∑
i π(bi)⊗gi) = 0. Therefore

∑
i bi⊗gi = −

∑
i ι(ai)⊗gi = (ι⊗1)(−

∑
i ai⊗gi).
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denote by (V, I). We take (V, I) to be identical with V , as sets, but define the scalar

multiplication of a complex number z ∈ C on a vector v by

z · v := α · v + I(β · v) = α · v + β · I(v) (9.1)

where z = α + iβ with α, β ∈ R, and we are stressing scalar multiplication on vectors by

putting in a ·. We will usually omit the ·.

Remark: If V1 and V2 are real vector spaces with complex structures I1 and I2 then a

complex linear map

T : (V1, I1)→ (V2, I2) (9.2)

is a real linear map T : V1 → V2 such that

T ◦ I1 = I2 ◦ T . (9.3) eq:C-linear-cond

We now come to an important point:

A finite-dimensional real vector space admits a complex structure iff it is even dimen-

sional.

To prove this, note that for any nonzero vector v ∈ V , the vectors v and I(v) are

linearly independent over R. To prove this, suppose that on the contrary there are nonzero

scalars α, β ∈ R such that

αv + βI(v) = 0 (9.4) eq:ab-1

Then applying I to this equation and using I2 = −1 we get

βv − αI(v) = 0 (9.5) eq:ab-2

Multiply (9.4) by α and (9.5) by β and add the equations to get

(α2 + β2)v = 0 (9.6)

Since v 6= 0 and α, β are real we learn that α = β = 0. It follows that if V is finite

dimensional then its dimension must be even and there is always a real basis for V in

which I takes the form (
0 −1

1 0

)
(9.7)

where the blocks are n×n for an integer n = 1
2dimRV . Conversely, if V is even dimensional

consider the above matrix with respect to any basis.

Note that, if I is a complex structure on V , then so is SIS−1 for any invertible real

linear map S : V → V . In fact, all the complex structures are related to the standard one

above by a change of basis:
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Lemma If I is any 2n×2n real matrix which squares to −12n then there is S ∈ GL(2n,R)

such that

SIS−1 = I0 :=

(
0 −1n
1n 0

)
(9.8) eq:CanonCS

We leave the proof as an exercise below.

Note carefully that, while v and I(v) are linearly independent in the real vector space

V , they are linearly dependent in the complex vector space (V, I) since

i · v + (−1) · I(v) = 0 (9.9)

Indeed, our lemma also shows that if V is finite dimensional and has a complex structure

then the dimension of the complex vector space (V, I) is:

dimC(V, I) =
1

2
dimRV (9.10) eq:half-dim

Example Consider the real vector space V = R2. Let us choose

I =

(
0 −1

1 0

)
. (9.11)

Then multiplication of the complex scalar z = x+ iy, with x, y ∈ R on a vector

(
a1

a2

)
∈ R2

can be defined by:

(x+ iy) ·

(
a1

a2

)
:=

(
a1x− a2y

a1y + a2x

)
(9.12) eq:cplxstrone

By equation (9.10) this must be a one-complex dimensional vector space, so it should be

isomorphic to C as a complex vector space. Indeed this is the case. Define Ψ : (V, I)→ C
by

Ψ :

(
a1

a2

)
7→ a1 + ia2 (9.13)

Then one can check (exercise!) that this is an isomorphism of complex vector spaces. The

main point to check is that Ψ ◦ I = iΨ (this is the condition (9.3) above).

Quite generally, if I is a complex structure then so is Ĩ = −I. So what happens if we

take our complex structure to be instead:

Ĩ =

(
0 1

−1 0

)
? (9.14)

Now the rule for multiplication by a complex number in (V, Ĩ) is

(x+ iy) ·

(
a1

a2

)
:=

(
a1x+ a2y

−a1y + a2x

)
(9.15) eq:cplxstronep
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One can check that Ψ̃ : (V, Ĩ)→ C defined by

Ψ̃ :

(
a1

a2

)
7→ a1 − ia2 (9.16)

is also an isomorphism of complex vector spaces. (Check carefully that Ψ̃(z~a) = zΨ̃(~a). )

Now, up to isomorphism there is only one one-dimensional complex vector space, so

there must be an isomorphism of (V, I) with (V, Ĩ) as complex vector spaces. We now

describe it carefully: Note that if we introduce the real linear operator

C :=

(
1 0

0 −1

)
(9.17)

then C2 = 1 and

CIC−1 = CIC = −I (9.18)

Note that C does not define a C-linear transformation (V, I)→ (V, I). Rather, if we define

C : (V, I)→ (V, Ĩ) by

C :

(
a1

a2

)
→

(
a1

−a2

)
(9.19)

then you can check that

C ◦ I = Ĩ ◦ C (9.20)

meaning that C is an isomorphism of the two complex vector spaces. (Recall equation

(9.3).)

What can we say about the set of all complex structures on R2? We have already seen

below that there is a transitive action of GL(n,R) on the space of complex structures by

(matrix) conjugation. A useful theorem (see remark below) says that every S ∈ GL(2,R)

can be written as:

S =

(
1 x

0 1

)(
λ1 0

0 λ2

)(
cos(θ) sin(θ)

−ξ sin(θ) ξ cos(θ)

)
(9.21) eq:KAN-GL2

with x ∈ R, λ1, λ2 > 0, θ ∈ R/2πZ and, finally, ξ ∈ {±1} is a sign that coincides with the

sign of det(S) and tells us which of the two connected components of GL(2,R) S sits in.

We then compute that

SI0S
−1 =

(
1 x

0 1

)(
0 ξλ1/λ2

−ξλ2/λ1 0

)(
1 −x
0 1

)

=

(
−xα α−1 + x2α

−α xα

) (9.22)

(where α = ξλ2/λ1 so α ∈ R∗ and x ∈ R). The most general complex structure is uniquely

written in this form, and so the space of complex structures is a two-dimensional manifold

with two connected components.
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In section 9.6 below we describe the generalization of this result to the space of complex

structures on any finite dimensional real vector space.

Remarks:

1. The decomposition (9.21) is often very useful. Indeed, it generalizes to GL(n,R),

where it says we can write any g ∈ GL(n,R) as g = nak where k ∈ O(n), a is

diagonal with positive entries, and n = 1 + t where t is strictly upper triangular.

This is just a statement of the Gram-Schmidt process. See section 21.2 below. This

kind of decomposition generalizes to all algebraic Lie groups, and it is this more

general statement that constitutes the “KAN theorem.”

2. It is often useful to define complex structures compatible with a metric. “Compatible”

means that ‖ I(v) ‖2=‖ v ‖2. In other words, I is an orthogonal transformation. For

the example of R2 we take the standard Euclidean norm:

‖

(
a1

a2

)
‖2:= a2

1 + a2
2 (9.23)

Then, I ∈ O(2). One easily checks, by explicit multiplication, that if S is an orthog-

onal transformation then

SI0S
−1 = SI0S

tr = (detS)I0 (9.24)

so there are precisely two complex structures compatible with the Euclidean norm:

I0 and −I0.

Exercise Canonical form for a complex structure

Prove equation (9.8) above. 18

18Answer : Proceed by induction. If V 6= 0 then there is a nonzero vector v ∈ V and hence 〈v, I(v)〉 ⊂ V
is a nonzero two-dimensional subspace. If dimRV = 2 we are done. If dimRV = 2n+ 2 and we assume the

result is true up to dimension 2n then we consider the quotient space

V/〈v, I(v)〉 (9.25)

and we note that I descends to a map Ĩ on this quotient space and by the induction hypothesis there is a

basis [w1], . . . , [w2n] for V/〈v, I(v)〉 such that

Ĩ([wi]) = [wn+i]

Ĩ([wn+i]) = −[wi] i = 1, . . . , n
(9.26)

Now, choosing specific representatives wi we know there are scalars αi1, . . . , β
i
2 such that

Ĩ(wi) = wn+i + αi1v + βi1I(v)

Ĩ([wn+i]) = −wi + αi2v + βi2I(v) i = 1, . . . , n
(9.27)

and consistency of these equations with I2 = −1 implies αi2 = βi1 and βi2 = −αi1. Now check that

w̃i := wi + αi1I(v) and w̃n+i = wn+i + βi1I(v) is the suitable basis in which I takes the desired form.
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9.2 Real Structure On A Complex Vector Space

Given a complex vector space V can we produce a real vector space? Of course, by

restriction of scalars, if V is complex, then it is also a real vector space, which we can call

VR. V and VR are the same as sets but in VR the vectors v and iv, are linearly independent

(they are clearly not linearly independent in V !). Thus:

dimRVR = 2dimCV. (9.28)

There is another way we can get real vector spaces out of complex vector spaces. A

real structure on a complex vector V space produces a different real vector space of half

the real dimension of VR, that is, a vector space of real dimension equal to the complex

dimension of V .

Definition Let V1, V2 be complex vector spaces. An antilinear map T : V2 → V2 is a

map that satisfies:

1. T (v + v′) = T (v) + T (v′),

2. T (αv) = α∗T (v) where α ∈ C and v ∈ V1.

Note that T is a linear map between the underlying real vector spaces (V1)R and (V2)R.

Remark: Antilinear operators famously appear in quantum mechanics when dealing with

symmetries which reverse the orientation of time. In condensed matter physics they also

appear as “particle-hole symmetry operators.” (This is a little confusing since in relativistic

particle physics the charge conjugation operator is complex linear.)

Definition Suppose V is a complex vector space. Then a real structure on V is an

antilinear map C : V → V such that C2 = +1.

If C is a real structure on a complex vector space V then we can define real vectors to

be those such that

C(v) = v (9.29)

Let us call the set of such real vectors V+. This set is a real vector space, but it is not a

complex vector space, because C is antilinear. Indeed, if C(v) = +v then C(iv) = −iv. If

we let V− be the imaginary vectors, for which C(v) = −v then we claim

VR = V+ ⊕ V− (9.30)

The proof is simply the isomorphism

v 7→
(
v + C(v)

2

)
⊕
(
v − C(v)

2

)
(9.31)
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Figure 3: The real structure C has fixed vectors given by the blue line. This is a real vector space

determined by the real structure C. fig:REALVECTORS

Moreover multiplication by i defines an isomorphism of real vector spaces: V+
∼= V−. Thus

we have

dimRV+ = dimCV (9.32)

Example Take V = C, and let ϕ ∈ R/2πZ and define:

C : x+ iy → eiϕ(x− iy) (9.33)

The fixed vectors under C consist of the real line at angle ϕ/2 to the x-axis as shown in

Figure 3. Note that the lines are not oriented so the ambiguity in the sign of eiϕ/2 does

not matter.

Once again, note that there can be many distinct real structures on a given complex

vector space. In our case, the space of distinct real structures is the space of real unoriented

lines in R2 and this is known as the RP1. In general, the space of real structures is discussed

in Section 9.6 below.

In general, a complex vector space V equipped with a basis (over C) has a canonically

associated real structure. Indeed suppose {vi} is a basis for V , then we can define the real

structure:

C(
∑
i

zivi) =
∑
i

z̄ivi (9.34)

and thus

V+ = {
∑

aivi|ai ∈ R} (9.35)

Exercise Antilinear maps from the real point of view

Suppose W is a real vector space with complex structure I giving us a complex vector

space (W, I).
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Show that an antilinear map T : (W, I) → (W, I) is the same thing as a real linear

transformation T : W →W such that

TI + IT = 0 (9.36)

That is, an anti-linear map, from the real point of view is just an R-linear map T that

anticommutes with I.

9.2.1 Complex Conjugate Of A Complex Vector Space

There is another viewpoint on what a real structure is which can be very useful. If V is

a complex vector space then we can, canonically, define another complex vector space V̄ .

We begin by declaring V̄ to be the same set. Thus, for every vector v ∈ V , the same

vector, regarded as an element of V̄ is simply written v̄. However, V̄ is different from V as

a complex vector space because we alter the vector space structure by altering the rule for

scalar multiplication by α ∈ C:

α · v̄ := α∗ · v (9.37) eq:conjvs

where α∗ is the complex conjugate in C.

Of course V̄ = V .

Note that, given any C-linear map T : V → W between complex vector spaces there

is, canonically, a C-linear map

T̄ : V̄ → W̄ (9.38)

defined by

T̄ (v̄) := T (v) (9.39)

With the notion of V̄ we can give an alternative definition of an anti-linear map: An

anti-linear map T : V → V is the same as a C-linear map T : V → V̄ , related by

T (v) = T (v) (9.40)

Similarly, we can give an alternative definition of a real structure on a complex vector

space V as a C- linear map

C : V → V̄ (9.41)

such that CC̄ = 1 and C̄C = 1, where C̄ : V̄ → V is canonically determined by C as above.

In order to relate this to the previous viewpoint note that C : v 7→ C̄(v̄) is an antilinear

transformation V → V which squares to 1.

Exercise

A linear transformation T : V → W between two complex vector spaces with real

structures CV and CW commutes with the real structures if the diagram

V
T→ W

↓ CV ↓ CW
V̄

T̄→ W̄

(9.42)
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commutes.

Show that in this situation T defines an R-linear transformation on the underlying real

vector spaces: T+ : V+ →W+.

Exercise Complex conjugate from the real point of view

a.) Show that every complex vector space is isomorphic to a complex vector space of

the form (W, I) where W is a real vector space and I is a complex structure on W .

b.) Suppose W is a real vector space with complex structure I so that we can form

the complex vector space (W, I). Show that

(W, I) = (W,−I) (9.43)

9.2.2 Complexification

If V is a real vector space then we can define its complexification VC by putting a complex

structure on V ⊕ V . This is simply the real linear transformation

I : (v1, v2) 7→ (−v2, v1) (9.44) eq:cplx-def-1

and clearly I2 = −1. This complex vector space (V ⊕V, I) is known as the complexification

of V . Another way to define the complexification of V is to take

VC := V ⊗R C. (9.45) eq:cplx-def-2

Note that we are taking a tensor product of vector spaces over R to get a real vector space.

Since C is two-dimensional as a real vector space VC has twice the (real) dimension of V .

But now V ⊗R C has a natural action of the complex numbers:

z · (v ⊗ z′) := v ⊗ zz′ (9.46)

making VC into a complex vector space. In an exercise below you show that the two

definitions of complexification we have just given are in fact equivalent.

Note that

dimCVC = dimRV (9.47)

Note that VC has a canonical real structure. Indeed

VC = V ⊗R C (9.48)

and we can define C : VC → VC by setting

C : v ⊗ 1 7→ v ⊗ 1̄ (9.49)
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and extending by C-linearity. Thus

C(v ⊗ z) = C(z · (v ⊗ 1)) def of VC

= z · C((v ⊗ 1)) C− linear extension

= z · (v ⊗ 1̄)

= v ⊗ z∗ definition of scalar action onV̄C

(9.50)

Finally, it is interesting to ask what happens when one begins with a complex vector

space V and then complexifies the underlying real space VR. If V is complex then we claim

there is an isomorphism of complex vector spaces:

(VR)C ∼= V ⊕ V̄ (9.51) eq:complxi

Proof: The vector space (VR)C is, by definition, generated by the space of pairs (v1, v2),

vi ∈ VR with complex structure defined by I : (v1, v2)→ (−v2, v1). Now we map:

ψ : (v1, v2) 7→ (v1 + iv2)⊕ (v1 − iv2) (9.52)

and compute

(x+ Iy) · (v1, v2) = (xv1 − yv2, xv2 + yv1) (9.53)

so

ψ : z · (v1, v2) 7→ (x+ iy) · (v1 + iv2)⊕ (x− iy) · (v1 − iv2) = z · v + z̄ · v̄ (9.54)

Another way to look at (9.51) is as follows. Suppose the complex vector space V

is of the form (W, I) with W a real vector space and I a complex structure on W . Now

(W, I)R ∼= W . Now consider VR⊗RC = W⊗R⊗|IC. There are now two ways of multiplying

by a complex number z = x + iy: We can multiply the second factor C by z or we could

operate on the first factor with x+Iy. We can decompose our space V ⊗RC into eigenspaces

where I = +i and I = −i using the projection operators

P± =
1

2
(1∓ I ⊗ i) (9.55)

the images of these projection operators have complex structures, and are isomorphic to

V and V̄ as complex vector spaces, respectively:

((W, I)R)C ∼= (W, I)⊕ (W, I) (9.56)

Exercise Equivalence of two definitions

Show that the two definitions (9.44) and (9.45) define canonically isomorphic complex

vector spaces.
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Exercise

Show that

C⊗R C = C⊕ C (9.57)

C⊗C C ∼= C (9.58)

as algebras.

Exercise

Suppose V is a complex vector space with a real structure C and that V+ is the real

vector space of fixed points of C.

Show that, as complex vector spaces

V ∼= V+ ⊗R C. (9.59)

9.3 The Quaternions

Definition The quaternion algebra H is the associative algebra over R with generators

i, j, k satisfying the relations

i2 = −1 j2 = −1 k2 = −1 (9.60) eq:quat-1

k = ij (9.61) eq:quat-2

Note that, as a consequence of these relations we have

ij + ji = ik + ki = jk + kj = 0 (9.62) eq:quat-3

The quaternions form a four-dimensional algebra over R. As a vector space we can

write

H = Ri + Rj + Rk + R ∼= R4 (9.63)

where the expression between = and ∼= is an internal direct sum. The algebra is associative,

but noncommutative. It has a rich and colorful history. See the remark below.

Note that if we denote a generic quaternion by

q = x1i + x2j + x3k + x4 (9.64)

with x1, . . . , x4 ∈ R, then we can define the conjugate quaternion by the equation

q̄ := −x1i− x2j− x3k + x4 (9.65)
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Now using the relations we compute

qq̄ = q̄q =

4∑
µ=1

xµxµ ∈ R+ (9.66)

This defines a norm on the quaternion algebra:

‖ q ‖2:= qq̄ = q̄q (9.67)

The norm satisfies an important and slightly nontrivial identity:

‖ q1q2 ‖2=‖ q1 ‖2‖ q2 ‖2 (9.68)

See the exercises below.

If follows that the unit quaternions, i.e. those with ‖ q ‖= 1 form a nonabelian group.

(Exercise: Prove this!) In the exercises below you show that this group is isomorphic to

SU(2).

One fact about the quaternions that is often quite useful is the following. There is a

left- and right-action of the quaternions on itself. If q is a quaternion then we can define

L(q) : H→ H by

L(q) : q′ 7→ qq′ (9.69)

and similarly there is a right-action

R(q) : q′ 7→ q′q (9.70)

The algebra of operators L(q) is isomorphic to H and the algebra of operators R(q) is

isomorphic to Hopp, which in turn is isomorphic to H itself. Now H is a four-dimensional

real vector space and L(q) and R(q) are commuting real-linear operators. Therefore there

is an inclusion

H⊗R Hopp ↪→ EndR(H) ∼= End(R4) (9.71)

Since H⊗R Hopp has real dimension 16 this is isomorphism of algebras over R.

Remarks:

1. It is very interesting to compare C and H.

• We obtain C from R by introducing a squareroot of −1, which we can denote

as i, but we obtain H from R by introducing three independent squareroots of

−1, which are traditionally denoted as i, j, k.

• C is associative and commutative, while H is associative, but noncommutative.

• There is a conjugation operation z → z̄ and q → q̄ so that zz̄ ∈ R+ and

qq̄ = q̄q ∈ R+ and is zero iff z = 0 or q = 0, respectively.

• The set of all square-roots of −1 in C is {±i} is a sphere S0. The set of all

square-roots of −1 in H is a sphere S2.
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• The group of unit norm elements in C is the Abelian group U(1). The group of

unit norm elements in H is the non-Abelian group SU(2).

2. A little history

There is some colorful history associated with the quaternions which mathematicians

are fond of relating. My sources for the following are

1. E.T. Bell, Men of Mathematics and C.B. Boyer, A History of Mathematics.

2. J. Baez, “The Octonions,” Bull. Amer. Math. Soc. 39 (2002), 145-205. Also

available at http://math.ucr.edu/home/baez/octonions/octonions.html

The second of these is highly readable and informative.

In 1833, W.R. Hamilton presented a paper in which, for the first time, complex

numbers were explicitly identified with pairs (x, y) of real numbers. Hamilton stressed

that the multiplication law of complex numbers could be written as:

(x, y)(u, v) = (xu− vy, vx+ yu)

and realized that this law could be interpreted in terms of rotations of vectors in the

plane.

Hamilton therefore tried to associate ordered triples (x, y, z) of real numbers to vec-

tors in R3 and sought to discover a multiplication law which “expressed rotation” in

R3. It seems he was trying to look for what we today call a normed division algebra.

According to his account, for 10 years he struggled to define a multiplication law –

that is, an algebra structure – on ordered 3-tuples of real numbers. I suspect most

of his problem was that he didn’t know what mathematical structure he was really

searching for. This is a situation in which researchers in mathematics and physics

often find themselves, and it can greatly confound and stall research. At least one of

his stumbling blocks was the assumption that the algebra had to be commutative.

Then finally – so the story goes – on October 16, 1843 he realized quite suddenly

during a walk that if he dropped the commutativity law then he could write a consistent

algebra in four dimensions, that is, he denoted q = a+ bi + cj + dk and realized that

he should impose

i2 = j2 = k2 = ijk (9.72)

He already knew that i2 = −1 was essential, so surely j2 = k2 = −1. Then i2 = ijk

implies i = jk. But for this to square to one we need jk = −kj. Apparently he

carved these equations into Brougham Bridge while his wife, and presumably, not

the police, stood by. He lost no time, and then went on to announce his discovery

to the Royal Irish Academy, the very same day. Hamilton would spend the rest of

his life championing the quaternions as something of cosmic significance, basic to

the structure of the universe and of foundational importance to physics. That is

not the general attitude today: The quaternions fit very nicely into the structure

of Clifford algebras, and they are particularly important in some aspects of four-

dimensional geometry and the geometry of hyperkahler manifolds. However, in more
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general settings the vector analysis notation introduced by J. W. Gibbs at Yale has

proved to be much more flexible and congenial to working with mathematical physics

in general dimensions.

The day after his great discovery, Hamilton wrote a detailed letter to his friend John

T. Graves explaining what he had found. Graves replied on October 26th, and in his

letter he said:

“ There is still something in the system which gravels me. I have not yet any clear

views as to the extent to which we are at liberty arbitrarily to create imaginaries, and

to endow them with supernatural properties. ... If with your alchemy you can make

three pounds of gold, why should you stop there? ”

By Christmass Graves had discovered the octonions, and in January 1844, had gone

on to a general theory of “2m-ions” but stopped upon running into an “unexpected

hitch.”

Later, again inspired by Hamilton’s discovery of the quaternions, Arthur Cayley

independently discovered the octonions in 1845.

See Chapter 7 below for a discussion of the octonions.

3. What Hamilton and Graves discovered are special cases of a general construction

is known as the c-double or Cayley-Dickson process. Given an algebra A with an

involutive anti-homomorphism j : v → v̄ we form the vector space A(d) = A ⊕ A.

The new algebra structure is defined by a choice of a nonzero element c ∈ A and the

new product is 19

(v1, v2) · (w1, w2) := (v1w1 + cw2v2, w2v1 + v2w1) (9.73)

Since j(v) = v̄ is linear over κ, the new algebra product is bilinear, and therefore

A(d) is itself an algebra. The octonions are obtained using A = H with c = −1. At

each stage of the process the algebraic structure becomes more complicated.

Exercise Due Diligence

Show that (9.60) and (9.61) imply (9.62). 20

Exercise Quaternionic Conjugation And The Opposite Quaternion Algebra

19There is a choice of convention here. The standard text by Schaefer, p.45 uses a different convention.

We are following Jacobsen.
20Answer : Substitute k = ij into the equation k2 = −1. Multiply this equation on the left by i and on the

right by j and use (9.60). A similar manipulation applies to the other equations.
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a.) Show that quaternion conjugation is an anti-automorphism, that is:

q1q2 = q2 q1 (9.74)

b.) Show that Hopp ∼= H.

Exercise Identities On Sums Of Squares

a.) If z1 and z2 are complex numbers then

|z1|2|z2|2 = |z1z2|2 (9.75)

Show that this can be interpreted as an identity for sums of squares of real numbers

x, y, s, t:

(x2 + y2)(s2 + t2) = (xs− yt)2 + (ys+ xt)2 (9.76)

b.) Show that

‖ q1 ‖2‖ q2 ‖2=‖ q1q2 ‖2 (9.77)

and interpret this as an identity of the form 4∑
µ=1

(xµ)2

 4∑
µ=1

(yµ)2

 =

 4∑
µ=1

(zµ)2

 (9.78)

where zµ is of the form

zµ =
4∑

ν,λ=1

aµνλxνyλ (9.79)

Find the explicit formula for zµ.

Exercise A Matrix Representation Of The Quaternions

a.) Show that

i→ −
√
−1σ1 j→ −

√
−1σ2 k→ −

√
−1σ3 (9.80)

defines a set of 2 × 2 complex matrices satisfying the quaternion algebra. Under this

mapping a quaternion q is identified with a 2× 2 complex matrix

q → ρ(q) =

(
z −w̄
w z̄

)
(9.81) eq:2x2-quat

with z = −i(x3 + ix4) and w = −i(x1 + ix2).
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b.) Show that the set of matrices in (9.81) may be characterized as the set of 2 × 2

complex matrices A so that

A∗ = JAJ−1 J =

(
0 −1

1 0

)
(9.82)

If we introduce the epsilon symbol εαβ which is totally antisymmetric and such that ε12 = 1

(this is a choice) then we can write the condition as

(Aαβ̇)∗ = εαγεβ̇δ̇Aγδ̇ (9.83)

Exercise Quaternions And Rotations

a.) Using the fact that qq̄ = q̄q is a real scalar show that the set of unit-norm elements

in H is a group. Using the representation (9.81) show that this group is isomorphic to the

group SU(2).

b.) Define the imaginary quaternions to be the subspace of H of quaternions such that

q̄ = −q. Denote this as =(H). Show that =(H) ∼= R3, and show that =(H) is in fact a real

Lie algebra with

[q1, q2] := q1q2 − q2q1 (9.84) eq:ImagQuatLieAlgebra

Using (9.81) identify this as the Lie algebra of SU(2): =(H) ∼= su(2). (Recall that su(2) is

the real Lie algebra of 2× 2 traceless anti-Hermitian matrices.)

c.) Show that det(ρ(q)) = qq̄ = xµxµ and use this to define a homomorphism

ρ : SU(2)× SU(2)→ SO(4) (9.85) eq:DoubleCoverSO4

d.) Show that we have an exact sequence 21

1→ Z2 → SU(2)× SU(2)→ SO(4)→ 1 (9.86)

where ι : Z2 → SU(2)× SU(2) takes the nontrivial element −1 to (−12,−12).

e.) Show that under the homomorphism ρ the diagonal subgroup of SU(2) × SU(2)

preserves the scalars and acts as the group SO(3) of rotations of =(H) ∼= R3.

21Answer : We use the homomorphism ρ : SU(2)× SU(2) → SO(4) defined by ρ(q1, q2) : q 7→ q1qq2. To

compute the kernel we search for pairs (q1, q2) of unit quaternions so that q1qq2 = q for all q ∈ H. Applying

this to q = 1 gives q1 = q2. Then applying it to q = i, j, k we see that q1 = q2 must be a real scalar. The

only such unit quaternions are q1 ∈ {±1}. To check the image is entirely in SO(4) you can check this for

diagonal matrices in SU(2)×SU(2) and then everything conjugate to these must be in SO(4), so the image

is a subgroup of SO(4) of dimension six and therefore must be all of SO(4).
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Exercise Unitary Matrices Over Quaternions And Symplectic Groups

a.) Show that the algebra Matn(H) of n×n matrices with quaternionic entries can be

identified as the subalgebra of Mat2n(C) of matrices A such that

A∗ = JAJ−1 J =

(
0 −1n
1n 0

)
(9.87)

b.) Show that the unitary group over H:

U(n,H) := {u ∈ Matn(H)|u†u = 1} (9.88)

is isomorphic to

USp(2n) := {u ∈ U(2n,C)|u∗ = JuJ−1} (9.89)

To appreciate the notation show that matrices u ∈ USp(2n) also satisfy

utrJu = J (9.90)

which is the defining relation of Sp(2n,C).

Exercise Complex structures on R4

a.) Show that the complex structures on R4 compatible with the Euclidean metric can

be identified as the maps

q 7→ nq n2 = −1 (9.91)

OR

q 7→ qn n2 = −1 (9.92)

b.) Use this to show that the space of such complex structures is S2 q S2.

Exercise Regular Representation ♣This is too

important to be an

exercise, and is used

heavily later. ♣
Compute the left and right regular representations of H on itself as follows: Choose a

real basis for H with v1 = i, v2 = j, v3 = k, v4 = 1. Let L(q) denote left-multiplication by a

quaternion q and R(q) right-multiplciation by q. Then the representation matrices are:

L(q)va := q · va := L(q)bavb (9.93)

R(q)va := va · q := R(q)bavb (9.94)

a.) Show that:

L(i) =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 (9.95)
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L(j) =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 (9.96)

L(k) =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 (9.97)

R(i) =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 (9.98)

R(j) =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 (9.99)

R(k) =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 (9.100)

b.) Show that these matrices generate the full 16-dimensional algebra M4(R). This is

the content of the statement that

H⊗R Hopp ∼= End(R4) (9.101)

Exercise ’t Hooft symbols and the regular representation of H
The famous ’t Hooft symbols, introduced by ’t Hooft in his work on instantons in

gauge theory are defined by ♣CHECK

FACTORS OF

TWO!!! ♣

α±,iµν := ±δiµδν4 ∓ δiνδµ4 + εiµν (9.102)

where 1 ≤ µ, ν ≤ 4, 1 ≤ i ≤ 3 and εiµν is understood to be zero if µ or ν is equal to 4.

(Note: Some authors will use the notation ηiµν , and some authors will use a different overall

normalization.)

a.) Show that

α+,1 = R(i) α+,2 = R(j) α+,3 = R(k) (9.103)

α−,1 = −L(i) α−,2 = −L(j) α−,3 = −L(k) (9.104)
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b.) Verify the relations

[α±,i, α±,j ] = −2εijkα±,k

[α±,i, α∓,j ] = 0
(9.105)

c.) Let so(4) of 4 × 4 denote the real Lie algebra of real anti-symmetric matrices. It

is the Lie algebra of SO(4). Show that it is of dimension 6 and that every element can be

uniquely decomposed as L(q1)−R(q2) where q1, q2 are imaginary quaternions.

d.) Show that the map

=(H)⊕=(H)→ so(4) (9.106)

q1 ⊕ q2 → L(q1)−R(q2) (9.107)

defines an isomorphism of Lie algebras

su(2)⊕ su(2) ∼= so(4) (9.108) eq:so4-isomorphism

e.) Using (b) and (9.81) show that the above isomorphism of Lie algebras can be

expressed as a mapping of generators

√
−1

2
σi ⊕ 0 7→ 1

2
α+,i

0⊕
√
−1

2
σi 7→ 1

2
α−,i

(9.109)

f.) Now show that

{α±,i, α±,j} = −2δij (9.110)

and deduce that:

α+,iα+,j = −δij − εijkα+,k

α−,iα−,j = −δij − εijkα−,k
(9.111)

g.) Deduce that the inverse isomorphism to (9.108) is

T 7→
(
−
√
−1Tr(α+,iT )σi

)
⊕
(
−
√
−1Tr(α−,iT )σi

)
(9.112)

Exercise Quaternions And (Anti-)Self-Duality

a.) Introduce the 4d epsilon tensor εµνλρ with ε1234 = +1. Show that the rank-two

antisymmetric tensors α+,i
µν for fixed i are self-dual and anti-self-dual in the sense that

α+,i
µν =

1

2
εµνλρα

+,i
λρ (9.113)

α−,iµν = −1

2
εµνλρα

−,i
λρ (9.114)
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b.) On so(4), which, as a vector space, can be identified with the space of two-index

anti-symmetric tensors define

(∗T )µν :=
1

2
εµνλρTλρ (9.115)

Show that the linear transformation ∗ : so(4)→ so(4) satisfies ∗2 = 1. Therefore

P± =
1

2
(1± ∗) (9.116)

are projection operators. Interpret the isomorphism (9.108) as the decomposition into

self-dual and anti-self-dual tensors.

c.) If T is an antisymmetric tensor with components Tµν then a common notation is

P±(T ) = T±. Check that

T±12 =
1

2
(T12 ± T34) = ±T±34

T±13 =
1

2
(T13 ± T42) = ±T±42

T±14 =
1

2
(T14 ± T23) = ±T±23

(9.117)

We remark that the choice ε1234 = +1, instead of ε1234 = −1 is a choice of orientation

on R4. A change of orientation exchanges self-dual and anti-self-dual.

d.) Recall the notation that vµ ∈ H is the natural basis of quaternions i, j, k, 1. Show

that v−µν = vµvν − vνvµ are anti-self-dual and v+
µν = vµvν − vνvµ are self-dual.

Exercise More about SO(4) matrices

Show that if x1,2,3,4 are real then

L(x4 + x1i + x2j + x3k) =


x4 −x3 x2 x1

x3 x4 −x1 x2

−x2 x1 x4 x3

−x1 −x2 −x3 x4

 (9.118) eq:L-GenQuat

b.) Show that when xµxµ = 1 the matrix L(x4 +x1i+x2j+x3k) is an SO(4) rotation.

c.) Similarly

R(y4 + y1i + y2j + y3k) =


y4 y3 −y2 y1

−y3 y4 y1 y2

y2 −y1 y4 y3

−y1 −y2 −y3 y4

 (9.119) eq:R-GenQuat

is an SO(4) rotation when yµyµ = 1.

d.) Show that the general SO(4) matrix is a product of these.
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e.) Show that, in particular that if we identify k = iσ3 then

ρ(eiθσ3
, 1) =

(
R(θ) 0

0 R(−θ)

)
(9.120)

ρ(1, eiθσ3
) =

(
R(θ) 0

0 R(θ)

)
(9.121)

where ρ is the homomorphism defined in (9.85) and

R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
(9.122)

9.4 Quaternionic Structure On A Real Vector Space

Definition: A quaternionic vector space is a vector space V over κ = R together with

three real linear operators I, J,K ∈ End(V ) satisfying the quaternion relations. In other

words, it is a real vector space which is a module for the quaternion algebra.

Example 1: Consider H⊕n ∼= R4n. Vectors are viewed as n-component column vectors

with quaternion entries. Each quaternion is then viewed as a four-component real vector.

The operators I, J,K are componentwise left-multiplication by L(i), L(j), L(k).

It is possible to put a quaternionic Hermitian structure on a quaternionic vector space

and thereby define the quaternionic unitary group. Alternatively, we can define U(n,H)

as the group of n × n matrices over H such that uu† = u†u = 1. In order to define the

conjugate-transpose matrix we use the quaternionic conjugation q → q̄ defined above.

Exercise A natural sphere of complex structures

Show that if V is a quaternionic vector space with complex structures I, J,K then

there is a natural sphere of complex structures given by

I = x1I + x2J + x3K x2
1 + x2

2 + x2
3 = 1 (9.123)

9.5 Quaternionic Structure On Complex Vector Space

Just as we can have a complex structure on a real vector space, so we can have a quater-

nionic structure on a complex vector space V . This is a C-anti-linear operator K on V

which squares to −1. Once we have K2 = −1 we can combine with the operator I which

is just multiplication by
√
−1, to produce J = KI and then we can check the quaternion

relations. The underlying real space VR is then a quaternionic vector space.
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Example 2: The canonical example is given by taking a complex vector space V and

forming

W = V ⊕ V̄ (9.124)

The underlying real vector space WR has quaternion actions:

I : (v1, v2) 7→ (iv1, iv2) = (iv1,−iv2) (9.125)

J : (v1, v2) 7→ (−v2, v1) (9.126)

K : (v1, v2) 7→ (−iv2,−iv1) (9.127)

Remarks

1. Tensor Products Of Quaternionic Vector Spaces. Let V1, V2 be complex vector spaces

with a quaternionic structure. Note that V1 ⊗C V2 is not (naturally) a quaternionic

vector space, but rather a vector space with a real structure. The reason is that,

if K1,K2 are the anti-linear operators defining the quaternionic structure on V1, V2,

respectively, then K1⊗K2 is again anti-linear, but squares to +1, not −1. Similarly,

if V1, . . . , Vn are quaternionic vector spaces then V1 ⊗C V2 ⊗C · · · ⊗C Vn has a natural

quaternionic structure if n is odd and a natural real structure if n is even.

2. A representation ρ : G → GL(V ), where V is a real vector space, is said to be a

quaternionic representation if ρ(g) commute with I, J,K for all g. A good example

of a quaternionic representation is the provided by the fundamental representation

V of SU(2). Let V ∼= C2 be the defining 2-dimensional representation of SU(2). We

can identify

VR ∼= R4 ∼= H (9.128)

and then the SU(2) action is the U(1,H) left action on H. This becomes manifest if

we identify H with the space of 2× 2 complex matrices:(
z −w̄
w z̄

)
(9.129)

with ψ ∈ V identified with

ψ =

(
z

w

)
(9.130)

Now, the action of I, J,K commuting with the ρ(u) is clearly given by −R(i), −R(j),

and −R(k), respectively. More generally, the H action commuting with the SU(2)

action on the representation is given by right-multiplication by q̄ with q ∈ H.

3. It follows that, if V is the fundamental representation of SU(2), then V ⊗n is a real

representation for n even and is a quaternionic representation for n odd. As we saw

from the Clebsch-Gordon decomposition, V ⊗n ∼= V (n/2) ⊕ · · · . Thus we conclude

that the spin j representation is real for j integral and quaternionic for j half-integral.
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4. Kramers’ theorem. We can return to Kramers’ theorem: If there is a time-reversing

symmetry in quantum mechanics and T 2 = −1 then T defines a quaternionic struc-

ture. But the complex dimension of a quaternionic vector space is necessarily even.

This is the Kramers degeneracy.

9.5.1 Complex Structure On Quaternionic Vector Space
♣This

subsubsection needs

to be written more

carefully. ♣

Recall that a quaternionic vector space is a real vector space V with an action of the

quaternions. So for every q ∈ H we have T (q) ∈ EndR(V ) such that

T (q1)T (q2) = T (q1q2) (9.131)

In other words, a representation of the real quaternion algebra.

If we think of V as a copy of Hn with the quaternionic action left-multiplication by q

componentwise, so that

T (q)

q1

...

qn

 :=

qq1

...

qqn

 (9.132)

then a complex structure would be a left-action by any GL(n,H) conjugate of T (i). If we

wish to preserve the norm, then it is a U(n,H) conjugate of T (i).

A complex structure then describes an embedding of Cn into Hn so that we have an

isomorphism of

Hn ∼= Cn ⊕ Cn (9.133)

as complex vector spaces.

9.5.2 Summary

To summarize we have described four basic structures we can put on vector spaces:

1. A complex structure on a real vector space W is a real linear map I : W → W with

I2 = −1. That is, a representation of the real algebra C.

2. A real structure on a complex vector space V is a C-anti-linear map K : V → V with

K2 = +1.

3. A quaternionic structure on a complex vector space V is a C-anti-linear map K :

V → V with K2 = −1.

4. A complex structure on a quaternionic vector space V is a representation of the real

algebra H with a complex structure commuting with the H-action.

9.6 Spaces Of Real, Complex, Quaternionic Structures
subsec:SpacesOf-RCH-Structure

This section makes use of the “stabilizer-orbit theorem.” See the beginning of section 3. ♣So, we should

move this to

chapter three as an

application of the

Stabilizer-Orbit

theorem. ♣

We saw above that if V is a finite-dimensional real vector space with a complex struc-

ture then by an appropriate choice of basis we have an isomorphism V ∼= R2n, for a suitable

integer n, and I = I0. So, choose an isomorphism of V with R2n and identify with space of
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complex structures on V with those on R2n. Then the general complex structure on R2n

is of the form SI0S
−1 with S ∈ GL(2n,R). In other words, there is a transitive action

of GL(2n,R) on the space of complex structures. We can then identify the space with a

homogeneous space of GL(2n,R) by computing the stabilizer of I0. Now if

gI0g
−1 = I0 (9.134) eq:Stab-I0

for some g ∈ GL(2n,R) then we can write g in block-diagonal form

g =

(
A B

C D

)
(9.135)

and then the condition (9.134) is equivalent to C = −B and D = A, so that

StabGL(2n,R)(I0) = {g ∈ GL(2n,R)|g =

(
A B

−B A

)
} (9.136)

we claim this subgroup of GL(2n,R) is isomorphic to GL(n,C). To see this simply note

the above matrix is A ⊗ 12×2 + B ⊗ (iσ2) and we can diagonalize iσ2. Explicitly, if we

introduce the matrix

S0 := − 1

2i

(
1n 1n
−i1n i1n

)
(9.137)

then if g ∈ StabGL(2n,R)(I0) and we write it in block form we have

S−1
0 gS0 =

(
A− iB 0

0 A+ iB

)
(9.138)

thus the determinant is

det(g) = |det(A+ iB)|2 (9.139)

and since det(g) 6= 0 we know that det(A + iB) 6= 0. Conversely, if we have a matrix

h ∈ GL(n,C) we can decompose it into its real and imaginary parts h = A+iB and embed

into GL(2n,R) via

h 7→

(
A B

−B A

)
(9.140)

(We could change the sign of B in this embedding. The two embeddings differ by the

complex conjugation automorphism of GL(n,C). )

We conclude that the space of complex structures is a homogeneous space

ComplexStr(R2n) ∼= GL(2n,R)/GL(n,C) (9.141)

We could demand that our complex structures are compatible with the Euclidean

metric on R2n. Then the conjugation action by O(2n) is transitive and the above embedding

is an embedding of U(n) into O(2n) and

CompatComplexStr(R2n) ∼= O(2n)/U(n) (9.142)
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We now turn to the real structures on a finite-dimensional complex vector space. We

can choose an isomorphism V ∼= Cn and then the general real structure is related to

C0 :

n∑
i=1

ziei →
n∑
i=1

z∗i ei (9.143)

by conjugation: C = g−1C0g with g ∈ GL(n,C). 22 The stabilizer of C0 is rather obviously

GL(n,R), which sits naturally in GL(n,C) as a subgroup. Thus:

RealStr(Cn) ∼= GL(n,C)/GL(n,R) (9.144)

CompatRealStr(Cn) ∼= U(n)/O(n) (9.145)

Let us now consider quaternionic structures on a complex vector space. We iden-

tify these as anti-linear operators J : V → V that square to −1 and denote the set by

QuatStr(V ). Now, GL(V ) acts on QuatStr(V ) by K 7→ gKg−1. Moreover, this action

is transitive. so we just need to determine a stabilizer group. Again, we can fix an ♣Need to supply

argument. ♣
isomorphism V ∼= C2n and we choose an anti-linear operator that squares to −1. Let us

choose:

J0 :

(
v1

v∗2

)
→

(
−v2

v∗1

)
(9.146)

where v1, v2 ∈ Cn. Now we compute the stabilizer J0, that is, the matrices g ∈ GL(2n,C)

such that gJ0g
−1 = J0 when acting on vectors in C2n. In terms of matrices this means:(

0 1

−1 0

)
g

(
0 −1

1 0

)
= g∗ (9.147)

which works out to:

StabGL(2n,C(J0) = {g ∈ GL(2n,C)|g =

(
A B

−B∗ A∗

)
} (9.148)

Recall our characterization of n × n matrices over the quaternions. It follows that this

defines an embedding of GL(n,H)→ GL(2n,C). 23 So

QuatStr(C2n) ∼= GL(2n,C)/GL(n,H) (9.149)

Putting the natural Hermitian structure on C2n we could demand that quaternionic struc-

tures are compatible with this Hermitian structure. Then the conjugation action by U(2n)

is transitive and the above embedding is an embedding of USp(2n) into U(2n) and

CompatQuatStr(C2n) ∼= U(2n)/USp(2n) (9.150)

22Proof: Given a real structure the fixed point set is a real subspace, but that space has a basis {ei} and

then the real structure is what we wrote above. But all bases are related by GL(n,C).
23It is possible, but tricky to define the notion of a determinant of a matrix of quaternions. It is best to

think of GL(n,H) as a Lie group with Lie algebra Matn(H), or in terms of 2n × 2n matrices over C, the

group we have written explicitly.
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Finally, in a similar way we find that the space of complex structures on a quaternionic

vector space can be identified with

CompatCmplxStr(Hn) ∼= USp(2n)/U(n) (9.151)

Remarks

1. Relation to Cartan involutions. The above homogeneous spaces have an interesting

relation to Cartan involutions. A Cartan involution 24 θ on a Lie algebra is a Lie

algebra automorphism so that θ2 = 1. Decomposing into ± eigenspaces we have

g = k⊕ p (9.152)

where k = {X ∈ g|θ(X) = X} and p is the −1 eigenspace and we have moreover

[k, k] = k [k, p] = p [p, p] = k (9.153)

At the group level we have an involution τ : G → G so that at the identity element

dτ = θ. Then if K = Fix(τ) we have a diffeomorphism of G/K with the subset in G

of “anti-fixed points”:

G/K ∼= O := {g ∈ G|τ(g) = g−1} (9.154)

The above structures, when made compatible with natural metrics are nice examples:

Complex structures on real vector spaces: R2n ∼= Cn. Moduli space:

O(2n)/U(n) (9.155) eq:ClassCartSpace-8

This comes from τ(g) = I0gI
−1
0 where I0 is (9.8).

Real structures on complex vector spaces: Rn ↪→ Cn. Moduli space

U(n)/O(n) (9.156) eq:ClassCartSpace-7

This comes from τ(u) = u∗.

Quaternionic structures on complex vector spaces: C2n ∼= Hn. Moduli space:

U(2n)/Sp(n) (9.157) eq:ClassCartSpace-10

Viewing Sp(n) as USp(2n) := U(2n)∩Sp(2n;C) we can use the involutive automor-

phism τ(g) = I−1
0 g∗I0 on U(2n). The fixed points in U(2n) are the group elements

with gI0g
tr = I0, but this is the defining equation of Sp(2n,C).

Complex structures on quaternionic vector spaces: Cn ↪→ Hn. Moduli space:

Sp(n)/U(n) (9.158) eq:ClassCartSpace-9

24See Chapter **** below for much more detail.
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Viewing Sp(n) as unitary n×n matrices over the quaternions the involution is τ(g) =

−igi, i.e. conjugation by the unit matrix times i.

When Cartan classified compact symmetric spaces he found the 10 infinite series of

the form O × O/O , U × U/U , Sp × Sp/Sp, O/O × O, U/U × U , Sp/Sp × Sp and

the above for families. In addition there is a finite list of exceptional cases.

2. The 10-fold way. In condensed matter physics there is a very beautiful classification

of ensembles of Hamiltonians with a given symmetry type known as the 10-fold way.

It is closely related to the above families of Cartan symmetric spaces, as discovered

by Altland and Zirnbauer. See, for example,

http://www.physics.rutgers.edu/∼gmoore/695Fall2013/CHAPTER1-QUANTUMSYMMETRY-

OCT5.pdf

http://www.physics.rutgers.edu/∼gmoore/PiTP-LecturesA.pdf

Exercise Quaternionic Structures On R4

In an exercise above we showed that the space of Euclidean-metric-compatible quater-

nionic structures on R4 is S2 q S2. Explain the relation of this to the coset O(4)/U(2).

10. Some Canonical Forms For a Matrix Under Conjugation

10.1 What is a canonical form?

We are going to collect a compendium of theorems on special forms into which matrices

can be put.

There are different ways one might wish to put matrices in a “canonical” or standard

form.

In general we could consider multiplying our matrix by different linear transformations

on the left and the right

A→ S1AS2 (10.1)

where S1, S2 are invertible.

On the other hand, if A is the matrix of a linear transformation T : V → V then

change of bases leads to change of A by conjugation:

A→ SAS−1 (10.2) eq:congj

for invertible S.

On the other hand, if A is the matrix of a bilinear form on a vector space (see below)

then the transformation will be of the form:

A→ SAStr (10.3) eq:trnwsp
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and here we can divide the problem into the cases where A is symmetric or antisymmetric.

There is some further important fine print on the canonical form theorems: The the-

orems can be different depending on whether the matrix elements in

C ⊃ R ⊃ Q ⊃ Z (10.4)

Also, we could put restrictions on S ∈ GL(n,C) and require the matrix elements of S to

be in R,Q,Z. Finally, we could require S to be unitary or orthogonal. As we put more

restrictions on the problem the nature of the canonical forms changes.

Some useful references for some of these theorems:

1. Herstein, sec. 6.10,

2. Hoffman and Kunze, Linear Algebra

10.2 Rank

If T : V → W is a linear transformation between two vector spaces the dimension of the

image is called the rank of T . If V and W are finite dimensional complex vector spaces it

is the only invariant of T under change of basis on V and W :

Theorem 1 Consider any n ×m matrix over a field κ, A ∈ Matn×m(κ). This has a left

and right action by GL(n, κ) × GL(m,κ). By using this we can always bring A to the ♣left- action and

right-action not

defined until next

chapter. ♣
canonical form: Let r denote the rank, that is, the dimension of the image space. Then

there exist g1 ∈ GL(n, κ) and g2 ∈ GL(m,κ) so that g1Ag
−1
2 is of the form:

a.) If r < n,m: (
1r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

)
(10.5) eq:rankinv

b.) If r = n < m then we write the matrix as(
1n 0n×(m−n)

)
(10.6)

c.) If r = m < n then we write the matrix as(
1m

0(n−m)×n

)
(10.7)

d.) If r = n = m then we have the identity matrix.

That is, the only invariant under arbitrary change of basis of domain and range is the

rank.

The proof easily follows from the fact that any subspace V ′ ⊂ V has a complementary

vector space V ′′ so that V ′ ⊕ V ′′ ∼= V .

Exercise

Prove this. Choose an arbitrary basis for κn and κm and define an operator T using

the matrix A. Now construct a new basis, beginning by choosing a basis for kerT .
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Exercise

If M is the matrix of a rank 1 operator, in any basis, then it has the form

Miα = viwα i = 1, . . . , n;α = 1, . . . ,m (10.8)

for some vectors v, w.

10.3 Eigenvalues and Eigenvectors
sec:ee

Now let us consider a square matrix A ∈ Matn×n(κ). Suppose moreover that it is the

matrix of a linear transformation T : V → V expressed in some basis. If we are actually

studying the operator T then we no longer have the luxury of using different transformations

g1, g2 for change of basis on the domain and range. We must use the same invertible matrix

S, and hence our matrix transforms by conjugation

A→ S−1AS (10.9)

This changes the classification problem dramatically.

When thinking about this problem it is useful to introduce the basic definition: If

T : V → V is a linear operator and v ∈ V is a nonzero vector so that

Tv = λv (10.10)

then λ is called an eigenvalue of T and v is called an eigenvector. A similar definition holds

for a matrix. 25

Example. The following matrix has two eigenvalues and two eigenvectors:(
0 λ

λ 0

)(
1

1

)
= λ

(
1

1

)
(10.11)

(
0 λ

λ 0

)(
1

−1

)
= −λ

(
1

−1

)
(10.12)

Note that the two equations can be neatly summarized as one by making the eigenvectors

columns of a square matrix:(
0 λ

λ 0

)(
1 1

1 −1

)
=

(
1 1

1 −1

)
·

(
λ 0

0 −λ

)
(10.13)

and so the matrix of eigenvectors diagonalizes our operator.

25Alternative terminology: characteristic value, characteristic vector.
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Generalizing the previous example, if T ∈ End(V ) and V has a basis {v1, . . . , vn}
of eigenvectors of T with eigenvalues λi. Then, wrt that basis, the associated matrix is

diagonal: 
λ1 0 0 · · · 0

0 λ2 0 · · · 0

· · · · · · · · · 0

0 0 0 · · · λn

 (10.14) eq:diagmatrix

In general, if A is the matrix of T with respect to some basis (not necessarily a basis of

eigenvectors) and if S is a matrix whose columns are n linearly independent eigenvectors

then

AS = SDiag{λ1, . . . , λn} ⇒ S−1AS = Diag{λ1, . . . , λn} (10.15)

As we shall see, not every matrix has a basis of eigenvectors. Depending on the field,

a matrix might have no eigenvectors at all. A simple example is that over the field κ = R
the matrix (

0 1

−1 0

)
(10.16)

has no eigenvectors at all. Thus, the following fact is very useful:

Theorem 10.3.1. If A ∈ Mn(C) is any complex matrix then it has at least one nonvan-

ishing eigenvector.

In order to prove this theorem it is very useful to introduce the characteristic polyno-

mial:

Definition The characteristic polynomial of a matrix A ∈Mn(κ) is

pA(x) =: det(x1n −A) (10.17) eq:charpoly

Proof of Theorem 10.3.1 : The characteristic polynomial pA(x) has at least one root,

call it λ, over the complex numbers. Since, det(λ1n − A) = 0 the matrix λ1n − A has a

nonzero kernel K ⊂ Cn. If v is a nonzero vector in K then it is an eigenvector. ♠

So - a natural question is -

Given a matrix A, does it have a basis of eigenvectors? Equivalently, can we diago-

nalize A via A→ S−1AS ?

NO! YOU CAN’T DIAGONALIZE EVERY MATRIX!

Definition A matrix x ∈Mn(C) is said to be semisimple if it can be diagonalized.

Remarks:
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1. Note well: The eigenvalues of A are zeroes of the characteristic polynomial.

2. We will discuss Hilbert spaces in Section §13 below. When discussing operators T on

Hilbert space one must distinguish eigenvalues of T from the elements of the spectrum

of T . For a (bounded) operator T on a Hilbert space we define the resolvent of T to

be the set of complex numbers λ so that λ1 − T is 1-1 and onto. The complement

of the resolvent is defined to be the spectrum of T . In infinite dimensions there are

different ways in which the condition of being 1−1 and invertible can go wrong. The

point spectrum consists of the eigenvalues, that is, the set of λ so that ker(λ1 − T )

is a nontrivial subspace of the Hilbert space. In general it is a proper subset of the

spectrum of T . See section 18.3 below for much more detail.

2. Theorem 10.3.1 is definitely false if we replace C by R. It is also false in infinite

dimensions. For example, the Hilbert hotel operator has no eigenvector. To define

the Hilbert hotel operator choose an ON basis φ1, φ2, . . . and let S : φi → φi+1,

i = 1, . . . . In terms of harmonic oscillators we can represent S as

S =
1√
a†a

a†. (10.18)

Exercise

If A is 2× 2 show that

pA(x) = x2 − xtr (A) + det(A) (10.19)

We will explore the generalization later.

Exercise

Show that (
0 1

0 0

)
(10.20)

cannot be diagonalized.

(Note that it does have an eigenvector, of eigenvalue 0.)

10.4 Jordan Canonical Form

Although you cannot diagonalize every matrix, there is a canonical form which is “al-

most” as good: Every matrix A ∈ Mn(C) can be brought to Jordan canonical form by

conjugation by S ∈ GL(n,C):

A→ S−1AS (10.21)
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We will now explain this

Definition: A k × k matrix of the form:

J
(k)
λ =



λ 1 0

0 λ 1 ·
0 0 λ 1 ·

· ·
· 0

· 1

0 · · · · 0 λ


(10.22)

is called an elementary Jordan block belonging to λ. We can also write

J
(k)
λ = λ1 +

k−1∑
i=1

ei,i+1 (10.23)

Example: The first few elementary Jordan blocks are:

J
(1)
λ = λ, J

(2)
λ =

(
λ 1

0 λ

)
, J

(3)
λ =

λ 1 0

0 λ 1

0 0 λ

 , · · · (10.24)

Exercise Jordan blocks and nilpotent matrices

Write the Jordon block as

J
(k)
λ = λ1k +N (k) (10.25)

Show that (N (k))` 6= 0 for ` < k but (N (k))k = 0.

The J
(k)
λ are the atoms in the world of matrices with complex matrix elements. They

cannot be broken into more elementary parts by similarity transformation. For k > 1 the

Jordan blocks cannot be diagonalized. One easy way to see this is to write:

J
(k)
λ − λ1k = N (k) (10.26) eq:nilpjord

If J
(k)
λ could be diagonalized, then so could the LHS of (10.26). However N (k) cannot

be diagonalized since (N (k))k = 0, and N (k) 6= 0. Another proof uses the characteristic

polynomial. The characteristic polynomial of a diagonalizable matrix is pA(x) =
∏

(x−λi).
Now note that the characteristic polynomial of the Jordan matrix is:

pJ(k)(x) := det[x1− J (k)
λ ] = (x− λ)k (10.27) eq:charpol

Hence if J could be diagonalized it would have to equal SJ
(k)
λ S−1 = Diag{λ}. But then

we can invert this to J
(k)
λ = S−1Diag{λ}S = Diag{λ}, a contradiction for k > 1.

– 90 –



Theorem/Definition: Every matrix A ∈ Mn(C) can be conjugated to Jordan canonical

form over the complex numbers. A Jordan canonical form is a matrix of the form:

A =



A1 0

·
·
·
·
·

0 As


(10.28)

where we have blocks Ai corresponding to the distinct roots λ1, . . . , λs of the characteristic

polynomial pA(x) and each block Ai has the form:

Ai =



J
(ki1)
λi

J
(ki2)
λi

·
·
·
·

J
(ki`i

)

λi


(10.29)

where J
(kij)

λi
is the elementary Jordan blocks belonging to λi and

n =

s∑
i=1

`i∑
t=1

kit (10.30)

Proof : We sketch a proof briefly below. See also Herstein section 6.6.

Note that the characteristic polynomial looks like

p(x) ≡ det[x1−A] =
∏
i

(x− λi)κi

κi =

`i∑
j=1

kij

(10.31) eq:charpolp

Remarks

1. Thus, if the roots of the characteristic polynomial are all distinct then the matrix is

diagonalizable. This condition is sufficient, but not necessary, since λ1n is diagonal,

but has multiple characteristic values.
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2. The above theorem implies that every matrix A can be put in the form:

A = Ass +Anilp (10.32)

where Ass (“the semisimple part”) is diagonalizable and Anilp is nilpotent. Note that

if D is diagonal then

trD(N (k))` = 0 (10.33)

for ` > 0 and hence

trAn = trAnss. (10.34)

Thus, the traces of powers of a matrix do not characterize A uniquely, unless it is

diagonalizable.

Exercise Jordan canonical form for nilpotent operators

If T : V → V is a nilpotent linear transformation show that there are vectors v1, . . . , v`
so that V has a basis of the form:

B = {v1, T v1, T
2v1, . . . , T

b1−1v1;

v2, T v2, . . . , T
b2−1v2;

· · ·
v`, T v`, . . . , T

b`−1v`}

(10.35) eq:JCF

where dimV = b1 + · · ·+ b` and

T bjvj = 0 j = 1, . . . , ` (10.36)

Exercise The Cayley-Hamilton theorem

If f(x) = a0 + a1x + · · · + amx
m is a polynomial in x then we can evaluate it on a

matrix A ∈Matn(k):

f(A) := a0 + a1A+ · · ·+ amA
m ∈Matn(k) (10.37)

a.) Show that if pA(x) is the characteristic polynomial of A then

pA(A) = 0 (10.38)

b.) In general, for any matrix A, there is a smallest degree polynomial mA(x) such

that mA(x = A) = 0. This is called the minimal polynomial of A. In general mA(x)
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divides pA(x), but might be different from pA(x). Give an example of a matrix such that

mA(x) 6= pA(x). 26

Exercise A useful identity

In general, given a power series f(x) =
∑

n≥0 anx
n we can evaluate it on a matrix

f(A) =
∑

n≥0 anA
n. In particular, we can define exp(A) and logA for a matrix A by the

power series expansions of exp(x) in x and log(x) in (1− x).

a.) Show that

detexpA = expTrA (10.39)

Sometimes written in the less accurate form

detM = expTrlogM (10.40)

b.) Suppose M is invertible, and δM is “small” compared to M . Show that

√
det(M + δM) =

√
detM

[
1 +

1

2
Tr(M−1δM)

+
1

8
(Tr(M−1δM))2 − 1

4
Tr(M−1δM)2 +O((δM)3)

] (10.41)

Exercise Jordan canonical form and cohomology

Recall from Section **** that a chain complex has a degree one map Q : M → M

with Q2 = 0. If M is a complex vector space of dimension d < ∞ show that the Jordan

form of Q is (
0 1

0 0

)
⊗ 1d1 ⊕ 0d2 (10.42)

where d = 2d1 + d2. Show that the cohomology is isomorphic to Cd2 .

Exercise Nilpotent 2× 2 matrices

A matrix such that Am = 0 for some m > 0 is called nilpotent.

a.) Show that any 2× 2 nilpotent matrix must satisfy the equation:

A2 = 0 (10.43)

26Answer : The simplest example is just A = λ1k for k > 1. For a more nontrivial example consider

A = J
(2)
λ ⊕ J(2)

λ .
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b.) Show that any 2× 2 matrix solving A2 = 0 is of the form:

A =

(
x y

z −x

)
(10.44)

where

x2 + yz = 0. (10.45) eq:aone

The solutions to Equation (10.45) form a complex variety known as the A1 singularity. It

is a simple example of a (singular, noncompact) Calabi-Yau variety.

c.) If A is a 2× 2 matrix do trA,detA determine its conjugacy class?

Exercise Nilpotent matrices

A matrix such that Am = 0 for some m > 0 is called nilpotent.

a.) Characterize the matrices for which pA(x) = xn.

b.) Characterize the n× n matrices for which N2 = 0.

c.) Characterize the n× n matrices for Nk = 0 for some integer k.

Exercise Flat connections on a punctured sphere

The moduli space of flat GL(2,C) connections on the three punctured sphere is equiva-

lent to the set of pairs (M1,M2) of two matrices inGL(2,C) up to simultaneous conjugation.

Give an explicit description of this space.

10.4.1 Proof of the Jordan canonical form theorem

We include the proof here for completeness. ♣Should say exactly

where you use the

ground field being

C. ♣
Part 1: Decompose the space according to the different characteristic roots:

Let A ∈ Matn(C) be a matrix acting on Cn. Let mA(x) be the minimal polynomial

of A. This is the polynomial of least degree such that mA(A) = 0. Suppose mA(x) =

q1(x)q2(x), where q1, q2 are relatively prime polynomials. Then define

V1 := {v : q1(A)v = 0}
V2 := {v : q2(A)v = 0}

(10.46) eq:jordproof

We claim Cn = V1 ⊕ V2, and A acts block-diagonally in this decomposition.

To see this, note that there exist polynomials r1(x), r2(x) such that

q1(x)r1(x) + q2(x)r2(x) = 1 (10.47) eq:relprime
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If u ∈ V1 ∩ V2 then, applying (10.47) with x = A to u we get u = 0. Thus

V1 ∩ V2 = {0} (10.48) eq:inter

Now, apply (10.47) to any vector u to get:

u = q1(A)(r1(A)u) + q2(A)(r2(A)u)

= u1 ⊕ u2

(10.49)

Since q2(A)u1 = mA(A)(r1(A)u) = 0 we learn that u1 ∈ V2, and similarly u2 ∈ V1. Thus,

any vector u is in the sum V1 + V2. Combined with (10.48) this means

Cn = V1 ⊕ V2. (10.50)

Finally, V1, V2 are invariant under A. Thus, A acts block diagonally on V1 ⊕ V2.

Now, factoring mA(x) =
∏
i(x − λi)ρi into distinct roots we obtain a block decompo-

sition of A on Cn = ⊕iVi where (x− λi)ρi is the minimal polynomial of A on Vi. Consider

A restricted to Vi. We can subtract λi1, which is invariant under all changes of basis to

assume that Aρii = 0.

Part 2: Thus, the proof of Jordan decomposition is reduced to the Jordan decomposi-

tion of matrices M on Cn such that the minimal polynomial is Mρ = 0. 27

We will approach this by showing using induction on dimV that a nilpotent operator

T : V → V has a basis of the form (10.35). The initial step is easily established for

dimV = 1 (or dimV = 2). Now for the inductive step note that if T is nilpotent and

nonzero then T (V ) ⊂ V is a proper subspace. After all, if T (V ) = V then applying T

successively we would obtain a contradiction. Then, by the inductive hypothesis there

must be a basis for T (V ) of the form given in (10.35).

Now, let us consider the kernel of T . This contains the linearly independent vectors

T b1v1, . . . , T
b`v`. We can complete this to a basis for kerT with some vectors w1, . . . , wm.

Now, since vi ∈ T (V ) there must be vectors ui ∈ V with T (ui) = vi. Then, we claim,

B = {u1, Tu1, T
2v1, . . . , T

b1u1;

u2, Tu2, . . . , T
b2u2;

· · ·
u`, Tu`, . . . , T

b`u`;

w1, . . . , wm}

(10.51) eq:JCF-2

is a basis for V . Of course, we have T bj+1uj = 0 and Twi = 0. First, these vectors are

27Here we follow a very elegant proof given by M. Wildon at

http://www.ma.rhul.ac.uk/ uvah099/Maths/JNFfinal.pdf.
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linearly independent: Suppose there were a relation of the form

0 = κ0
1u1 + κ1

1Tu1 + · · ·+ κb11 T
b1u1

+ κ0
2u2 + κ1

2Tu2 + · · ·+ κb22 T
b2u2

+ · · ·

+ κ0
`u` + κ1

`Tu` + · · ·+ κb`` T
b`u`+

+ ξ1w1 + · · ·+ ξmwm

(10.52)

Apply T to this equation and use linear independence of the basis for T (V ), then use linear

independence of the basis for kerT . Finally, we can see that (10.51) is complete because

dimV = dimkerT + dimimT

= (`+m) + (b1 + · · ·+ b`)

=
∑̀
j=1

(bj + 1) +m

(10.53)

This completes the argument. ♠

10.5 The stabilizer of a Jordan canonical form

Given a matrix x ∈Mn(C) it is often important to understand what matrices will commute

with it.

For example, if x ∈ GL(n,C) we might wish to know the stabilizer of the element

under the action of conjugation:

Z(x) := {g : g−1xg = x} ⊂ GL(n,C) ⊂Mn(C) (10.54)

In order to find the commutant of x it suffices to consider the commutant of its Jordan

canonical form. Then the following theorem becomes useful:

Lemma Suppose k, ` are positive integers and A is a k × ` matrix so that

J
(k)
λ1
A = AJ

(`)
λ2

(10.55) eq:CommuteJ

Then

1. If λ1 6= λ2 then A = 0.

2. If λ1 = λ2 = λ and k = ` then A is of the form

A(k)(α) = α0 · 1 + α1J
(k)
λ + α2(J

(k)
λ )2 + · · ·+ αk−1(J

(k)
λ )k−1 (10.56) eq:A-alpha

for some set of complex numbers α0, . . . , αk−1.

3. If λ1 = λ2 = λ and k < ` then A is of the form(
0 A(k)(α)

)
(10.57)
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Figure 4: The commutation relation implies that entries in a box are related to those to the left

and underneath in this enhanced matrix, as indicated by the arrows. fig:JORDANCOMMUTE

4. If λ1 = λ2 = λ and k > ` then A is of the form(
A(`)(α)

0

)
(10.58)

Proof : Write

A =
k∑
i=1

∑̀
j=1

Aijeij (10.59)

Then (10.55) is equivalent to

(λ2 − λ1)A =
k−1∑
i=1

∑̀
j=1

Ai+1,jeij −
k∑
i=1

∑̀
j=2

Ai,j−1eij (10.60) eq:CommuteJ2

Now enhance the matrix Aij to Âij by adding a row i = k+ 1 and a column j = 0 so that

Âij =

{
Aij 1 ≤ i ≤ k, 1 ≤ j ≤ `
0 i = k + 1 or j = 0

(10.61)

so (10.60) becomes

(λ2 − λ1)Âij = Âi+1,j − Âi,j−1 1 ≤ i ≤ k, 1 ≤ j ≤ ` (10.62)

Now consider Figure 4. If λ1 6= λ2 then we use the identity in the i = k, j = 1 box to

conclude that Ak,1 = 0. Then we successively use the identity going up the j = 1 column

to find that Ai,1 = 0 for all i. Then we start again at the bottom of the j = 2 column and

work up. In this way we find A = 0. If λ1 = λ2 the identity just tells us that two entries

along a diagonal have to be the same. Thus all diagonals with one of the zeros on the edge

must be zero. The other diagonals can be arbitrary. But this is precisely what a matrix of

type A(k)(α) looks like. ♠
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Remark: Note that the matrix A(k)(α) in (10.56) above can be rewritten in the form

A(k) = β0 + β1N
(k) + β2(N (k))2 + · · ·+ βk−1(N (k))k−1 (10.63)

which has the form, for example for k = 5:

A(5) =


β0 β1 β2 β3 β4

0 β0 β1 β2 β3

0 0 β0 β1 β2

0 0 0 β0 β1

0 0 0 0 β0

 (10.64)

It is clear from this form that the matrix is invertible iff β0 6= 0.

A consequence of this Lemma is that for any x ∈Mn(C) the subgroup Z(x) ⊂ GL(n,C)

must have complex dimension at least n. Some terminology (which is common in the

theory of noncompact Lie groups) that one might encounter is useful to introduce here in

its simplest manifestation:

Definition x is said to be regular if the dimension of Z(x) is precisely n. That is, a

regular element has the smallest possible centralizer.

Exercise Regular and semisimple

Show that x is regular and semisimple iff all the roots of the characteristic polynomial

are distinct. We will use this term frequently in following sections.

10.5.1 Simultaneous diagonalization

A second application of the above Lemma is simultaneous diagonalization:

Theorem: Two diagonalizable matrices which commute [A1, A2] = 0 are simultaneously

diagonalizable.

Proof : If we first diagonalize A1 then we get diagonal blocks corresponding to the

distinct eigenvalues λi:

A1 =

λ11r1×r1 0 · · ·
0 λ21r2×r2 · · ·
· · · · · · · · ·

 (10.65)

We have now “broken the gauge symmetry” to GL(r1,C) × GL(r2,C) × · · · . Moreover,

since the λi are distinct, a special case of our lemma above says that A2 must have a

block-diagonal form:

A2 =

A
(1)
2 0 · · ·
0 A

(2)
2 · · ·

· · · · · · · · ·

 (10.66)
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and we can now diagonalize each of the blocks without spoiling the diagonalization of A1.

♠
In quantum mechanics this theorem has an important physical interpretation: Com-

muting Hermitian operators are observables whose eigenvalues can be simultaneously mea-

sured.

Exercise Hilbert scheme of points

Warning: This is a little more advanced than what is generally assumed here.

Suppose two N ×N complex matrices X1, X2 commute

[X1, X2] = 0 (10.67) eq:hilscha

What can we say about the pair up to simultaneous conjugation? If they can be

simultaneously diagonalized then we may write:

SXiS
−1 = Diag{z(1)

i , . . . , z
(N)
i } i = 1, 2 (10.68) eq:hilschb

and hence we can associate to (10.67) N points (z
(k)
1 , z

(k)
2 ) ∈ C2, k = 1, 2, . . . , N . In

fact, because of conjugation, they are N unordered points. Thus the set of diagonalizable

Xi satisfying (10.67) is the symmetric product SymN (C2).

In general, we can only put X1, X2 into Jordan canonical form. Thus, the “moduli

space” of conjugacy classes of pairs (X1, X2) of simultaneously diagonalizable matrices is

more complicated. This is still not a good space. To get a good space we consider only

the conjugacy classes of “stable triples.” These are triples (X1, X2, v) where [X1, X2] = 0

and v ∈ CN is a vector such that Xn1
1 Xn2

2 v span CN . In this case we get a very interesting

smooth variety known as the Hilbert scheme of N points on C2.

a.) Show that HilbN (C2) can be identified with the set of ideals I ⊂ C[z1, z2] such

that C[z1, z2]/I is a vector space of dimension N .

Hint: Given an ideal of codimension N , observe that multiplication by z1, z2 on

C[z1, z2]/I define two commuting linear operators. Conversely, given (X1, X2, v) define

φ : C[z1, z2]→ CN by φ(f) := f(X1, X2)v.

b.) Write matrices corresponding to the ideal

I = (zN1 , z2 − (a1z1 + · · ·+ aN−1z
N−1
1 )) (10.69)

The point is, by allowing nontrivial Jordan form, the singular space SymN (C2) is

resolved to the nonsingular space HilbN (C2).

Exercise ADHM equations

Find the general solution of the 2× 2 ADHM equations:
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[X1, X
†
1] + [X2, X

†
2] + ii† − j†j = ζR

[X1, X2] + ij = 0
(10.70) eq:adhm

modulo U(2) transformations.

11. Sesquilinear forms and (anti)-Hermitian forms
sec:sips

Definition 11.1 A sesquilinear form on a complex vector space V is a function

h : V × V → C (11.1)

which is anti-linear in the first variable and linear in the second. That is: for all vi, wi ∈ V
and αi ∈ C:

h(v, α1w1 + α2w2) = α1h(v, w1) + α2h(v, w2)

h(α1v1 + α2v2, w) = α∗1h(v1, w) + α∗2h(v2, w)
(11.2)

Note that h defines a C-linear map V̄ × V → C and hence (by the universal property)

factors through a unique C-linear map

h̃ : V̄ ⊗ V → C (11.3)

Conversely, such a map defines a sesquilinear form. Thus, the space of all sesquilinear

forms, which is itself a complex vector space, is isomorphic to (V̄ ⊗ V )∗. We write:

Sesq(V ) ∼= (V̄ ⊗ V )∗ (11.4)

Now note that there are canonical maps

Sesq(V )⊗ V → V̄ ∗ (11.5) eq:sesqmap-1

Sesq(V )⊗ V̄ → V ∗ (11.6) eq:sesqmap-2

given by the contraction V ∗ ⊗ V → C and V̄ ∗ ⊗ V̄ → C, respectively. Written out more

explicitly, what equation (11.6) means is that if we are given a sesquilinear form h and an

element w̄ ∈ V̄ we get a corresponding element `h,w̄ ∈ V ∗ given by

`h,w̄(v) := h(w, v) (11.7) eq:sesquisom-3

and similarly, for (11.5), given an element w ∈ V and an h we get an element ˜̀
h,w ∈ (V̄ )∗

given by
˜̀
h,w(v̄) := h(v, w) (11.8)

Definition 11.2

– 100 –



1. A sesquilinear form is said to be nondegenerate if for all nonvanishing v ∈ V there

is some w ∈ V such that h(v, w) 6= 0 and for all nonvanishing w ∈ V there is some v with

h(v, w) 6= 0.

2. An Hermitian form on a complex vector space V is a sesquilinear form such that

for all v, w ∈ V :

h(v, w) = (h(w, v))∗ (11.9)

3. If h(v, w) = −(h(w, v))∗ then h is called skew-Hermitian or anti-Hermitian.

Remarks

1. If h is nondegenerate then (11.5) and (11.6) define isomorphisms V ∼= V̄ ∗ and V̄ ∼= V ∗,

respectively. In general there is a canonical anti-linear isomorphism V ∼= V̄ and hence

also a canonical antilinear isomorphism V ∗ ∼= (V̄ )∗. However, as we have stressed,

there is no canonical isomorphism V ∼= V ∗. What the above definitions imply is that

such an isomorphism is provided by a nondegenerate sesquilinear form.

2. In particular, an anti-linear isomorphism V ∼= V ∗ is provided by a nondegenerate

Hermitian form. This is used in quantum mechanics in the Dirac bra-cket formalism

where the anti-linear isomorphism V → V ∗ is denoted

|ψ〉 → 〈ψ| (11.10)

So say this more precisely in the above language: If v ∈ V is denoted |ψ〉 and w ∈ V is

denoted |χ〉 then, given an underlying nondegenerate sesquilinear form we can write

h(v, w) = `h,v̄(w) = 〈ψ|χ〉 (11.11)

If the underlying sesquilinear form is hermitian then 〈ψ|ψ〉 will be real. In fact, since

probabilities are associated with such expressions we want it to be positive. This

leads us to inner product spaces.

Exercise

Show that the most general Hermitian form on a complex vector space, expressed wrt

a basis ei is

h(
∑

ziei,
∑

wjej) =
∑
i,j

z∗i hijwj (11.12)

where (hij)
∗ = hji. That is, hij is an Hermitian matrix.

12. Inner product spaces, normed linear spaces, and bounded operators

12.1 Inner product spaces

Definition 11.3 An inner product space is a vector space V over a field k (k = R or k = C
here) with a positive Hermitian form. That is we have a k-valued function

(·, ·) : V × V → k (12.1)

– 101 –



satisfying the four axioms:

i.) (x, y + z) = (x, y) + (x, z)

ii.) (x, αy) = α(x, y) α ∈ k
iii.) (x, y) = (y, x)∗

iv.) ∀x, the norm of x:

‖ x ‖2:= (x, x) ≥ 0 (12.2)

and moreover (x, x) = 0↔ x = 0.

Axioms (i),(ii),(iii) say we have a symmetric quadratic form for k = R and an Hermitian

form for k = C. The fourth axiom tells us that the form is not only nondegenerate, but

“positive.” 28 In quantum mechanics, we usually deal with such inner products because of

the probability interpretation of the values (ψ,ψ). Probabilities should be nonnegative.

Example 1: Cn with

(~x, ~y) =

n∑
i=1

(xi)∗yi (12.3)

Example 2: Rn, here k = R and

(~x, ~y) = ~x · ~y =
∑

xiyi (12.4)

Example 3: C[a, b]= the set of complex-valued continuous functions on the interval [a, b].

(f, g) :=

∫ b

a
f(x)∗g(x)dx (12.5) eq:ContFun

Definition 11.4: A set of vectors {xi} in an inner product space is called orthonormal 29

if (xi, xj) = δij .

Theorem 11.1: If {xi}i=1,...,N is an ON set then

‖ x ‖2=

N∑
i=1

|(x, xi)|2+ ‖ x−
N∑
i=1

(xi, x)xi ‖2 (12.6)

Proof: Note that
∑

(xi, x)xi and x−
∑

(xi, x)xi are orthogonal. ♠

Theorem 11.2: (Bessel’s inequality)

‖ x ‖2≥
N∑
i=1

|(x, xi)|2 (12.7)

28The term “positive” is standard usage, although “nonnegative” would be more logical.
29We often abbreviate to ON
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Proof: Immediate from the previous theorem.

Theorem 11.3: (Schwarz inequality)

‖ x ‖ · ‖ y ‖≥ |(x, y)| (12.8)

Proof: It is true for y = 0. If y 6= 0 then note that {y/ ‖ y ‖} is an ON set. Apply

Bessel’s inequality ♠

12.2 Normed linear spaces

A closely related notion to an inner product space is

Definition: A normed linear space or normed vector space is a vector space V (over k = R
or k = C) with a function ‖ · ‖: V → R such that

i.) ‖ v ‖≥ 0, ∀v ∈ V
ii.) ‖ v ‖= 0 iff v = 0

iii.) ‖ αv ‖= |α| ‖ v ‖
iv.) ‖ v + w ‖≤‖ v ‖ + ‖ w ‖
An inner product space is canonically a normed linear space because we can define

‖ v ‖= +
√

(v, v) (12.9)

and verify all the above properties. However, the converse is not necessarily true. See the

exercise below. The canonical example of normed linear spaces which are not inner product

spaces are the bounded operators on an infinite-dimensional Hilbert space. See below.

Exercise Another proof of the Schwarz inequality

Note that ‖ x− λy ‖2≥ 0. Minimize wrt λ.

Exercise Polarization identity and the parallelogram theorem

a.) Given an inner product space V , prove that the inner product can be recovered

from the norm using the polarization identity:

(x, y) =
1

4
[(‖ x+ y ‖2 − ‖ x− y ‖2)− i(‖ x+ iy ‖2 − ‖ x− iy ‖2)] (12.10)

which is also sometimes written as

4(y, x) =

4∑
k=0

ik(x+ iky, x+ iky) (12.11)
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b.) Prove that conversely a normed linear space is an inner product space if and only

if the norm satisfies the parallelogram law:

‖ x+ y ‖2 + ‖ x− y ‖2= 2 ‖ x ‖2 +2 ‖ y ‖2 (12.12)

Warning: This is hard. Start by proving additive linearity in y.

c.) Give an example of a normed linear space which is not an inner product space.

12.3 Bounded linear operators

Definition: A bounded linear transformation of a normed linear space (V1, ‖ · ‖1) to

(V2, ‖ · ‖2) is a linear map T : V1 → V2 such that ∃C ≥ 0 with

‖ Tv ‖2≤ C ‖ v ‖1 (12.13) eq:bdd

for all v ∈ V1. In this case, we define the norm of the operator

‖ T ‖= sup‖v‖1=1 ‖ Tv ‖2= infC (12.14) eq:bddi

Theorem: For a linear operator between two normed vector spaces

T : (V1, ‖ · ‖1)→ (V2, ‖ · ‖2) (12.15)

the following three statements are equivalent:

1. T is continuous at x = 0.

2. T is continuous at every x ∈ V1.

3. T is bounded

Proof : The linearity of T shows that it is continuous at one point iff it is continous

everywhere. If T is bounded by C then for any ε > 0 we can choose δ < ε/C and then

‖ x ‖< δ implies ‖ T (x) ‖< ε. Conversely, if T is continuous at x = 0 then choose any

ε > 0 you like. We know that there is a δ so that ‖ x ‖< δ implies ‖ T (x) ‖< ε. But this

means that for any x 6= 0 we can write

‖ T (x) ‖= ‖ x ‖
δ
‖ T

(
δ

x

‖ x ‖

)
‖< ε

δ
‖ x ‖ (12.16)

and hence T is bounded ♠
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12.4 Constructions with inner product spaces

A natural question at this point is how the constructions we described for general vector

spaces generalize to inner product spaces and normed vector spaces.

1. Direct sum. This is straightforward: If V1 and V2 are inner product spaces then so is

V1 ⊕ V2 where we define

(x1 ⊕ y1, x1 ⊕ y2)V1⊕V2 := (x1, x2)V1 + (y1, y2)V2 (12.17)

2. Tensor product One can extend the tensor product to primitive vectors in the obvious

way

(x1 ⊗ y1, x2 ⊗ y2)V1⊗V2 := (x1, x2)V1(y1, y2)V2 (12.18)

and then extending by linearity, so that

(x1⊗y1, x2⊗y2+x3⊗y3)V1⊗V2 := (x1⊗y1, x2⊗y2)V1⊗V2+(x1⊗y1, x3⊗y3)V1⊗V2 (12.19)

3. For Hom(V1, V2) and dual spaces see Section §14.

What about quotient space? If W ⊂ V is a subset of an inner product space then W

of course becomes an inner product space. Can we make V/W an inner product space?

Clearly this is problematic since the obvious attempted definition

([v1], [v2])
?
=(v1, v2)V (12.20)

would only be well-defined if if

(v1 + w1, v2 + w2)
?
=(v1, v2) (12.21)

for all w1, w2 ∈W and v1, v2 ∈ V . This is clearly impossible!

Although we cannot put an inner product on V/W one might ask if there is a canon-

ical complementary space inner product space to W . There is a natural candidate, the

orthogonal complement, defined by:

W⊥ := {y ∈ V |∀x ∈W, (x, y) = 0} (12.22)

So the question is, do we have

V
?
=W ⊕W⊥ (12.23)

Note that we certainly have W ∩W⊥ = {0} by positivity of the inner product. So the

question is whether V = W +W⊥. We will see that this is indeed always true, when V is

finite dimensional, in Section §15. In infinite-dimensions we must be more careful as the

following example shows:

Example: Let V = C[0, 1] be the inner product space of continuous complex-valued func-

tions on the unit interval with inner product (12.5). Let W ⊂ V be the subspace of

functions which vanish on [1
2 , 1]:

W = {f ∈ C[0, 1]| f(x) = 0
1

2
≤ x ≤ 1} (12.24)
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Figure 5: The function g(x) must be orthogonal to all functions f(x) in W . We can use the

functions f(x) shown here to see that g(x) must vanish for 0 ≤ x ≤ 1
2 . fig:ContinuousFunctions

What is W⊥? Any function g ∈ W⊥ must be orthogonal to the function f ∈ W which

agrees with g for x ∈ [0, 1
2 − ε] and then continuously interpolates to f(1

2) = 0. See Figure

5. This implies that g(x) = 0 for x < 1
2 , but since g is continuous we must have g(1

2) = 0.

Thus

W⊥ = {g ∈ C[0, 1]| g(x) = 0 0 ≤ x ≤ 1

2
} (12.25)

Now, clearly, W +W⊥ is a proper subset of V since it cannot contain the simple function

h(x) = 1 for all x. We will see that by making the inner product space complete we can

eliminate such pathology.

13. Hilbert space

sec:HilbertSpace

In order to do the analysis required for quantum mechanics one often has to take limits. It

is quite important that these limits exist. The notion of inner product space is too flexible.

f_1

f_n

f_{\infty} 

Figure 6: A sequence of continuous functions approaches a normalizable, but discontinuous func-

tion. fig:discfunc
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For example, C[a, b] is an inner product space, but it is certainly possible to take a

sequence of continuous functions {fn} such that ‖ fn − fm ‖→ 0 for large n,m but fn has

no limiting continuous function as in 6. That’s bad.

Definition: A complete inner product space is called a Hilbert space

Complete means: every Cauchy sequence converges to a point in the space.

Example 1: Rn and Cn are real and complex Hilbert spaces, respectively.

Counter-Example 2: C[a, b], the continuous complex-valued functions on [a, b] is not a

Hilbert space.

Example 3: Define

L2[a, b] ≡
{
f : [a, b]→ C : |f |2is measurable and

∫ b

a
|f(x)|2dx <∞

}
(13.1)

It is not obvious, but it is true, that this defines a Hilbert space. To make it precise we

need to introduce “measurable functions.” For a discussion of this see Reed and Simon.

This is the guise in which Hilbert spaces arise most often in quantum mechanics.

Example 4:

`2 := {{xn}∞n=1 :
∞∑
n=1

|xn|2 <∞} (13.2)

♣Should give the

example of

Bargmann Hilbert

space

Hol(C, e−|z|
2
d2z)

since this is a very

nice representation

for the HO algebra.

♣

Definition Two Hilbert spaces H1 and H2 are said to be isomorphic if there is an inner-

product-preserving 1-1 linear transformation onto H2,

U : H1 → H2 (13.3)

such that

∀x, y ∈ H1 : (Ux,Uy)H2 = (x, y)H1 (13.4)

Such an operator U is also known as a unitary transformation.

Remark: In particular, U is norm preserving, that is, it is an isometry. By the

polarization identity we could simply define U to be an isometry.

What are the invariants of a Hilbert space? By a general set-theoretic argument it is

easy to see that every Hilbert space H has an ON basis. (For a proof see Reed & Simon

Theorem II.5). The Bessel and Schwarz inequalities apply. If the basis is countable then

H is called separable.

Theorem: Let H be a separable Hilbert space. Let S be an ON basis. Then

a.) If |S| = N <∞, then H ∼= CN

b.) If |S| =∞ then H ∼= `2
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Proof: (Case b): Let {yn} be a complete ON system. Then U : x → {(yn, x)} is a

unitary isomorphism with `2 ♠

Example 5 Consider L2[0, 2π]. Then

{φn(x) =
1√
2π
einx} (13.5)

is a complete ON system. This statement summarizes the Fourier decomposition:

f(x) =
∑

cnφn(x) (13.6)

Example 6 L2(R). Note that the standard plane waves eik·x are not officially elements

of L2(R). Nevertheless, there are plenty of ON bases, e.g. take the Hermite functions

Hn(x)e−x
2

(or any complete set of eigenfunctions of a Schrödinger operator whose potential

goes to∞ at x→ ±∞) and this shows that L2(R) is a separable Hilbert space. Indeed, all

elementary quantum mechanics courses show that there is a highest weight representation

of the Heisenberg algebra so that we have an ON basis |n〉, n = 0, 1, . . . and

a|n〉 =
√
n|n− 1〉 (13.7)

a†|n〉 =
√
n+ 1|n+ 1〉 (13.8)

The mapping of normalized Hermite functions to |n〉 gives an isometry of L2(R) with `2.

Remarks

1. Dual space Our various linear algebra operations can be carried over to Hilbert space

provided one uses some care. The direct sum is straightforward. In order for the

dual space H∗ to be a Hilbert space we must use the continuous linear functions to

define H∗. Therefore, these are the bounded operators in the vector space of all linear

operators Hom(H,C). This space is again a Hilbert space, and the isomorphism

H ∼= H∗ is provided by the Riesz representation theorem, which says that every

bounded linear functional ` : H → C is of the form

`(v) = (w, v) (13.9)

for some unique w ∈ H. This is the Hilbert space analog of the isomorphism (11.7).

2. Tensor product. We have indicated how to define the tensor product of inner product

spaces. However, for Hilbert spaces completeness becomes an issue. See Reed+Simon

Sec. II.4 for details. Of course, the tensor product of Hilbert spaces is very important

in forming Fock spaces.

3. “All Hilbert spaces are the same.” One sometimes encounters this slogan. What

this means is that all separable Hilbert spaces are isomorphic as Hilbert spaces.

Nevertheless Hilbert spaces of states appear in very different physical situations.
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E.g. the Hilbert space of QCD on a lattice is a separable Hilbert space, so is it “the

same” as the Hilbert space of a one-dimensional harmonic oscillator? While there

is indeed an isomorphism between the two, it is not a physically natural one. The

physics is determined by the kinds of operators that we consider acting on the Hilbert

space. Very different (algebras) of operators are considered in the harmonic oscillator

and in QCD. The isomorphism in question would take a physically natural operator

in one context to a wierd one in a different context. So, in the next sections we will

study in more detail linear operators on vector spaces.

Exercise An application of the Schwarz inequality to quantum mechanics

Consider the quantum mechanics of a particle on a line. Show that

(〈ψ|x2|ψ〉)2 ≤ 〈ψ|x4|ψ〉 (13.10)

by applying the Schwarz inequality to ψ(x) and x2ψ(x).

Exercise The uncertainty principle

Apply the Schwarz inequality to ψ1 = xψ(x) and ψ2 = kψ̂(k) (where ψ̂(k) is the

Fourier transform) by using the Plancherel theorem. Deduce the uncertainty principle:

〈ψ|x2|ψ〉〈ψ|p2|ψ〉 ≥ 1

4
(13.11)

with minimal uncertainty (saturating the inequality) for the Gaussian wavepackets:

ψ(x) = Ae−Bx
2

(13.12)

14. Banach space
sec:BanachSpace

The analog of a Hilbert space for normed linear spaces is called a Banach space:

Definition: A complete normed linear space is called a Banach space.

All Hilbert spaces are Banach spaces, but the converse is not true. A key example is

the set of bounded operators on Hilbert space:

Theorem L(H) is a Banach space with the operator norm.

Sketch of proof : L(H) is a complex vector space and the operator norm makes it a normed

linear space (the axioms are easily checked). If {An}∞n=1 is a Cauchy sequence of operators

in the operator norm then for all x, Anx is a Cauchy sequence of vectors, and hence we

can define Ax = limn→∞Anx, and it is not difficult to show that A is a bounded linear

operator and An → A in the operator norm. See Reed-Simon Theorem III.2 for details ♠
Remarks:
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1. In fact, the proof of the above theorem proves more: If V1, V2 are normed linear

spaces and V2 is complete, that is, if V2 is a Banach space, then L(V1, V2) is a Banach

space, with the operator norm. ♣So, state the

theorem in this

generality and let

L(H) be a corollary.

♣
2. There are several different notions of convergence of a sequence of operators An

between normed linear spaces V1 → V2, and consequently several different topologies

on the space of linear operators. The operator norm defines one topology. Another is

the “strong topology” whereby An → A if for all x ∈ V1, limn→∞ ‖ Anx− Ax ‖= 0.

This is different from the norm topology because the rate at which ‖ Anx − Ax ‖
goes to zero might depend in an important way on x. There is also an intermediate

“compact-open” topology which can also be useful. ♣Explain more

here. ♣

♣Also point out

that C[0, 1] with

the sup norm is a

complete normed

linear space. So it is

a Banach space, but

not an inner

product space. ♣

15. Projection operators and orthogonal decomposition
sec:ProjectionOperators

As we discussed above, if W ⊂ V be a subspace of an inner product space then we can

define the orthogonal subspace by:

W⊥ = {y : (x, y) = 0 ∀x ∈W} (15.1)

Figure 7: Vectors used in the projection theorem. fig:ProjectionTheorem

Theorem( The projection theorem ) Suppose V is a Hilbert space and W ⊂ V is a closed

subspace. Then:

V ∼= W ⊕W⊥ (15.2)

that is, every vector x ∈ V can be uniquely decomposed as x = z+w with w ∈W, z ∈W⊥.

Proof: We follow the proof in Reed-Simon:

The first point to establish (and the point which fails if we use an inner product space

which is not a Hilbert space) is that given any x ∈ V there is a unique vector w ∈W which

is closest to x. Let d := infw∈W ‖ x − w ‖≥ 0. There must be a sequence wn ∈ W with
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limn→∞ ‖ x− wn ‖= d. But then we can write:

‖ wn − wm ‖2 =‖ (wn − x) + (x− wm) ‖2

= 2 ‖ x− wn ‖2 +2 ‖ x− wm ‖2 − ‖ 2x− (wn + wm) ‖2

= 2 ‖ x− wn ‖2 +2 ‖ x− wm ‖2 −4 ‖ x− 1

2
(wn + wm) ‖2

≤ 2 ‖ x− wn ‖2 +2 ‖ x− wm ‖2 −4d2

(15.3)

where in line 2 we used the parallelogram identity. Now we know that the limit of the RHS

is zero, therefore, for all ε > 0 there is an N so that for n,m > N the RHS is less than ε.

Therefore {wn} is a Cauchy sequence and, since W is closed, limwn = w ∈ W exists and

minimizes the distance.

Now denote z := x−w, where w is the distance minimizing w ∈W we have just found.

We need to prove that z is in W⊥. Let d =‖ x− w ‖. Then for all t ∈ R, y ∈W :

d2 ≤‖ x− (w + ty) ‖2=‖ z − ty ‖2= d2 − 2tRe(z, y) + t2 ‖ y ‖2 (15.4)

This must hold for all t and therefore,

Re(z, y) = 0 (15.5)

for all y. If we have a real vector space then (z, y) = 0 for all y ∈W ⇒ z ∈W⊥, so we are

done. If we have a complex vector space we replace t→ it above and prove

Im(z, y) = 0 (15.6)

Therefore, z is orthogonal to every vector y ∈W . ♠

Remarks:

1. The theorem definitely fails if we drop the positive definite condition on (·, ·). Con-

sider R2 with “inner product” defined on basis vectors e, f by

(e, e) = (f, f) = 0 (e, f) = (f, e) = 1 (15.7)

The product is nondegenerate, but if W = Re then W⊥ = W .

In general, for any vector space V , not necessarily an inner product space, we can

define a projection operator to be an operator P ∈ End(V ) such that P 2 = P . It then

follows from trivial algebraic manipulation that if we define Q = 1− P we have

1. Q2 = Q and QP = PQ = 0

2. 1 = P +Q

Moreover we claim that

V = kerP ⊕ imP (15.8)

Proof: First, for any linear transformation kerT ∩ imT = {0}, so that applies to T = P .

Next we can write, for any vector v, v = Pv+ (1−P )v, and we note that (1−P )v ∈ kerP .

♠
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In finite dimensions, P can be brought to Jordan form and the equation P 2 = P then

shows that it is diagonal with diagonal eigenvalues 0 and 1.

Now, if we are in a Hilbert space V and W ⊂ V is a closed subspace the projection

theorem says that every x ∈ V has a unique decomposition x = w + w⊥ in W ⊕ W⊥.

Therefore, if we define P (x) = w we have a projection operator. Clearly, Q is the projector

to W⊥. We now note that these projectors satisfy the following relation

(x1, Px2) = (w1 + w⊥1 , w2) = (w1, w2) (15.9)

(Px1, x2) = (w1, w2 + w⊥2 ) = (w1, w2) (15.10)

and so for all x1, x2 ∈ H, we have (Px1, x2) = (x1, Px2). As we will see below, this means

that P (and likewise Q) is self-adjoint. In general, a self-adjoint projection operator is also

known as an orthogonal projection operator.

Conversely, given a self-adjoint projection operator P we have an orthogonal decom-

position V = W ⊕W⊥. Therefore, there is a 1-1 correspondence between closed subspaces

of V and self-adjoint projection operators.

As an application we prove

Theorem [Riesz representation theorem]: If ` : H → C is a bounded linear functional then

there exists a unique y ∈ H so that `(x) = (y, x). Moreover ‖ ` ‖=‖ y ‖ so that H∗ ∼= H.

Proof : If ` = 0 then we take y = 0. If ` 6= 0 then there is some vector not in the

kernel. Now, because ` is continuous ker` is a closed subspace of H and hence there is an

orthogonal projection P to (ker`)⊥. Now, the equation `(x) = 0 is one (complex) equation

and hence the kernel should have complex codimension one. That is, P is a projector to a

one-dimensional subspace. Therefore we can choose any nonzero x0 ∈ (ker`)⊥ and then

P (x) =
(x0, x)

(x0, x0)
x0 (15.11)

is the projector to the orthogonal complement to ker`. If Q = 1−P then Q is the orthogonal

projector to ker` and hence

`(x) = `(P (x) +Q(x)) = `(P (x)) = `(x0)
(x0, x)

(x0, x0)
= (y, x) (15.12)

where y = `(x0)∗

(x0,x0)x0. Given this representation one easily checks ‖ ` ‖=‖ y ‖ ♠

Remarks Thus, there is a 1-1 correspondence between projection operators and closed

linear subspaces. The operator norm defines a topology on the space of bounded operators,

and then the space of projection operators is a very interesting manifold, known as the

Grassmannian. The Grassmannian has several disconnected components, labelled by the

rank of P . Each component has very intricate and interesting topology. Grassmannians

of projection operators on Hilbert space are very important in the theory of fiber bundles.

In physics they arise naturally in the quantization of free fields in curved spacetime and

more recently have played a role both in mathematical properties of the S-matrix of N=4
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supersymmetric Yang-Mills theory as well as in the classification of topological phases of

matter in condensed matter theory.

Exercise

Suppose that Γ is an operator such that Γ2 = 1. Show that

Π± =
1

2
(1± Γ) (15.13)

are projection operators, that is, show that: Show that

Π2
+ = Π+ Π2

− = Π− Π+Π− = Π−Π+ = 0 (15.14)

16. Unitary, Hermitian, and normal operators

Let V,W be finite dimensional inner product spaces. It is important in this section that

we are working with finite dimensional vector spaces, otherwise the theory of operators is

much more involved. See Reed and Simon and below.

Given

T : V →W (16.1)

we can define the adjoint operator

T † : W → V (16.2) eq:defadji

by:

∀x ∈W, y ∈ V (T †x, y) := (x, Ty) (16.3)

Here we are using the property that the inner product is a nondegenerate form: To define

the vector T †x it suffices to know its inner product with all vectors y. (In fact, knowing

the inner product on a basis will do.)

If T : V → V and {vi} is an ordered orthonormal basis, then it follows that the

matrices wrt this basis satisfy:

(T †)ij = (Tji)
∗ (16.4) eq:daggmat

It also follows immediately from the definition that

kerT † = (imT )⊥ (16.5)

Thus, we have the basic picture of an operator between inner product spaces given in

Figure 8

Definition:

If V is an inner product space and T : V → V is linear then:

1. T † = T defines an Hermitian or self-adjoint operator.
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Figure 8: Orthogonal decomposition of domain and range associated to an operator T between

inner product spaces. fig:INNPRODSPACE

2. TT † = T †T = 1 defines a unitary operator.

3. TT † = T †T defines a normal operator.

Put differently, a unitary operator on an inner product space is a norm preserving

linear operator (a.k.a. an isometry) i.e.

∀v ∈ V ‖ T (v) ‖2=‖ v ‖2 (16.6)

It is worthwhile expressing these conditions in terms of the matrices of the operators

wrt an ordered ON basis vi of V . Using (16.4) we see that with respect to an ON basis:

Hermitian matrices Hij satisfy: Hij = H∗ji.

Unitary matrices Uij satisfy:
∑

k UikU
∗
jk = δij

Remarks

1. Recalling that cokT := W/imT we see that

cokT ∼= kerT † (16.7)

2. For a finite dimensional Hilbert space L(H) is an inner product space with natural

inner product 30

(A1, A2) = TrA†1A2 (16.8)

but this will clearly not work in infinite dimensions since, for example, the unit

operator is bounded but has no trace. In finite dimensions this shows that if V1, V2

are inner product spaces then so is Hom(V1, V2) in a natural way. In particular, V ∗

is an inner product space.

30Warning, the norm ‖ A ‖ defined by this inner product is not the same as the operator norm!
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Exercise

a.) If TrT †T = 0, show that T = 0.

Exercise

Let {vi}, {v̂i} be any two ON bases for a vector space V . Show that the operator

defined by U : vi → v̂i is unitary.

Exercise Unitary vs. Orthogonal

Show that if U ∈Mn(C) is both unitary and real then it is an orthogonal matrix.

Exercise Eigenvalues of hermitian and unitary operators

a.) The eigenvalues λ of Hermitian operators are real λ∗ = λ. This mathematical fact

is compatible with the postulate of quantum mechanics that states that observables are

represented by Hermitian operators.

b.) The eigenvalues of unitary operators are phases: |λ| = 1.

Exercise The Cayley transform

The Mobius transformation z → w = 1+iz
1−iz maps the upper half of the complex plane

to the unit disk. This transform has an interesting matrix generalization:

a.) Show that if H is Hermitian then

U = (1 + iH)(1− iH)−1 (16.9)

is a unitary operator.

b.) Show that if U is a unitary operator then H = i(1 − U)(1 + U)−1 is Hermitian

provided (1 + U) is invertible.

Exercise
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a.) Show that if H is Hermitian and α is real then U = exp[iαH] is unitary.

b.) Show that if H is an Hermitian operator and ‖ H ‖≤ 1 then

U± = H ± i
√

1−H2 (16.10)

are unitary operators.

c.) Show that any matrix can be written as the sum of four unitary matrices.

17. The spectral theorem: Finite Dimensions

A nontrivial and central fact in math and physics is:

The (finite dimensional) spectral theorem: Let V be a finite dimensional inner prod-

uct space over C and let H : V → V be an Hermitian operator. Then:

a.) If λ1, . . . , λk are the distinct eigenvalues of H then there are mutually orthogonal

Hermitian projection operators Pλ1 , . . . , Pλk such that:

H =
∑
i

λiPλi = λ1Pλ1 ⊕ λ2Pλ2 ⊕ · · ·λkPλk (17.1) eq:spctrldecomp

1 = Pλ1 + · · ·+ Pλk (17.2) eq:sprtrlii

b.) There exists an ON basis of V of eigenvectors of H.

Idea of the proof :

We proceed by induction on dimV . The case dimV = 1 is clear.

Now suppose dimV = n > 1. By theorem 10.3.1 of section 10.3 H has one nonvanishing

eigenvector v. Consider W = L({v}), the span of v. The orthogonal space W⊥ is also an

inner product space. Moreover H takes W⊥ to W⊥: If x ∈W⊥ then

(Hx, v) = (x,Hv) = λ(x, v) = 0 (17.3)

so Hx ∈W⊥. Further, the restriction of H to W⊥ is Hermitian. Since dimW⊥ = dimV −1

by the inductive hypothesis there is an ON basis for H on W⊥ and hence there is one for

V . ♠
In terms of matrices, any Hermitian matrix is unitarily diagonalizable:

H† = H ⇒ ∃U, UU † = 1 s.t. : UHU † = Diag{E1, . . . , En}, Ei ∈ R (17.4)

Exercise

Show that the orthogonal projection operators Pi for H can be written as polynomials

in H. Namely, we can take

Pλi =
∏
j 6=i

(
H − λj
λi − λj

)
(17.5)
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Exercise

Let f(x) be a convergent power series and let H be Hermitian. Then

f(H) =
∑
i

f(λi)Pλi (17.6)

Exercise

Let Xn be the symmetric n × n matrix whose elements are all zero except for the

diagonal above and below the principal diagonal. These matrix elements are 1. That is:

Xn =
n−1∑
i=1

ei,i+1 +
n∑
i=2

ei,i−1 (17.7)

where ei,j is the matrix with 1 in row i and column j, and zero otherwise.

Find the eigenvalues and eigenvectors of Xn.

Exercise

Let H be a positive definite Hermitian matrix. Evaluate

lim
N→∞

log(v,HNv)

N
(17.8)

Exercise The Seesaw Mechanism

Consider the matrix

H =

(
a b

c d

)
(17.9) eq:mtrxp

a.) Assuming H is Hermitian find the eigenvalues and eigenvectors of H.

An important discovery in particle physics of the past few years is that neutrinos have

nonzero masses. One idea in neutrino physics is the seesaw mechanism - there are two

“flavors” of neutrinos with a mass matrix(
0 m

m∗ M

)
(17.10) eq:seesaw
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where M is real. The absolute values of the eigenvalues give the masses of the two neutrinos.

c.) Find the eigenvalues of (17.10), and give a simplified expression for the eigenvalues

in the limit where |m| � |M |.
d.) Suppose it is known that |m| ∼= 1TeV = 103GeV, and a neutrino mass of 1eV is

measured experimentally. What is the value of the large scale M?

e.) For what values of m,M does the kernel of (17.10) jump in dimension? Verify the

constancy of the index.

17.1 Normal and Unitary matrices

Together with simultaneous diagonalization we can extend the set of unitarily diagonaliz-

able matrices. Recall that a complex n× n matrix A is called normal if AA† = A†A,

Theorem:

1. Every normal matrix is diagonalizable by a unitary matrix.

2. Every normal operator T on a finite-dimensional inner product space has a spectral

decomposition

T =
k∑
i=1

µiPµi (17.11)

where µi ∈ C and {Pµi} are mutually orthogonal projection operators summing to the

identity.

Proof : Note that we can decompose any matrix as

A = H +K (17.12)

with H† = H and K† = −K, antihermitian. Thus, iK is hermitian. If A is normal then

[H,K] = 0. Thus we have two commuting hermitian matrices, which can be simultaneously

diagonalized. ♠
As an immediate corollary we have

Theorem The eigenvectors of a unitary operator on an inner product space V form a

basis for V . Every unitary operator on a finite dimensional inner product space is unitarily

diagonalizable.

Proof : U †U = 1 = UU † so U is a normal matrix. ♠

17.2 Singular value decomposition and Schmidt decomposition

17.2.1 Bidiagonalization

Theorem Any matrix A ∈ Mn(C) can be bidiagonalized by unitary matrices. That is,

there always exist unitary matrices U, V ∈ U(n) such that

UAV † = Λ (17.13)
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is diagonal with nonnegative entries

Proof : First diagonalize AA† and A†A by U, V , so UAA†U † = D1 and V A†AV † = D2.

Then note that TrD`
1 = TrD`

2 for all positive integers `. Therefore, up to a permutation,

D1, D2 are the same diagonal matrices, but a permutation is obtained by conjugation with

a unitary matrix, so we may assume D1 = D2. Then it follows that UAV † is normal,

and hance can be unitarily diagonalized. Since we have separate phase degrees of freedom

for U and V we can rotate away the phases on the diagonal to make the diagonal entries

nonnegative. ♠.

Remarks:

1. By suitable choice of U and V the diagonal elements of Λ can be arranged in mono-

tonic order. The set of these values are called the singular values of A.

2. This theorem is very useful when investigating moduli spaces of vacua in supersym-

metric gauge theories. ♣Should give some

examples... ♣

Exercise

Find a unitary bidiagonalization of the Jordan block J
(2)
λ .

17.2.2 Application: The Cabbibo-Kobayashi-Maskawa matrix, or, how bidiag-

onalization can win you the Nobel Prize

This subsubsection assumes some knowledge of relativistic field theory.

One example where bidiagonalization is important occurs in the theory of the “Kobayashi-

Maskawa matrix” describing the mixing of different quarks. The SU(3) × SU(2) × U(1)

standard model has quark fields URi, DRi neutral under SU(2) and

ψiL =

(
ULi
DLi

)
(17.14)

forming a doublet under the gauge group SU(2). Here i is a flavor index running over the

families of quarks. In nature, at observable energies, i runs from 1 to 3. SU(3) color and

spin indices are suppressed in this discussion.

In the Standard Model there is also a doublet of scalars fields, the Higgs field:

φ =

(
φ+

φ0

)
φ̃ =

(
(φ0)∗

φ−

)
(17.15)

where φ− = −(φ+)∗ and φ0, φ+ ∈ C. Both φ, φ̃ transform as SU(2) doublets.

The Yukawa terms coupling the Higgs to the quarks lead to two “quark mass terms”:

−gjkD̄jRφ
†ψkL + hc (17.16)
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and

−g̃jkŪjRφ̃†ψkL + hc (17.17)

The matrices gjk and g̃jk are assumed to be generic, and must be fixed by experiment.

For energetic reasons the scalar field φ0 is nonzero (and constant) in nature. (“Develops

a vacuum expectation value”). At low energies, φ± = 0 and hence these terms in the

Lagrangian simplify to give mass terms to the quarks:

3∑
i,j=1

ŪRiM
U
ijULj (17.18)

and
3∑

i,j=1

D̄RiM
D
ijDLj (17.19)

Here i, j run over the quark flavors, U, Ū ,D, D̄ are quark wavefunctions. MU ,MD are

arbitrary complex matrices. We would like to go to a “mass eigenbasis” by bi-diagonalizing

them with positive entries. The positive entries are identified with quark masses.

By bidiagonalization we know that

MD
ij = (V †1 m

DV2)ij (17.20)

MU
ij = (V †3 m

UV4)ij (17.21)

where mD,mU are diagonal matrices with real nonnegative eigenvalues and Vs, s = 1, 2, 3, 4

are four 3× 3 unitary matrices. It is important that the Vs, are unitary because we want

to use them to redefine our quark fields without changing the kinetic energy terms.

How much physical information is in the unitary matrices V1, . . . , V4? We would like

to rotate away the unitary matrices by a field redefinition of the quark fields. The rest of

the Lagrangian looks like (again suppressing SU(3) color and hence the gluon fields):

ŪjR(γ · ∂ +
2

3
γ ·B)UjR + D̄jR(γ · ∂ − 1

3
γ ·B)DjR

+ ψ̄jL(γ · ∂ +
1

6
γ ·B + γ ·A)ψjL

(17.22)

where we just sum over the flavor index and the operator γ · ∂ + qγ · B with q ∈ R is

diagonal for our purposes. Crucially, it is diagonal in the flavor space. The SU(2) gauge

field Aµ has off-diagonal components W±µ :

Aµ =

(
A3
µ W+

µ

W−µ −A3
µ

)
(17.23)

leading, among other things, to the charged current interaction

W+
µ ŪLiγ

µDLi (17.24) eq:cc-int
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Clearly, we can rotate away V1, V3 by a field redefinition of DjR, UjR (taking the case

of three flavors and giving the quarks their conventional names):(
d̄ s̄ b̄

)
R

= D̄RV
†

1(
ū c̄ t̄

)
R

= ŪRV
†

3

(17.25)

However, we also need to rotate UjL and DjL to a mass eigenbasis by different matrices

V2 and V4: ds
b


L

= V2DL

uc
t


L

= V4UL

(17.26)

Therefore the charged current interaction (17.24) when expressed in terms of mass

eigenstate fields is not diagonal in “flavor space.” Rather, when we rotate to the mass

basis the unitary matrix S = V4V
†

2 enters in the charged current

(
ū c̄ t̄

)
L
γµS

ds
b


L

(17.27)

where u, c, t, d, s, b are mass eigenstate fields.

The unitary matrix S is called the Kobayashi-Maskawa matrix. It is still not physically

meaningful because that by using further diagonal phase redefinitions that S only depends

on 4 physical parameters, instead of the 9 parameters in an arbitrary unitary matrix.

Much effort in current research in experimental particle physics is devoted to measuring

the matrix elements experimentally.

Reference: H. Georgi, Weak Interactions and Modern Particle Theory.

Exercise

Repeat the above discussion for N quark flavors. How many physically meaningful

parameters are there in the weak interaction currents?

17.2.3 Singular value decomposition

The singular value decomposition applies to any matrix A ∈Mm×n(C) and generalizes the

bidiagonalization of square matrices. It has a wide variety of applications.
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Theorem Suppose that A ∈Mm×n(C), which we can take, WLOG so that m ≤ n. Then

there exist unitary matrices U ∈ U(m) and V ∈ U(n) so that

UAV =
(

Λm×m 0m×(n−m)

)
(17.28) eq:sing-val-dec

where Λ is a diagonal matrix with nonnegative entries (known as the singular values of A).

Proof : We have already proven the case with m = n so assume that m < n. Enhance A

to

Â =

(
A

0(n−m)×n

)
(17.29)

Then bidiagonalization gives Û , V̂ ∈ U(n) so that Û ÂV̂ is diagonal. Note that

Û ÂÂ†Û =

(
D 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)

)
(17.30)

and hence if we break up Û into blocks

Û =

(
U11 U12

U21 U22

)
(17.31)

then U = U11 is in fact a unitary matrix in U(m). But then

UAV̂ =
(

Λm×m 0m×(n−m)

)
(17.32)

and we can WLOG take Λ to have nonnegative entires ♠

Remarks

1. The eigenvalues of D are known as the singular values of A, the the decomposition

(17.28) is known as the singular value decomposition of A.

2. The singular value decomposition can be rephrased as follows: If T : V1 → V2 is a

linear map between finite dimensional inner product spaces V1 and V2 then there exist

ON sets {un} ⊂ V1 and {wn} ⊂ V2 (not necessarily complete) and positive numbers

λn so that

T =
N∑
n=1

λn(un, ·)wn (17.33) eq:SVP-DEC-2

17.2.4 Schmidt decomposition

Let us consider a tensor product of two finite-dimensional inner product spaces V1 ⊗ V2.

We will assume, WLOG that dimV1 ≤ dimV2. Then a vector v ∈ V1⊗V2 is called separable

or primitive if it is of the form v = v1 ⊗ v2 where v1 ∈ V1 and v2 ∈ V2. In quantum

information theory vectors which are not separable are called entangled. The reader might

want to keep in mind that V1, V2 are finite-dimensional Hilbert spaces.

– 122 –



The general vector in V1 ⊗ V2 is a linear combination of separable vectors. Schmidt

decomposition is a canonical form of this linear combination:

Theorem Given an arbitary vector v ∈ V1 ⊗ V2 there exist ordered ON bases {ui}dimV1
i=1

for V1 and {wa}dimV2
a=1 for V2, so that

v =

dimV1∑
i=1

λiui ⊗ wi (17.34)

with λi ≥ 0.

Proof : Choose arbitrary ON bases {ũi} for V1 and {w̃a} for V2. Then we can expand

v =

dimV1∑
i=1

dimV2∑
a=1

Aiaũi ⊗ w̃a (17.35)

where A is a complex m × n matrix. Now from the singular value decomposition we can

write A = UDV , where

D =
(

Λ 0
)

(17.36)

and Λ is an m × m diagonal matrix with nonnegative entries. Now use U, V to change

basis. ♠
Remark: The rank of A is known as the Schmidt number. If it is larger than one and

v is a quantum state in a bipartite system then the state is entangled.

18. Operators on Hilbert space

18.1 Lies my teacher told me
subsec:LieMyTeacher

18.1.1 Lie 1: The trace is cyclic:
subsubsec:FirstLie

But wait! If

TrAB = TrBA (18.1)

then

Tr[A,B] = 0 (18.2)

and if we consider qψ(x) = xψ(x) and pψ(x) = −i ddxψ(x) on L2(R) then [p, q] = −i1 and

Tr(1) =∞, not zero!

18.1.2 Lie 2: Hermitian operators have real eigenvalues
subsubsec:SecondLie

But wait! Let us consider A = qnp + pqn acting on L2(R) with n > 1. Since p, q are

Hermitian this is surely Hermitian. But then

Aψ = λψ (18.3)
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is a simple first order differential equation whose general solution is easily found to be

ψ(x) = κx−n/2exp[− iλ

2(n− 1)
x1−n] (18.4)

where κ is a constant. Then,

|ψ(x)|2 = |κ|2|x|−nexp[
Imλ

(n− 1)
x1−n] (18.5)

This will be integrable for x → ±∞ for n > 1 and it will be integrable at x → 0 for

Imλ < 0 and n odd. Thus it would appear that the spectrum of qnp + pqn is the entire

lower half-plane!

18.1.3 Lie 3: Hermitian operators exponentiate to form one-parameter groups

of unitary operators
subsubsec:ThirdLie

But wait! Let us consider p on L2[0, 1]. Then exp[iap] = exp[a d
dx ] is the translation

operator

(exp[a
d

dx
]ψ)(x) = ψ(x+ a) (18.6)

But this can translate a wavefunction with support on the interval right off the interval!

How can such an operator be unitary?!

18.2 Hellinger-Toeplitz theorem
subsec:HT-Theorem

One theorem which points the way to the resolution of the above problems is the Hellinger-

Toeplitz theorem. First, we begin with a definition:

Definition: A symmetric everywhere-defined linear operator, T , on H is an operator such

that

(x, Ty) = (Tx, y) ∀x, y ∈ H (18.7)

We can also call this an everywhere defined self-adjoint operator. Then one might find

the Hellinger-Toeplitz theorem a bit surprising:

Theorem: A symmetric everywhere-defined linear operator must be bounded.

In order to prove this one must use another theorem called the “closed graph theo-

rem.” This is one of three closely related theorems from the theory of operators between

Banach spaces, the other two being the “bounded inverse theorem” and the “open mapping

theorem.”

Theorem[Bounded Inverse Theorem]: If T : B1 → B2 is a bounded 1-1 operator from

one Banach space onto (i.e. surjectively) another then T−1 : B2 → B1 is bounded (hence

continuous).

Proof: See Reed-Simon.

An immediate consequence of this is the
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Theorem[Closed Graph Theorem]: If T : B1 → B2 is a linear operator then the graph of

T , defined by

Γ(T ) := {x⊕ Tx|x ∈ B1} ⊂ B1 ⊕ B2 (18.8)

is a closed subspace of B1 ⊕ B2 iff T is bounded.

Proof: This follows immediately from the bounded inverse theorem: Note that Γ(T ) is

a normed linear space. Therefore, if it is closed it is itself a Banach space. Next, the map

Γ(T ) → B1 given by x ⊕ Tx → x is 1-1 bounded and continuous. Therefore the inverse

x → x ⊕ Tx is bounded which implies T is bounded. Conversely, if T is bounded then it

is continuous so Γ(T ) is closed. ♠
Given the closed graph theorem the proof of the Hellinger-Toeplitz theorem is quite

elegant. We need only prove that the graph of an everywhere-defined symmetric operator

T : H → H is closed. Suppose then that xn⊕ Txn is a Cauchy sequence in Γ(T ) ⊂ H⊕H.

Since Γ(T ) ⊂ H⊕H and since H⊕H is a Hilbert space we know that

lim
n→∞

xn ⊕ Txn = x⊕ y (18.9)

for some x ⊕ y ∈ H ⊕H. Then if y = Tx it will follow that Γ(T ) is closed. Now we note

that for all z ∈ H:

(z, y) = lim
n→∞

(z, Txn) def. of y

= lim
n→∞

(Tz, xn) T is symmetric

= (Tz, x) def. of x

= (z, Tx) T is symmetric

(18.10)

Therefore y = Tx, so Γ(T ) is closed, so T is bounded ♠
Now, many of the operators of interest in quantum mechanics are clearly unbounded,

for example, the multiplication operator q on L2(R) satisfies

‖ qψ ‖2=

∫
R
x2|ψ(x)|2dx (18.11)

Clearly there are wavefunctions with ‖ ψ ‖= 1 but with support at arbitrarily large x, so

q is unbounded. On the other hand it is equally obvious that q is symmetric. There is no

contradiction with the HT theorem because of course it is not everywhere defined. Indeed,

suppose ψ(x) is a smooth square-integrable function decaying like x−1−ε at large |x| for

some ε. For 0 < ε ≤ 1
2 the wavefunction xψ(x) is not square-integrable. Similar remarks

apply to standard operators such as p and Schrödinger operators. These operators are only

partially defined, that is, they are only defined on a linear subspace W ⊂ H. We return to

this theme in Section §18.6.

Exercise Puzzle to resolve

Consider H = `2 and define T ∈ L(H) by

T (en) = tnen (18.12)

– 125 –



where {tn} is a sequence of nonzero complex numbers with
∑
|tn|2 <∞.

a.) Show that T is an injective bounded operator.

b.) It would seem that this diagonal matrix has an obvious inverse

T−1(en) =
1

tn
en (18.13)

On the other hand, such an operator is obviously unbounded! Why doesn’t this contradict

the Bounded Inverse Theorem?

18.3 Spectrum and resolvent
subsec:SpectrumResolvent

Given a bounded operator T ∈ L(H) we partition the complex plane into two sets:

Definition:

1. The resolvent set or regular set of T is the subset ρ(T ) ⊂ C of complex numbers so

that λ1− T is a bijective, i.e. a 1− 1 onto transformation H → H.

2. The spectrum of T is the complement: σ(T ) := C− ρ(T ).

Now there are exactly three mutually exclusive ways the condition that (λ1−T ) is 1-1

can go wrong, and this leads to the decomposition of the spectrum:

Definition: The spectrum σ(T ) can be decomposed into three disjoint sets:

σ(T ) = σpoint(T ) ∪ σres(T ) ∪ σcont(T ) (18.14)

1. If ker(λ1 − T ) 6= {0}, that is, there is an eigenvector of T in H with eigenvalue λ,

then λ is in the point spectrum.

2. If ker(λ1− T ) = {0} but Im(λ1− T ) is not dense, then λ is in the residual spectrum.

3. If ker(λ1 − T ) = {0} and Im(λ1 − T ) is dense but not all of H, then λ is in the

continuous spectrum.

Note that by the bounded inverse theorem, if λ ∈ ρ(T ) then the inverse, known as the

resolvent

Rλ := (λ1− T )−1, (18.15)

is bounded. Now, for any bounded operator T we can try to expand

Rλ :=
1

λ1− T
=

1

λ

(
1 +

∞∑
n=1

(
T

λ

)n)
(18.16) eq:Res-Exp
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This converges in the norm topology for |λ| >‖ T ‖. One can check that then the series is

an inverse to λ1− T and is bounded. It follows that σ(T ) is inside the closed unit disk of

radius ‖ T ‖.
Similarly the condition that λ be in ρ(T ) is an open condition: If λ ∈ ρ(T ) then so is

every complex number in some neighborhood of λ. Therefore, σ(T ) is a closed subset of

C. More formally, we can prove:

Theorem: The resolvent set ρ(T ) is open (hence σ(T ) is closed) and in fact

‖ Rλ ‖≤
1

dist(λ, σ(T ))
(18.17) eq:NormDist

Proof : Suppose λ0 ∈ ρ(T ). Consider the formal expansion

Rλ(T ) =
1

λ− T
=

1

λ− λ0 + λ0 − T

=
1

λ0 − T
1

1− λ0−λ
λ0−T

= Rλ0(T )

[
1 +

∞∑
n=1

(λ0 − λ)n(Rλ0(T ))n

] (18.18)

Therefore, if ‖ Rλ0(T ) ‖ |λ− λ0| < 1 then the series converges in the norm topology. Once

we know it converges the formal properties will in fact be true properties and hence the

series represents Rλ(T ), which will be bounded. Hence λ ∈ ρ(T ) for those values ♠
Remarks:

1. The proof shows that the map λ→ Rλ(T ) from ρ(T ) to L(H) is holomorphic.

Definition For any everywhere defined bounded operator T we define the adjoint of T ,

denoted T † exactly as in the finite-dimensional case:

(Tx, y) = (x, T †y) ∀x, y ∈ H (18.19)

Remark If λ ∈ σres(T ) then λ∗ ∈ σpoint(T
†). To see this, suppose that im(λ1− T ) is

not dense. Then there is some nonzero vector y not in the closed subspace im(λ1− T ) and

by the projection theorem we can take it to be orthogonal to im(λ1− T ). That means

(y, (λ1− T )x) = ((λ∗1− T †)y, x) = 0 (18.20)

for all x, which means that y is an eigenvector of T † with eigenvalue λ∗. Therefore

σres(T )∗ ⊂ σpoint(T
†) (18.21)
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Example Let us return to the shift operator, or Hilbert hotel operator S ∈ L(H) for

H = `2: ♣Notation clash: xi
are complex

numbers, not a

sequence of vectors

in Hilbert space. ♣

S : (x1, x2, . . . ) 7→ (0, x1, x2, . . . ) (18.22)

In terms of harmonic oscillators S = 1√
a†a
a†. This is bounded and everywhere defined and

one easily computes the adjoint, which just shifts to the left:

S† : (x1, x2, . . . ) 7→ (x2, x3 . . . ) (18.23)

Or, if one prefers, S† = 1√
a†a+1

a.

Applying the remark of (18.16) to our case, where one easily checks ‖ S ‖=‖ S† ‖= 1,

we conclude that both σ(S) and σ(S†) are contained in the closed unit disk D.

Now, one easily shows that if |λ| < 1 then

Ψλ := (1, λ, λ2, . . . ) (18.24)

is in `2 and

S†Ψλ = λΨλ (18.25)

Since the spectrum must be closed it must be that σ(S†) is the entire closed unit disk D.

On the other hand, let us consider the solutions to

y = (λ1− S)x (18.26)

In terms of the components this leads to the equations

y1 = λx1

y2 = λx2 − x1

...
...

yn = λxn − xn−1

...
...

(18.27)

which is easily solved, at least formally, to give

xn = λ−1yn + λ−2yn−1 + · · ·+ λ−ny1 (18.28)

It immediately follows that if y = 0 then x = 0, that is, the kernel of (λ1− S) is {0} and

hence there is no point spectrum for S. Moreover, if |y1| = 1 while y2 = y3 = · · · = 0 then

xn = λ−ny1 is clearly not normalizable for |λ| ≤ 1. Now let ξn be a sequence of positive

numbers monotonically decreasing to zero so that
∑
ξ2
n|λ|−2n does not converge. Then

using the triangle inequality one easily checks that

|xn| > ξn|λ−ny1| (18.29)

and hence {xn} cannot be normalizable for |yn| < (ξn−1−ξn)|λ1−ny1|. Therefore im(λ1−S)

does not intersect the open ball defined by |yn| < (ξn−1 − ξn)|λ1−ny1|. and hence is not
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dense for |λ| ≤ 1. Thus σ(S) is the closed unit disk, the point spectrum is zero and the

residual spectrum is D.

Finally, we need to consider the nature of the spectrum of S† when |λ| = 1. Then Ψλ

is not in the Hilbert space so there is no point spectrum. On the other hand, if im(λ1−S†)
were not dense then there would be a y not in its closure and by the projection theorem

we can take it to be orthogonal to im(λ1− S†). But this means (y, (λ− S†)x) = 0 for all

x which means (λ∗1 − S)y = 0, but we know that S has no eigenvectors. Thus |λ| = 1 is

in the spectrum of S† but is neither in the point nor the residual spectrum! We conclude

that im(λ1 − S†) is dense, but not equal to H. To exhibit a vector outside the image we

can try to solve y = (λ1− S†)x. The formal solution is

x1 = λ−1y1 + λ−2y2 + λ−3y3 + · · ·
x2 = λ−1y2 + λ−2y3 + λ−3y4 + · · ·
x3 = λ−1y3 + λ−2y4 + λ−3y5 + · · ·

...
...

(18.30)

So, if we take yn = λn/n then y ∈ `2 but is not in the image.

In summary we have the table:

Operator Spectrum Point Spectrum Residual Spectrum Continuous Spectrum

S D ∅ D ∅
S† D Interior(D) ∅ |λ| = 1

Theorem Suppose T : H → H is an everywhere defined self-adjoint operator. Then

1. The spectrum σ(T ) ⊂ R is a subset of the real numbers.

2. The residual spectrum σres(T ) = ∅.

Proof : The usual proof from elementary quantum mechanics courses shows that the point

spectrum is real: If Tx = λx then

λ(x, x) = (x, Tx) = (Tx, x) = λ∗(x, x) (18.31)

so λ ∈ R.
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Now we show the residual spectrum is empty. We remarked above that σres(T )∗ ⊂
σpoint(T

†). But if T † = T then if λ ∈ σres(T ) we must have λ∗ ∈ σpoint(T ) and hence λ is

real, but this is impossible since the point and residual spectra are disjoint.

Now, let λ and µ be any real numbers and compute

‖ (T−(λ+iµ))x ‖2= (x, (T−λ+iµ)(T−λ−iµ)x) = (x, ((T−λ)2+µ2)x) =‖ (T−λ)x ‖2 +µ2 ‖ x ‖2

(18.32) eq:smeng

This shows that if µ 6= 0 then T − (λ + iµ) is invertible. If we let x = (T − (λ + iµ))−1y

then (18.32) implies that µ2 ‖ x ‖2≤‖ y ‖2. But this means that

‖ (T − (λ+ iµ))−1y ‖
‖ y ‖

=
‖ x ‖
‖ y ‖

≤ 1

|µ|
(18.33)

and hence (T − (λ + iµ) has a bounded inverse for µ 6= 0. Therefore, λ + iµ ∈ ρ(T ) for

µ 6= 0 and hence σ(T ) ⊂ R. ♠
A useful criterion for telling when λ ∈ σ(T ) is the following:

Definition: A Weyl sequence is 31 a sequence of vectors zn ∈ D(T ) such that ‖ zn ‖= 1

and ‖ (λ− T )zn ‖→ 0.

Theorem: [Weyl criterion]

a.) If T has a Weyl sequence then λ ∈ σ(T ).

b.) If λ is on the boundary of ρ(T ) then T has a Weyl sequence.

Proof :

a.) If there is a Weyl sequence and λ ∈ ρ(T ) then

1 =‖ zn ‖=‖ Rλ(T )(λ− T )zn ‖≤‖ Rλ(T ) ‖‖ (λ− T )zn ‖→ 0 (18.34)

which is impossible. Therefore λ ∈ σ(T ).

b.) Suppose λ ∈ ρ(T )− ρ(T ), then there is a sequence of complex numbers {λn} with

λn ∈ ρ(T ) and λn → λ such that dist(λn, σ(T )) → 0. Therefore, by (18.17) we know

‖ Rλn(T ) ‖↗ +∞ and therefore there are vectors yn so that

‖ Rλn(T )yn ‖
‖ yn ‖

↗ +∞ (18.35)

Now set zn = Rλn(T )yn. These will be nonzero (since Rλn(T ) is invertible) and hence we

can normalize yn so that ‖ zn ‖= 1. But then

‖ (λ− T )zn ‖ =‖ (λ− λn)zn + (λn − T )zn ‖
=‖ (λ− λn)zn + yn ‖
≤ |λ− λn|+ ‖ yn ‖→ 0

(18.36)

31We state it so that it applies to unbounded operators with dense domain D(T ). See below. For bounded

operators take D(T ) = H.
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so {zn} is a Weyl sequence. ♠

Example Consider the operator on L2[a, b] given by the position operator qψ(x) = xψ(x).

Clearly this is a bounded operator ‖ q ‖≤ b. It is everywhere defined and symmetric, hence,

it is self-adjoint. It does not have eigenvectors 32. For any x0 ∈ (a, b) we can take good

approximations to the Dirac delta function:

ψε,x0 =

(
2

π

)1/4 1

ε1/2
e−(x−x0)2/ε2 (18.37)

and, on the real line ‖ (q − x0)2ψε,x0 ‖2= ε2/
√

2, so (q − x0)−1 could hardly be a bounded

operator. Thus σ(q) = [a, b] and the spectrum is entirely continuous spectrum.

Exercise The C∗ identity

Show that

‖ T †T ‖=‖ T ‖2 (18.38)

Remark: In general, a Banach algebra 33 which has an anti-linear involution so that

(ab)∗ = b∗a∗ and which satisfies ‖ a∗a ‖=‖ a ‖2 is known as a C∗-algebra. There is a

rather large literature on the subject. It can be shown that every C∗ algebra is a †-closed

subalgebra of the algebra of bounded operators on Hilbert space.

Exercise

Show that S†S = 1 but SS† is not one, but rather is a projection operator. That

means that S is an example of a partial isometry. ♣Say more? ♣

♣Give the example

of the Harper

operator

U +U∗ +λ(V +V ∗)
whose spectrum is a

Cantor set. ♣

18.4 Spectral theorem for bounded self-adjoint operators

Now we would like to explain the statement (but not the proof) of the spectral theorem

for self-adjoint operators on Hilbert space - a major theorem of von Neumann.

We begin with an everywhere-defined self-adjoint operator T ∈ L(H). As we have

seen, T is bounded and σ(T ) ⊂ R is a disjoint union of the point and continuous spectrum.

The spectral theorem says - roughly - that in an appropriate basis T is just a multi-

plication operator, like ψ(x)→ xψ(x). Roughly, for each λ ∈ σ(T ) we choose eigenvectors

32The “position eigenstates” of elementary quantum mechanics are distributions, and are not vectors in

the Hilbert space.
33A Banach algebra is an algebra which is also a complete normed vector space and which satisfies

‖ ab ‖≤‖ a ‖ · ‖ b ‖, an inequality which is easily verified for L(H). So L(H) is an example of a Banach

algebra.
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|ψλ,i〉 where i indicates possible degeneracy of the eigenvalue and then we aim to write

something like

T ∼
∫
σ(T )

λ

(∑
i

|ψλ,i〉〈ψλ,i|

)
dµT (λ) (18.39)

with some measure µT (λ) on the spectrum. Clearly, unless we have a discrete point spec-

trum with finite dimensional eigenspaces this representation is at best heuristic. In that

latter case

dµT (λ) =
∑
n

δ(λ− λn)dλ (18.40)

where we sum over the distinct eigenvalues λn.

In order to give a precise and general formulation of the spectral theorem von Neumann

introduced the notion of a projection-valued measure, which we will now define. First we

need:

Definition: The (Borel) measurable subsets of the real line R is the smallest collection

B(R) of subsets of the real line such that

1. All intervals (a, b) ∈ B(R).

2. B(R) is closed under complement: If E ∈ B(R) then R− E ∈ B(R).

3. B(R) is closed under countable union.

Remarks:

1. These axioms imply that R ∈ B(R) and ∅ ∈ B(R).

2. The good thing about this collection of subsets of R is that one can define a “good”

notion of “size” or measure µ(E) of an element E ∈ B(R) such that µ((a, b)) = b− a
and µ is additive on disjoint unions. It turns out that trying to define such a measure

µ for arbitrary subsets of R leads to paradoxes and pathologies.

3. We say a property holds “almost everywhere” if the set where it fails to hold is of

measure zero.

Definition: A projection-valued measure is a map

P : B(R)→ L(H) (18.41)

such that

1. P (E) is an orthogonal projection operator for all E ∈ B(R).

2. P (∅) = 0 and P (R) = 1.
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3. If E = q∞i=1 is a countable disjoint union of sets Ei ∈ B(R) then

P (E) = s− limn→∞

n∑
i=1

P (Ei) (18.42)

where the convergence is in the strong topology.

Remarks

1. The meaning of convergence in the strong topology is that a sequence of operators

Tn → T if, for all x ∈ H, ‖ Tnx− Tx ‖→ 0.

2. Given a PVM and a nonzero vector x ∈ H there is a corresponding ordinary measure

Px on R. We define it on a measurable set E by ♣No need to divide

by (x, x). You can

just use a positive

measure not

normalized to one.

♣
Px(E) =

(x, P (E)x)

(x, x)
(18.43)

This is a measure because, as is easily verified: Px(∅) = 0, Px(R) = 1, Px(E) ≥ 0,

and, if E = q∞i=1 is a countable disjoint union of sets Ei ∈ B(R) then

Px(E) =

∞∑
i=1

Px(Ei) (18.44)

3. It will be convenient below to use the notation

Px(λ) := Px((−∞, λ]) (18.45) eq:Plambda

This will be a measureable function and the corresponding measure dPx(λ) has the

property that

Px(E) =

∫
E
dPx(λ) (18.46)

Theorem[Spectral Theorem for bounded operators] If T is an everywhere-defined self-

adjoint operator on H then

1. There is a PVM PT so that for all x ∈ H, we have

(x, Tx)

(x, x)
=

∫
R
λdPT,x(λ) (18.47) eq:DiagMtx

where PT,x(λ) is the measurable function associated to PT via (18.45).

2. If f is a (measurable) function on R then f(T ) makes sense and for all x ∈ H, we

have
(x, f(T )x)

(x, x)
=

∫
R
f(λ)dPT,x(λ) (18.48) eq:DiagMtx-f

Rough idea of the proof : The basic idea of the proof is to look at the algebra of operators

generated by T . This is a commutative algebra. For example, it contains all the polynomials
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in T . If we take some kind of closure then it will contain all continuous functions of T . This

statement is known as the “continuous functional calculus.” Now, this continuous algebra

is identified with the continuous functions on the compact set X = σ(T ). Moreover, given

any x ∈ H we have a linear map ΛT : C(X)→ R given by

f 7→ ΛT (f) := (x, f(T )x) (18.49)

Moreover, the map is positive, meaning that if f is positive then ΛT (f) ≥ 0. Then a general

theorem - known as the Riesz-Markov theorem - says that any positive linear functional

C(X) → R where X is Hausdorff is of the form f 7→
∫
X fdµ. Therefore, given T and x

there is a corresponding measure µT,x and we have

(x, f(T )x) =

∫
σ(T )

fdµT,x (18.50)

Now, using this equation one extends the continuous functional calculus to the Borel func-

tional calculus - namely, now we make sense of operators g(T ) where g is not necessarily

continuous, but at least measurable. In particular, if g is a characteristic function it is

discontinuous, but g(T ) will be a projection operator. ♠
Remarks:

1. Note that (18.47) is enough to determine all the matrix elements of T . This equation

determines (x, Tx) for all x and then we can use the polarization identity:

(x, Ty) =
1

4

[
((x+ y), T (x+ y))− ((x− y), T (x− y))

+ i((x− iy), T (x− iy))− i((x+ iy), T (x+ iy))

] (18.51)

which can also be written

4(y, Tx) =

3∑
k=0

ik(x+ iky, T (x+ iky)) (18.52)

Note that on a real Hilbert space we cannot multiply by i, but then (y, Tx) =

(Tx, y) = (x, Ty) for self-adjoint T so that it suffices to work just with x ± y in the

corresponding polarization identity.

2. Equation (18.48) is meant to capture the idea that in the block-diagonalized basis

provided by PT the operator T is diagonalized.

3. It follows from the definition of a PVM that if ‖ x ‖= 1

(x, P (E)x) =

∫
R
χE(λ)dPx(λ) =

∫
E
dPx(λ) (18.53)

where χE(λ) is the characteristic function of the set E.
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4. Using the previous remark Using this we can see that, as expected, for a self-adjoint

operator T the PVM PT has support on the spectrum σ(T ) in the sense that:

λ ∈ σ(T ) iff PT ((λ− ε, λ+ ε)) 6= 0 for all ε > 0.

To prove this suppose first that PT ((λ0 − ε, λ0 + ε)) 6= 0 for all ε > 0. Then take

the sets En = (λ0 − 1
n , λ0 + 1

n). Since PT (En) is nonzero we can take a sequence of

nonzero vectors zn in the image of PT (En) and normalize them to ‖ zn ‖= 1. Then

‖ (T − λ0)zn ‖2 =‖ (T − λ0)PT (En)zn ‖2

=

∫
R

(λ− λ0)2χEn(λ)dPT,zn(λ) ≤ 1

n2

(18.54)

so we have a Weyl sequence and hence λ ∈ σ(T ). Conversely, suppose that PT ((λ0−
ε, λ0 + ε)) = 0 for some ε > 0. For such an ε define the function:

fε(λ) :=

{
0 |λ− λ0| < ε

1
λ0−λ |λ− λ0| ≥ ε

(18.55)

Then

(λ0 − T )fε(T ) = (λ0 − T )

∫
|λ0−λ|≥ε

1

λ0 − λ
dPT (λ)

=

∫
|λ0−λ|≥ε

λ0 − λ
λ0 − λ

dPT (λ)

=

∫
|λ0−λ|≥ε

dPT (λ) = 1

(18.56)

Similarly, f(T )(λ0 − T ) = 1D(T ). Therefore, λ0 − T is a bijection of D(T ) with H
and hence λ ∈ ρ(T ). ♠

Example: Suppose T has a finite pure point spectrum {λn}Nn=1 with eigenspaces Vλn .

Then define

δλ(E) =

∫
E
δ(λ′ − λ)dλ′ =

{
1 λ ∈ E
0 λ /∈ E

(18.57)

Then the projection value measure of T is

PT (E) =
∑
λn∈E

PVλn =
N∑
n=1

δλn(E)PVλn (18.58)

In particular, if T = IdH is the unit operator then

PT (E) =

{
IdH 1 ∈ E
0 1 /∈ E

(18.59)
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Exercise

Show that if P is a PVM then 34

P (E1)P (E2) = P (E1 ∩ E2) (18.60)

18.5 Defining the adjoint of an unbounded operator

Recall from the Hellinger-Toeplitz theorem that an unbounded operator on an infinite-

dimensional Hilbert space cannot be everywhere defined and self-adjoint. On the other

hand, as we explained, physics requires us to work with unbounded self-adjoint operators.

Therefore, we should consider partially defined linear operators. That is, linear opera-

tors T from a proper subspace D(T ) ⊂ H to H. Giving the domain D(T ) of the operator

is an essential piece of data in defining the operator.

Definition:

a.) The graph of T is the subset

Γ(T ) := {x⊕ Tx|x ∈ D(T )} ⊂ H ⊕H (18.61)

b.) T is closed if Γ(T ) is a closed subspace of H⊕H.

c.) An operator T2 is an extension of an operator T1 if Γ(T1) ⊂ Γ(T2). That is,

D(T1) ⊂ D(T2) and when T2 is restricted to D(T1) it agrees with T1. This is usually

denoted T1 ⊂ T2.

Definition: If D(T ) ⊂ H is dense then we define the subset D(T †) ⊂ H to be the set of

y ∈ H so that there exists a z ∈ H such that for all x ∈ D(T ),

(Tx, y) = (x, z). (18.62)

If y ∈ D(T †) then z is unique (since D(T ) is dense) and we denote

z = T †y (18.63)

This defines a linear operator T † with domain D(T †) called the adjoint of T .

Remark: One way of characterizing D(T †) is that y ∈ D(T †) iff x 7→ (y, Tx) extends

to a to a bounded linear operator. Then z exists, by the Riesz representation theorem.

Definition: A densely defined operator T is

34Answer : First show that if E1 ∩ E2 = ∅ then P (E1)P (E2) = P (E2)P (E1) = 0. Do that by us-

ing the PVM axiom to see that P (E1 ∪ E2) = P (E1) + P (E2). Square this equation to conclude

that {P (E1), P (E2)} = 0. But now, multiply this equation on the left and then on the right by

P (E1) to show that [P (E1), P (E2)] = 0. Next, write P (E1) = P (E1 − E1 ∩ E2) + P (E1 ∩ E2) and

P (E2) = P (E2 − E1 ∩ E2) + P (E1 ∩ E2) and multiply.
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a.) Symmetric if T ⊂ T †.
b.) Self-adjoint if T = T †.

Remarks

1. Let us unpack this definition a bit. An operator T is symmetric iff

(x, Ty) = (Tx, y) (18.64)

for all x, y ∈ D(T ). However, x → (Tx, y) might be bounded for a larger class of

vectors y /∈ D(T ). When T is self-adjoint this does not happen and D(T †) = D(T ).

2. Unfortunately, different authors use the term “Hermitian operator” in ways which are

inequivalent for unbounded operators. Some authors (such as Reed and Simon) use

the term to refer to symmetric operators while other authors (such as Takhtadjan)

use the term to refer to self-adjoint operators. So we will use only “symmetric” and

“self-adjoint” and reserve the term “Hermitian” for the finite-dimensional case, where

no confusion can arise.

Example: Let us use the “momentum” p = −i ddx to define an operator with a dense

domain D(T ) within L2[0, 1]. The derivative is clearly not defined on all L2 functions.

Now, a function f : [0, 1]→ C is “absolutely continuous” if f ′(x) exists almost everywhere

and |f ′(x)| is integrable. In particular, the fundamental theorem of calculus holds

f(b)− f(a) =

∫ b

a
f ′(x)dx (18.65)

In this case f ′(x) is indeed in L2[0, 1].

We begin with an operator T defined by the domain:

D(T ) = {f |f ∈ AC[0, 1], f(0) = f(1) = 0} (18.66)

then elementary integration by parts shows that T = −i ddx is a symmetric operator. An

elaborate argument in Reed-Simon VIII.2, p. 257 shows that with this definition of T we

have:

D(T †) = {f |f ∈ AC[0, 1]} (18.67)

and in Reed-Simon vol. 2, Section X.1, p. 141 it is shown that there is a one-parameter

family of self-adjoint extensions Tα = T †α labeled by a phase α:

D(Tα) = {f |f ∈ AC[0, 1], f(0) = αf(1)} (18.68)

It easy to appreciate this even without all the heavy machinery of defining self-adjoint ex-

tensions of symmetric operators. Formally proving that the operator is symmetric requires

that the boundary terms in the integration by parts vanishes, that is:

(Tψ1, ψ2) = (ψ1, Tψ2) (18.69)
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implies

ψ∗1(1)ψ2(1)− ψ∗1(0)ψ2(0) = 0 (18.70)

If ψ2 ∈ D(T ) then this will be satisfied for ψ1 ∈ D(T †) because both terms separately

vanish. We can attempt to extend this definition to a larger domain. If we try to let both

ψ1, ψ2 ∈ D(T †) the condition will fail. The intermediate choice is to choose a phase α and

require ψ(1) = αψ(0).

Exercise

Suppose T1 ⊂ T2 are densely defined operators. Show that T †2 ⊂ T
†
1 .

18.6 Spectral Theorem for unbounded self-adjoint operators
subsec:UnboundedSA

Having introduced the notion of projection valued measures we are now in a position to

state the spectral theorem for (possibly unbounded) self-adjoint operators on Hilbert space:

The Spectral Theorem: There is a 1-1 correspondence between self-adjoint operators T

on a Hilbert space H and projection valued measures such that:

a.) Given a PVM P a corresponding self-adjoint operator TP can be defined by the

diagonal matrix elements:
(x, TPx)

(x, x)
=

∫
R
λdPx(λ) (18.71) eq:Gen-ST-i

with domain

D(TP ) = {x ∈ H|
∫
R
λ2dPx(λ) <∞} (18.72) eq:Gen-ST-ii

b.) Conversely, given T there is a corresponding PVM PT such that (18.71) and (18.72)

hold.

c.) Moreover, given a self-adjoint operator T if f is any (Borel measurable) function

then there is an operator f(T ) with domain

D(f(T )) = {x ∈ H|
∫
R
|f(λ)|2dPT,x(λ) <∞} (18.73) eq:Gen-ST-iii

such that
(x, f(T )x)

(x, x)
=

∫
R
f(λ)dPT,x(λ) (18.74) eq:Gen-ST-iv

Example 1. If T has pure point spectrum {λn} with closed eigenspaces Vn then

T =
∑
n

λnPVn (18.75)

PT (E) =
∑
λn∈E

PVn (18.76)
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where PVn are the orthogonal projections to the subspaces Vn.

Example 2. Take H = L2(R) and define T = q by qψ(x) = xψ(x) with a domain given by

those wavefunctions with falloff at least as fast as |x|−α at infinity, with α > 3/2. Then

(PT (E)ψ)(x) =

{
ψ(x) x ∈ E
0 x /∈ E

(18.77)

Example 3. Take H = L2(R) and define T = p by pψ(x) = −i ddxψ(x) with a domain

given by absolutely continuous wavefunctions with L2 integrable derivative. 35 Now, if we

make a Fourier transform then this is again a multiplication operator, so now

(PT (E)ψ)(x) =

∫
R
dy

∫
E

dk

2π
eik(x−y)ψ(y) (18.78)

Remarks

1. This is a major theorem and proofs can be found in many places. We mention just

Chapters VII and VIII of Reed-Simon, and Chapter 3 of G. Teschl, Mathematical

Methods in Quantum Mechanics.

2. The resolvent set and spectrum of a closed but possibly unbounded operator are

defined along the same lines as in the bounded case: λ ∈ ρ(T ) if λ− T is a bijection

of D(T ) onto H. It follows that the resolvent Rλ = (λ− T )−1 is a bounded operator

H → D(T ). The spectrum is the complement of the resolvent set as before, and, as

before, if T is self-adjoint σ(T ) is a subset of R.

3. One can show that if T is a bounded self-adjoint operator then σ(T ) is a bounded

subset of R.

4. What is going on with our example qnp + pqn in Section §18.1.2 above? At least a

partial answer is that the most obvious domain on which one can prove the operator

is symmetric (and hence has real point spectrum) is the set of wavefunctions so that

qnpψ is L2. These must fall off as ψ(x) ∼ |x|−α for α > n − 1/2 and the putative

eigenfunctions exhibited above lie outside that domain.

18.7 Commuting self-adjoint operators

Once we start admitting partially defined operators on Hilbert space we have stepped onto

a slippery slope. If T1 and T2 are only defined on D(T1) and D(T2) respectively then T1+T2

is only defined on D(T1) ∩D(T2) and T1 ◦ T2 is similarly only defined on

D(T1 ◦ T2) = {x|x ∈ D(T2) and T2(x) ∈ D(T1)} (18.79)

35This is an example of something called a Sobolev space.
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The problem is that these subspaces might be small, or even the zero vector space.

Example 1 Take any y /∈ D(T1) and let T2(x) = (z, x)y for some z. Then T1 ◦ T2 is

only defined on the zero vector.

Example 2: Let {xn} be an ON basis for H and let {yn} be another ON basis so

that each yn is an infinite linear combination of the xm’s and vice versa. Then let D(T1)

be the set of finite linear combinations of the xn’s and D(T2) be the set of finite linear

combinations of the yn’s. Then D(T1) and D(T2) are dense and D(T1) ∩ D(T2) = {0}.
In order to produce an example of two such ON bases consider H = `2(C) and take the

Cayley transform of T = λ(S + S†) where λ is real and of magnitude |λ| < 1
2 . Then

U = (1 + iT )(1− iT )−1 (18.80)

is a well-defined unitary operator which takes the standard basis en = (0, . . . , 0, 1, 0 . . . ) of

`2 to a new basis fn all of which are infinite linear combinations of the en.

Definition: Two self-adjoint operators T1 and T2 are said to commute if their PVM’s

commute, that is, for all E1, E2 ∈ B(R)

PT1(E1)PT2(E2) = PT2(E2)PT1(E1) (18.81)

When T1, T2 are bounded the spectral theorem shows that this reduces to the usual

notion that [T1, T2] = 0.

18.8 Stone’s theorem

Part of the proof of the spectral theorem involves showing that if x→ f(x) is a continuous

function, or more generally a measurable function, then if T is self-adjoint the operator

f(T ) is densely defined and makes sense. In particular, if this is applied to the exponential

function f(x) = exp[ix] one obtains an operator with domain all of H (by (18.73)) which is

in fact a bounded operator. All the good formal properties that we expect of this operator

are in fact true:

Theorem: If T is a self-adjoint operator then the family of operators U(t) = exp[itT ]

satisfies

1. U(t)U(s) = U(t+ s)

2. t→ U(t) is continuous in the strong operator topology.

3. The limit limt→0(U(t)x − x)/t exists iff x ∈ D(T ) in which case the limit is equal

to iT (x) ♣Should explain

that t→ U(t) is

continuous in the

norm topology iff T

is bounded. ♣
Stone’s theorem, is a converse statement: First, we define a strongly continuous one

parameter group is a homomorphism from R to the group of unitary operators on Hilbert

space which is continuous in the strong topology, that is:

1. U(t)U(s) = U(t+ s)
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2. For each x ∈ H, limt1→t2 U(t1)x = U(t2)x.

Theorem [Stone’s theorem]: If U(t) is a strongly continuous one-parameter group of

unitary operators on H then there is a self-adjoint operator T on H such that U(t) =

exp[itT ].

Remarks

1. If T is bounded then we can simply define

U(t) =
∞∑
n=0

(itT )n

n!
(18.82)

This converges in the operator norm. In particular t→ U(t) is continuous in the op-

erator norm. However, such a definition will not work if T is an unbounded operator.

2. The proof is in Reed-Simon Theorem VIII.8, p.266.

3. Let us return to our third lie of §18.1.3. We cannot exponentiate T = −id/dx on

L2[0, 1] simply because it is unbounded and not self-adjoint with the domains D(T )

and D(T †) given above. Since T is not defined on functions with nonzero values at

x = 0, 1 it is not surprising that we cannot define the translation of a wavepacket

past that point. If we take one of the self-adjoint extensions Tα then we are working

with twisted boundary conditions on the circle. Now is is quite sensible to be able to

translate by an arbitrary amount around the circle.

4. What about the translation operator on the half-line? Our naive discussion above

should make it clear that in this case p is not even essentially self-adjoint. 36 So

there is no self-adjoint extension of p acting on the Sobelev space with ψ(x) = 0 at

x = 0.

5. Stone’s theorem can also be proven for continuity in the compact-open topology.

18.9 Traceclass operators

We would like to define the trace of an operator but, as the first lie in Section 18.1.1 shows,

we must use some care.

For simplicity we will restrict attention in this section to bounded operators.

Definition: An operator is called positive if 37

(x, Tx) ≥ 0 ∀x ∈ H (18.83)

Three immediate and easy properties of positive bounded operators are:

Theorem: If T is a positive bounded operator on a complex Hilbert space H then

36If the closure of the graph Γ(T ) is the graph of an operator we call that operator T̄ : Γ(T ) = Γ(T̄ ), and

we say that T is closeable. A symmetric operator T is essentially self-adjoint if T̄ is self-adjoint.
37A more accurate term would be nonnegative. But this is standard terminology.
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1. T is self-adjoint.

2. |(x, Ty)|2 ≤ (x, Tx)(y, Ty) for all x, y ∈ H.

3. T has a unique positive square-root S ∈ L(H), i.e. S is positive and S2 = T .

Proof :

1. Note that (x, Tx) = (x, Tx) = (Tx, x). Now, if H is a complex Hilbert space we can

then use the polarization identity to prove (x, Ty) = (Ty, x) and hence T is self-adjoint.

The statement fails for real Hilbert spaces.

2. Consider the inequalities 0 ≤ (x+λeiθy, T (x+λeiθy)), where λ is real and we choose

a suitable phase eiθ and require the discriminant of the resulting quadratic polynomial in

λ to be nonpositive.

3. Follows immediately from the spectral theorem. ♠

Theorem/Definition: If T is a positive operator on a separable Hilbert space we define

the trace of T by

Tr(T ) :=

∞∑
n=1

(un, Tun) (18.84) eq:TraceDef-1

where {un} is an ON basis for H. This sum, (which might be infinite) does not depend on

the ON basis.

Proof : The sum in (18.84) is a sum of nonnegative terms and hence the partial sums are

strictly increasing. They either diverge to infinity or have a limit. We use the square-root

property, namely T = S2 with S self-adjoint and positive to check independence of basis.

Let {vm} be any other ON basis:

Tr(T ) =

∞∑
n=1

(un, Tun) =

∞∑
n=1

‖ Sun ‖2=

∞∑
n=1

∞∑
m=1

|(Sun, vm)|2 =

∞∑
n=1

∞∑
m=1

|(un, Svm)|2

=
∞∑
m=1

∞∑
n=1

|(un, Svm)|2 =
∞∑
m=1

‖ Svm ‖2=
∞∑
m=1

(vm, T vm)

(18.85)

The exchange of infinite sums in going to the second line is valid because all terms are

nonnegative ♠
We now use the squareroot lemma and the above theorem to define the traceclass ideal

I1:

Definition: The traceclass operators I1 ⊂ L(H) are those operators so that |T | :=
√
T †T

has a finite trace: Tr(|T |) <∞.

With this definition there is a satisfactory notion of trace:

Theorem: [Properties of traceclass operators]
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1. I1 ⊂ L(H) is a ∗-closed ideal : This means: if T1, T2 ∈ I1 then T1 + T2 ∈ I1 and if

T3 ∈ L(H) then T1T3 ∈ I1 and T3T1 ∈ I1, and, finally, T is traceclass iff T † is.

2. If T ∈ I1 the trace, defined by

Tr(T ) :=

∞∑
n=1

(un, Tun) (18.86)

where {un} is any ON basis, is independent of the choice of ON basis and defines a

linear functional I1 → C.

3. If T1 ∈ I1 and T2 ∈ L(H) then the trace is cyclic:

Tr(T1T2) = Tr(T2T1) (18.87)

Proofs: The proofs are straightforward but longwinded. See Reed-Simon, Section VI.6.

Finally, we mention one more commonly used class of operators intermediate between

traceclass and bounded operators:

Definition: The compact operators on H, denoted K(H) is the norm-closure of the oper-

ators of finite rank. 38

Thanks to the singular value decomposition, the canonical form of a compact operator

follows immediately: There are ON sets {un} and {wm} in H (not necessarily complete)

and positive numbers λn so that

T =
∞∑
n=1

λn(un, ·)wn (18.88)

where the convergence of the infinite sum is in the operator norm. Hence the only possible

accumulation point of the λn is zero. For a compact self-adjoint operator there is a complete

ON basis {un} with

T =

∞∑
n=1

λn(un, ·)un (18.89)

where λn are real and limn→∞ λn = 0. This is called the Hilbert-Schmidt theorem.

Next, we have I1 ⊂ K(H). This follows because if T is traceclass so is T †T , but this

implies that for any ON basis {un} consider the linear span LN of {un}Nn=1. Then if y ∈ L⊥N
38This definition is fine for operators on Hilbert space but will not work for operators on Banach space.

In that case one must use a different criterion, equivalent to the above for Hilbert spaces. See Reed-Simon

Section VI.5.
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is nonzero we can normalize it to ‖ y ‖= 1 and since LN ∪ {y} can be completed to an ON

basis

‖ Ty ‖2 +
N∑
n=1

‖ Tun ‖2≤ TrT †T <∞ (18.90)

so

‖ Ty ‖2≤ TrT †T −
N∑
n=1

‖ Tun ‖2 (18.91)

Since TrT †T <∞ the RHS goes to zero for N →∞. This means that

T =

∞∑
n=1

(un, ·)Tun (18.92)

with converges in the operator norm because

‖ T −
N∑
n=1

(un, ·)Tun ‖ = supy 6=0

‖ Ty −
∑N

n=1(un, y)Tun ‖
‖ y ‖

= supy 6=0

‖ T
(
y −

∑N
n=1(un, y)un

)
‖

‖ y ‖

= supy 6=0

‖ Ty⊥ ‖√
‖ y⊥ ‖2 + ‖ y‖ ‖2

(18.93)

where y⊥ is the orthogonal projection to L⊥N .

In particular, for a positive traceclass operator T there is an ON basis with

T =
∞∑
n=1

λn(un, ·)un (18.94) eq:Schmidt-Decomp

where λn ≥ 0, and Tr(T ) =
∑∞

n=1 λn. This theorem is important when we discuss physical

states and density matrices in quantum mechanics in Section §19 below.

Exercise

Give an example of a positive operator on a real Hilbert space which is not self-adjoint.
39

19. The Dirac-von Neumann axioms of quantum mechanics
sec:DvN-Axioms

The Dirac-von Neumann axioms attempt to make mathematically precise statements as-

sociated to the physical description of quantum systems.

39Answer : Consider 1 + J(2) on R2.
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1. “Space of states”: To a “physical system” we assign a complex separable Z2-graded

Hilbert space H known as the “space of states.”

2. Physical observables: The set of physical quantities which are “observable” in this

system is in 1-1 correspondence with the set O of self-adjoint operators on H.

3. Physical states: The set of physical states of the quantum system is in 1-1 corre-

spondence with the set S of positive (hence self-adjoint) trace-class operators ρ with

Tr(ρ) = 1.

4. Physical Measurement : Physical measurements of an observable T ∈ O when the

system is in a state ρ ∈ S are governed by a probability distribution PT,ρ on the real

line of possible outcomes. The probability of measuring the value in a set E ∈ B(R)

is defined by

PT,ρ(E) = TrPT (E)ρ (19.1) eq:Born-VN

where PT is the projection-valued measure of the self-adjoint operator T .

5. Symmetries. To state the postulate we need a definition:

Definition An automorphism of a quantum system to be a pair of bijective maps

β1 : O → O and β2 : S → S where β1 is real linear on O such that (β1, β2) preserves

probability measures:

Pβ1(T ),β2(ρ) = PT,ρ (19.2)

The automorphisms form a group QuantAut.

Now, the symmetry axiom posits that if a physical system has a group G of symme-

tries then there is a homomorphism ρ : G→ QuantAut. ♣Need to put some

continuity

properties on ρ. For

example, for

continuous groups

we probably want ρ

to be continuous in

the compact-open

topology. ♣

6. Time evolution. If the physical system has a well-defined notion of time, then evolu-

tion of the system in time is governed by a strongly continuous groupoid of unitary

operators 40 and

ρ(t2) = U(t1, t2)−1ρ(t1)U(t1, t2) (19.3) eq:TimeEvolve

7. Collapse of the wavefunction If a measurement of a physical observable corresponding

to a self-adjoint operator T is made on a state ρ then the state changes discontinuously

according to the result of the measurement. If T has pure point spectrum {λn}n with

eigenspaces Vn then when T is measured the state changes discontinuously to

ρ→ ρ̂ =
∑
n

PVnρPVn (19.4) eq:StateCollapse

When T has a continuous spectrum an analogous, but more complicated, formula

holds which takes into account the resolution of the measuring apparatus measuring

a continuous spectrum.

40By this we simply mean that (t1, t2) → U(t1, t2) is continuous in the strong operator topology and

U(t1, t2)U(t2, t3) = U(t1, t3).
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8. Combination of systems. If two physical systems, represented by Hilbert spaces H1

and H2 are “combined” (for example, they are allowed to interact or are otherwise

considered to be part of one system) then the combined system is described by the

Z2-graded tensor product H1⊗̂H2. ♣This doesn’t have

much content. Need

to say something

about observables.

♣
Remarks

1. First, let us stress that the terms “physical system,” “physical observables,” and

“symmetries of a physical system,” are not a priori defined mathematical terms,

although we do hope that they are meaningful terms to the reader. The point of the

first few axioms is indeed to identify concrete mathematical objects to associate with

these physical notions.

2. “Space of states”: The Z2-grading is required since we want to incorporate fermions.

See below for Z2-graded linear algebra. Some authors have toyed with the idea of

using real or quaternionic Hilbert spaces but despite much effort nobody has given a

compelling case for using either. I have not seen any strong arguments advanced for

why the Hilbert space should be separable. But the theory of self-adjoint operators

is likely to be a good deal more complicated for non-separable Hilbert spaces.

3. Pure states vs. mixed states. The “physical states” referred to in axiom 3 are often

called density matrices in the physics literature. By the Schmidt decomposition of

positive traceclass operators (18.94) we can write

ρ =
∑

ρn|n〉〈n| (19.5)

where ρn ≥ 0 with
∑
ρn = 1 and |n〉 is an ON basis for H. Note that the set S is

a convex set: If ρ1, ρ2 ∈ S then so is tρ1 + (1 − t)ρ2 for t ∈ [0, 1]. For any convex

set there is a notion of the extremal points. These are the points which are not of

the form tρ1 + (1 − t)ρ2 with 0 < t < 1 for any value of ρ1 6= ρ2. In the convex

set of physical states the extremal points correspond to projection operators onto

one-dimensional subspaces

ρ` =
|ψ〉〈ψ|
〈ψ|ψ〉

ψ ∈ ` (19.6)

The space of these extremal points are called the pure states. States which are

not pure states are called mixed states. The pure states are equivalently the one-

dimensional projection operators and hence are in 1-1 correspondence with the space

of lines in H. The space of lines in H is known as the projective Hilbert space PH.

Any nonzero vector ψ ∈ H determines a line ` = {zψ|z ∈ C} so PH is often thought

of as vectors up to scale, and we can identify PH = (H−{0})/C∗. Thus, calling H a

“space of states” is a misnomer for two reasons. First, vectors in H can only be used

to define pure states rather than general states. Second, different vectors, namely

those in the same line define the same state, so a pure state is an equivalence class

of vectors in H.

– 146 –



4. Born-von Neumann formula. Equation (19.1) goes back to the Born interpretation

of the absolute square of the wavefunction as a probability density. Perhaps we

should call it the Born-von Neumann formula. To recover Born’s interpretation, if

ρ = |ψ〉〈ψ| is a pure state defined by a normalized wavefunction ψ(x) ∈ L2(R) of a

quantum particle on R and T = q is the position operator then the probability of

finding the particle in a measurable subset E ∈ B(R) is

Pq,ρ(E) = TrPq(E)ρ =

∫
E
|ψ(x)|2dx (19.7)

5. Heisenberg Uncertainty Principle. Based on its physical and historical importance one

might have thought that the Heisenberg uncertainty principle would be a fundamental

axiom, but in fact it is a consequence of the above. To be more precise, for a bounded

self-adjoint operator T ∈ O the average value of T in state ρ is

〈T 〉ρ := Tr(Tρ) (19.8)

We then define the variance or mean deviation σT,ρ by

σ2
T,ρ := Tr(T − 〈T 〉)2ρ (19.9)

Then if T1 and T2 are bounded self-adjoint operators we have, for any real number λ

and phase eiθ,

0 ≤ Tr
(

(T1 + eiθλT2)†(T1 + eiθλT2)ρ
)

(19.10)

(provided T1+eiθλT2 has a dense domain) and since the discriminant of the quadratic

polynomial in λ is nonpositive we must have

Tr(T 2
2 ρ)Tr(T 2

1 ρ) ≥ 1

4

(
〈(eiθT1T2 + e−iθT2T1)〉ρ

)2
(19.11)

Note that (eiθT1T2 + e−iθT2T1) is (at least formally) self-adjoint and hence the quan-

tity on the RHS is nonnegative. We can replace T → T − 〈T 〉 in the above and we

deduce the general Heisenberg uncertainty relation: For all eiθ we have the inequal-

ity:

σ2
T1,ρσ

2
T2,ρ ≥

1

4

(
〈(eiθT1T2 + e−iθT2T1)〉ρ − 2 cos θ〈T1〉ρ〈T2〉ρ

)2
(19.12)

If we specialize to θ = π/2 we get the Heisenberg uncertainty relation as usually

stated:

σ2
T1,ρσ

2
T2,ρ ≥

1

4
(〈i[T1, T2]〉ρ)2 (19.13)

Actually, this does not quite accurately reflect the real uncertainty in successive

measurements of noncommutative observables because the first measurement alters

the state. For a recent discussion see 41

6. The data of the first four axioms are completely general and are not specific to any

physical system. The next two axioms rely on properties specific to a physical system.

41J. Distler and S. Paban, “On Uncertainties of Successive Measurements,” arXiv:1211.4169.
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7. Symmetries The meaning of β1 being linear on O is that if T1, T2 ∈ O and D(T1) ∩
D(T2) is a dense domain such that α1T1 + α2T2, with α1, α2 real has a unique self-

adjoint extension then β1(α1T1 + α2T2) = α1β1(T1) + α2β1(T2). A consequence of

the symmetry axiom is that β2 is affine linear on states:

β2(tρ1 + (1− t)ρ2) = tβ2(ρ1) + (1− t)β2(ρ2) (19.14) eq:Aff-Lin

The argument for this is that (β1, β2) must preserve expectation values 〈T 〉ρ. How-

ever, positive self-adjoint operators of trace one are themselves observables and we

have 〈ρ1〉ρ2 = 〈ρ2〉ρ1 , so the restriction of β1 to S must agree with β2. Now apply

linearity of β1 on the self-adjoint operators. From (19.14) it follows 42 that β must

take extreme states to extreme states, and hence β2 induces a map β : PH → PH.

Now, define the overlap of two lines `1, `2 ∈ PH by

P(`1, `2) =
|〈ψ1|ψ2〉|2

‖ ψ1 ‖2‖ ψ2 ‖2
(19.15)

where ψ1 ∈ `1 and ψ2 ∈ `2 are nonzero vectors. Preservation of probabilities implies

that

P(β(`1), β(`2)) = P(`1, `2) (19.16) eq:PreserveProb

So we can think of the group QuantAut as the group of maps PH → PH which

satisfy (19.16). Note that if T : H → H is linear or anti-linear and preserves norms

‖ Tψ ‖=‖ ψ ‖ then T descends to a map T̄ := PH → PH satisfying (19.16). Now

Wigner’s theorem, proved in Chapter *** below asserts that every map β ∈ QuantAut

is of this form. More precisely, there is an exact sequence:

1→ U(1)→ AutR(H)→ QuantAut→ 1 (19.17) eq:WignerTheorem

where AutR(H) is the group of unitary and anti-unitary transformations of H and

U(1) acts on H by scalar multiplication. See Chapter *** below for more detail. ♣Need to comment

on “Virasoro

symmetry” in 2d

CFT and

spontaneously

broken symmetries

in QFT. ♣

8. Schrödinger equation. Suppose that the system has time-translation invariance. Then

we can use the symmetry axiom and the dynamics axiom to conclude that U(t1, t2) =

U(t2 − t1) is a strongly-continuous one parameter group of unitary operators. Then

by Stone’s theorem there is a self-adjoint generator known as the Hamiltonian H and

usually normalized by

U(t) = exp

[
− i
~
tH

]
(19.18)

where ~ is Planck’s constant, so H has units of energy. Then if ρ(t) is a pure state

and it can be described by a differentiable family of vectors |ψ(t)〉 in H then these

vectors should satisfy the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉 (19.19)

More generally, if t → H(t) is a family of self-adjoint operators then U(t1, t2) = ♣Need to say in

what sense it is

continuous ♣P exp− i
~
∫ t2
t1
H(t′)dt′.

42For some interesting discussion of related considerations see B. Simon, “Quantum Dynamics: From

Automorphism to Hamiltonian.”
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9. Collapse of the wavefunction. We have given the result where a measurement is

performed but the value of the measurement is not recorded. We can also speak of

conditional probabilities. If the measured value of T is λi then

ρ→ ρ′ =
PViρPVi
TrPViρ

(19.20) eq:MeausreE1

This rule should be thought of in terms of conditional probability. When we know

something happened we should renormalize our probability measures to account for

this. This is related to “Bayesian inference” and “Bayesian updating.” The denomi-

nator in (19.20) is required so that ρ′ has trace one. (Note that the denominator is

nonzero because by assumption the value λi was measured.)

Of course this axiom is quite notorious and generates a lot of controversy. Briefly,

there is a school of thought which denies that there is any such discontinuous change

in the physical state. Rather, one should consider the quantum mechanics of the full

system of measuring apparatus together with the measured system. All time evolu-

tion is smooth unitary evolution (19.3). If the measuring apparatus is macroscopic

then the semiclassical limit of quantum mechanics leads to classical probability laws

governing the measuring apparatus and one can derive the appearance of the collapse

of the wavefunction. This viewpoint relies on phase decoherence of nearly degenerate

states in a large Hilbert space of states describing a fixed value of a classical observ-

able. According to this viewpoint Axiom 7 should not be an axiom. Rather, it is

an effective description of “what really happens.” For references see papers of W.

Zurek. 43

10. Simultaneous measurement. If T1 and T2 commute then they can be “simultaneously

measured.” What this means is that if we measure T1 then the change (19.4) of the

physical state does not alter the probability of the subsequent measurement of T2:

PT2,ρ̂(E) = TrPT2(E)
∑
n

PVnρPVn

=
∑
n

TrPT2(E)PVnρPVn

=
∑
n

TrPVnPT2(E)ρ

= Tr(
∑
n

PVn)PT2(E)ρ

= TrPT2(E)ρ = PT2,ρ(E)

(19.21)

Although sometimes stated as an axiom this is really a consequence of what was said

above. (And we certainly don’t want any notion of simultaneity to be any part of

the fundamental axioms of quantum mechanics!)

43Short expositions are in T. Banks, “Locality and the classical limit of quan-

tum mechanics,” arXiv:0809.3764 [quant-ph]; “The interpretation of quantum mechan-

ics,” http://blogs.discovermagazine.com/cosmicvariance/files/2011/11/banks-qmblog.pdf We

also recommend S. Coleman’s classic colloquium, “Quantum Mechanics: In Your Face.”

http://media.physics.harvard.edu/video/?id=SidneyColeman QMIYF
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11. The fact that we work with Z2-graded Hilbert spaces and take a Z2-graded ten-

sor product can have important consequences. An example arises in the currently

fashionable topic of Majorana fermions in condensed matter theory.

12. Relation to classical mechanics. There is a formulation of classical mechanics which

is closely parallel to the above formulation of quantum mechanics. In order to discuss

it one should focus on C∗-algebras. In quantum mechanics one can consider the C∗

algebra of bounded operators L(H) or its subalgebra of compact operators K(H).

The positive elements are self-adjoint, and hence observables. IfM is a phase space,

i.e. a symplectic manifold, then the analogous C∗ algebra is C0(M), the commutative

C∗ algebra of complex-valued continuous functions f :M→ C vanishing at infinity44

with ‖ f ‖= supx∈M|f(x)|. The observables are the real-valued functions and the

positive functions are necessarily observables. Now, in general, one defines

Definition A state on a C∗ algebra A is a linear map ω : A → C which is positive,

i.e., ω(A) ≥ 0 if A ≥ 0, and of norm 1.

Then there are two relevant theorems:

Theorem 1: If A = K(H) then the space of states in the sense of C∗-algebra theory

is in fact the set of positive traceclass operators of trace 1, i.e., the set of density

matrices of quantum mechanics.

Theorem 2: If X is any Hausdorff space and A = C0(X) then the space of states is

the space of probability measures on X.

Therefore, in the formulation of classical mechanics one defines the observables Oclass

to be f ∈ C0(M;R) and the states Sclass to be probability measures dµ onM. Then,

given an observable f and a state dµ we get a probability measure on R, which, when

evaluated on a Borel set E ∈ B(R) is

Pf,dµ(E) :=

∫
f−1(E)

dµ (19.22)

The expectation value of f is
∫
X fdµ and if dµ is a Dirac measure at some point

x ∈ M then there is no variance, 〈f2〉dµ = 〈f〉2dµ. Finally, since M is symplectic

there is a canonical Liouville measure dµLiouville = ωn

n! where ω is the symplectic form

and given a state dµ we can define dµ(x) = ρ(x)dµLiouville. Then the classical analog

of the Schrödinger equation is the Liouville equation

dρ(x; t)

dt
= −{H, ρ} (19.23)

This is a good formalism for describing semiclassical limits and coherent states.

13. Of course, our treatment does not begin to do justice to the physics of quantum

mechanics. Showing how the above axioms really lead to a description of Nature

requires an entire course on quantum mechanics. We are just giving the bare bones

axiomatic framework.

44This means that for all ε > 0 the set {x ∈M||f(x)| ≥ ε} is compact.
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References: There is a large literature on attempts to axiomatize quantum mechanics.

The first few chapters of Dirac’s book is the first and most important example of such

an attempt. Then in his famous 1932 book The Mathematical Foundations of Quantum

Mechanics J. von Neumann tried to put Dirac’s axioms on a solid mathematical footing,

introducing major advances in mathematics (such as the theory of self-adjoint operators)

along the way. For an interesting literature list and commentary on this topic see the

Notes to Section VIII.11 in Reed and Simon. We are generally following here the very

nice treatment of L. Takhtadjan, Quantum Mechanics for Mathematicians, GTM 95 which

in turn is motivated by the approach of G. Mackey, The Mathematical Foundations of

Quantum Mechanics, although we differ in some important details.

Exercise

Show that (19.1) is in fact a probability measure on the real line.

Exercise States of the two-state system

Consider the finite-dimensional Hilbert space H = C2. Show that the physical states

can be parametrized as:

ρ =
1

2
(1 + ~x · ~σ) (19.24)

where ~x ∈ R3 and ~x2 ≤ 1. Note that this is a convex set and the set of extremal points is

the sphere S2 ∼= CP 1 = PH.

Exercise Von Neumann entropy

The von Neumann entropy of a state ρ is defined to be S(ρ) := −Tr(ρlogρ).

Suppose that H = HA ⊗HB is a product system. For a state ρ define ρB ∈ LHB by

ρB = TrHA(ρ) and similarly for ρA.

Show that if ρ is a pure state then S(ρA) = S(ρB).

20. Canonical Forms of Antisymmetric, Symmetric, and Orthogonal ma-

trices
sec:CanFormSymmOrth

20.1 Pairings and bilinear forms

20.1.1 Perfect pairings

Definition. Suppose M1,M2,M3 are R-modules for a ring R.
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1.) Then a M3-valued pairing is a bilinear map

b : M1 ×M2 →M3 (20.1)

2.) It is said to be nondegenerate if the induced maps

Lb : M1 → HomR(M2,M3) m1 7→ b(m1, ·) (20.2)

and

Rb : M2 → HomR(M1,M3) m2 7→ b(·,m2) (20.3)

are injective.

3.) It is said to be a perfect pairing if these maps are injective and surjective, i.e. Lb
and Rb define isomorphisms.

Examples

1. Z × Z → Z defined by b(x, y) = kxy is nondegenerate for k 6= 0 but only a perfect

pairing of Z-modules (i.e. abelian groups) for k = ±1.

2. Z × U(1) → U(1) defined by b(n, eiθ) = einθ is a perfect pairing of Z-modules (i.e.

abelian groups) but b(n, eiθ) = eiknθ for k an integer of absolute value > 1 is not a

perfect pairing.

3. Zn × Zn → Zn given by b(r, s) = rsmodn is a perfect pairing of Z-modules (i.e.

abelian groups).

20.1.2 Vector spaces

Now we specialize to a pairing of vector spaces over a field κ with M3 = κ. Then a pairing

is called a bilinear form:

Definition. A bilinear form on a vector space is a map:

〈·, ·〉 : V × V → κ (20.4)

which is linear in both variables.

It is called a symmetric quadratic form if:

〈v1, v2〉 = 〈v2, v1〉 ∀v1, v2 ∈ V (20.5) eq:symmt

and antisymmetric quadratic form if:

〈v1, v2〉 = −〈v2, v1〉 ∀v1, v2 ∈ V (20.6) eq:symmtp

and it is alternating if: 〈v, v〉 = 0 for all v ∈ V .

Remark: Note we are using angle brackets for bilinear forms and round brackets for

sesquilinear forms. Some authors have the reverse convention!
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Exercise

a.) Use the universal property of the tensor product to show that the space of bilinear

forms on a vector space over κ is

Bil(V ) ∼= (V ⊗ V )∗ = V ∗ ⊗ V ∗. (20.7)

b.) Thus, a bilinear form induces two maps V → V ∗ (by contracting with the first

or second factor). Show that if the bilinear form is nondegenerate then this provides two

isomorphisms of V with V ∗.

Exercise

a.) Show that if the field κ is not of characteristic 2 then a form is alternating iff it is

antisymmetric.

b.) Show that alternating and antisymmetric are not equivalent for a vector space over

the field F2. 45

20.1.3 Choosing a basis

If we choose a an ordered basis {vi} for V then a quadratic form is given by a matrix

Qij = 〈vi, vj〉 (20.8)

Under a change of basis

wi =
∑
j

Sjivj (20.9)

the matrix changes by

Q̃ij = 〈wi, wj〉 = (StrQS)ij (20.10)

Note that the symmetry, or anti-symmetry of Qij is thus preserved by arbitrary change of

basis. (This is not true under similarity transformations Q→ SQS−1.)

Remark: The above definitions apply to any module M over a ring R. We will use the

more general notion when discussing abstract integral lattices.

20.2 Canonical forms for symmetric matrices

Theorem If Q ∈Mn(κ) is symmetric, (and κ is any field of characteristic 6= 2) then there

is a nonsingular matrix S ∈ GL(n, κ) such that StrQS is diagonal:

StrQS = Diag{λ1, . . . , λn} (20.11) eq:brdg

45Answer : Alternating implies antisymmetric, but not vice versa.
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Proof :46

Suppose we have a quadratic form Q. If Q = 0 we are done. If Q 6= 0 then there exists

a v such that Q(v, v) 6= 0, because

2Q(v, w) = Q(v + w, v + w)−Q(v, v)−Q(w,w) (20.12)

(Note: Here we have used symmetry and the invertibility of 2.)

Now, we proceed inductively. Suppose we can find v1, . . . , vk so that Q(vi, vj) = λiδij
with λi 6= 0, and define Vk to be the span of {v1, . . . , vk}.

Let

V ⊥k := {w|Q(w, v) = 0 ∀v ∈ Vk} (20.13)

We claim V = Vk ⊕ V ⊥k . First note that if u =
∑
aivi ∈ Vk ∩ V ⊥k then Q(u, vi) = 0 implies

ai = 0 since λi 6= 0. Moreover, for any vector u ∈ V

u⊥ = u−
∑
i

Q(u, vi)λ
−1
i vi ∈ V ⊥k (20.14)

and therefore u is in Vk + V ⊥k .

Now consider the restriction of Q to V ⊥k . If this restriction is 0 we are done. If the

restriction is not zero, then there exists a vk+1 ∈ V ⊥k with Q(vk+1, vk+1) = λk+1 6= 0, and

we proceed as before. On a finite dimensional space the procedure must terminate ♠.

Remark: The above theorem definitely fails for a field of characteristic 2. For example

the symmetric quadratic form (
0 1

1 0

)
(20.15)

on F2 ⊕ F2 cannot be diagonalized.

Returning to fields of characteristic 6= 2, the diagonal form above still leaves the

possibility to make further transformations by which we might simplify the quadratic form.

Now by using a further diagonal matrix D we can bring it to the form:

(SD)trQ(SD) = Diag{µ2
1λ1, . . . , µ

2
nλn} (20.16) eq:diagtrmn

Now, at this point, the choice of field κ becomes very important.

Suppose the field κ = C. Then note that by a further transformation of the form

(20.16) we can always bring A to the form

Q =

(
1r 0

0 0

)
(20.17)

However, over k = R there are further invariants:

46Taken from Jacobsen, Theorem 6.5.
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Theorem: [Sylvester’s law]. For any real symmetric matrix A there is an invertible real

matrix S so that

SQStr = Diag{1p, (−1)q, 0n} S ∈ GL(n,R) (20.18)

Proof : Now, λi, µi in (20.16) must both be real. Using real µi we can set µ2
iλi = ±1, 0.

♠

Remarks

1. The point of the above theorem is that, since µi are real one cannot change the sign

of the eigenvalue λi. The rank of A is p + q. The signature is (p, q, n) (sometimes

people use p− q). If n = 0 A is nondegenerate. If n = q = 0 A is positive definite

2. If κ = Q there are yet further invariants, since not every positive rational number is

the square of a rational number, so the invariants are in Q∗/(Q∗)2.

Finally, we note that the transormations A→ SAS−1 and A→ SAStr do not interact

very well in the following sense: Suppose you know a complex matrix A is symmetric. Does

that give you any useful information about its diagonalizability or its Jordan form under

A→ SAS−1 with S ∈ GL(n,C)? The answer is no! :

Theorem An arbitrary complex matrix is similar to a complex symmetric matrix.

Idea of proof : Since there is an S with SAS−1 in Jordan form it suffices to show that

J
(k)
λ is similar to a complex symmetric matrix. Write

J
(k)
λ = λ1 +

1

2
(N +N tr) +

1

2
(N −N tr) (20.19)

One diagonalizes (N − N tr) by a unitary matrix U such that U(N + N tr)U−1 remains

symmetric. ♠

Exercise

a.) Show that the complex symmetric matrix(
1 i

i −1

)
(20.20)

has a zero trace and determinant and find its Jordan form.

b.) Show that there is no nonsingular matrix S such that

S

(
1 i

i −1

)
Str (20.21)

is diagonal.
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20.3 Orthogonal matrices: The real spectral theorem
♣Clarify that now

you are adding the

data of an inner

product space

together with a

bilinear form! ♣

Sometimes we are interested only in making transformations for S an orthogonal matrix.

Theorem [Real Finite Dimensional Spectral Theorem]. If A is a real symmetric matrix

then it can be diagonalized by an orthogonal transformation:

Atr = A,A ∈Mn(R)→ ∃S ∈ O(n,R) : SAStr = Diag{λ1, . . . , λn} (20.22)

Proof : The proof is similar to that for the finite dimensional spectral theorem over

C. If we work over the complex numbers, then we have at least one characteristic vector

Av = λv. Since λ is real and A hermitian, Av∗ = λv∗, so A(v + v∗) = λ(v + v∗). Thus,

A in fact has a real eigenvector. Now take the orthogonal complement to (v + v∗) and use

induction. ♠

Example: In mechanics we use this theorem to define moments of inertia

As an application we have the analog of the theorem that unitary matrices can be

unitarily diagonalized:

Theorem Every real orthogonal matrix O can be brought to the form:

SOStr = Diag{+1r,−1q, R(θi)} S ∈ O(n,R) (20.23)

by an orthogonal transformation. Here

R(θi) =

(
cos θi sin θi
− sin θi cos θi

)
θi 6= nπ (20.24)

Proof : Consider T = O + O−1 = O + Otr on Rn. This is real symmetric, so by the

spectral theorem (over R) there is an orthogonal basis in which Rn = ⊕iVi where T has

eigenvalue λi on the subspace Vi and λi are the distinct eigenvalues of T . They are all real.

Note that for all vectors v ∈ Vi we have

(O2 − λiO + 1)v = 0 (20.25) eq:QuadO1

so O restricted to Vi satisfies O2 − λiO + 1 = 0. Therefore, if v ∈ Vi then the vector space

W = Span{v,Ov} is preserved by O. Moreover, O preserves the decomposition W ⊕W⊥.

Therefore by induction we need only analyze the cases where W is 1 and 2-dimensional. If

W is one dimensional then Ov = µv and we easily see that µ2 = 1 so µ = ±1. Suppose W

is two-dimensional and O acting on W satisfies

O2 − λO + 1 = 0 (20.26) eq:QuadO

Now, by complexification we know that O is unitary and hence it is diagonalizable

(over C) and its eigenvalues must be phases {eiθ1 , eiθ2}. On the other hand (20.26) will

be true after diagonalization (over C) so λ = eiθ + e−iθ = 2 cos θ for both angles θ = θ1
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and θ = θ2. Now, on this two-dimensional space we have Otr = O−1 as 2 × 2 matrices.

Therefore detO is ±1 and moreover

O =

(
a b

c d

)
⇒ Otr =

(
a c

b d

)
and O−1 =

1

ad− bc

(
d −b
−c a

)
(20.27)

Thus, Otr = O−1 implies a = d and b = −c if detO = +1 and it implies a = −d and b = c

if detO = −1. In the first case we go back to equation (20.26) and solve for a, b to find

O = R(±θ). In the second case we find

O = R(θ)P (20.28)

with

P =

(
1 0

0 −1

)
(20.29)

Next we observe that P 2 = 1 and PR(φ)P = R(−φ) so we may then write

O = R(φ)PR(φ)tr (20.30)

with 2φ = θ, and hence in the second case we can transform O to P which is of the

canonical type given in the theorem. ♠

20.4 Canonical forms for antisymmetric matrices

Theorem Let κ be any field. If A ∈ Mn(κ) is antisymmetric there exists S ∈ GL(n, κ)

that brings A to the canonical form:

SAStr =

(
0 1

−1 0

)
⊕

(
0 1

−1 0

)
⊕ · · · ⊕

(
0 1

−1 0

)
⊕ 0n−r (20.31)

Proof : The proof is very similar to the case of symmetric forms. Let us suppose that

A is the matrix with respect to an antisymmetric quadratic form Q on a vector space V .

If Q = 0 we are done. If Q 6= 0 then there must be linearly independent vectors u, v with

Q(u, v) = q 6= 0. Define u1 = u and v1 = q−1v. Now Q has the required canonical form

with respect to the ordered basis {u1, v1}.
Now we proceed by induction. Suppose we have constructed linearly independent

vectors (u1, v1, · · · , uk, vk) such that Q(ui, vj) = δij , and Q(ui, uj) = Q(vi, vj) = 0. Let

Vk = Span{u1, v1, · · · , uk, vk}. Then again V = Vk ⊕ V ⊥k where again we define

V ⊥k := {w|Q(w, v) = 0 ∀v ∈ Vk} (20.32)

It is easy to see that Vk ∩ V ⊥k and if w ∈ V is any vector then

w⊥ = w +
∑
i

(Q(w, ui)vi −Q(w, vi)ui) ∈ V ⊥k (20.33)
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so V = Vk + V ⊥k . Restricting Q to V ⊥k we proceed as above. ♠

As usual, if we put a restriction on the change of basis we get a richer classification:

Theorem Every real antisymmetric matrix Atr = −A can be skew-diagonalized by S ∈
O(n,R), that is, A can be brought to the form:

SAStr =


0 λ1 0 0 · · ·
−λ1 0 0 0 · · ·

0 0 0 λ2 · · ·
0 0 −λ2 0 · · ·
· · · · · · · · · · · · · · ·

 (20.34)

The λi are called the skew eigenvalues. Note that, without a choice of orientation they

are only defined up to sign.

Idea of proof : There are two ways to prove this. One way is to use the strategies above

by using induction on the dimension. Alternatively, we can view A as an operator on Rn

and observe that iA is an Hermitian operator on Cn so there is a basis of ON eigenvectors

of iA. But

iAv = λv (20.35)

with λ real implies

Av = −iλv
Av∗ = iλv∗

(20.36)

So if an ON basis on Cn then we get an orthogonal basis on Rn consisting of u1 = v + v∗

and u2 = i(v − v∗) and

Au1 = λu2

Au2 = −λu1

(20.37)

Letting S be the matrix given by the columns of these vectors we have StrAS is in the

above block-diagonal form ♠

20.5 Automorphism Groups of Bilinear and Sesquilinear Forms

Given a bilinear form, or a sesquilinear form Q on a vector space V , the automorphism

group of the form is the subgroup of operators T ∈ GL(V ) such that

Q(Tv, Tw) = Q(v, w) (20.38) eq:autgroup

for all v, w ∈ V .

In special cases these groups have special names:

1. Q is a nondegenerate symmetric bilinear form on V : Then the group of automor-

phisms is denoted O(Q) and it is called the orthogonal group of the form. If V is

a complex vector space of dimension n and we choose a basis with Q = 1 then we
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define the matrix group O(n,C) as the group of n × n complex invertible matrices

S such that StrS = 1. If V is a real vector space and Q has signature (−1)p, (+1)q

then we can choose a basis in which the matrix form of Q is

η :=

(
−1p 0

0 +1q

)
(20.39)

and the resulting matrix group, denoted O(p, q;R), is the group of invertible matrices

so that

StrηS = η (20.40)

2. Q is a nondegenerate anti-symmetric bilinear form on V : In this case the group of

automorphisms is called the symplectic group Sp(Q). If V is finite dimensional and

we are working over any field κ we can choose a basis for V in which Q has matrix

form

J =

(
0n 1n
−1n 0n

)
(20.41)

and then the resulting matrix group, which is denoted Sp(2n;κ) for field κ, is the set

of invertible matrices with matrix elements in κ such that

StrJS = J (20.42)

3. Sesquilinear forms. It also makes sense to talk about the automorphism group of a

sesquilinear form on a complex inner product space. If there is an ON basis {ei} in

which the matrix h(ei, ej) is of the form

hij =

(
1p 0

0 −1q

)
(20.43)

and then the resulting matrix group, which is denoted U(p, q) or U(p, q;C), is the set

of invertible matrices in GL(n,C) so that

U †hU = h (20.44)

Remarks

1. When working over rings and not fields we might not be able to bring Q to a simple

standard form like the above, nevertheless, Aut(Q) remains a well-defined group.

2. We will look at these groups in much more detail in our chapter on a Survey of Matrix

Groups
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21. Other canonical forms: Upper triangular, polar, reduced echelon

21.1 General upper triangular decomposition

Theorem 13 Any complex matrix can be written as A = UT , where U is unitary and T

is upper triangular.

This can be proved by successively applying reflections to the matrix A. I.e. we define

Rij(v) = δij − 2
vivj
v · v

(21.1)

This is a reflection in the hyperplane v⊥ and hence an orthogonal transformation. Consider

the vector Ak1. If it is zero there is nothing to do. If it is nonzero then this vector, together

with e1 span a 2-dimensional plane. We can reflect in a line in this plane to make Ak1

parallel to e1. Now consider everything in e⊥1 . Then Ak2 is a vector which forms a 2-

dimensional plane with e2. We can repeat the process. In this way one can choose vectors

v1, . . . , vn so that R(vn) · · ·R(v1)A is upper triangular.

For this and similar algorithms G.H. Golub and C.F. Van Loan, Matrix Computations.

21.2 Gram-Schmidt procedure
subsec:Gram-Schmidt

In the case where A is nonsingular the above theorem can be sharpened. In this case the

upper triangular decomposition is closely related to the Gram-Schmidt procedure. Recall

that the Gram-Schmidt procedure is the following:

Let {ui} be a set of linearly independent vectors. The GS procedure assigns to this an

ON set of vectors {vi} with the same linear span:

The procedure:

a.) Let w1 = u1, define v1 = w1/ ‖ w1 ‖.
b.) Let w2 = u2 − (v1, u1)v1, define v2 = w2/ ‖ w2 ‖.
c.) Let wn = un −

∑n−1
k=1(vk, un)vk, define vn = wn/ ‖ wn ‖.

Theorem 14 Any nonsingular matrix A ∈ GL(n,C) can be uniquely written as

A = UT (21.2)

where U is unitary and T is upper triangular, with positive real diagonal entries. Any

nonsingular matrix A ∈ GL(n,R) can be uniquely written as

A = OT (21.3)

where O is orthogonal and T is upper triangular with positive real diagonal entries.

Proof : Note that in the Gram-Schmidt procedure the bases are related by

vi =
∑

Tjiuj (21.4) eq:gmi

where T is an invertible upper triangular matrix. Now, let Aij be any nonsingular

matrix. Choose any ON basis ṽi for Cn and define:
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uj :=
n∑
i=1

Aij ṽi (21.5) eq:gmii

This is another basis for the vector space. Then applying the GS procedure to the

system {uj} we get an ON set of vectors vi satisfying (21.4). Therefore,

vj =
∑
j,k

AkjTjiṽk (21.6) eq:gmiii

Since vi and ṽi are two ON bases, they are related by a unitary transformation, there-

fore

Uki =
∑
j

AkjTji (21.7) eq:gmiv

is unitary. Since T is invertible the theorem follows ♠.

Exercise Gram-Schmidt at a glance

Let u1, . . . , un be n linearly independent vectors. Show that the result of the Gram-

Schmidt procedure is summarized in the single formula:

vn =
(−1)n−1

√
Dn−1Dn

det



u1 · · · un
(u1, u1) · · · (un, u1)

· · · · ·
· · · · ·
· · · · ·

(u1, un−1) · · · (un, un−1)



Dn = det


(u1, u1) · · · (un, u1)

· · · · ·
· · · · ·
· · · · ·

(u1, un) · · · (un, un)



(21.8) eq:gssci

21.2.1 Orthogonal polynomials

Let w(x) be a nonnegative function on [a, b] such that∫ b

a
xNw(x)dx <∞ N ≥ 0 (21.9) eq:opi

We can define a Hilbert space by considering the complex-valued functions on [a, b]

such that
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∫ b

a
|f(x)|2w(x)dx <∞ (21.10) eq:opii

Let us call this space L2
(
[a, b], dµ

)
, the L2 functions wrt the measure dµ(x) = w(x)dx.

Applying the Gram-Schmidt procedure to the system of functions

{1, x, x2, . . . } (21.11)

leads to a system of orthogonal polynomials in terms of which we may expand any smooth

function.

Example. Legendre polynomials. Choose [a, b] = [−1, 1], w(x) = 1. We obtain:

u0 = 1 → φ0 =
1√
2

u1 = x → φ1 =

√
3

2
x

u2 = x2 → φ2 =

√
5

2

3x2 − 1

2

(21.12) eq:legpolys

In general

φn(x) =

√
2n+ 1

2
Pn(x) (21.13)

where Pn(x) are the Legendre polynomials. We will meet them (more conceptually) later.

Exercise Systems of orthogonal poynomials

Work out the first few for

1. Tchebyshev I: [−1, 1], w(x) = (1− x2)−1/2

2. Tchebyshev II: [−1, 1], w(x) = (1− x2)+1/2

3. Laguerre: [0,∞), w(x) = xke−x

4. Hermite: (−∞,∞), w(x) = e−x
2

For tables and much information, see Abramowitz-Stegun.

Remarks Orthogonal polynomials have many uses:

1. Special functions, special solutions to differential equations.

2. The general theory of orthogonal polynomials has proven to be of great utility in

investigations of large N matrix integrals.

3. See B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1,2 for much more

about orthogonal polynomials.
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21.3 Polar decomposition

There is an analog for matrices of polar decompositions, generalizing the representation of

complex numbers by phase and magnitude: z = reiθ. Here is the matrix analog: ♣This section

should include the

important case of

complex ips and

comment on the

generalization to

Hilbert space with

partial isometries.

♣

Theorem Any matrix A ∈Mn(C) can be written as

A = UP (21.14)

or

A = P ′U (21.15)

where P, P ′ are positive semidefinite and U is unitary. Moreover, the decomposition is

unique if A is nonsingular.

Proof : The proof is a straightforward application of the singular value decomposition.

Recall that we can write

A = UΛV (21.16)

where Λ is diagonal with nonnegative entries and U and V are unitary. Therefore we can

write

A = (UΛU−1) · (UV ) = (UV ) · (V −1ΛV ) (21.17)

Now note that both (UΛU−1) and (V −1ΛV ) are positive semidefinite, and if A is nonsin-

gular, positive definite. ♠

Remarks:

1. Taking the determinant recovers the polar decomposition of the determinant: detA =

reiθ with r = detP and eiθ = detU .

2. Note that A†A = P 2 so we could define P as the positive squareroot P =
√
A†A.

This gives another approach to proving the theorem.

The version of the theorem over the real numbers is:

Theorem. Any invertible real n× n matrix A has a unique factorization as

A = PO (21.18)

where P is a positive-definite symmetric matrix and O is orthogonal.

Proof : Consider AAtr. This matrix is symmetric and defines a positive definite sym-

metric form. Since such forms can be diagonalized we know that there is a squareroot.
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Let P := (AAtr)1/2. There is a unique positive definite square root. Now check that

O := P−1A is orthogonal. ♠

A related theorem is

Theorem. Any nonsingular matrix A ∈Matn(C) can be decomposed as:

A = SO (21.19)

where S is complex symmetric and O is complex orthogonal.

Proof: Gantmacher, p.7.

Finally, we consider the generalization to operators on Hilbert space. Here there is an

important new phenomenon. We can see it by considering the shift operator S on `2:

S : (x1, x2, x3, . . . )→ (0, x1, x2, x3, . . . ) (21.20)

Recall that S† is the shift to the left, so S†S = 1, but SS† is not one, rather it is 1−|0〉〈0|,
in harmonic oscillator language.

Definition A partial isometry V : H → H is an operator so that

V V †V = V (21.21)

The shift operator above is a good example of a partial isometry.

In general, note that V †V = Pi and V V † = Pf are both projection operators. Now we

claim that

1− V †V (21.22)

is the orthogonal projection to ker(V ). It is clear that if ψ ∈ ker(V ) then (1− V †V )ψ = ψ

and conversely V (1− V †V )ψ = 0. Therefore, V †V is the orthogonal projector to (kerV )⊥.

Similarly, V V † is the orthogonal projector to im(V ).

(kerV )⊥ with orthogonal projector V †V is called the initial subspace

im(V ) with orthgonal projector V V † is called the final subspace.

Note that V is an isometry when restricted to V : (kerV )⊥ → im(V ), hence the name

“partial isometry.”

Theorem If T is a bounded operator on Hilbert space there is a partial isometry V so

that

T = V
√
T †T = V |T | (21.23)

and V is uniquely determined by kerV = kerT .

For the proof, see Reed-Simon Theorem VI.10 and for the unbounded operator version

Theorem VIII.32. Note that for compact operators it follows from the singular value

decomposition, just as in the finite dimensional case.
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Remark: In string field theory and noncommutative field theory partial isometries

play an important role. In SFT they are used to construct solutions to the string field

equations. In noncommutative field theory they are used to construct “noncommutative

solitons.”

21.4 Reduced Echelon form

Theorem 17. Any matrix A ∈ GL(n,C) can be factorized as

A = NΠB (21.24)

where N is upper-triangular with 1′s on the diagonal, Π is a permutation matrix, and B

is upper-triangular.

Proof : See Carter, Segal, and MacDonald, Lectures on Lie Groups and Lie Algebras,

p. 65.

Remarks

1. When we work over nonalgebraically closed fields we sometimes can only put matrices

into rational canonical form. See Herstein, sec. 6.7 for this.

22. Families of Matrices

In many problems in mathematics and physics one considers continuous, differentiable,

or holomorphic families of linear operators. When studying such families one is led to

interesting geometrical constructions. In this section we illustrate a few of the phenomena

which arise when considering linear algebra in families.

22.1 Families of projection operators: The theory of vector bundles

Let us consider two simple examples of families of projection operators.

Let θ ∼ θ + 2π be a coordinate on the circle. Fix V = R2, and consider the operator

Γ(θ) = cos θ

(
1 0

0 −1

)
+ sin θ

(
0 1

1 0

)
(22.1)

Note that Γ2 = 1 and accordingly we can define two projection operators

P±(θ) =
1

2
(1± Γ(θ)) (22.2)

Let us consider the eigenspaces as a function of θ. For each θ the image of P+(θ) is a

real line in R2. So, let us consider the set

L+ := {(eiθ, v)|P+(θ)v = v} ⊂ S1 × R2 (22.3)
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At fixed θ we can certainly choose a basis vector, i.e. an eigenvector, in the line given

by the image of P+(θ). What happens if we try to make a continuous choice of such a basis

vector as a function of θ? The most natural choice would be the family of eigenvectors:(
cos(θ/2)

sin(θ/2)

)
(22.4) eq:Mobius-1

Now, θ is identified with θ + 2π, and the projection operator only depends on θ modulo

2π. However, (22.4) is not globally well-defined ! If we shift θ → θ+2π then the eigenvector

changes by a minus sign.

But we stress again that even though there is no globally well-defined continuous choice

of eigenvector the real line given by the image of P+(θ) is well-defined. For example, we

can check: (
cos(θ/2)

sin(θ/2)

)
R = −

(
cos(θ/2)

sin(θ/2)

)
R ⊂ R2 (22.5) eq:moblinone

The family of real lines over the circle define what is called a real line bundle. Another

example of a real line bundle is S1 × R which is, topologically, the cylinder. However, our

family is clearly different from the cylinder. One can prove that it is impossible to find a

continuous choice of basis for all values of θ. Indeed, one can picture this real line bundle

as the Mobius strip, which makes its topological nontriviality intuitively obvious.

Example 2 In close analogy to the previous example consider

Γ(x̂) = x̂ · ~σ (22.6)

for x̂ ∈ S2, the unit sphere x̂2 = 1. Once again (Γ(x̂))2 = 1. Consider the projection

operators

P±(x̂) =
1

2
(1± x̂ · ~σ) (22.7)

On S2 × C2 the eigenspaces of P± define a complex line for each point x̂ ∈ S2. If we let

L+ denote the total space of the line bundle, that is

L+ = {(x̂, v)|x̂ · ~σv = +v} ⊂ S2 × C2 (22.8)

Then you can convince yourself that this is NOT the trivial complex line bundle L+ 6=
S2×C. Using standard polar coordinates for the sphere, away from the south pole we can

take the line to be spanned by

e+ =

(
cos 1

2θ

eiφ sin 1
2θ

)
(22.9)

while away from the north pole the eigenline is spanned by

e− =

(
e−iφ cos 1

2θ

sin 1
2θ

)
(22.10)

But note that, just as in our previous example, there is no continuous choice of nonzero

vector spanning the eigenline for all points on the sphere.
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What we are describing here is a nontrivial line bundle with transition function e+ =

eiφe− on the sphere minus two points. This particular line bundle is called the Hopf line

bundle, and of great importance in mathematical physics.

A generalization of this construction using the quaternions produces a nontrivial rank

two complex vector bundle over S4 known as the instanton bundle.

These two examples have a magnificent generalization to the theory of vector bundles.

We will just summarize some facts. A full explanation would take a different Course.

Definition: A (complex or real) vector bundle E over a topological space X is the space

of points

E := {(x, v) : P (x)v = v} ⊂ X ×H (22.11)

where P (x) is a continuous family of orthogonal finite rank projection operators in a (com-

plex or real) separable infinite-dimensional Hilbert space H.

This is not the standard definition of a vector bundle, but it is equivalent to the usual

definition. Note that there is an obvious map

π : E → X (22.12)

given by π(x, v) = x. The fibers of this map are vector spaces of dimension n:

Ex := π−1(x) = {(x, v)|v ∈ imP (x)} (22.13)

carries a natural structure of a vector space:

α(x, v) + β(x,w) := (x, αv + βw) (22.14)

so we are just doing linear algebra in families. We define a section of E to be a continuous

map s : X → E such that π(s(x)) = x. It is also possible to talk about tensors on X with

values in E. In particular Ω1(X;E) denotes the sections of the space of 1-forms on X with

values in E.

Note that, in our definition, a vector bundle is the same thing as a continuous family of

projection operators on Hilbert space. So a vector bundle is the same thing as a continuous

map

P : X → Grn(H) (22.15)

where Grn(H) is the Grassmannian of rank n projection operators in the norm topology.

Definition: Two vector bundles E1, E2 of rank n are isomorphic if there is a homotopy

of the corresponding projection operators P1, P2. Therefore, the isomorphism classes of

vector bundles is the same as the set of homotopy classes [X,Grn(H)].

This viewpoint is also useful for defining connections. If ψ : X → H is a continuous

map into Hilbert space then

s(x) := (x, P (x)ψ(x) (22.16)
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is a section of E. Every section of E can be represented in this way. Then a projected

connection on E is the map ∇proj : Γ(E) → Ω1(X;E) given by P ◦ d ◦ P where d is

the exterior differential and we have written ◦ to emphasize that we are considering the

composition of three operators. With local coordinates xµ we can write:

∇proj : (x, s(x))→ dxµ(x, P (x)
∂

∂xµ
(P (x)s(x))) (22.17)

For those who know about curvature, the curvature of this connection is easily shown

to be:

F = PdPdPP (22.18)

and representatives of the characteristic classes chn(E) (thought of as DeRham cohomology

classes) are then defined by the differential forms

ωn(E) =
1

n!(2πi)n
Tr(PdPdP )n (22.19)

Remarks

1. In physics the projected connection is often referred to as the Berry connection, and

it is related to the quantum adiabatic theorem. The formula for the curvature is

important in, for example, applications to condensed matter physics. In a typical

application there is a family of Hamiltonians with a gap in the spectrum and P is

the projector to eigenspaces below that gap. For example in the quantum Hall effect

with P the projector to the lowest Landau level the first Chern class is given by

ω1 =
1

2πi
TrPdPdP (22.20)

which turns out to be related to the Kubo formula, as first noted by TKNN.

2. A beautiful theorem of Narasimhan-Ramanan shows that any connection on a vector

bundle can be regarded as the pull-back of a projected connection. See 47

3.

Exercise The Bott’s projector and Dirac’s monopole

In a subsection below we will make use of the Bott projector :

P (z, z̄) =
1

1 + |z|2

(
1 z̄

z |z|2

)
(22.21)

47D. Quillen, “Superconnection character forms and the Cayley transform,” Topology, 27, (1988) 211;

J. Dupont, R. Hain, and S. Zucker, “Regulators and characteristic classes of flat bundles,” arXiv:alg-

geom/9202023.

– 168 –



a.) Check that this is a projection operator. 48

b.) Show that the projector has a well-defined limit for z →∞.

c.) Show that under stereographic projection S2 → R2 ∼= C

z =
x1 + ix2

1 + x3

1 + x3

2
=

1

1 + |z|2
(22.22)

we have

P+(x̂) = P (z, z̄) (22.23)

P−(x̂) = Q(z, z̄) =
1

1 + |z|2

(
|z|2 −z̄
−z 1

)
(22.24)

d.) Regarding the projector P+(x̂) as a projection operator on R3 − {0}, show that

the projected connection is the same as the famous Dirac magnetic monopole connection

by computing ♣Need to check

these two equations

♣∇proje+ =
1

2
(1− cos θ)dφe+ (22.25)

∇proje− = −1

2
(1 + cos θ)dφe− (22.26)

e.) Show that for the Bott projector 49

Tr(PdPdP ) = −Tr(QdQdQ) = − dzdz̄

(1 + |z|2)2
(22.27)

and show that
∫
C ch1(L±) = ±1.

Exercise

Show that any vector bundle E has a complementary bundle E⊥ so that E ⊕ E⊥ =

X × CN , where ⊕ is a family version of the direct sum of vector spaces.

22.2 Codimension of the space of coinciding eigenvalues
♣This sub-section is

a little out of order

because it uses

group actions and

homogeneous spaces

which are only

covered in Chapter

3. But it fits very

naturally in this

Section. ♣

We now consider more general families of linear operators T (s) : V → V where V is

finite-dimensional and s is a set of parameters. Mathematically, we have a space S and

a map T : S → End(V ) and we can put various conditions on that map: Continuous,

differentiable, analytic,... Physically, S is often a set of “control parameters,” for example

coupling constants, masses, or other “external” parameters which can be varied.

We no longer assume the T (s) are projection operators.

48This is obvious if you note that the second column is just z̄ times the first column. But it is also good

to do the matrix multiplication.
49Hint : In order to avoid a lot of algebra write P = nP̃ with n = (1 + r2)−1, r2 = |z|2 so that dn is

proportional to dr2.
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22.2.1 Families of complex matrices: Codimension of coinciding characteristic

values

A very important question that often arises is: What is the subset of points in S where T

changes in some important way. Here is a sharp version of that question:

What is the set of points Ssing ⊂ S where characteristic values of T (s) coincide?

In equations:

Ssing = {s ∈ S|pT (s)(x) has multiple roots} (22.28)

where pT (x) = det(x1− T ) is the characteristic polynomial.

We can only give useful general rules for generic families. We first argue that it suffices

to look at the space End(V ) ∼= Mn(C) itself. Let D ⊂ End(V ) be the sublocus where the

characteristic polynomial has multiple eigenvalues:

D := {T |pT (x) has multiple roots} (22.29)

If s→ T (s) is generically 1− 1 and F ⊂ End(V ) is the image of the family then

Ssing = T−1(D ∩ F) (22.30)

Now, the codimension of Ssing in S is the same as:

cod(D ∩ F)− cod(F) (22.31)

See Figure 9.

Figure 9: For generic families if there are d transverse directions to D in Mn(C) and there are f

transverse dimensions to F in Mn(C) then there will be d + f transverse dimensions to D ∩ F in

Mn(C) and d transverse dimensions to Ssing in S. fig:CODIMENSIONS

On the other hand, for generic subspaces, the codimensions add for intersections:

cod(D ∩ F) = cod(D) + cod(F) (22.32)
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Therefore, if s → T (s) is a generic 1-1 family then the codimension of the set where

characteristic values coincide in S is the same as the codimension of D in Mn(C).

In general D ⊂ End(V ) can be exhibited as an algebraic variety. This follows from

Exercises **** and **** at the end of chapter 3 where we show that the subspace is defined

by the resultant of two polynomials in x:

Res(pT (x), p′T (x)) = 0 (22.33)

The resultant is a polynomial in the coefficients of pT (x) which in turn can be expressed

in terms of polynomials in the matrix elements of T with respect to an ordered basis.

Example: If n = 2 then

det(x1− T ) = x2 − Tr(T )x+ det(T )

= x2 + a1x+ a0

a1 = −Tr(T )

a0 =
1

2
(Tr(T ))2 − Tr(T 2)

(22.34)

The subspace in the space of all matrices where two characteristic roots coincide is clearly

a2
1 − 4a0 = 4Tr(T 2) = (Tr(T ))2 = 0 (22.35)

which is an algebraic equation on the matrix elements.

The complex codimension of the solutions to one algebraic equation in Mn(C) is one,

and therefore we have the general rule:

The general element of a generic family of complex matrices will be diagonaliz-

able, and the sublocus where at least two characteristic roots coincide will be real

codimension two.

**** FIGURE OF D WITH TRANSVERSE SPACE IDENTIFIED WITH C ****

Note that it follows that, in a generic family the generic operator T (s) will be diago-

nalizable, and will only fail to be diagonalizable on a complex codimension one subvariety

of S.

22.2.2 Orbits

It is interesting to view the above rule in a different way by counting dimensions of orbits.

Using techniques discussed in chapters below the space DIAG∗ of diagonalizable matrices

with distinct eigenvalues is fibered over

(Cn −∆)/Sn (22.36)
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where ∆ is the subspace where any two entries coincide. The fibration is the map of T

to the unordered set of eigenvalues. The fiber is the set of matrices with a given set of

eigenvalues and this is a homogeneous space, hence the fiber is

GL(n)/GL(1)n (22.37)

We can therefore compute the dimension of DIAG∗. The base is n-dimensional and

the fiber is n2 − n dimensional so the total is n2-dimensional, in accordance with the idea

that DIAG∗ is the complement of a positive codimension subvariety.

However, let us now consider DIAG, the set of all diagonalizable matrices in Mn(C)

, possibly with coinciding eigenvalues. Then of course DIAG is still of full dimension n2,

but the subspace D∩DIAG where two eigenvalues coincide is in fact complex codimension

three!

Example: The generic 2× 2 complex matrix is diagonalizable. However, the space of

diagonalizable 2 × 2 matrices with coinciding eigenvalues is the space of matrices λ1 and

is one complex dimensional. Clearly this has codimension three!

More generally, if we consider the space of diagonalizable matrices and look at the

subspace where two eigenvalues coincide, but all the others are distinct then we have a

fibration over (Cn−1 −∆) with fiber

GL(n)/(GL(2)n ×GL(1)n−2) (22.38)

of dimension n2 − (n− 2 + 4) = n2 − n− 2. The base is of dimension (n− 1) so the total

space is of dimension n2 − 3 and hence complex codimension 3 in Matn(C).

The above discussion might seem puzzling since we also argued that the space of

matrices where characteristic roots of the pA(x) coincide is complex codimension one, not

three. Of course, the difference is accounted form by considering matrices with nontrivial

Jordan form. The orbit of (
λ 1

0 λ

)
(22.39)

is two-complex-dimensional. Together with the parameter λ this makes a complex codi-

mension one subvariety of Mn(C).

More generally (
λ 1

0 λ

)
⊕i λi1 (22.40)

with distinct λi has a stabilizer of dimension 2 + (n− 2) = n so the space of such matrices

is (n2 − n) + (n− 2) + 1 = n2 − 1 dimensional.

22.2.3 Local model near Ssing

It is of some interest to make a good model of how matrices degenerate when approaching

a generic point in Ssing.

Suppose s → s∗ ∈ Ssing and two distinct roots of the characteristic polynomial say,

λ1(s), λ2(s), have a common limit λ(s∗). We can choose a family of projection operators
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P (s) of rank 2, whose range is the two-dimensional subspace spanned by the eigenvectors

v1(s) and v2(s) so that

T (s) = Pst(s)Ps +QsT (s)Qs (22.41)

and such that QsT (s)Qs has a limit with distinct eigenvalues on the image of Qs. The

operator t(s) is an operator on a two-dimensional subspace and we may choose some fixed

generic ordered basis and write:

t(s) = λ(s)1 +

(
z(s) x(s)− iy(s)

x(s) + iy(s) −z(s)

)
(22.42)

where λ, x, y, z are all complex. λ(s) is some smooth function going to λ(s∗) while

x(s∗)
2 + y(s∗)

2 + z(s∗)
2 = 0 (22.43)

is some generic point on the nilpotent cone of 2× 2 nilpotent matrices. That generic point

will have z(s∗) 6= 0 and hence x(s∗)± iy(s∗) 6= 0.

***** FIGURE OF A DOUBLE-CONE WITH A PATH ENDING ON THE CONE

AT A POINT s∗ NOT AT THE TIP OF THE CONE ****

Therefore we can consider the smooth matrix

S(s) =

(
z(s) 1

x(s) + iy(s) 0

)
(22.44)

which will be invertible in some neighborhood of s∗. Now a small computation shows that

S−1t(s)S = λ(s)1 +

(
0 1

w 0

)
(22.45)

w = x2 + y2 + z2 (22.46)

Therefore we can take w to be a coordinate in the normal bundle to D ⊂ M2(C) and

the generic family of degenerating matrices has (generically) a nonsingular family of bases

where the operator can be modeled as

T (w) = P

(
0 1

w 0

)
P + T⊥ w ∈ C (22.47)

22.2.4 Families of Hermitian operators

If we impose further conditions then the rule for the codimension can again change.

An important example arises if we consider families of Hermitian matrices. In this

case, the codimension of the subvariety where two eigenvalues coincide is real codimension

3.

Let us prove this for a family of 2× 2 matrices. Our family of matrices is(
d1(s) z(s)

z̄(s) d2(s)

)
(22.48)
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where d1, d2 are real and z is complex.

The eigenvalues coincide when the discriminant of the characteristic polynomial van-

ishes. This is the condition

b2 − 4ac = (d1 + d2)2 − 4(d1d2 − |z|2) = (d1 − d2)2 + 4|z|2 = 0 (22.49)

Thus, d1 = d2 and z = 0 is the subvariety. Moreover, in the neighborhood of this locus the

family is modeled on (
d 0

0 d

)
+ ~x · ~σ (22.50)

For the general case the subspace of Hermitian matrices where exactly two eigenvalues

coincide and are otherwise distinct is a fibration over

(R(n−2) −∆)/Sn−2 × R (22.51)

(the fibration being given by the map to the unordered set of eigenvalues) with fiber: ♣Again, this

discussion is out of

place. We have not

discussed quotients

yet. ♣
U(n)/(U(2)× U(1)n−2) (22.52)

The fiber has real dimension n2−(4+(n−2)) = n2−n−2 and the base has real dimension

n− 1 so the total dimension is (n2 − n− 2) + (n− 1) = n2 − 3. So the codimension is 3.

**** FIGURE OF D AS LINE WITH TRANSVERSE SPACE A PLANE, BUT LA-

BELED AS R3 *****

Near to the level crossing the universal form of the matrix is

T (~x) = P~x
(
(λ+ ~a · ~x)12×2 + ~x · ~σ +O(x2)

)
P~x + T⊥(~x) (22.53)

where ~x is a local parameter normal to the codimension three subspace, P~x is a smooth

family of rank 2 projectors with a smooth limit at ~x = 0, λ ∈ R, and ~a ∈ R3.

Example In solid state physics the energy levels in bands cross at points in the Bril-

louin zone. (See Chapter 4 below.)

Exercise

Show that the subspace of Hermitian matrices where exactly k eigenvalues coincide and

are otherwise distinct is of real codimension k2 − 1 in the space of all Hermitian matrices.

The way in which these subspaces fit together is quite intricate. See

V. Arnold, “Remarks on Eigenvalues and Eigenvectors of Hermitian Matrices. Berry

Phase, Adiabatic Connections and Quantum Hall Effect,” Selecta Mathematica, Vol. 1,

No. 1 (1995)

References: For some further discussion see Ref: von Neumann + Wigner, Avron-

Seiler, Ann. Phys. 110(1978)85; B. Simon, “Holonomy, the Quantum Adiabatic Theorem,

and Berry’s Phase,” Phys. Rev. Lett. 51(1983)2167
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22.3 Canonical form of a family in a first order neighborhood

In this section we consider families in a slightly different way: Can we put families into

canonical form by conjugation?

Suppose we have a family of complex matrices T (s) varying continuously with some

control parameter s ∈ S and we allow ourselves to make similarity transformations g(s),

T (s)→ g(s)T (s)g(s)−1 (22.54)

where g(s) must vary continuously with s.

We know that if we work at a fixed value of s then we can put T (s) into Jordan canonical

form. We can ask – can we put an arbitrary family of matrices into some canonical form?

For example, if T (s0) is diagonal for some s0, can we choose g(s) for s near s0 so that

T (s) is diagonal in the neighborhood of s0?

This is a hard question in general. Let us consider what we can say to first order

in perturbations around s0. For simplicity, suppose S is a neighborhood around 0 in the

complex plane, so s0 is zero. Write

T (s) = T0 + sδM +O(s2) (22.55)

and let us assume that T0 has been put into some canonical form, such as Jordan canonical

form. Now write g(s) = 1 + sδg +O(s2). Then

g(s)T (s)g(s)−1 = T0 + sδM + s[δg, T0] +O(s2) (22.56) eq:firstpert

For any matrix m ∈Mn(C) let us introduce the operator

Ad(m) : Mn(C)→Mn(C) (22.57)

Ad(m)(X) := [m,X] (22.58)

What we learn from (22.56) is that we can “conjugate away” anything in the image of

Ad(T0).

That is, the space of nontrivial perturbations is the cokernel of the operator Ad(T0).

Let us suppose that T0 = Diag{λ1, . . . , λn} is diagonal with distinct eigenvalues. Then

if δg ∈Mn(C)

(Ad(T0)δg)ij = (λi − λj)δgij (22.59)

Thus, the range is the space of off-diagonal matrices. We can always conjugate away any

off-diagonal element of (δM)ij , but we cannot conjugate away the diagonal elements. The

cokernel can be represented by the diagonal matrices.

Thus, near a matrix with distinct eigenvalues we can, at least to first order in pertur-

bation theory, take the perturbed matrix to be diagonal.

If some eigenvalues coincide then we might not be able to conjugate away some off-

diagonal elements.

Moreover, as we have seen above, it is perfectly possible to have a family of matrices

degenerate from diagonalizable to nontrivial Jordan form.
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Exercise

Compute the cokernel of the operator

Ad(J
(k)
λ ) : Mk(C)→Mk(C) (22.60)

and find a natural subspace complementary to im(Ad(J
(k)
λ )) in Mk(C).

Answer : As we showed in equation (10.55) above the kernel of Ad(J
(k)
λ ) consists of

matrices of the form

A = a11k +a2(e1,2 +e2,3 + · · ·+ek−1,k)+a3(e1,3 +e2,4 + · · ·+ek−2,k)+ · · ·+ake1,k (22.61)

That is, it is a general polynomial in J
(k)
λ . It is therefore a k-dimensional space. By

the index, we know that the cokernel is therefore k-dimensional. Therefore, there is a

k-dimensional space of nontrivial perturbations.

Example: By direct computation we find for k = 2 the general perturbation is equiv-

alent to (
λ 1

0 λ

)
+

(
0 0

δ1 δ2

)
(22.62)

and in general the matrices

J
(k)
λ +

k∑
i=1

δieki (22.63)

for δ1, . . . , δk free parameters give a set of representatives of the cokernel.

b.) Show that

det

(
J

(k)
λ +

k∑
i=1

δieki

)
= λk + δkλ

k−1 − δk−1λ
k−2 ± · · ·+ (−1)k−1δ1 (22.64)

See R. Gilmore, Catastrophe Theory, ch. 14 for further details. There are many

applications of the above result.

22.4 Families of operators and spectral covers

In this subsection we describe the spectral cover construction which allows us to translate

the data of a family of operators into a purely geometrical object.

Thus, suppose we have a generic family T (s) of complex n × n matrices over s ∈ S.

As we saw above, generically T (s) is regular semisimple so we let

S∗ = S − Ssing (22.65)

and for s ∈ S∗ we have

T (s) =
n∑
i=1

λi(s)Pλi(s) (22.66)
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where Pλi(s) are orthogonal projection operators and the λi(s) are distinct. Note that the

sum on the RHS makes sense without any choice of ordering of the λi.

Now consider the space

S̃ := {(s, λ)|pT (s)(λ) = 0} ⊂ S × C (22.67)

That is, the fiber of the map S̃ → S is the space of λ’s which are characteristic values of

T (s) at s ∈ S.

Over S∗ all the eigenvalues are distinct so

S̃∗ → S∗ (22.68)

is a smooth n-fold cover. In general since π1(S∗) 6= 0 it will be a nontrivial cover, mean-

ing that there is only locally, but not globally a well-defined ordering of the eigenvalues

λ1(s), . . . , λn(s). In general only the unordered set {λ1(s), . . . , λn(s)} is well-defined over

S∗. See equation (22.75) et. seq. below for the case n = 2.

Now, note that there is a well-defined map to the space of rank one projectors:

P : S̃∗ → Gr1(Cn) (22.69)

Namely, if (s, λ) ∈ S̃∗ then λ is an eigenvalue of T (s) and P (s, λ) is the projector to the

eigenline Lλ ⊂ V = Cn spanned by the eigenvector with eigenvalue λ.

In general, a vector bundle whose fibers form a dimension one vector space is called

a line bundle. Moreover, if we look at the fibers over the different sheets of the covering

space S̃∗ → S∗ we get an s-dependent decomposition of V into a sum of lines:

V = ⊕ni=1Lλi(s) (22.70)

Now the RHS does depend on the ordering of the λi(s), but up to isomorphism it does not

depend on an ordering. The situation for n = 2 is sketched schematically in Figure 10

Therefore, there is a 1-1 correspondence between the family of operators T (s)

parametrized by s ∈ S∗ and complex line bundles over the n-fold covering space

S̃∗ → S∗.

Now, let us ask what happens when we try to consider the full family over S. Certainly

S̃ → S still makes sense, but now, over Ssing some characteristic values will coincide and

the covering is an n-fold branched covering.

Let us recall the meaning of the term branched covering. In general, a branched

covering is a map of pairs π : (Y,R) → (X,B) where R ⊂ Y and B ⊂ X are of real

codimension two. R is called the ramification locus and B is called the branch locus. The

map π : Y − R → X − B is a regular covering and if it is an n-fold covering we say the

branched covering is an n-fold branched cover. On the other hand, near any point b ∈ B
there is a neighborhood U of b and local coordinates

(x1, . . . , xd−2;w) ∈ Rd−2 × C, (22.71)
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Figure 10: We consider a family of two-by-two matrices T (s) with two distinct eigenvalues λ1(s)

and λ2(s). These define a two-fold covering of S, the spectral cover. Moreover, the eigenlines

associated to the two sheets give a decomposition of V = C2 into a sum of lines which varies with

s. fig:TWOEIGENLINES

where dimRX = d and w = 0 describes the branch locus B ∩ U . More importantly,

π−1(U) = qαŨα is a disjoint union of neighborhoods in Y of points rα ∈ R with local

coordinates

(x1, . . . , xd−2; ξα) ∈ Rd−2 × C (22.72)

so that the map πα : Ũα → U (where πα is just the restriction of π) is just given by

πα : (x1, . . . , xd−2; ξα)→ (x1, . . . , xd−2; ξeαα ) (22.73)

where eα are positive integers called ramification indices.

In plain English: For any b ∈ B there are several points rα in the preimage of π above

b and near any rα the map π looks like a mapping of unit disks in the complex plane

ξ → w = ξe. Note that for an n-fold covering∑
α

eα = n (22.74)

The case where exactly one ramification index is e = 2 and all the others are equal to one

is called a simple branch point. ♣Put in figure of

disks covering disks.

♣Now, we have argued that the interesting part of T (s) near a generic point s∗ ∈ Ssing

is of the form

T (w) =

(
0 1

w 0

)
(22.75) eq:SimpleDegFamily

For this family the characteristic polynomials are clearly

pT (w)(x) = x2 − w (22.76)

and the set of characteristic roots is the unordered set {+
√
w,−
√
w}. This is just the

unordered set {+ξ,−ξ} labeling the two sheets of the 2-fold branched cover. By taking

appropriate real slices we may picture the situation as in Figure 11.
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Figure 11: A particular real representation of a complex 2-fold branched cover of a disk over a

disk. The horizontal axis in the base is the real line of the complex w plane. The verticle axis

corresponds to the real axis of the complex ξ plane on the right and the purely imaginary axis of

the complex ξ plane on the left. fig:BRANCHCOVER

The monodromy of the eigenvalues is nicely illustrated by considering the closed path

w(t) = w0e
2πit 0 ≤ t ≤ 1 (22.77) eq:closedcurve

If we choose at t = 0 a particular squareroot ξ0 of w0 then this closed path lifts to

ξ(t) = ξ0e
πit 0 ≤ t ≤ 1 (22.78) eq:liftedcurve

and the value at t = 1 is the other squareroot −ξ0 of w0.

Now let us consider the eigenlines at w. If w 6= 0 (i.e. s ∈ S∗) then there are two

distinct eigenlines which are the span of the eigenvectors

v± =

(
1

±ξ

)
(22.79)

The eigenlines are just the images of the two Bott projectors:

Pε(ξ) =
1

1 + |ξ|2

(
1 εξ∗

εξ |ξ|2

)
(22.80)

where ε = ±1. Along the lifted curve (22.78) P+ evolves into P− and so the two eigenlines

get exchanged under monodromy.

Note well that Pε(ξ) has a nice smooth limit as ξ → 0. Therefore the two eigenlines

smoothly degenerate to a single line over the single point ξ = 0.

In the holomorphic case one can use the fact that holomorphic functions of many vari-

ables cannot have complex codimension two singularities (Hartog’s theorem) to conclude

that:

Therefore, at least for generic holomorphic families over a complex space S there is

a 1-1 correspondence between the families of n× n matrices T (s) and holomorphic

line bundles over n-fold branched covers S̃ → S.
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Remarks

1. Higgs bundles. The method of spectral covers is very important in certain aspects of

Yang-Mills theory. In particular, a version of the Yang-Mills equations on C × R2,

where C is a Riemann surface lead to differential equations on a connection on C

known as the Hitchin equations. It turns out that solutions to these are equivalent

to holomorphic families of operators on C with the technical difference that the

operators T (s), with s ∈ C, (known as Higgs fields) are valued in (1, 0)-forms on C.

In this case the spectral cover technique converts a difficult analytic problem such as

the solution of Yang-Mills equations into a purely geometrical problem: Describing

holomorphic line bundles on n-fold coverings in T ∗C.

Exercise

Describe the spectral cover for the family

T (z) =

(
0 1

z2 − E 0

)
(22.81)

over the complex plane z ∈ C.

Exercise

Suppose that T (z) is a two-dimensional holomorphic matrix. Show that the spectral

cover is a hyperelliptic curve and write an equation for it in terms of the matrix elements

of T (z).

Exercise Hitchin map

The characteristic polynomial defines a natural map h : End(V )→ Cn, known in this

context as the Hitchin map:

h : T 7→ (a1(T ), . . . , an(T ))

det(x1n − T ) = xn + a1x
n−1 + · · ·+ an

(22.82) eq:hitchin

Define the universal spectral cover over Cn to be

C̃n := {(a1, . . . , an; t)|tn + a1t
n−1 + · · ·+ an = 0} (22.83) eq:univers
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Show that S̄ is a fiber product of S with C̃n. 50

22.5 Families of matrices and differential equations

Another way families of matrices arise is in the theory of differential equations.

As motivation, let us consider the Schrödinger equation:(
−~2 d

2

dx2
+ V (x)

)
ψ(x) = Eψ(x) (22.84)

where we have rescaled V and E by 2m. We keep ~ because we are going to discuss

the WKB approximation. We could scale it to one and then some other (dimensionless!)

physical parameter must play the role of a small parameter.

We can write this as the equation

~2 d
2

dx2
ψ(x) = v(x)ψ(x) (22.85)

with v(x) = V (x)−E. Moreover, if v(x) is the restriction to the real line of a meromorphic

function v(z) on the complex plane we can write an ODE on the complex plane:

~2∂2
zψ = v(z)ψ (22.86)

This can be converted to a 2× 2 matrix equation:

~
∂

∂z
ψ =

(
0 1

v(z) 0

)
ψ (22.87) eq:mtrx-schrod

where

ψ =

(
ψ1

ψ2

)
(22.88)

is a column vector.

Given this reformulation it is natural to consider more generally the matrix differential

equation

~
∂

∂z
ψ = A(z)ψ (22.89) eq:norderf

where A(z) is some meromorphic matrix function of z.

For example, the Airy differential equation corresponds to

A(z) =

(
0 1

z 0

)
(22.90)

while the harmonic oscillator corresponds to

A(z) =

(
0 1

z2 − E 0

)
(22.91) eq:HO-MATRIX

50Answer : T defines a map pT : S → Cn by taking the coefficients of the characteristic polynomial. You

can then pull back the covering C̃n → Cn along T to get S̃.
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For the theory we are developing it is interesting to generalize further and let A(z) be

a meromorphic n×n matrix. This subsumes the theory of nth order linear ODE’s, but the

more general setting is important in applications and leads to greater flexibility.

Now ifA(z) is nonsingular in a simply connected regionR then there is an n-dimensional

space of solutions of (22.89) in R. If ψ(1), . . . , ψ(n) are n linearly independent solutions

they can all be put together to make an n× n matrix solution

Ψ =
(
ψ(1) · · · ψ(n)

)
=


ψ

(1)
1 · · · ψ(n)

1
...

...

ψ
(1)
n · · · ψ(n)

n

 (22.92)

The solutions ψ(i) are linearly independent, iff Ψ is invertible.

The best way to think about solutions of linear ODE’s is in fact to look for invertible

matrix solutions to

~
∂

∂z
Ψ = A(z)Ψ (22.93) eq:bestway

Note that if C is a constant matrix, then Ψ→ ΨC is another solution. We can think of

this freedom as corresponding to the choices of initial conditions specifying the independent

solutions ψ(i).

What happens if we multiply from the left by a constant matrix? The equation is not

preserved in general since in general C will not commute with A(z). This is not a bug, but

a feature, and indeed it is useful to consider more generally making a redefinition

Ψ(z) = g(z)Ψ̃(z) (22.94)

where g(z) is an invertible n× n matrix function of z. Then we change the equation to:

~
∂

∂z
Ψ̃ = Ag(z)Ψ̃ (22.95)

where

Ag = g−1Ag − ~g−1∂zg (22.96)

is the “gauge-transform” of A.

Thus we learn, that when working with families of matrices, the proper notion of equiv-

alence might not be that of conjugation, but of gauge transformation. Which is the proper

notion depends on the problem under consideration.

From this point of view, solving (22.93) can be interpreted as finding the gauge trans-

formation Ψ that gauges A to 0.

What can we say about the existence of solutions? Let us think of z as valued on the

complex plane. Locally, if A(z) does not have singularities then we can always solve the
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equation with the path ordered exponential. We choose a path z(t) starting from zin

Ψ(z(t)) = Pexp

[
1

~

∫ z(t)

zin

A(w)dw

]
Ψ(zin)

:=

(
1 +

∞∑
n=1

~−n
∫ z

zin

dz1

∫ z1

zin

dz2 · · ·
∫ zn−1

zin

dznA(z1) · · ·A(zn)

)
Ψ(zin)

:=

(
1 +

∞∑
n=1

1

~nn!

∫ t

0
dt1

dz(t1)

dt1

∫ t

0
dt2

dz(t2)

dt2
· · ·
∫ t

0
dtn

dz(tn)

dtn
P [A(z(t1)) · · ·A(z(tn))]

)
Ψ(zin)

(22.97) eq:Pexp

where all the integrations are along the path:
∫
dz... =

∫
dtdzdt ... and P [...] is the time-

ordered product with later times on the left.

If A(z) is meromorphic then the path ordered exponential exists provided the path

z(t) does not go through any singularities. This is clear from the third line of (22.97) since

A(z(t)) will be bounded on the interval [0, t]. The second line makes clear that Ψ(z) is

locally holomorphic. However, the solution does depend on the homotopy class of the path

in C minus the singularities. We will return to this below.

22.5.1 The WKB expansion

Sometimes the path-ordered exponential is prohibitively difficult to evaluate and we have

to make due with approximate solutions. One way to get such approximate solutions is

the WKB method. Note that if we could gauge transform A(z) to be diagonal then the

equation is easily solved, because in the 1× 1 case:

~∂zψ = a(z)ψ ⇒ ψ(z) = exp

(
1

~

∫ z

z0

a(w)dw

)
ψ(z0) (22.98)

This observation motivates us to find a gauge transformation which implements the

diagonalization order by order in ~. To this end we introduce the ansatz:

Ψwkb = S(z, ~)e
1
~∆(z,~) (22.99) eq:WKB-ansatz

where ∆(z, ~) is diagonal, and we assume there are series expansions

S(z, ~) = S0(z) + ~S1(z) + ~2S2(z) + · · · (22.100)

∆(z, ~) = ∆0(z) + ~∆1(z) + ~2∆2(z) + · · · (22.101)

Now, to determine these series we substitute (22.99) into equation (22.93) and bring

the resulting equation to the form

(A(z)− ~S′S−1)S = S∆′ (22.102) eq:wkbi

where ∆′ = ∂∆
∂z and S′ = ∂S

∂z . Now we look at this equation order by order in ~.

At zeroth order we get

A(z)S0 = S0∆′0 (22.103)
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Thus, S0(z) must diagonalize A(z) and ∆′0 is the diagonal matrix of eigenvalues of A(z).

Of course, A(z) might fail to be diagonalizable at certain places. We will return to this.

Now write (22.102) as

A(z)S − ~S′ = S∆′ (22.104) eq:wkbii

Now substitute A(z) = S0∆′0S
−1
0 . Next, make a choice of diagonalizing matrix S0 and

multiply the equation on the left by S−1
0 to get

∆′0S
−1
0 S − ~S−1

0 S′ = S−1
0 S∆′ (22.105) eq:wkbiii

Equation (22.105) is the best form in which to substitute the series in ~. At order ~n,

n > 0 we get

∆′0S
−1
0 Sn − S−1

0 S′n−1 =
n∑
i=0

S−1
0 Si∆

′
n−i (22.106) eq:wkbiv

separating out the i = 0 and i = n terms from the RHS the equation is easily rearranged

to give

[∆′0, S
−1
0 S1]−∆′1 = S−1

0 S′0

[∆′0, S
−1
0 Sn]−∆′n = S−1

0 S′n−1 +
n−1∑
i=1

S−1
0 Si∆

′
n−i n > 1

(22.107) eq:wkbivp

In an inductive procedure, every term on the RHS is known. On the left-hand side ∆′n
is diagonal, so we take it to be the diagonal component of the RHS.

As long as the eigenvalues of ∆′0 are distinct Ad(∆′0) maps ONTO the space of off-

diagonal matrices, and hence we can solve for S−1
0 Sn. In this way we generate the WKB

series.

Remarks

1. The WKB procedure will fail when A(z) has nontrivial Jordan form. This happens

when the characteristic polynomial has multiple roots. These are the branch points

of the Riemann surface defined by the characteristic equation.

2. Indeed, returning to the matrix A(z) corresponding to the Schrödinger equation

(22.87). The characteristic equation λ2 − v(z) = 0 has branchpoints at zeroes v(z0).

Recalling that v(x) = V (x) − E these are just the turning points of the usual me-

chanics problem. In the neighborhood of such points one can write an exact solution

in terms of Airy functions, and then match to the WKB solution to produce a good

approximate solution.
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3. Note that - so long as A(z) is diagonalizable with distinct eigenvalues - the above pro-

cedure only determines S0(z) up to right-multiplication by a diagonal matrix D0(z).

However, the choice of diagonal matrix then enters in the equation determining ∆1

and S1: ∆′1 = −Diag(S−1
0 S′0). Thus, if we change our choice

S0(z)→ S̃0(z) = S0(z)D0(z) (22.108)

then we have:

∆̃1(z) = −Diag(S̃−1
0 S̃′0) = −Diag(S−1

0 S′0)−Diag(D−1
0 D′0) (22.109)

and when substituting into (22.99) the change of S0 is canceled by the change of ∆1.

Similarly, Sn is only determined up to the addition of a matrix of the form S0Dn

where Dn is an arbitrary diagonal matrix function of z. However, at the next stage

in the procedure Dn will affect ∆n+1 in such a way that the full series Sexp[1
~∆] is

unchanged.

4. In general, the WKB series is only an asymptotic series.

Exercise

Write the general nth order linear ODE in matrix form.

Exercise

Show that for the matrix

A(z) =

(
0 1

v(z) 0

)
(22.110)

We can must have ∆′0(z) =
√
v(z)σ3 and we can choose S0 to be

S0 =

(
v−1/4 v−1/4

v1/4 −v1/4

)
(22.111)

Show that with this choice of S0(z) we have

[∆′0, S
−1
0 S1]−∆′1 = −1

4
σ1 d

dz
logv(z) (22.112)

and therefore

∆(z, ~) = σ3

∫ z

z0

√
v(z′)dz′ +O(~2) (22.113)
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22.5.2 Monodromy representation and Hilbert’s 21st problem

Consider again the matrix equation (22.93).

If A(z) is holomorphic near z0 then so is the solution Ψ(z). On the other hand, there

will be interesting behavior when A(z) has singularities.

Definition A regular singular point z∗ is a point where A(z) has Laurent expansion

of the form

A(z) =
A−1

z − z∗
+ · · · (22.114)

with A−1 regular semisimple.

We have

Theorem [Fuchs’ theorem]: Near a RSP there exist convergent series solutions in a

disk around z = z∗. and if A−1 = Diag{λ1, . . . , λn} then

Ψ(z) = Diag{(z − z∗)λ1 , . . . , (z − z∗)λn}
(
1 + Ψ1(z − z∗) + Ψ2(z − z∗)2 + · · ·

)
(22.115)

where Ψ1,Ψ2, . . . are constant matrices, is a convergent series in some neighborhood of z∗
Note that in general the solution will have monodromy around z = z∗: Analytic

continuation around a counterclockwise oriented simple closed curve around z = 0 gives

Ψ(z∗ + (z − z∗)e2πi) = Diag{e2πiλ1 , . . . , e2πiλn}Ψ(z) (22.116)

If A(z) only has regular singular points at, say, p1, . . . , ps then analytic continuation

defines a representation

ρ : π1(C− {p1, . . . , ps}, z0)→ GL(n,C) (22.117) eq:MonRep

known as the monodromy representation of the differential equation.

Remark: Riemann was the first to investigate this problem, completely solving the

case of n = 2 with three regular singular points. In his famous address to the International

Congress of Mathematicians in Paris in 1900 D. Hilbert presented a list of 23 problems for

the mathematics of the 20th century. The 21st problem was, roughly, in modern terms:

Given an irreducible n-dimensional representation (22.117), find a differential equation

for which it is a monodromy representation.

This problem has a complicated history, with claimed solutions and counterexamples.

We note that there is a very physical approach to the problem using free fermion conformal

field theory correlation functions which was pursued by the Kyoto school of Miwa, Jimbo,

et. al. It is also the first example of what is called the “Riemann-Hilbert correspondence,”

which plays an important role in algebraic geometry. ♣Explain more

clearly if the

problem has been

solved or not! ♣22.5.3 Stokes’ phenomenon

A subject closely related to the WKB analysis is Stokes’ phenomenon. We give a brief

account here.

Definition An irregular singular point is a singular point of the form

A(z) =
A−n
zn

+ · · · (22.118)
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with n > 1.

Let us consider the simplest kind of ISP, which we put at z = 0:

A(z) =
R

z2
+
A−1

z
+ · · · (22.119)

with R = Diag{r1, . . . , rn}. Then the series method will produce a formal solution

Ψf =
(
1 + Ψ1z + Ψ2z

2 + · · ·
)
e−R/z (22.120)

The big difference will now be that the series is only asymptotic for z → 0. ♣HERE GOES

DEFINITION OF

ASYMPTOTIC

SERIES. STRESS

DEPENDENCE ON

CHOICE OF RAY.

♣
Example: Consider

d

dz
Ψ =

(
rσ3

z2
+
sσ1

z

)
Ψ (22.121)

Substituting

Ψf = Ue−rσ
3/z (22.122)

with U = 1 + zU1 + z2U2 + · · · we find

dU

dz
= Ad(

rσ3

z2
)U +

sσ1

z
U (22.123)

Writing this out we get the equations

[rσ3, U1] = −sσ1

[σ3, Un+1] =
(n− sσ1)

r
Un

(22.124)

and the factor of n on the RHS in the second line shows that coefficients in Un are going

to grow like n! and hence the series will only be asymptotic.

Indeed, in this case the formal series is easily shown to be

Un = −
(
−1

2r

)n ∏n−1
j=1 (j2 − s2)

n!
(s+ nσ1)(σ3)n (22.125) eq:FormSerEx

so the prefactor grows like n!.

Definition The rays (ri − rj)R+ starting at z = 0 are known as Stokes rays and the

open regions between these rays are Stokes sectors. See Figure 12.

Now one can prove

Theorem: Let ρ be a ray which is not a Stokes ray, and let Hρ be the half-plane

containing ρ as in Figure 13. Then there is a unique solution Φρ which is asymptotic to

the formal solution as z → 0 along any ray in Hρ:

Φρe
R/z → 1 (22.126)
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Figure 12: Stokes sectors fig:STOKESECTORS

Figure 13: There is a true solution to the differential equation asymptotic to the formal solution

in the half-plane Hρ. fig:HALFPLANE

Figure 14: There is a true solution to the differential equation asymptotic to the formal solution

in the half-plane Hρ. fig:HPOVERLAP

where z → 0 along any ray in Hρ, and hence

lim
z→0

z−n
(

Φρ(z)e
R/z − (1 + zΨ1 + · · ·+ znΨn)

)
= 0 (22.127)
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It is very important here that the limit is taken along a ray in Hρ, otherwise the state-

ment will be false. Indeed, in general one cannot find a formal solution in a larger domain

which is asymptotic to the formal solution! This is one version of Stokes phenomenon.

Now, consider two rays ρ1, ρ2, neither of which is a Stokes ray. The half-planes overlap

as in Figure 14. Then, by uniqueness of the solution to the differential equation we know

that

Φρ1 = Φρ2SΣ on Hρ1 ∩Hρ2 (22.128)

where SΣ is a matrix which is constant as a function of z. (It might well depend on other

parameters in the differential equation.) Moreover, SΣ = 1 if there is no Stokes’ ray in Σ,

but SΣ 6= 1 if there are Stokes’ rays in Σ. If there is precisely one Stokes ray ` in Σ then ♣That sentence is

really a theorem. ♣
we set SΣ = S` and call S` the Stokes factor for `.

Figure 15: There is a true solution to the differential equation asymptotic to the formal solution

in the half-plane Hρ. fig:TWOAC

Now we can describe an analog of monodromy for ISP’s: Choose rays ±ρ which are

not Stokes rays. Starting with Φρ in Hρ there are two analytic continuations to H−ρ, as

shown in Figure 15. Call these two analytic continuations Φ±ρ then we have:

Theorem:

Φ+
ρ = Φ−ρS+ in H−ρ (22.129)

Φ−ρ = Φ−ρS− in H−ρ (22.130)

are given by

S+ =:

ccw∏
`∈V+(ρ)

S` : (22.131)

S− =:
cw∏

`∈V−(ρ)

S` : (22.132)

where the products are ordered so successive rays are counterclockwise or clockwise. These

are called Stokes matrices, and serve as the analogs of monodromy matrices in the irregular

singular point case.

Remarks
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1. There is a generalization of this story to higher order poles. If

A(z) =
R

z`+1
+ · · · (22.133)

with R regular semisimple then the formal series solution has the form

Ψf = U(z)eQ(z) (22.134)

U(z) = 1 + zU1 + z2U2 + · · · (22.135)

Q(z) =
Q`
z`

+ · · ·+ Q1

z
+Q0logz (22.136)

Moreover, a true solution asymptotic to the formal solution will generally only ex-

ist in angular sectors of angular width |∆θ| < π
` . For more details about this see

Coddington and Levinson, or Hille’s book on ODEs.

2. There is a great deal more to be said about the kind of groups the Stokes matrices live

in and their use in parametrizing flat connections and their applications to Yang-Mills

theory.

Exercise

a.) Derive the formal series (22.125).

b.) Show that the equation can be reduced to a second order ODE with one irregular

singular point and one regular singular point.

Answer :

a.) Write

Un = wn1 + xnσ
1 + ynσ

2 + znσ
3 (22.137)

so that

2ixn+1σ
2 − 2iyn+1σ

1 =
n

r
(xnσ

1 + ynσ
2 + znσ

3)

− s

r
(xn + iynσ

3 − iznσ2)
(22.138)

Deduce that nwn = sxn and nzn = isyn and

xn+1 =
1

2ir

n2 − s2

n
yn yn+1 = − 1

2ir

n2 − s2

n
xn (22.139)

The induction starts with

U1 =
s

2ir
σ2 +

s2

2r
σ3 (22.140)

so x2n+1 = y2n = 0. The rest is simple induction.

b.) Write out the differential equation on a two-component column vector and elimi-

nate ψ2 to get:

ψ′′ +
2ir − sz
z(ir − sz)

ψ′ − r2 + s2z2

z4
ψ = 0 (22.141)

– 190 –



♣Transform this to

the confluent hg

equation. ♣

Exercise Harmonic Oscillator

Consider the matrix (22.91) corresponding to the harmonic oscillator differential equa-

tion. Using the known asymptotics of the parabolic cylinder functions work out the Stokes

sectors and Stokes factors for this equation.

Exercise Three singular points

Suppose that a second order differential equation on the extended complex plane has

three singular points with monodromy given by regular semisimple elements conjugate to(
µi 0

0 µ−1
i

)
i = 1, 2, 3 (22.142)

Show that for generic µi ∈ C the equation M1M2M3 = 1 can be solved, up to simul-

taneous conjugation of the Mi, in terms of the µi, and write M2,M3 in a basis where M1

is diagonal.

In fancy mathematical terms: The moduli space of flat SL(2,C) connections with fixed

conjugacy class of regular semisimple monodromy around three points on CP 1−{p1, p2, p3}
has no moduli. ♣YOU SHOULD

GIVE AN

EXAMPLE OF

HOW THIS GIVES

REFLEC-

TION/TRANSMISSION

COEFFICIENTS IN

SOME

SCATTERING

PROBLEMS. ♣

23. Z2-graded, or super-, linear algebra
sec:SuperLinearAlgebra

In this section “super” is merely a synonym for “Z2-graded.” Super linear algebra is

extremely useful in studying supersymmetry and supersymmetric quantum theories, but

its applications are much broader than that and the name is thus a little unfortunate.

Superlinear algebra is very similar to linear algebra, but there are some crucial differ-

ences, which we highlight in this section. It’s all about signs.

We are going to be a little bit pendantic and long-winded in this section because the

subject is apt to cause confusion.

23.1 Super vector spaces

It is often useful to add the structure of a Z2-grading to a vector space. A Z2-graded vector

space over a field κ is a vector space over κ which, moreover, is written as a direct sum

V = V 0 ⊕ V 1. (23.1) eq:zeet
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The vector spaces V 0, V 1 are called the even and the odd subspaces, respectively. We may

think of these as eigenspaces of a “parity operator” PV which satisfies P 2
V = 1 and is +1

on V 0 and −1 on V 1. If V 0 and V 1 are finite dimensional, of dimensions m,n respectively

we say the super-vector space has graded-dimension or superdimension (m|n).

A vector v ∈ V is called homogeneous if it is an eigenvector of PV . If v ∈ V 0 it is

called even and if v ∈ V 1 it is called odd. We may define a degree or parity of homogeneous

vectors by setting deg(v) = 0̄ if v is even and deg(v) = 1̄ if v is odd. Here we regard 0̄, 1̄

in the additive abelian group Z/2Z = {0̄, 1̄}. Note that if v, v′ are homogeneous vectors of

the same degree then

deg(αv + βv′) = deg(v) = deg(v′) (23.2) eq:dnge

for all α, β ∈ κ. We can also say that PV v = (−1)deg(v)v acting on homogeneous vectors.

For brevity we will also use the notation |v| := deg(v). Note that deg(v) is not defined for

general vectors in V .

Mathematicians define the category of super vector spaces so that a morphism from

V → W is a linear transformation which preserves grading. We will denote the space of

morphisms from V to W by Hom(V,W ). These are just the ungraded linear transforma-

tions of ungraded vector spaces, T : V → W , which commute with the parity operator

TPV = PWT .

So far, there is no big difference from, say, a Z-graded vector space. However, important

differences arise when we consider tensor products.

So far we defined a category of supervector spaces, and now we will make it into a

tensor category. (See definition below.)

The tensor product of two Z2 graded spaces V and W is V ⊗W as vector spaces over

κ, but the Z2-grading is defined by the rule:

(V ⊗W )0 := V 0 ⊗W 0 ⊕ V 1 ⊗W 1

(V ⊗W )1 := V 1 ⊗W 0 ⊕ V 0 ⊗W 1
(23.3) eq:tsnp

Thus, under tensor product the degree is additive on homogeneous vectors:

deg(v ⊗ w) = deg(v) + deg(w) (23.4) eq:tnesvct

If κ is any field we let κp|q denote the supervector space:

κp|q = κp︸︷︷︸
even

⊕ κq︸︷︷︸
odd

(23.5)

Thus, for examples:

Rne|no ⊗ Rn
′
e|n′o ∼= Rnen

′
e+non

′
o|nen′o+non′e (23.6)

and in particular:

R1|1 ⊗ R1|1 = R2|2 (23.7)

R2|2 ⊗ R2|2 = R8|8 (23.8)
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R8|8 ⊗ R8|8 = R128|128 (23.9)

Now, in fact we have a braided tensor category :

In ordinary linear algebra there is an isomorphism of tensor products

cV,W : V ⊗W →W ⊗ V (23.10) eq:BrdIso

given by cV,W : v⊗w 7→ w⊗v. In the super-commutative world there is also an isomorphism

(23.10) defined by taking

cV,W : v ⊗ w → (−1)|v|·|w|w ⊗ v (23.11) eq:SuperBraid

on homogeneous objects, and extending by linearity.

Let us pause to make two remarks:

1. Note that in (23.11) we are now viewing Z/2Z as a ring, not just as an abelian

group. Do not confuse degv + degw with degvdegw! In computer science language

degv + degw corresponds to XOR, while degvdegw corresponds to AND.

2. It is useful to make a general rule: In equations where the degree appears it is

understood that all quantities are homogeneous. Then we extend the formula to

general elements by linearity. Equation (23.11) is our first example of a general rule:

In the supercommutative world, commuting any object of homogeneous degree A

with an object of homogeneous degree B results in an “extra” sign (−1)AB. This is

sometimes called the “Koszul sign rule.”

With this rule the tensor product of a collection {Vi}i∈I of supervectorspaces

Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vin (23.12) eq:TensSupVect

of supervector spaces is well-defined and independent of the ordering of the factors. This

is a slightly nontrivial fact. See the remarks below.

We define the Z2-graded-symmetric and Z2-graded-antisymmetric products to be the

images of the projection operators

P =
1

2

(
1± cV,V

)
(23.13)

Therefore the Z2-graded-symmetric product of a supervector space is the Z2-graded vector

space with components:

S2(V )0 ∼= S2(V 0)⊕ Λ2(V 1)

S2(V )1 ∼= V 0 ⊗ V 1
(23.14)

and the Z2-graded-antisymmetric product is

Λ2(V )0 ∼= Λ2(V 0)⊕ S2(V 1)

Λ2(V )1 ∼= V 0 ⊗ V 1
(23.15)

Remarks
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1. In this section we are stressing the differences between superlinear algebra and ordi-

nary linear algebra. These differences are due to important signs. If the characteristic

of the field κ is 2 then ±1 are the same. Therefore, in the remainder of this section

we assume κ is a field of characteristic different from 2.

2. Since the transformation cV,W is nontrivial in the Z2-graded case the fact that (23.12)

is well-defined is actually slightly nontrivial. To see the issue consider the tensor

product V1⊗V2⊗V3 of three super vector spaces. Recall the relation (12)(23)(12) =

(23)(12)(23) of the symmetric group. Therefore, we should have “coherent” isomor-

phisms:

(cV2,V3 ⊗ 1)(1⊗ cV1,V3)(cV1,V2 ⊗ 1) = (1⊗ cV1,V2)(cV1,V3 ⊗ 1)(1⊗ cV2,V3) (23.16) eq:z2yb

and this is easily checked.

In general a tensor category is a category with a bifunctor C×C → C denoted (X,Y )→
X⊗Y with an associativity isomorphism FX,Y,Z : (X⊗Y )⊗Z ∼= X⊗(Y ⊗Z) satisfying

the pentagon coherence relation. A braiding is an isomorphism cX,Y : X⊗Y → Y ⊗X.

The associativity and braiding isomorphisms must satisfy “coherence equations.” The

category of supervector spaces is perhaps the simplest example of a braided tensor

category going beyond the category of vector spaces.

3. Note well that S2(V ) as a supervector space does not even have the same dimension

as S2(V ) in the ungraded sense! Moreover, if V has a nonzero odd-dimensional

summand then Λn(V ) does not vanish no matter how large n is.

4. With this notion of symmetric product we can nicely unify the bosonic and fermionic

Fock spaces. If we have a system with bosonic and fermionic oscillators then there is a

natural supervector space V spanned by the bosonic and fermionic creation operators,

where the bosonic oscillators are even and the fermionic oscillators are odd. Then the

Z2-graded, or super-Fock space S•(V ) naturally gives the full Fock space of the free

boson-fermion system. That is, we have the isomorphism of ungraded vector spaces:

S•V︸︷︷︸
graded symmetrization

= S•V 0 ⊗ Λ•V 1︸ ︷︷ ︸
ungraded tensor product of vector spaces

(23.17)

Exercise

a.) Show that cV,W cW,V = 1.

b.) Check (23.16).

Exercise Reversal of parity
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a.) Introduce an operation which switches the parity of a supervector space: (ΠV )0 =

V 1 and (ΠV )1 = V 0. Show that Π defines a functor of the category of supervector spaces

to itself which squares to one.

b.) In the category of finite-dimensional supervector spaces when are V and ΠV

isomorphic? 51

c.) Show that one can identify ΠV as the functor defined by tensoring V with the

canonical odd one-dimensional vector space κ0|1.

23.2 Linear transformations between supervector spaces

If the ground field κ is taken to have degree 0 then the dual space V ∨ in the category of

supervector spaces consists of the morphisms V → κ1|0. Note that V ∨ inherits a natural

Z2 grading:

(V ∨)0 := (V 0)∨

(V ∨)1 := (V 1)∨
(23.18) eq:duals

Thus, we can say that (V ∨)ε are the linear functionals V → κ which vanish on V 1+ε.

Taking our cue from the natural isomorphism in the ungraded theory:

Hom(V,W ) ∼= V ∨ ⊗W (23.19)

we use the same definition so that the space of linear transformations between two Z2-

graded spaces becomes Z2 graded. We also write End(V ) = Hom(V, V ).

In particular, a linear transformation is an even linear transformation between two

Z2-graded spaces iff T : V 0 → W 0 and V 1 → W 1, and it is odd iff T : V 0 → W 1 and

V 1 →W 0. Put differently:

Hom(V,W )0 ∼= Hom(V 0,W 0)⊕Hom(V 1,W 1)

Hom(V,W )1 ∼= Hom(V 0,W 1)⊕Hom(V 1,W 0)
(23.20)

The general linear transformation is neither even nor odd.

If we choose a basis for V made of vectors of homogeneous degree and order it so that

the even degree vectors come first then with respect to such a basis even transformations

have block diagonal form

T =

(
A 0

0 D

)
(23.21) eq:matev

while odd transformations have block diagonal form

51Answer : An isomorphism is a degree-preserving isomorphism of vector spaces. Therefore if V has

graded dimension (m|n) then ΠV has graded dimension (n|m) so they are isomorphic in the category of

supervector spaces iff n = m.
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T =

(
0 B

C 0

)
(23.22) eq:matevp

Remarks

1. Note well! There is a difference between Hom(V,W ) and Hom(V,W ). The latter is

the space of morphisms from V to W in the category of supervector spaces. They

consist of just the even linear transformations: 52

Hom(V,W ) = Hom(V,W )0 (23.23)

2. If T : V → W and T ′ : V ′ → W ′ are linear operators on super-vector-spaces then

we can define the Z2 graded tensor product T ⊗ T ′. Note that deg(T ⊗ T ′) =

deg(T ) + deg(T ′), and on homogeneous vectors we have

(T ⊗ T ′)(v ⊗ v′) = (−1)deg(T ′)deg(v)T (v)⊗ T ′(v′) (23.24) eq:tensortmsn

As in the ungraded case, End(V ) is a ring, but now it is a Z2-graded ring un-

der composition: T1T2 := T1 ◦ T2. That is if T1, T2 ∈ End(V ) are homogeneous then

deg(T1T2) = deg(T1) + deg(T2), as one can easily check using the above block matrices.

These operators are said to graded-commute, or supercommute if

T1T2 = (−1)degT1degT2T2T1 (23.25) eq:KRule

Remark: Now what shall we take for the definition of GL(κp|q)? This should be the

group of automorphisms of the object κp|q in the category of super-vector-spaces. These

must be even invertible maps and so

GL(κp|q) ∼= GL(p;κ)×GL(q;κ). (23.26) eq:kpq-iso

Some readers will be puzzled by equation (23.26). The Lie algebra of this group (see

Chapter 8) is

gl(p;κ)⊕ gl(q;κ) (23.27)

and is not the standard super Lie algebra gl(p|q;κ). (See Chapter 12).

Another indication that there is something funny going on is that the naive definition

of GL(κp|q) , namely that it is the subset of End(κp|q) of invertible linear transformations,

will run into problems with (23.25). For example consider κ1|1. Then, choosing a basis

(say 1) for κ we get a basis of homogeneous vectors on κ1|1. Then the operator

T =

(
0 1

1 0

)
(23.28)

52Warning! Some authors use the opposite convention for distinguishing hom in the category of super-

vector spaces from “internal hom.”
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is an odd element with T 2 = 1. On the other hand, we might have expected T to super-

commute with itself, but then the sign rule (23.25) implies 53 that if it super-commutes

with itself then T 2 = 0, but this is not the case.

We will define a more general group with the correct super Lie algebra, but to do so

we need to discuss the notion of supermodules over a superalgebra.

Exercise

Show that if T : V → W is a linear transformation between two super-vector spaces

then

a.) T is even iff TPV = PWT

b.) T is odd iff TPV = −PWT .

23.3 Superalgebras

The set of linear transformations End(V ) of a supervector space is an example of a super-

algebra. In general we have:

Definition

a.) A superalgebra A is a supervector space over a field κ together with a morphism

A⊗A → A (23.29)

of supervector spaces. We denote the product as a⊗ a′ 7→ aa′. Note this implies that

deg(aa′) = deg(a) + deg(a′). (23.30)

We assume our superalgebras to be unital so there is a 1A with 1Aa = a1A = a. Henceforth

we simply write 1 for 1A.

b.) The superalgebra is associative if (aa′)a′′ = a(a′a′′).

c.) Two elements a, a′ in a superalgebra are said to graded-commute, or super-commute

provided

aa′ = (−1)|a||a
′|a′a (23.31)

If every pair of elements a, a′ in a superalgebra graded-commmute then the superalgebra

is called graded-commutative or supercommutative.

d.) The supercenter, or Z2-graded center of an algebra, denoted Zs(A), is the subsu-

peralgebra of A such that all homogeneous elements a ∈ Zs(A) satisfy

ab = (−1)|a||b|ba (23.32)

for all homogeneous b ∈ A.

Example 1: Matrix superalgebras. If V is a supervector space then End(V ) as described

above is a matrix superalgebra. One can show that the supercenter is isomorphic to κ,

consisting of the transformations v → αv, for α ∈ κ.

53so long as the characteristic of κ is not equal to two
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Example 2: Grassmann algebras. The Grassmann algebra of an ordinary vector space W

is just the exterior algebra of W considered as a Z2-graded algebra. We will denote it as

Grass[W ].

In plain English, we take vectors in W to be odd and use them to generate a superal-

gebra with the rule that

w1w2 + w2w1 = 0 (23.33)

for all w1, w2. In particular (provided the characteristic of κ is not two) we have w2 = 0

for all w.

Thus, if we choose basis vectors θ1, . . . , θn for W then we can view Grass(W ) as

the quotient of the supercommutative polynomial superalgebra κ[θ1, . . . , θn]/I where the

relations in I are:

θiθj + θjθi = 0 (θi)2 = 0 (23.34)

The typical element then is

a = x+ xiθ
i +

1

2!
xijθ

iθj + · · ·+ 1

n!
xi1,...,inθ

i1 · · · θin (23.35)

The coefficients xi1,...,im are mth-rank totally antisymmetric tensors in κ⊗m.

We will sometimes also use the notation Grass[θ1, . . . , θn].

Definition Let A and B be two superalgebras. The graded tensor product A⊗̂B is the

superalgebra which is the graded tensor product as a vector space and the multiplication

of homogeneous elements satisfies

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)|b1||a2|(a1a2)⊗ (b1b2) (23.36) eq:GradedTensor

Remarks

1. Every Z2-graded algebra is also an ungraded algebra: We just forget the grading.

However this can lead to some confusions:

2. An algebra can be Z2-graded-commutative and not ungraded-commutative: The

Grassmann algebras are an example of that. We can also have algebras which are

ungraded commutative but not Z2-graded commutative. The Clifford algebras C`±1

described below provide examples of that.

3. The Z2-graded-center of an algebra can be different from the center of an algebra

as an ungraded algebra. Again, the Clifford algebras C`±1 described below provide

examples.

4. One implication of (23.36) is that when writing matrix representations of graded

algebras we do not get a matrix representation of the graded tensor product just by

taking the tensor product of the matrix representations.
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Example 3: The real Clifford algebras C`r+,s−. Clifford algebras are defined for a

general quadratic form Q on a vector space V over κ. We will study the Clifford algebras

extensively in Chapter 10(??). Nevertheless, a few comments here nicely illustrate some

important general points. If we take the case of a real vector space Rd with quadratic form

Q =

(
+1r 0

0 −1s

)
(23.37)

Then we get the real Clifford algebras C`r+,s−. They can also be defined as the Z2 graded

algebra over R generated by odd elements ei with relations

{ei, ej} = 2Qij (23.38)

Note that since e2
i = ±1 the algebra only admits a Z2 grading and moreover it is not

supercommutative, because an odd element squares to zero in a supercommutative algebra.

It is instructive to look at some small values of r, s. Consider C`−1. This has a single

generator e with relation e2 = −1. Therefore

C`−1 = R⊕ Re (23.39)

as a vector space. The multiplication is

(a⊕ be)(c⊕ de) = (ac− bd)⊕ (bc+ ad)e (23.40)

so C`−1 is isomorphic to the complex numbers C as an ungraded algebra, although not as

a graded algebra. Similarly, C`+1 is

C`+1 = R⊕ Re (23.41)

as a vector space with multiplication:

(a⊕ be)(c⊕ de) = (ac+ bd)⊕ (bc+ ad)e. (23.42)

As an ungraded algebra this is sometimes known as the “double numbers.”

Note that both C`−1 and C`+1 are commutative as ungraded algebras but noncommu-

tative as superalgebras. Thus the centers of these as ungraded algebras are C`±1 but the

supercenter of C`±1 as graded algebras are Zs(C`±1) ∼= R. In fact, for Q nondegenerate it

can be shown that

Zs(C`(Q)) ∼= R (23.43)

We can also look at graded tensor products. First, note that for n > 0:

C`n ∼= C`1⊗̂ · · · ⊗̂C`1︸ ︷︷ ︸
n times

(23.44)

C`−n ∼= C`−1⊗̂ · · · ⊗̂C`−1︸ ︷︷ ︸
n times

(23.45)
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More generally we have

C`r+,s− = C`1⊗̂ · · · ⊗̂C`1︸ ︷︷ ︸
r times

⊗̂C`−1⊗̂ · · · ⊗̂C`−1︸ ︷︷ ︸
s times

(23.46)

We can similarly discuss the complex Clifford algebras C`n. Note that over the complex

numbers if e2 = +1 then (ie)2 = −1 so we do not need to account for the signature, and

WLOG we can just consider C`n for n ≥ 0. In particular, let D ∼= C`1. Note that D is not

a matrix superalgebra since it’s dimension as an ordinary complex vector space, namely 2,

is not a perfect square.

Definition A super-algebra over κ is central simple if, after extension of scalars to an

algebraic closure κ̄ it is isomorphic to a matrix super algebra End(V ) or to End(V )⊗̂D.

This is the definition one finds in Section 3.3 of Deligne’s Notes on Spinors. In partic-

ular, it is shown in Chapter 10, with this definition, that the Clifford algebras over R and

C are central simple.

Exercise The opposite algebra

a.) For any ungraded algebra A we can define the opposite algebra Aopp by the rule

a ·opp b := ba (23.47)

Show that Aopp is still an algebra.

b.) Show that A⊗Aopp ∼= End(A).

c.) For any superalgebra A we can define the opposite superalgebra Aopp by the rule

a ·opp b := (−1)|a||b|ba (23.48)

Show that Aopp is still an superalgebra.

d.) Show that A is supercommutative iff A = Aopp.

e.) Show that A⊗̂Aopp ∼= End(A) as superalgebras.

f.) Show that if A = C`r+,s− then Aopp = C`s+,r−.

Exercise Super Ideals

An ideal I in a superalgebra is an ideal in the usual sense: For all a ∈ A and b ∈ I
we have ab ∈ I (left ideal) or ba ∈ I (right ideal), or both (two-sided ideal). The ideal is

homogeneous if I is the direct sum of I0 = I ∩A0 and I1 = I ∩A1. (Explain why this is a

nontrivial condition!)
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a.) Show that the ideal Iodd generated by all odd elements in A is homogeneous and

given by

Iodd = (A1)2 ⊕A1 (23.49)

b.) Show that

A/Iodd ∼= A0/((A1)2) (23.50)

c.) Another definition of central simple is that there are no nontrivial homogeneous

two-sided ideals. Show that this is equivalent to the definition above.

d.) Describe an explicit basis for the ideal generated by all odd elements in the Grass-

mann algebra κ[θ1, . . . , θn].

e.) Give an example of a supercommutative algebra which is not a Grassmann algebra.
54

Exercise Invertibility lemma

Let A be a supercommutative superalgebra and let Iodd = (A1) be the ideal generated

by odd elements. Let π be the projection

π : A → Ared = A/Iodd ∼= A0/((A1)2) (23.51)

a.) Show that a is invertible iff π(a) is invertible. 55

b.) Show that in a Grassmann algebra the map π is the same as reduction modulo

nilpotents, or, more concretely, just putting the θi’s to zero.

Exercise Supercommutators and super Lie algebras

The graded commutator or supercommutator of even elements in a superalgebra is

[a, b] := ab− (−1)|a||b|ba (23.52)

Since the expression ab−ba still makes sense this notation can cause confusion so one must

exercise caution when reading.

Show that the graded commutator satisfies:

1. [·, ·] is linear in both entries.

54Answer : Hint: Consider the possiblity that there are even nilpotent elements in A0 which are not the

square of odd elements. Or consider functions on an algebraic supermanifold.
55Answer : One direction is trivial. If π(a) is invertible then, since π is onto, there is an element b ∈ A

with 1 = π(a)π(b) = π(ab). Therefore it suffices to show that if π(a) = 1 then a is invertible. But if π(a) = 1

then there is a finite set of odd elements ξi and elements ci ∈ A so that a = 1− ν with ν =
∑n
i=1 ciξi. Note

that νn+1 = 0 (by supercommutativity and the pigeonhole principle) so that a−1 = 1 + ν + · · ·+ νn.
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2. [b, a] = (−1)1+|a||b|[a, b]

3. The super Jacobi identity :

(−1)x1x3 [X1, [X2, X3]] + (−1)x2x1 [X2, [X3, X1]] + (−1)x3x2 [X3, [X1, X2]] = 0 (23.53)

where xi = deg(Xi).

These two conditions are abstracted from the properties of super-commutators to define

super Lie algebras in Chapter 12 below. Briefly: We define a super vector space g to be a

super Lie algebra if there is an (abstract) map [·, ·] : g×g→ κ which satisfies the conditions

1,2,3 above.

Exercise Super-Derivations

Definition: A derivation of a superalgebra is a homogeneous linear map D : A → A

such that

D(ab) = D(a)b+ (−1)|D||a|aD(b) (23.54)

a.) Show that the supercommutator of two superderivations is a superderivation.

b.) Show that the odd derivations of the Grassmann algebra are of the form

∑
i

f i
∂

∂θi
(23.55)

where f i are even.

Exercise Multiplying Clifford algebras

a.) Show that the real Clifford algebras are of dimension dimRC`n = 2|n|, for any

n ∈ Z.

b.) Show that if n,m are integers with the same sign then C`n⊗̂C`m ∼= C`n+m. Show

that if n,m are any integers, then

C`n⊗̂C`m ∼= C`n+m⊗̂M (23.56)

where M is a matrix superalgebra.
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23.4 Modules over superalgebras

Definition A super-module M over a super-algebra A (where A is itself a superalgebra

over a field κ) is a supervector space M over κ together with a κ-linear map A×M →M

defining a left-action or a right-action. That is, it is a left-module if, denoting the map by

L : A×M →M we have

L(a, L(b,m)) = L(ab,m) (23.57)

and it is a right-module if, denoting the map by R : A×M →M we have

R(a,R(b,m)) = R(ba,m) (23.58)

In either case:

deg(R(a,m)) = deg(L(a,m)) = deg(a) + deg(m) (23.59)

The notations L(a,m) and R(a,m) are somewhat cumbersome and instead we write

L(a,m) = am and R(a,m) = ma so that (ab)m = a(bm) and m(ab) = (ma)b. We also

sometimes refer to a super-module over a super-algebra A just as a representation of A.

Definition A linear transformation between two super-modules M,N over A is a κ-linear

transformation of supervector spaces such that if T is homogeneous and M is a left A-

module then T (am) = (−1)|T ||a|aT (m) while if M is a right A-module then T (ma) =

T (m)a. We denote the space of such linear transformations by HomA(M,N). If N is a left

A-module then HomA(M,N) is a left A-module with (a · T )(m) := a · (T (m)). If N is a

right A-module then HomA(M,N) is a right A-module with (T ·a)(m) := (−1)|a||m|T (m)a.

When M = N we denote the module of linear transformations by EndA(M).

Example 1- continued Matrix superalgebras. In the ungraded world a matrix algebra

End(V ) for a finite dimensional vector space, say, over C, has a unique irreducible represen-

tation, up to isomorphism. This is just the space V itself. A rather tricky point is that if V

is a supervector space V = Cp|q then V and ΠV are inequivalent representations of End(V ).

One way to see this is that if η is a generator of Π = C0|1 then T (ηv) = (−1)|T |ηT (v) is a

priori a different module. In terms of matrices(
D −C
−B A

)
=

(
0 1

−1 0

)(
A B

C D

)(
0 −1

1 0

)
(23.60)

So the LHS gives a representation of the matrix superalgebra, but it is not related by an

automorphism GL(Cp|q). The even subalgebra End(Cp) ⊕ End(Cq) has a unique faithful

representation Cp ⊕ Cq and hence the matrix superalgebra End(Cp|q) has exactly two

irreducible modules.

Example 3- continued Clifford Modules. A good example of supermodules over a super-

algebra are the Z2-graded modules for the Z2-graded Clifford algebras.
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Already for C`0 ∼= R there is a difference between graded and ungraded modules.

There is a unique irreducible ungraded module, namely R acting on itself. But there are

two inequivalent graded modules, R1|0 and R0|1.

Let us also discuss the representations of C`±1. As an ungraded algebra C`+1
∼= R⊕R

because we can introduce projection operators P± = 1
2(1± e), so

C`+1
∼= RP+ ⊕ RP− ungraded! (23.61)

Therefore, there are two inequivalent ungraded irreducible representations with carrier

space R and ρ(e) = ±1. However, as a graded algebra there is a unique irreducible

representation, R1|1 with

ρ(e) =

(
0 1

1 0

)
(23.62)

since e is odd and squares to 1.

Similarly, C`−1 as an ungraded algebra is isomorphic to C and has a unique ungraded

irreducible representation: C acts on itself. (As representations of a real algebra ρ(e) = ±i
are equivalent.) However, as a graded algebra there a unique irreducible representation,

R1|1 with

ρ(e) =

(
0 −1

1 0

)
(23.63)

Now, C`1,−1 has two irreducible graded representations R1|1
± with

ρ(e1) = ±

(
0 1

1 0

)
ρ(e2) =

(
0 −1

1 0

)
:= ε (23.64)

Note that these are both odd, they anticommute, and they square to ±1, respectively.

Moreover, they generate all linear transformations on R1|1. Therefore, C`1,−1 is a super-

matrix algebra:

C`1,−1
∼= End(R1|1) (23.65)

It is interesting to compare this with C`+2. Now, as an ungraded algebra we have a

representation

ρ(e1) =

(
0 1

1 0

)
ρ(e2) =

(
1 0

0 −1

)
(23.66) eq:epsdef

since these matrices anticommute and both square to +1. These generate the full matrix

algebra M2(R) as an ungraded algebra. However, if we try to use these operators on R1|1

this is not a representation of C`+2 as a graded algebra because ρ(e2) is not odd.

In fact, C`+2 is not equivalent to a matrix superalgebra. In Chapter 10(??) we prove

the beautiful periodicity theorem (closely related to Bott periodicity):

Theorem C`r+,s− is equivalent to a supermatrix algebra iff (r − s) = 0mod8.
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There is a unique irreducible representation of C`+2 as a superalgebra. The carrier

space is the (2|2)-dimensional space R2|2 and is given - up to similarity - by

ρ(e1) =

(
0 1

1 0

)
ρ(e2) =

(
0 ε

−ε 0

)
(23.67)

It is true that R2|2 = R1|1⊗̂R1|1. But the tensor product of matrix representations does

not give a matrix representation of the graded tensor product.

If we work with complex Clifford algebras the story is slightly different. C`1 as an

ungraded algebra is C⊕C and has two inequivalent ungraded representations. As a graded

algebra it has a unique irreducible graded representation C1|1; we could take, for example

ρ(e) = σ1. Then C`2 as an ungraded algebra is the matrix algebra M2(C) and as a graded

algebra is a matrix superalgebra End(C1|1). As a matrix superalgebra it actually has two

inequivalent graded representations, both of which have carrier space C1|1. We could take,

for example, ρ(e1) = σ1 and ρ(e2) = ±σ2. One way to see these are inequivalent is to note

that the volume form ρ(e1e2) restricted to the even subspace is a different scalar in the two

cases.

We will discuss much more about Clifford modules in Chapter 10, for now, we sum-

marize the discussion here in the following table:

Clifford Algebra Ungraded algebra Graded algebra Ungraded irreps Graded irreps

C`−1 C R[e], e2 = −1 C R1|1, ρ(e) = ε

C`0 R R R R1|0,R0|1

C`+1 R⊕ R R[e], e2 = 1 R±, ρ(e) = ±1 R1|1, ρ(e) = σ1

C`+2 M2(R) C`+2 R2 R2|2

C`+1,−1 M2(R) End(R1|1) R2 R1|1
±

C`+1 C⊕ C C`+1 C±, ρ(e) = ±1 C1|1

C`+2 M2(C) End(C1|1) C2 C1|1
±

Remark: In condensed matter physics a Majorana fermion is a real operator γ which

squares to one. If there are several γi they anticommute. Therefore, the Majorana fermions

generate a real Clifford algebra within the set of observables of a physical system admit-

ting Majorana fermions. If we have two sets of Majorana fermions then we expect their

combined system to be a tensor product. Here we see that only the graded tensor product
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will produce the expected rule for the physical observables. This is one reason why it is

important to take a graded tensor product in the amalgamation axiom in the Dirac-von

Neuman axioms.

What about the Hilbert spaces representing states of a Majorana fermion? If we view

these as representations of an ungraded algebra then we encounter a famous paradox.

(For the moment, take the Hilbert spaces to be real.) C`+2 as an ungraded algebra has

irreducible representation R2. On the other hand, this is a system of two Majorana fermions

γ1 and γ2 so we expect that each Majorana fermion has a Hilbert space H1 and H2 and

moreover these are isomorphic, so H = H1 ⊗ H2 implies that dimRH1 = dimRH2 =
√

2.

This is nonsense! If we view the Hilbert space representations as complexifications of real

representations then the paradox evaporates with the use of the graded tensor products:

As irreducible representations we have:

R2|2 = R1|1⊗̂R1|1 (23.68)

The situation is a bit more tricky if we use complex graded representations. The paradox

returns if we insist on using an irreducible representation of C`2, both in the graded and

ungraded cases. However, in the graded case we can say that the 7th DvN axiom is satisfied

if the physical (graded) representation is

C1|1⊗̂C1|1 ∼= C1|1
+ ⊕ C1|1

− (23.69)

Exercise Tensor product of modules

Let A and B be superalgebras with modules M and N , respectively. Show that the

rule

(a⊗ b) · (m⊗ n) := (−1)|b||m|(am)⊗ (bn) (23.70)

does indeed define M ⊗N as an A⊗̂B module. Be careful with the signs!

Exercise Left modules vs. right modules

Suppose A is supercommutative.

a.) Show that if (a,m)→ L(a,m) is a left-module then the new product R : A×M →
M defined by

R(a,m) := (−1)|a||m|L(a,m) (23.71)

defines M as a right-module, that is,

R(a1, R(a2,m)) = R(a2a1,m) (23.72)

b.) Similarly, show that if M is a right-module then it can be canonically considered

also to be a left-module.
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Because of this we will sometimes write the module multiplication on the left or the

right, depending on which order is more convenient to keep the signs down.

Exercise Representations of Clifford algebras

Show that

ρ(e1) =

(
0 σ1

σ1 0

)
ρ(e2) =

(
0 σ3

σ3 0

)
(23.73)

is a graded representation of C`+2 on R2|2. Show that it is equivalent to the one given

above.

23.5 Free modules and the super-General Linear Group

Now let A be supercommutative. Then we can define a free right A-module, Ap|q to be

Ap|q = A⊕p ⊕ (ΠA)⊕q (23.74)

as a supervector space with the obvious right A-module action.

Since it is a free module we can choose a basis. Set n = p + q and choose a basis ei,

1 ≤ i ≤ n with ei even for 1 ≤ i ≤ p and odd for p + 1 ≤ i ≤ p + q = n. Then we can

identify

Ap|q ∼= e1A⊕ · · · ⊕ enA (23.75)

We define the degree of eia to be deg(ei) + deg(a) so that the even part of Ap|q is

(Ap|q)0 = e1A0 ⊕ · · · ⊕ epA0 ⊕ ep+1A1 ⊕ · · · ⊕ enA1 (23.76)

Definition: If A is supercommutative we define GL(Ap|q) to be the group of automor-

phisms of Ap|q. Recalling that morphisms in the category of supervector spaces are parity-

preserving this may be identified with the group of invertible even elements in EndA(Ap|q).

We stress that even though GL(Ap|q) is called a supergroup it is actually an honest

group. However, it is not an honest manifold, but actually a supermanifold. ♣Mathematicians

take a more

categorical

approach to defining

supergroups. Make

sure this is

compatible. ♣

It is useful to give a matrix description of these groups. We represent the general

element m of Ap|q by m = eix
i, with xi ∈ A. Then the general module map T : Ap|q → Ar|s

is determined by its action on basis vectors:

T (ej) = ẽαX
α
j Xα

j ∈ A (23.77)

where ẽα, α = 1, . . . , r + s, are the generators of Ar|s.
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We say the matrix X with matrix elements Xα
j (which are elements of A) where rows

and columns have a parity assigned is an (r|s)× (p|q) supermatrix.

If we choose a basis for Ap|q then we may represent an element m ∈ Ap|q by a column

vector x
1

...

xn

 (23.78)

then the (active) transformation T is given by a matrix multiplication from the left with

block form:

X =

(
A B

C D

)
(23.79) eq:blockform

The supermatrix representing the composition of transformations T1◦T2 is the ordinary

matrix product of X1 and X2.

When T is an even transformation

A ∈Mr×p(A0) B ∈Mr×q(A1) (23.80)

C ∈Ms×p(A1) D ∈Ms×q(A0) (23.81)

or, more informally, X is of the form: (
even odd

odd even

)
(23.82) eq:even-blockform

When T is an odd transformation

A ∈Mr×p(A1) B ∈Mr×q(A0) (23.83)

C ∈Ms×p(A0) D ∈Ms×q(A1) (23.84)

or, more informally, X is of the form: (
odd even

even odd

)
(23.85)

Example 1: A = κ. Then there are no odd elements in A and we have invertible

morphisms. This group of automorphisms of κp|q is isomorphic to GL(p;κ) × GL(q;κ)

and in a homogeneous basis will have block diagonal form(
A 0

0 D

)
(23.86)

with A,D invertible.
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Example 2: A = κ[θ1, . . . , θr] is a Grassmann algebra, then GL(Ap|q) consists of matrices

(23.79) which are even, i.e. of the form (23.82), with A,D invertible, which is the same as

A,D being invertible modulo θi. (See Section §23.7 below.) For example(
1 θ

θ 1

)
(23.87)

(
1 + θ1θ2 θ1

θ2 1− θ1θ2

)
(23.88)

are examples of such general linear transformations. In fact they are both of the form

exp(Y ) for an even supermatrix Y . (Find it!)

Remarks

1. Note a tricky point: If T : Ap|q → Ar|s is a linear transformation and we have chosen

bases as above so that T is represented by a supermatrix X then the supermatrix

representing aT is not aXα
j , rather it is the supermatrix:(
a1r×r 0

0 (−1)|a|a1s×s

)(
A B

C D

)
(23.89)

Similarly, the matrix representing Ta is not Xα
ja, rather it is the supermatrix:(

A B

C D

)(
a1p×p 0

0 (−1)|a|a1q×q

)
(23.90)

2. In Chapter 8 (?) we describe the relation between Lie groups and Lie algebras. Infor-

mally this is just given by the exponential map and Lie algebra elements exponentiate

to form one-parameter subgroups g(t) = exp(tA) of G. The same reasoning applies

to GL(Ap|q) and the super Lie algebra gl(Ap|q) is - as a supervector space - the same

as End(Ap|q).

23.6 The Supertrace

There are analogs of the trace and determinant for elements of End(Ap|q) with A super-

commutative.

For X ∈ End(Ap|q) we define the supertrace on homogeneous elements by

STr(X) = STr(

(
A B

C D

)
) :=

{
tr (A)− tr (D) X even

tr (A) + tr (D) X odd
(23.91)

that is

STr(X) = tr (A)− (−1)|X|tr (D) ∈ A (23.92)

The supertrace satisfies STr(X + Y ) = STr(X) + STr(Y ) so we can extend it to all of

End(Ap|q) by linearity.

Now one can easily check (do the exercise!!) that the supertrace satisfies the properties:
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1. STr(XY ) = (−1)|X||Y |STr(Y X) and therefore the supertrace of a graded commutator

vanishes. Note that the signs in the definition of the supertrace are crucial for this

to be true.

2. STr(aX) = aSTr(X).

3. If g is even and invertible then STr(g−1Xg) = STr(X). This follows from the cyclicity

property we just stated. Therefore, the supertrace is basis independent for a free

module and hence is an intrinsic property of the linear transformation.

Remark: In the case where A = κ and we have a linear transformation on a supervector

space we can say the supertrace of T ∈ EndV is

STrT := Tr(PV T ) (23.93) eq:strce

In supersymmetric field theories PV is often denoted (−1)F , where F is a fermion number

and the supertrace becomes Tr(−1)FT . These traces are very important in obtaining exact

results in supersymmetric field theories.

Exercise

a.) Show that in general

STr(T1T2) 6= STr(T2T1) (23.94)

b.) Check that if T1, T2 are homogeneous then

STr(T1T2) = (−1)degT1·degT2STr(T2T1) (23.95)

23.7 The Berezinian of a linear transformation
subsec:Berezinian

Let A be supercommutative and consider the free A module Ap|q.
While the determinant of a matrix can be defined for any matrix, the the superdeter-

minant or Berezinian can only be defined for elements of GL(Ap|q). If X ∈ End(Ap|q) is

even and invertible then the value of Ber(X) lies in the subalgebra of invertible elements

of A0, which we can consider to be GL(A1|0).

The conditions which characterize the Berezinian are :

1. When X can be written as an exponential of a matrix X = expY , with Y ∈ End(Ap|q)
we must have

Ber(X) = Ber(expY ) := exp(STr Y ) (23.96) eq:sdettr
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2. The Berezinian is multiplicative:

Ber(X1X2) = Ber(X1)Ber(X2) (23.97) eq:MultBer

Note that the two properties (23.96) and (23.97) are compatible thanks to the Baker-

Campbell-Hausdorff formula. (See Chapter 8 below.) ♣Actually, need to

show the supertrace

condition is

well-defined. ♣
We can use these properties to give a formula for the Berezinian of a matrix once we

know the key result

Lemma Let A be supercommutative and π : A → Ared = A/Iodd. This defines a map

π : End(Ap|q)→ End(Ap|qred) (23.98)

by applying π to the matrix elements. Then: the supermatrix(
A B

C D

)
(23.99)

1. Is invertible iff π(A) and π(D) are invertible.

2. Is in the image of the exponential map iff π(A) and π(D) are.

Proof : The proof follows closely that of the invertibility lemma above. Note that since X

is even then π(X) is block diagonal so π(X) is invertible iff π(A) and π(D) are invertible.

If π(X) is invertible then, since π is onto there is a Y ∈ End(Ap|q) so that 1 = π(X)π(Y ) =

π(XY ). Then XY = 1− Z for some Z such that π(Z) = 0. All the matrix elements of Z

are nilpotent so there is an N so that ZN+1 = 0. Then Y (1 +Z + · · ·+ZN ) is the inverse

of X.

By the same token if π(X) = exp(α) then we can lift α to α̃ ∈ End(Ap|q) and

π(Xexp[−α̃]) = 1 so Xexp[−α̃] = 1− Z where Z is nilpotent. Therefore 1− Z = exp[z] is

well-defined because the series for log(1− Z) terminates. ♠.

Now – assuming that a Berezinian function actually exists – we can give a formula for

what it must be. From the first condition we know that when π(A), π(D) are in the image

of the exponential map then

Ber

(
A 0

0 D

)
=

detA

detD
(23.100)

Note that the entries of A and D are all even so in writing out the usual definition of

determinant there is no issue of ordering. Together with multiplicativity and the fact that

the exponential map is onto for GL(n, κ) this determines the formula for all block diagonal

matrices.

Moreover, upper triangular matrices are in the image of the exponential once again

because all the matrix elements of B are nilpotent so that

log

(
1 B

0 1

)
= −

∞∑
k=1

(−1)k

k

(
0 B

0 0

)k
(23.101)

– 211 –



terminates and is a well-defined series. Moreover it is clear that it has supertrace = 0, and

therefore

Ber(

(
1 B

0 1

)
) = 1 (23.102)

Ber(

(
1 0

C 1

)
) = 1 (23.103)

Now for general invertible X we can write(
A B

C D

)
=

(
1 BD−1

0 1

)(
A−BD−1C 0

0 D

)(
1 0

D−1C 1

)
(23.104)

and hence multiplicativity implies

Ber(X) =
det(A−BD−1C)

detD
=

detA

detD
det(1−A−1BD−1C) (23.105) eq:SDETFORM

There is one more point to settle here. We have shown that the two properties (23.96)

and (23.97) uniquely determine the Berezinian of a supermatrix and even determine a

formula for it. But, strictly speaking, we have not yet shown that the Berezinian actually

exists, because we have not shown that the formula (23.105) is indeed multiplicative. A

brute force approach to verifying this would be very complicated.

A better way to proceed is the following. We want to prove that Ber(gh) = Ber(g)Ber(h)

for any two group elements g, h. Let us consider the subgroups G+, G0, G− of upper tri-

angular, block diagonal, and lower triangular matrices:

G+ = {X : X =

(
1 B

0 1

)
} (23.106)

G0 = {X : X =

(
A 0

0 D

)
} (23.107)

G− = {X : X =

(
1 0

C 1

)
} (23.108)

Any group element can be written as g = g+g0g− where g±,0 ∈ G±,0. So now we need

to consider gh = g+g0g−h+h0h−. It would be very complicated to rewrite this again

as a Gauss decomposition. On the other hand, it is completely straightforward to check

multiplicativity of the formula for products of the form g+k, g0k, kg0, and kg− for any k

and g±,0 ∈ G±,0. For example, to check multiplicativity for g+k we write(
1 B′

0 1

)(
A B

C D

)
=

(
A+B′C B +B′D

C D

)
(23.109)

and now we simply note that

det((A+B′C)− (B +B′D)D−1C) = det(A−BD−1C) (23.110)
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The other cases are similarly straightforward. (Check them!!) Therefore, to check multi-

plicativity we need only check that multiplicativity for products of the form g−h+. There-

fore we need only show

Ber

(
1 B

C 1 + CB

)
= 1 (23.111) eq:check-ber-mult

because (
1 0

C 1

)(
1 B

0 1

)
=

(
1 B

C 1 + CB

)
(23.112)

This is not completely obvious from (23.105). Nevertheless, it is easily shown: Note that

the matrix in (23.111) is in the image of the exponential map. But it is trivial from the

relation to the supertrace that if g = exp(Y ) then Ber(g−1) = (Ber(g))−1. On the other

hand, (
1 B

C 1 + CB

)−1

=

(
1 +BC −B
−C 1

)
(23.113)

and applying the formula (23.105) to the RHS trivially gives one.

Finally, we remark that from the multiplicativity property it follows that Ber(g−1Xg) =

Ber(X) and hence the Berezinian is invariant under change of basis. Therefore, it is intrin-

sically defined for an even invertible map T ∈ End(Ap|q).

Exercise

Let α, β ∈ C∗. Evaluate

Ber

(
α θ1

θ2 β

)
(23.114)

Using both of the expressions above.

Exercise

Show that two alternative formulae for the Berezinian are

Ber(X) =
detA

det(D − CA−1B)
=

detA

detD
(det(1−D−1CA−1B))−1 (23.115) eq:SDET-ALT

Note that the equality of (23.105) and (23.115) follows because

det(1−A−1BD−1C) = (det(1−D−1CA−1B))−1 (23.116)

and this in turn is easily established because both matrices are 1 + Nilpotent and hence

in the image of the exponential map and since A−1B and D−1C are both odd we have

STr(A−1BD−1C)k = −STr(D−1CA−1B)k (23.117)
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This in turn gives another easy proof of multiplicativity, once one has reduced it to (23.111),

which follows immediately from (23.115). ♣This is a better

proof. Put this in

the text and make

the other an

exercise. ♣

Exercise

Let α, β ∈ C∗. Evaluate

Ber

(
α θ1

θ2 β

)
(23.118)

Using both of the expressions above.

23.8 Bilinear forms

Bilinear forms on super vector spaces b : V ⊗ V → κ are defined as in the ungraded case:

b is a bilinear morphism of supervector spaces.

It follows that b(x, y) = 0 if x and y in V are homogeneous and of opposite parity.

We can identify the set of bilinear forms with V ∨ ⊗ V ∨. We can then apply super-

symmetrization and super-antisymmetriziation.

Thus, symmetric bilinear forms have a very important extra sign.

b(x, y) = (−1)|x||y|b(y, x) (23.119)

This means b is symmetric when restricted to V 0× V 0 and antisymmetric when restricted

to V 1 × V 1.

Similarly, antisymmetric bilinear forms have the reverse situation:

b(x, y) = (−1)1+|x||y|b(y, x) (23.120)

This means b is anti-symmetric when restricted to V 0×V 0 and symmetric when restricted

to V 1 × V 1.

The definition of a nondegenerate form is the same as before. A form is nondegenerate

iff its restrictions to V 0 × V 0 and V 1 × V 1 are nondegenerate. Therefore, applying the

canonical forms of symmetric and antisymmetric matrices we discussed in Section §20 above

we know that if κ = R and b is a nondegenerate Z2-graded symmetric form then there is

a basis where its matrix looks like

Q =


1r 0 0 0

0 −1s 0 0

0 0 0 −1m
0 0 1m 0

 (23.121) eq:OSPQ

The automorphisms of the bilinear form are the even invertible morphisms g : V → V

such that

b(gv, gw) = b(v, w) (23.122)
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for all v, w ∈ V . This is just the group O(r, s)× Sp(2m;R).

As with the general linear group, to define more interesting automorphism groups

of a bilinear form we need to consider bilinear forms on the free modules Ap|q over a

supercommutative superalgebra A.

Definition: Let A be a superalgebra. A bilinear form on a (left) A-module M is a

morphism of supervector spaces

M ⊗M → A (23.123)

such that

b(am,m′) = ab(m,m′) b(m, am′) = (−1)|a||m|ab(m,m′) (23.124)

Now, if we apply this to the free module Ap|q over a supercommutative algebra A
(which can be considered to be either a left or right A-module then we have simply

ab(m,m′) = b(am,m′) b(ma,m′) = b(m, am′) b(m,m′a) = b(m,m′)a

(23.125)

The automorphism group of b is the group of g ∈ End(Ap|q) which are even and

invertible and for which

b(gm, gm′) = b(m,m′) (23.126)

for all m,m′ ∈ Ap|q. In the case where b is a nondegenerate Z2-graded symmetric on Ap|q

we define an interesting generalization of both the orthogonal and symplectic groups which

plays an important role in physics. We could denote it OSpA(Ap|q).
Using ideas from Chapter 8, discussed for the super-case in Chapter 12, we can use this

discussion to derive the superLie algebra in the case where we specialize to a Grassmann

algebra A = R[θ1, . . . , θq
′
]/I so that Ared = R. If b is nondegenerate then on the reduced

module Rp|q (where q and q′ are not related) it can be brought to the form (23.121), so

p = r + s and q = 2m. Writing g(t) = etA and differentiating wrt t at t = 0 we derive the

Lie algebra of the supergroup. It is the subset of End(Ap|q) such that

b(Am,m′) + b(m,Am′) = 0 (23.127)

If we finally reduce this equation mod nilpotents we obtain an equation on End(Rp|q). ♣notation conflict

m ♣
That defines a Lie algebra over R which is usually denoted osp(r, s|2m;R).

23.9 Star-structures and super-Hilbert spaces

There are at least three notions of a real structure on a complex superalgebra which one

will encounter in the literature:

1. It is a C-antilinear involutive automorphism a 7→ aF. Hence deg(aF) = deg(a) and

(ab)F = aFbF.

2. It is a C-antilinear involutive anti-automorphism. Thus deg(a∗) = deg(a) but

(ab)∗ = (−1)|a||b|b∗a∗ (23.128)
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3. It is a C-antilinear involutive anti-automorphism. Thus deg(a?) = deg(a) but

(ab)? = b?a? (23.129)

If A is a supercommutative complex superalgebra then structures 1 and 2 coincide:

a→ aF is the same as a→ a∗. See remarks below for the relation of 2 and 3.

Definition A sesquilinear form h on a complex supervector spaceH is a map h : H×H → C
such that

1. It is even, so that h(v, w) = 0 if v and w have opposite parity

2. It is C-linear in the second variable and C-antilinear in the first variable

3. An Hermitian form on a supervector space is a sesquilinear form which moreover

satisfies the symmetry property:

(h(v, w))∗ = (−1)|v||w|h(w, v) (23.130)

4. If in addition for all nonzero v ∈ H0

h(v, v) > 0 (23.131)

while for all nonzero v ∈ H1

i−1h(v, v) > 0, (23.132)

then H endowed with the form h is a super-Hilbert space.

For bounded operators we define the adjoint of a homogeneous linear operator T :

H → H by

h(T ∗v, w) = (−1)|T ||v|h(v, Tw) (23.133)

The spectral theorem is essentially the same as in the ungraded case with one strange

modification. For even Hermitian operators the spectrum is real. However, for odd Her-

mitian operators the point spectrum sits in a real subspace of the complex plane which is

not the real line! If T is odd then an eigenvector v such that Tv = λv must have even and

odd parts v = ve + vo. Then the eigenvalue equation becomes

Tve = λvo

Tvo = λve
(23.134)

Now the usual proof that the point spectrum is real is modified to:

λ∗h(vo, vo) = h(λvo, vo) = h(Tve, vo) = h(ve, T vo) = λh(ve, ve)

λ∗h(ve, ve) = h(λve, ve) = h(Tvo, ve) = −h(vo, T ve) = −λh(vo, vo)
(23.135)

These two equations have the same content: Since v 6= 0 and we are in a superHilbert

space it must be that

h(ve, ve) = i−1h(vo, vo) > 0 (23.136)
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Figure 16: When the Koszul rule is consistently implemented odd super-Hermitian operators have

a spectrum which lies along the line through the origin which runs through 1 + i. fig:SUPERHERMITIAN

and therefore the phase of λ is determined. It lies on the line passing through eiπ/4 =

(1 + i)/
√

2 in the complex plane, as shown in Figure 16

Example: An example of a natural super-Hilbert space is the Hilbert space of L2-spinors

on an even-dimensional manifold with (−1)F given by the chirality operator. An odd self-

adjoint operator which will have nonhomogeneous eigenvectors is the Dirac operator on an

even-dimensional manifold. One usually thinks of the eigenvalues as real for this operator

and that is indeed the case if we use the star-structure ?, number 3 above. See the exercise

below.

Remarks

1. In general star-structures 2 and 3 above are actually closely related. Indeed, given a

structure a→ a∗ of type 2 we can define a structure of type 3 by defining either

a? =

{
a∗ |a| = 0

ia∗ |a| = 1
(23.137)

or

a? =

{
a∗ |a| = 0

−ia∗ |a| = 1
(23.138) eq:relstar

It is very unfortunate that in most of the physics literature the definition of a star

structure is that used in item 3 above. For example a typical formula used in manip-

ulations in superspace is

θ1θ2 = θ̄2θ̄1 (23.139)

and the fermion kinetic energy ∫
dtiψ̄

d

dt
ψ (23.140)
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is only “real” with the third convention. The rationale for this convention, especially

for fermionic fields, is that they will eventually be quantized as operators on a Hilbert

space. Physicists find it much more natural to have a standard Hilbert space struc-

ture, even if it is Z2-graded. On the other hand, item 2 implements the Koszul rule

consistently and makes the analogy to classical physics as close as possible. So, for

example, the fermionic kinetic term is∫
dtψ̄

d

dt
ψ (23.141)

and is “manifestly real.”

Fortunately, as we have just noted one convention can be converted to the other, but

the difference will, for example, show up as factors of i in comparing supersymmetric

Lagrangians in the different conventions, as the above examples show.

Exercise

a.) Show that a super-Hermitian form h on a super-Hilbert space can be used to define

an ordinary Hilbert space structure on H by taking H0 ⊥ H1 and taking

(v, w) := h(v, w) v, w ∈ H0

(v, w) := i−1h(v, w) v, w ∈ H1
(23.142) eq:UnbradedHermitian

b.) Show that if T is an operator on a super-Hilbert-space then the super-adjoint T ∗

and the ordinary adjoint T †, the latter defined with respect to (23.142), are related by

T ∗ =

{
T † |T | = 0

iT † |T | = 1
(23.143)

c.) Show that T → T † is a star-structure on the superalgebra of operators on super-

space which is of type 3 above.

d.) Show that if T is an odd self-adjoint operator with respect to ∗ then e−iπ/4T is an

odd self-adjoint operator with respect to †. In particular e−iπ/4T has a point spectrum in

the real line.

e.) More generally, show that if a is odd and real with respect to ∗ then e−iπ/4a is real

with respect to ? defined by (23.138).

23.9.1 SuperUnitary Group

Let us return to a general finite-dimensional Hermitian form on a complex supervector-

space. Restricted to V 0 it can be brought to the form Diag{+1r,−1s} while restricted

to the odd subspace it can be brought to the form Diag{+1t,−1u}. The automorphism

group of (V, h) is therefore U(r, s) × U(t, u). If we consider instead a free module Ane,no
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over a supercommutative algebra A (where A is a vector space over κ = C) we can still

define an Hermitian form h : Ane,no ×Ane,no → A. If Ared = C and h is of the above type

with ne = r + s and no = t + u then the automorphism group of h is UA(r, s|p, q). If we

derive the Lie algebra and reduce modulo nilpotents we then obtain the super Lie algebra

u(r, s|p, q;C) which is the subset of End(Cne|no)

h(Av, v′) + (−1)|A||v|h(v,Av′) = 0 (23.144)

i.e u(r, s|p, q) is the real super Lie algebra of super-anti-unitary operators. We will say

much more about this in Chapter 12.

Exercise Fixed points

Let ηr,s, and ηt,u be diagonal matrices...

Show that u(r, s|p, q) the the set of fixed points of the antilinear involution ...

♣ FILL IN ♣

23.10 Functions on superspace and supermanifolds

23.10.1 Philosophical background

Sometimes one can approach the subjects of topology and geometry through algebra and

analysis. Two famous examples of this are

1. Algebraic geometry: The geometry of vanishing loci of systems of polynomials can

be translated into purely algebraic questions about commutative algebra.

2. Gelfand’s Theorem on commutative C∗-algebras

We now explain a little bit about Gelfand’s theorem:

There is a 1-1 correspondence between Hausdorff topological spaces and commutative

C∗-algebras.

If X is a Hausdorff topological space then we can form C0(X), which is the space of

all continuous complex valued functions f : X → C which “vanish at infinity.” What this

means is that for all ε > 0 the set of x ∈ X so that |f(x)| ≥ ε is a compact set. This is a

C∗-algebra with involution f 7→ f∗ where f∗(x) := (f(x))∗ and the norm is

‖ f ‖:= supx∈X |f(x)| (23.145)

Then there is a 1-1 correspondence between isomorphism classes of topological spaces and

isomorphism classes of commutative C∗-algebras.
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The way one goes from a commutative C∗ algebra A to a topological space is that one

defines ∆(A) to be the set of - any of

a.) The C∗-algebra morphisms χ : A → C.

b.) The maximal ideals

c.) The irreducible representations.

For a commutative C∗ algebra the three notions are equivalent. The space ∆(A) carries

a natural topology since there is a norm on linear maps A → C of Banach spaces. It turns

out that ∆(A) is a Hausdorff space. Gelfand’s theorem then says that C0(∆(A)) is in fact

isomorphic as a C∗ algebra to A, while ∆(C0(X)) is homeomorphic as a topological space

to X.

The correspondence is very natural if we interpret a,b,c in terms of A = C0(X). then,

given a point x ∈ X we have

a.) The morphism χx : f 7→ f(x)

b.) The maximal ideal mx = ker(χx) = {f ∈ C0(X)|f(x) = 0}
c.) The representations ρx(f) = f(x).

Remarks:

1. As a simple and very important example of how geometry is transformed into algebra,

a continuous map of topological spaces f : X → Y is in 1-1 correspondence with a C∗-

algebra homomorphism ϕf : C0(Y )→ C0(X), given by the “pullback”: ϕf (g) := g◦f .

We are going to exploit this idea over and over in the following pages.

2. Notice that if X is just a finite disjoint union of n points then C0(X) ∼= C ⊕ · · · ⊕
C is finite-dimensional, and if X has positive dimension then C0(X) is infinite-

dimensional.

3. Now, on a vector space like Rn the symmetric algebra S•(Rn) can be interpreted

as the algebra of polynomial functions on Rn. These are dense (Stone-Weierstrass

theorem) in the algebra of continuous functions C0(Rn).

Algebraic geometry enhances the scope of geometry by considering more general com-

mutative rings. Perhaps the simplest example is the “thickened point.” (The technical term

is “connected zero dimensional nonreduced scheme of length 2.”) The “thickened point” is

defined by saying that its algebra of functions is the commutative algebra D = C[η]/(η2).

As a vector space it is C ⊕ Cη and the algebra structure is defined by η2 = 0. This is an

example of an algebra of functions on a “thickened point.” How do we study the “thick-

ened point” ? Let us look at maps of this “point” into affine spaces such at Cn. Using

the philosophy motivated by the mathematics mentioned above a “map from the thickened

point into Cn” is the same thing as an algebra homomorphism ϕ : C[t1, . . . , tn]→ D where

we recall that C[t1, . . . , tn] is just the algebra of polynomials. Such a homomorphism must

be of the form

P 7→ ϕ(P ) = ϕ1(P ) + ϕ2(P )η (23.146)
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Since this is an algebra homomorphism ϕ1, ϕ2 are linear functionals on the algebra of

polynomials and moreover ϕ(PQ) = ϕ(P )ϕ(Q) implies that

ϕ1(PQ) = ϕ1(P )ϕ1(Q)

ϕ2(PQ) = ϕ1(P )ϕ2(Q) + ϕ1(Q)ϕ2(P )
(23.147)

The first equation tells us that ϕ1 is just evaluation of the polynomial at a point ~t0 =

(t10, . . . , t
n
0 ). The second is then precisely the algebraic way to define a vector field at that

point! Thus

ϕ2(P ) :=

n∑
i=1

vi
∂

∂ti
P |~t0 (23.148)

Therefore, for every “map from the thickened point to Cn” we associate the data of a point
~t0 ∈ Cn and a vector field at that point. This amply justifies the term “thickened point.” An

obvious generalization is to consider instead the commutative algebra DN = C[η]/(ηN ).

These give different “thickened points.” Technically, this is the ring of functions on a

“connected zero dimensional nonreduced scheme of length N” which we will just call a

“thickened point of order N − 1.” In this case a map into Cn is characterized by a suitable

linear functional on the set of Taylor expansion coefficients of f around some point ~t0. ♣?? check this last

sentence. ♣
Noncommutative “geometry” develops this idea by starting with any (C∗-) algebra

A, not necessarily commutative, and interpreting A as the “algebra of functions” on some

mythical “noncommutative space” and proceeding to study geometrical questions trans-

lated into algebraic questions about A. So, for example, if A = Mn(C) is the algebra of

n× n matrices then there is only one maximal ideal, and the only algebra homomorphism

to Mn(C)→ C is φ(M) = 0, so Mn(C) is the set of functions on a “space” which is a kind

of “nonabelian thickened point.”

23.10.2 The model superspace Rp|q

Supergeometry is a generalization of algebraic geometry and a specialization of general

noncommutative geometry where the algebras we use are supercommutative.

A superpoint has a real or complex algebra of functions given by a Grassmann algebra

Grass[θ1, . . . , θq], depending on whether κ is R or C, respectively.

Note that this algebra is just S•(R0|q) where we use the Z2-graded symmetric algebra.

We can say there are q odd coordinates and we are considering polynomial functions of

these coordinates.

This motivates the definition of the superspaceRp|q as the “space” whose super-algebra

of polynomial functions is

S•(Rp|q) (23.149)

where we take the Z2-graded symmetric algebra. As a Z2-graded vector space this algebra

is just

S•(Rp|0)⊗̂Λ•(Rq) (23.150)

(Here we view Λ•(Rq) = Λev(Rq)⊕ Λodd(Rq) as a Z2-graded vector space.)
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Given a choice of basis {θ1, . . . , θq} of R0|q a general super-polynomial on Rp|q can be

written as

Φ = φ0 + φiθ
i +

1

2!
φi1i2θ

i1θi2 + · · ·+ 1

n!
φi1···iqθ

i1 · · · θiq (23.151)

where the φi1,...,im are even, totally antisymmetric in i1, . . . , im, and for fixed i1, . . . , im are

polynomials on Rp|0.

Given an ordered basis {θ1, . . . , θq} of R0|q we can furthermore introduce a multi-index

I = (i1 < i2 < · · · < ik) where we say I has length k, and we write |I| = k. We denote

I = 0 for the empty multi-index. Then we can write

Φ =
∑
I

φIθ
I (23.152)

where the φI are ordinary even polynomials on Rp.
Similarly, we can extend these expressions by allowing the φI to be smooth (not just

polynomial) functions on Rp and then we define the algebra of smooth functions on Rp|q

to be the commutative superalgebra

C∞(Rp|q) := C∞(Rp)⊗̂S•(R0|q)

= C∞(Rp)[θ1, . . . , θq]/(θiθj + θjθi = 0)
(23.153) eq:DefineRpq

An element of C∞(Rp|q) was called by Wess and Zumino a “superfield.” The idea is ♣Actually, parities

can get a little

confusing if we

consider things like

Wα in SYM. ♣

that we have a “function” of (x, θ) where x = (x1, . . . , xp) and “Taylor expansion” in the

odd coordinates must terminate so

Φ(x, θ) =
∑
I

φI(x)θI (23.154)

where φI(x) are smooth functions of x. Trying to take this too literally can lead to confusing

questions. What is a “point” in a superspace? Can we localize a function at the coordinate
1
2θ instead of θ? What is the “value” of a function at a point on superspace? One way of

answering such questions is explained in the remark below about the “functor of points,”

but often physicists just proceed with well-defined rules and get well-defined results at the

end, and leave the philosophy to the mathematicians.

23.10.3 Superdomains

The official mathematical definition of a supermanifold, given below, makes use of the idea

of sheaves. To motivate that we first define a superdomain Up|q to be a “space” whose

superalgebra of functions is analogous to (23.155):

C∞(Up|q) := C∞(U)⊗̂S•(R0|q)

= C∞(U)[θ1, . . . , θq]/(θiθj + θjθi = 0)
(23.155) eq:DefineRpq

where U ⊂ Rp is any open set. Denote Op|q(U) := C∞(Up|q). When V ⊂ U there is a

well-defined morphism of superalgebras

rU→V : Op|q(U)→ Op|q(V ), (23.156)
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given simply by restricting from U to V the smooth functions φI on U . These morphisms are

called, naturally enough, the restriction morphisms. Note that they are actually morphsims

of superalgebras. It is often useful to denote

rU→V (Φ) := Φ|V . (23.157)

The restriction morphisms satisfy the following list of fairly evident properties:

1. rU→U = Identity.

2. (Φ|V )|W = Φ|W when W ⊂ V ⊂ U .

3. Suppose U = ∪αUα is a union of open sets and Φ1,Φ2 ∈ Op|q(U). Then if (Φ1)|Uα =

(Φ2)|Uα for all α we can conclude that Φ1 = Φ2.

4. Suppose U = ∪αUα is a union of open sets and Φα is a collection of elements Φα ∈
Op|q(Uα). Then if, for all α, β,

(Φα)|Uα∩Uβ = (Φβ)|Uα∩Uβ (23.158)

then we can conclude that there exists a Φ ∈ Op|q(U) such that (Φ)|Uα = Φα.

23.10.4 A few words about sheaves

The properties we listed above for functions on superdomains are actually a special case of

a defining list of axioms for a more general notion of a sheaf. Since this has been appearing

in recent years in physics we briefly describe the more general concept.

Definition

a.) A presheaf F on a topological space X is an association of a set F(U) to every

open set 56 U ⊂ X such that there is a coherent system of restriction maps. That is,

whenever V ⊂ U there is a map rU→V so that

rU,U = Identity rV→W ◦ rU→V = rU→W W ⊂ V ⊂ U (23.159)

b.) Elements f ∈ F(U) are called sections over U . If V ⊂ U we denote rU→V (f) :=

f |V .

c.) A sheaf F on a topological space is a presheaf which moreover satisfies the two

additional properties when U = ∪αUα is a union of open sets:

1. If f, g ∈ F(U) and for all α, f |Uα = g|Uα , then f = g.

2. If for all α we are given fα ∈ F(Uα) such that for all α, β we have (fα)|Uα∩Uβ =

(fβ)|Uα∩Uβ then there exists an f ∈ F(U) so that f |Uα = fα.

A good example is the sheaf of C∞ functions on a smooth manifold. Another good ex-

ample is the sheaf of holomorphic functions (The extension axiom is analytic continuation.)

56Technically ∅ is an open set. We should define F(∅) to be the set with one element. If we have a sheaf

of groups, then it should be the trivial group. etc.
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In many common examples the sets F(U) in a sheaf carry some algebraic structure. Thus,

we assume there is some “target” category C so that F(U) are objects in that category. So,

if C = GROUP then F(U) is a group for every open set, and we have a sheaf of groups; if

C = ALGEBRA is the category of algebras over κ then we have a sheaf of algebras, etc. ♣More examples,

and some pictures ♣
If F and G are two sheaves on a topological spaces X then a morphism of sheaves is

the data of a morphism (in the category C where the sheaf is valued) φ(U) : F(U)→ G(U)

for every open set U ⊂ X. Note this must be a morphism in whatever target category

C we are using. Thus, if we have a sheaf of groups, then for each U , φ(U) is a group

homomorphism, and if we have a sheaf of algebras φ(U) is an algebra homomorphism, etc.

Moreover, the morphisms must be compatible with restriction maps:

φ(V ) ◦ rFU→V = rGU→V ◦ φ(U) (23.160)

♣Write out as a

commutative

diagram. ♣We can also speak of morphisms between sheaves on different topological spaces X and

Y . To do this, we first define the direct image sheaf. Given a continuous map ϕ : X → Y

and a sheaf F on X we can define a new sheaf ϕ∗(F) on Y . By definition if U is an open

set of Y then

ϕ∗(F)(U) := F(ϕ−1(U)) (23.161)

Now a morphism of sheaves (X,F) → (Y,G) can be defined to be a continuous map

ϕ : X → Y together with a morphism of sheaves over Y , φ : G → ϕ∗(F). ♣Explain

contravariance here.

♣Finally, we will need the notion of the stalk of a sheaf at a point ℘. If you are familiar

with directed limits then we can just write

F(℘) := lim
U :p∈U

F(U) (23.162)

What this means is that we look at sections in infinitesimal neighborhoods of ℘ and identify

these sections if they agree. To be precise, we consider qU :p∈UF(U) and identify f1 ∈ F(U1)

with f2 ∈ F(U2) if there is an open set p ∈W ⊂ U1 ∩ U2 such that f1|W = f2|W . So, with

this equivalence relation

F(℘) = qU :p∈UF(U)/ ∼ (23.163)

Example: Consider the sheaf of holomorphic functions on C. Then the stalk at z0 can

be identified with the set of formal power series expansions at z0. For the sheaf of C∞

functions on a manifold the stalk at ℘ is just R.

Finally, with these definitions we can say that the superdomains Up|q defined above

describe a sheaf of Grassmann algebras Op|q with value on an open set U ⊂ Rp given by

the Grassmann algebra

Op|q(U) = C∞(Up|q) = C∞(U)⊗̂S•(R0|q) (23.164)
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A super-change of coordinates is an invertible morphism of the sheaf Op|q with itself.

Concretely it will be given by an expression like

t̃a = fa(t1, . . . , tp|θ1, . . . , θq) a = 1, . . . , p

θ̃i = ψi(t1, . . . , tp|θ1, . . . , θq) i = 1, . . . , q
(23.165)

where fa are even elements of C∞(Rp|q) and ψi are odd elements of C∞(Rp|q), respectively.

Exercise Alternative definition of a presheaf

Given a topological space X define a natural category whose objects are open sets

U ⊂ X and whose morphisms are inclusions of open sets.

Given any category C show that a presheaf with values in C can be defined as a

contravariant functor from the category of open sets in X to C.

Exercise

Show that the stalk of Op|q at a point ℘ ∈ Rp is the finite-dimensional Grassmann

algebra Λ∗(Rq) over R.

23.10.5 Definition of supermanifolds

One definition of a supermanifold is the following:

Definition A supermanifold M of dimension (p|q) is an ordinary manifold Mred with a

sheaf F of Grassmann algebras which is locally equivalent to the supermanifold Rp|q. That

is, near any p ∈Mred there is a neighborhood p ∈ U so that the restriction of the sheaf to

U is equivalent (isomorphism of sheaves) to a superdomain Up|q.

In this definition Mred is the called the “reduced space” or the “body” of the super-

manifold. The sheaf F of Grassmann algebras has a subsheaf Iodd generated by the odd

elements and the quotient sheaf F/Iodd is the sheaf of C∞ functions of the reduced space

Mred.

There is a second (equivalent) definition of supermanifolds which strives to make a

close parallel to the definition of manifolds in terms of atlases of charts.

We choose a manifold M of dimension p and define a super-chart to be a pair (Up|q, c)
where c : U → M is a homeomorphism. Then a supermanifold will be a collection of

supercharts (Up|qα , cα) so that if cα(Uα) ∩ cβ(Uβ) = Ûαβ is nonempty then there is a
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change of coordinates between coordinates (t1α, . . . , t
p
α|θ1

α, . . . , θ
q
α) on Op|q(c−1

α (Ûαβ)) and

(t1β, . . . , t
p
β|θ

1
β, . . . , θ

q
β) on Op|q(c−1

β (Ûαβ)) given by a collection of functions:

taα = faαβ(t1β, . . . , t
p
β|θ

1
β, . . . , θ

q
β) a = 1, . . . , p

θiα = ψiαβ(t1β, . . . , t
p
β|θ

1
β, . . . , θ

q
β) i = 1, . . . , q

(23.166)

where faαβ are even elements of C∞(Rp|q) and ψiαβ are odd elements of C∞(Rp|q), respec-

tively. These maps need to be invertible, in an appropriate sense, and they need to satisfy

a version of the cocycle identity when there are nonempty triple overlaps cα(Uα)∩cβ(Uβ)∩
cγ(Uγ). For a more careful discussion see Chapter III of Leites.

Example A good example of a nontrivial supermanifold is super-complex projective space

CPm|n. The reduced manifold is just CPm. Recall that CPm is the space of complex

lines in Cm+1 and can be thought of as the set of nonzero points (X0, . . . , Xm) ∈ Cm+1

modulo the scaling action XA → λXA. We denote the equivalence class by [X0 : · · · : Xm].

Informally, we can define CPm|n as the “set of points” (X0, . . . , Xm|θ1, . . . , θn) ∈ Cm+1|n

with (X0, . . . , Xm) 6= 0 again with identification by scaling

(X0, . . . , Xm|θ1, . . . , θn) ∼ λ(X0, . . . , Xm|θ1, . . . , θn) (23.167)

To make proper sense of this we could define a standard superatlas by choosing the usual

atlas on CPm defined by the nonvanishing of one of the homogeneous coordinates

Uα := {[X0 : X1 : · · · : Xm]|Xα 6= 0} α = 0, . . . , p (23.168)

so local coordinates are given by tAα := XA/Xα. (Note that tαα = 1 is not a coordinate, so

coordinates are given by A = 1, . . . ,m omitting α.) Then the supermanifold has

F(Uα) = C∞(Uα)[θ1
α, . . . , θ

n
α]/(θiαθ

j
α + θjαθ

i
α = 0) (23.169)

and on Uαβ we have the change of coordinates

tAα =
Xβ

Xα
tAβ A = 0, . . . ,m

θiα =
Xβ

Xα
θiβ i = 1, . . . , n

(23.170)

(You can put A = α to learn that Xβ

Xα = 1/tαβ to get the honest formula.)

Now we can go on to produce more nontrivial examples of supermanifolds by choosing

homogeneous even polynomials P (XA|θi) and dividing the sheaf by the ideal generated by

these.

For example, see 57 for an interesting discussion of the sub-supermanifold of CP 2|2

defined by

X2
1 +X2

2 +X2
3 + θ1θ2 = 0 (23.171)

Remarks
57E. Witten, “Notes on Supermanifolds and Integration,” arXiv:1209.2199, Section 2.3.1
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1. In general there is no reality condition put on the odd generators θi. Therefore,

it is natural to consider a supermanifold Rp|∗q where the ring of functions can be

expanded as above but only φ0 is real, and all the other φI with |I| > 0 are complex

polynomials. Gluing these together gives a cs-supermanifold.

2. More philosophy: The functor of points. There is a way of speaking about “points

of a supermanifold” which is a generalization of a standard concept in algebraic

geometry. We first give the background in algebraic geometry. For simplicity we just

work with a ground field κ = C. There is a generalization of algebraic varieties known

as “schemes.” Again we characterize them locally by their algebras of “polynomial

functions,” but now we are allowed to introduce nilpotents as in the “thickened point”

example discussed above. To characterize the “points” on a scheme X we probe it

by taking an arbitrary scheme S and consider the set of all morphisms of schemes

Hom(S,X). The set Hom(S,X) is, roughly speaking, just the homomorphisms from

the algebra of functions on X to the algebra of functions on S. In this context the

set Hom(S,X) is called the set of S-points of X. Now, the map X 7→ Hom(S,X) is

(contravariantly) “functorial in S.” This means that if f : S → S′ is a morphism of

schemes then there is a natural morphism of sets FX(f) : Hom(S′, X)→ Hom(S,X).

Therefore, given a scheme X, there is a functor FX from the category of all schemes
58 to the category of sets, FX : SCHEMEopp → SET defined on objects by

FX : S 7→ Hom(S,X) (23.172)

This functor is called the functor of points. If we let the “probe scheme” S be a point

then its algebra of functions is just C and FX(S) = Hom(S,X) is the set of algebra

homomorphisms from functions on X to C. That is, indeed the set of points of the

underlying topological space Xred of X. More generally, if S is an ordinary algebraic

manifold then we should regard FX(S) as a set of points in X parametrized by S. Of

course, we could probe the scheme structure of X more deeply by using a more refined

probe, such as a nonreduced point of order N described above. In fact, if we use too

few probe schemes S we might miss structure of X, therefore mathematicians use

the functor from all schemes S to sets. Now, a key theorem justifying this approach

(known as the Yoneda theorem) states that:

Two schemes X and X ′ are isomorphic as schemes iff there is a natural transforma-

tion between the functors FX and FX′.

Now, we can apply all these ideas to supermanifolds with little change. If M is a

supermanifold, and S = R0|0 then the set of S-points of M is precisely the set of

points of the underlying manifold Mred.

We will not go very deeply into supermanifold theory but we do need a notion of vector

fields:
58actually, the opposite category SCHEMEopp
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23.10.6 Supervector fields and super-differential forms

In the ordinary theory of manifolds the space of vector fields on the manifold is in 1-1

correspondence with the derivations of the algebra of functions. The latter concept makes

sense for supermanifolds, provided we take Z2-graded derivations, and is taken to define

the super-vector-fields on a supermanifold.

For C∞(Rp|q) the space of derivations is a left supermodule for C∞(Rp|q) generated by

∂

∂t1
, . . . ,

∂

∂tp
,
∂

∂θ1
, . . . ,

∂

∂θq
(23.173)

where we have to say whether the odd derivatives act from the left or the right. We will

take them to act from the left so, for example, if q = 2 then

∂

∂θ1
Φ = φ1 + φ12θ

2

∂

∂θ2
Φ = φ2 − φ12θ

1
(23.174)

In general, for any i ∈ {1, . . . , q} we can write always expand Φ in the form Φ =
∑

I:i/∈I(φIθ
I+

φi,Iθ
aθI) and then

∂

∂θi
Φ =

∑
I:i/∈I

φi,Iθ
I (23.175)

A simple, but important lemma says that the Op|q module of derivations is free and of

dimension (p|q).
Defining differential forms turns out to be surprisingly subtle. The problems are related

to how one defines a grading of expressions like dθi and, related to this, how one defines

the exterior derivative. There are two (different) ways to do this.

One way to proceed is to consider the “stalk” of the tangent sheaf TRp|q at a point ℘.

This is a module for the real Grassmann algebra Grass[θ1, . . . , θq]. (That is, the coefficients

of ∂
∂ta and ∂

∂θi
are functions of θi but not of the ta, because we restricted to a point ℘.)

The dual module is denoted Ω1Rp|q(℘). There is an even pairing

TRp|q(℘)⊗ Ω1Rp|q(℘)→ Op|q(℘) (23.176)

The pairing is denoted 〈v, ω〉 and if Φ1,Φ2 are superfunctions then

〈Φ1v,Φ2ω〉 = (−1)|v||Φ2|Φ1Φ2〈v, ω〉 (23.177)

If we have a system of coordinates (ta|θi) then Ω1Rp|q(℘) is a free module of rank (p|q)
generated by symbols dta and dθi. Thus,

〈 ∂
∂ta

, dtb〉 = δba 〈 ∂
∂θi

, dθj〉 = δij (23.178)

and so forth.

Now, to define the differential forms at the point ℘ we take the exterior algebra of

Ω1Rp|q(℘) to define

Ω•Rp|q(℘) := Λ•(Ω1Rp|q(℘)) (23.179)
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where - very importantly - we are using the Z2-graded antisymmetrization to define Λ•.

Thus, the generators dta are anti-commuting (as usual) while the generators dθi are com-

muting. The stalks can be used to define a sheaf Ω•Rp|q and the general section in

Ω•Rp|q(U) is an expression:

p∑
k=0

∞∑
`=0

ωa1,...,ak;i1,...,i`dt
a1 · · · dtakdθi1 · · · dθi` (23.180) eq:GenSuperForm

where ωa1,...,ak;i1,...,i` are elements ofOp|q(U) which are totally antisymmetric in the a1, . . . , ak
and totally symmetric in the i1, . . . , i`.

If we consider dta to be odd and dθi to be even then expressions such as (23.180) can

be multiplied. Then, finally, we can define an exterior derivative by saying that d : Op|q →
Ω1Rp|q takes d : ta 7→ dta and d : θi 7→ dθi and then we impose the super-Leibniz rule

d(ω1ω2) = dω1ω2 + (−1)|ω1|ω1dω2 (23.181)

It is still true that d2 = 0 and we have the Super-Poincaré lemma: If dω = 0 in Ω•Rp|q

then ω = dη.

Remarks

1. We are following the conventions of Witten’s paper cited below. For a nice interpre-

tation of the differential forms on a supermanifold in terms of Clifford and Heisenberg

modules see Section 3.2. Note that with the above conventions

d(θ1θ2) = θ2dθ1 − θ1dθ2 (23.182)

2. However, there is another, equally valid discussion which is the one taken in Deligne-

Morgan. The superderivations define a sheaf of super-modules for the sheaf Op|q ♣dbend [latex

command doesn’t

work unfortunately

♣
and it is denoted by TRp|q. Then the cotangent sheaf, denoted Ω1Rp,q is the dual

module with an even pairing:

TRp|q ⊗ Ω1Rp|q → Op|q (23.183)

The pairing is denoted 〈v, ω〉 and if Φ1,Φ2 are superfunctions then

〈Φ1v,Φ2ω〉 = (−1)|v||Φ2|Φ1Φ2〈v, ω〉 (23.184)

It we have a system of coordinates (t|θ) then Ω1 freely generated as an Op|q-module

by dta and dθi.

Now we define a differential d : Op|q → Ω1Rp|q to be an even morphism of sheaves of

super-vector spaces by

〈v, df〉 := v(f) (23.185)
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In particular this implies

d(θ1θ2) = −θ2dθ1 + θ1dθ2 (23.186)

The issue here is that Ω•Rp|q is really bigraded by the group Z ⊕ Z2. It has “coho-

mological degree” in Z coming from the degree of the differential form in addition to

“parity.” In general, given vector spaces which are Z-graded and also Z2-graded, so

that V = V 0 ⊕ V 1 as a super-vector-space, and V 0 and V 1 are also Z-graded, then

there are two conventions for defining the commutativity morphism:

cV,W : V ⊗W →W ⊗ V (23.187)

1. We have the modified Koszul rule: cV,W : v⊗w 7→ (−1)(|v|+deg(v))(|w|+deg(w))w⊗ v,

where deg(v),deg(w) refer to the integer grading.

2. We have the modified Koszul rule: cV,W : v ⊗ w 7→ (−1)|v||w|+deg(v)deg(w)w ⊗ v.

In convention 1 we have simply taken a homomorphism of the Z⊕Z2 grading to Z2.

In our notes we have adopted the first convention in making d odd. This makes dθi

even because we sum the degree of d (which is one) with the degree of θi (which is

one modulo two) to get zero, modulo two. In the second convention it would still be

true that the dθi commute with the dθj , but for a different reason. Convention 2 is

adopted in Deligne-Morgan, for reasons explained on p.62. ♣Should discuss

this more. What are

the Z2-valued

bilinear forms on

Z⊕ Z2? ♣

Exercise

Suppose that M is a manifold and TM is its tangent bundle. Let ΠTM be the

supermanifold where the Grassmann algebra is the Grassmann algebra of the sections of

TM .

Show that the C∞ functions on TM can be identified with the DeRham complex of

the bosonic manifold Ω• and, under this correspondence, write d as a supervector field on

C∞(ΠTM).

This observation is often used in applications of supersymmetric field theory to topo-

logical invariants.

Exercise

a.) Show that the graded commutator of super-derivations is a superderivation.

b.) Consider the odd vector fields D = ∂
∂θ + θ ∂∂t and Q = ∂

∂θ − θ
∂
∂t on R1|1. Compute

[D,D], [Q,Q], and [Q,D].

ANOTHER EXERCISE WITH MORE THETAS.
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23.11 Integration over a superdomain

In this section we will say something about how to define an integral of superfunctions on

the supermanifold Rp|q.
As motivation we again take inspiration from the theory of commutative C∗-algebras.

A beautiful theorem - the Riesz-Markov theorem - says that if A is a commutative C∗-

algebra and Λ : A → C is a linear functional then there is a (complex-valued) measure dµ

on X = ∆(A) so that this linear functional is just

Λ(f) =

∫
X
fdµ (23.188)

(Recall that f ∈ A is canonically a function on X, so the expression on the RHS makes

sense.)

So, we will view an integral over Rp|q as a linear functional

Λ : Op|q(Rp)→ R (23.189)

To guide us in our discussion there are three criteria we want from our integral:

1. We want integration by parts (Stokes’ theorem) to be valid.

2. We want the Fubini theorem to be valid.

3. We want the definition to reduce to the usual Riemannian integration when q = 0.

Let us begin with p = 0, the fermionic point. For brevity denote Oq := O0|q(pt) =

S•(R0|q). The space of linear functionals

Dq := Hom(Oq,R) (23.190)

is a real supervector space of dimension (2q−1|2q−1). Indeed, given an ordered basis

θ1, . . . , θq for R0|q there is a canonical dual basis δI for Dq defined by δI(θ
J) = δ J

I where

I, J are multi-indices.

On the other hand, Dq is also a right Oq-module since if Λ is a linear functional and

g ∈ Oq we can define

(Λ · g)(f) := Λ(gf) (23.191)

It is important to distinguish Dq as a vector space over R from Dq as a module over

the supercommutative superalgebra Oq. In the latter case, Dq is free and of dimension

(1|0) or (0|1).

For example, suppose q = 2 and we choose an ordered basis {θ1, θ2} for R0|2. Then let

δ = δ12. Then

δ = δ12

δ · θ1 = δ2

δ · θ2 = −δ1

δ · θ1θ2 = δ0

(23.192)
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In general, given an ordered basis, δ = δI , where I is the multi-index I = 12 . . . q, is a

basis vector for Dq as an Oq-module: Indeed, right-multiplication by elements of Oq gives

a vector space basis over R as follows:

δ = δ1...q

(δ · θi) = (−1)i−1δ1···̂i···q

(δ · θiθj) = ±δ1···̂i···ĵ···q
...

...

(23.193)

Moreover, since the scalar 1 is even δ has degree qmod2 and hence, as a right Oq-module,

Dq has parity qmod2, so it is a free module of type (Oq)1|0 or (Oq)0|1, depending on whether

q is even or odd, respectively. Of course, if Nq is a nonzero real number then Nqδ is also a

perfectly good generator of Dq as a Oq-module.

Now we claim that, given an ordered basis {θ1, . . . , θq} for R0|q there is a canonical

generator for Dq which we will denote by

Λq =

∫
[dθ1 · · · dθq] (23.194) eq:CanonicalMeasure

The notation is apt because this functional certainly satisfies the integration-by-parts

property: ∫
[dθ1 · · · dθq] ∂f

∂θi
= 0 (23.195)

for any i and and f . Thus, criterion 1 above is automatic in our approach.

However, the integration-by-parts property is satisfied by any generator of Dq as an

Oq-module, that is, it is satisfied by any nonzero multiple of Λq. How should we normalize

Λq? We can answer this question by appealing to criterion 2. That is, we require an analog

of the Fubini theorem. There is a canonical isomorphism R0|q1 × R0|q2 ∼= R0|q1+q2 , that

is there are canonical isomorphism Oq1⊗̂Oq2 ∼= Oq1+q2 (simply given by multiplying the

polynomials) and hence canonical isomorphisms

Dq1⊗̂Dq2 ∼= Dq1+q2 (23.196)

given by

(`1⊗̂`2)(f1⊗̂f2) = (−1)|`2||f1|`1(f1)`2(f2) (23.197)

Now we require that our canonical integrals Λq satisfy

Dq1 ⊗Dq2
∼= //

Λq1⊗Λq2 $$

Dq1+q2

Λq1+q2{{
R

(23.198) eq:Compat-Lamb

Let Λq(θ
1 · · · θq) := Nq. Then (23.198) implies that

Nq1+q2 = Λq1+q2(θ1 · · · θq1+q2)

= (Λq1 ⊗ Λq2)(θ1 · · · θq1 ⊗ θq1+1 · · · θq1+q2)

= (−1)q1q2Nq1Nq2

(23.199)
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The general solution to the equation Nq1+q2 = (−1)q1q2Nq1Nq2 is

Nq = (−1)
1
2
q(q−1)(N1)q (23.200)

So this reduces the question to q = 1.

It is customary and natural to normalize the integral so that∫
[dθ]θ = 1 (23.201)

That is, N1 = 1. With this normalization, the Berezin integral on R0|1 is the functional:∫
[dθ](a+ bθ) = b (23.202)

Now, for q > 1, noticing that θ1 · · · θq = (−1)
1
2
q(q−1)θq · · · θ1 we have shown that demand-

ing that the integral satisfy the “Fubini theorem” (as interpreted above) normalizes the

canonical measure so that ∫
[dθ1 · · · dθq]θq · · · θ1 = +1 (23.203)

Now let us consider p > 0. Criterion 3 above tells us that we don’t want our inte-

grals to be literally all linear functionals Op|q(Rp) → R. For example, that would include

distributions in the bosonic variables. So we have the official definition

Definition: A density on the superspace Rp|q is a linear functional Op|q(Rp) → R of the

form

Φ =
∑
I

φIθ
I 7→

∑
I

∫
Rp

[dt1 · · · dtp]dI(t)φI(t) (23.204)

where [dt1 · · · dtp] is the standard Riemann measure associated with a coordinate system

(t1, . . . , tp) for Rp and dI(t) are some collection of smooth functions. We denote the space

of densities on Rp|q by Dp|q.

When p = 0 this reduces to our previous description, and D0|q = Dq. Now, analogous

to the previous discussion, Dp|q is once again a Op|q(Rp)-module of rank (1|0) or (0|1),

depending on whether q = 0mod2 or q = 1mod2, respectively. Once again, given an

ordered coordinate system (t1, . . . , tp|θ1, . . . , θq) for Rp|q we have a canonically normalized

density which we denote ∫
[dt1 · · · dtp|dθ1 · · · dθq] (23.205)

defined by ∫
[dt1 · · · dtp|dθ1 · · · dθq]Φ :=

∫
Rp

[dt1 · · · dtp](
∫

[dθ1 · · · dθq]Φ) (23.206)
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where [dt1 · · · dtp] is the Riemannian measure. Thus, we first integrate over the odd coor-

dinates and then over the reduced bosonic coordinates. ♣The conventions

on indices ti, θa are

opposite to those of

the previous

section. Use

consistent

conventions. ♣

Finally, let us give the change of variables formula. Suppose µ : Rp|q → Rp|q is an

invertible morphism. Then we can define new “coordinates:

t̃i = µ∗(ti) i = 1, . . . , p

θ̃a = µ∗(θa) a = 1, . . . , q
(23.207)

Then, again because Dp|q is one-dimensional as an Op|q(Rp)-module, we know that there

is an even invertible element of Op|q(Rp) so that∫
[dt̃1 · · · dt̃p|dθ̃1 · · · dθ̃q]Φ(t̃|θ̃) =

∫
[dt1 · · · dtp|dθ1 · · · dθq]j(µ)µ∗Φ (23.208)

where µ∗Φ is a function of (t|θ) given by µ∗Φ = Φ(t̃(t|θ)|θ̃(t|θ)).
Some special cases will make the general formula clear:

1. If µ : Rp → Rp is an ordinary diffeomorphism then it can be lifted to a superdif-

feomorphism just by setting µ∗(θa) = θa and µ∗(ti) = t̃i. Then the standard change-of-

variables result says that

[dt̃1 · · · dt̃p] = [dt1 · · · dtp] ·
∣∣det

∂t̃i

∂tj
∣∣

= [dt1 · · · dtp] · or(µ) · det
∂t̃i

∂tj

(23.209)

where or(µ) = +1 if µ is orientation preserving and or(µ) = −1 if it is orientation reversing.

2. On the other hand, if µ∗(ti) = ti and µ∗(θa) = Da
bθ
b then

θ̃q · · · θ̃1 = Dq
b1
· · ·D1

bqθ
b1 · · · θbq

=

∑
σ∈Sq

ε(σ)Dq
σ(q) · · ·D

1
σ(1)

 θq · · · θ1

= det(Da
b)θ

q · · · θ1

(23.210)

and therefore

[dθ̃1 · · · dθ̃q] = [dθ1 · · · dθq](det(Da
b))
−1 (23.211)

For the general formula we consider the Jacobian

Jac(µ) =

(
∂t̃i

∂tj
∂t̃i

∂θb
∂θ̃a

∂tj
∂θ̃a

∂θb

)
(23.212)

which we regard as an element of End(Ω1Rp|q). (Recall that Ω1Rp|q(U) is a free module

of rank (p|q) over Op|q(U).) The formula is

j(µ) = or(µred)Ber(Jac(µ)) (23.213)
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♣Needs a full proof.

♣

Example: Consider R1|2. Let Φ(t̃|θ̃) = h(t̃). Change variables by t̃ = t+θ1θ2 and θ̃i = θi.

Then

0 =

∫
[dt̃|dθ̃]h(t̃)

=

∫
[dt|dθ]

(
h(t) + h′(t)θ1θ2

)
= −

∫
dt
∂h

∂t

(23.214) eq:SuperIntExpl1

Note that this identity relies on the validity of integration by parts.

Remarks

1. Note well that dθa are commutative objects but [dθa] are anti-commutative objects

in the sense that [dθ1dθ2] = −[dθ2dθ1], and so on.

2. The possible failure of boundary terms to vanish in examples like 23.214 leads to

important subtleties in string perturbation theory. On a supermanifold it might not

be possible to say, globally, which even variables are “purely bosonic,” that is, “free

of nilpotents.” This is related to the issue of whether the supermanifold is “split” or

not. For recent discussions of these problems see Witten, arXiv:1304.2832, 1209.5461.

23.12 Gaussian Integrals

23.12.1 Reminder on bosonic Gaussian integrals

Let Qij be a symmetric quadratic form with positive definite real part on Rp. Then the

Gaussian integral over Rp|0 is

(2π)−p/2
∫

[dt1 · · · dtp]exp[−1

2
tiQijt

j ] =
1

(detQ)1/2
(23.215)

where we choose the sign of the square root so that (detQ)1/2 is in the positive half-plane,

i.e., we choose the principal branch of the logarithm.

One could analytically continue in Q from this result.

23.12.2 Gaussian integral on a fermionic point: Pfaffians

Let us now consider the Gaussian integral over a fermionic point R0|q.

Let Aij be a q × q antisymmetric matrix. Consider the Gaussian integral:∫
[dθ1 · · · dθq]exp[

1

2
θaAabθ

b] (23.216)

Our first observation is that if q is odd then this integral must vanish! To see this, we

recall that we can always skew-diagonalize A:

SAStr =

(
0 λ1

−λ1 0

)
⊕

(
0 λ2

−λ2 0

)
⊕ · · · (23.217)
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By the change-of-variable formula if we change coordinates θ̃a = Sabθ
b then the integral is∫

[dθ1 · · · dθq]exp[
1

2
θaAabθ

b] = detS

∫
[dθ̃1 · · · dθ̃q]exp[

1

2
θ̃aÃabθ̃

b]

= detS

∫
[dθ̃1 · · · dθ̃q]exp[λ1θ̃

1θ̃2 + λ2θ̃
3θ̃4 + · · · ]

(23.218)

Now, if q is odd, then in this expression θ̃q does not appear in the exponential. There-

fore the integral has a factor of
∫

[dθ̃q] = 0. This is a very simple example of how an

“unpaired fermion zeromode” leads to the zero of a fermionic Gaussian integral. See re-

marks below.

Suppose instead that q = 2m is even. Then the integral can be evaluated in terms of

the skew eigenvalues as

detS
m∏
i=1

(−λi) (23.219)

Recall that an antisymmetric matrix can be skew-diagonalized by an orthogonal matrix S.

We didn’t quite fix which one, because we didn’t specify the signs of the λi. Therefore, up

to sign, the Gaussian integral is just the product of skew eigenvalues.

On the other hand, the integral can also be evaluated as a polynomial in the matrix

elements of A. Indeed the Pfaffian of the antisymmetric matrix can be defined as:

pfaff(A) :=

∫
[dθ1 · · · dθ2m]exp[

1

2
θaAabθ

b]. (23.220)

With a little thought one shows that expanding this out leads to

pfaffA =
1

m!2m

∑
σ∈S2m

ε(σ)Aσ(1)σ(2) · · ·Aσ(2m−1)σ(2m)

= A12A34 · · ·A2m−1,2m + · · ·
(23.221) eq:pfaffian

This definition of the Pfaffian resembles that of the determinant of a matrix, but note

that it is slightly different. Since A is a bilinear form it transforms as A → StrAS under

change of basis. Therefore, the Pfaffian is slightly basis-dependent:

pfaff(StrAS) := detS · pfaff(A) (23.222) eq:pfaff-tmn

We can easily prove this using the change-of-variables formula for the Berezin integral. (Do

that!)

Now a beautiful property of the Pfaffian is that it is a canonical square-root of the

determinant of an antisymmetric matrix.

(pfaffA)2 = detA. (23.223) eq:DetSqrt

(In particular, the determinant of an antisymmetric matrix - a complicated polynomial in

the matrix elements - has a canonical polynomial square root.)
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Using the Berezin integral we will now give a simple proof of (23.223). First, note

that if M is any n × n matrix and we have two sets of generators θa±, a = 1, . . . , n of our

Grassmann algebra then

∫
[dθ1
− · · · dθn−dθn+ · · · dθ1

+]exp[θi+Miaθ
a
−] = detM (23.224) eq:DET-M-GRASS

An easy way to prove this is to make a transformation M → S−1MS to Jordan canonical

form. The change of variables of θa+, θ
a
− by Str,−1 and S, respectively, cancel each other

out. 59 Assuming that the matrix is diagonalizable we have

∫
[dθ1
− · · · dθn−dθn+ · · · dθ1

+]exp[θ1
+θ

1
−λ1 + θ2

+θ
2
−λ2 + · · · ] =

n∏
i=1

λi = detM (23.225)

To check the sign we observe that the following moves always involve moving an even

number of θ’s past each other. For example,

θ1
+θ

1
−θ

2
+θ

2
−θ

3
+θ

3
−θ

4
+θ

4
− = θ1

+θ
2
+θ

2
−θ

1
−θ

3
+θ

3
−θ

4
+θ

4
−

= θ1
+θ

2
+θ

3
+θ

3
−θ

2
−θ

1
−θ

4
+θ

4
−

= θ1
+θ

2
+θ

3
+θ

4
+θ

4
−θ

3
−θ

2
−θ

1
−

(23.226)

We leave the case when M has nontrivial Jordan form as a (good) exercise.

Now apply this to Mia → Aij with n = 2m and consider

detA =

∫
[dθ1
− · · · dθ2m

− dθ2m
+ · · · dθ1

+]exp[θi+Aijθ
j
−] (23.227)

Change variables to

θi± :=
1√
2

(ψi ± χi) i = 1, . . . , 2m (23.228)

and note that

θi+Aijθ
j
− =

1

2
ψiAijψ

j − 1

2
χiAijχ

j (23.229)

To compute the superdeterminant of the change of variables perhaps the simplest way to

59The reader might worry about a sign at this point. To allay this fear note that we could rewrite the

measure as ε[dθ1
− · · · dθn−dθ1

+ · · · dθn+]. With the latter measure the two factors in the Berezinian clearly cancel

each other. But then we encounter the same sign ε going back to the desired ordering with [dθ̃1
+ · · · dθ̃n+] =

ε[dθ̃n+ · · · dθ̃1
+].
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proceed is to compute ∫
[dψ1 · · · dψ2mdχ1 · · · dχ2m]θ1

+ · · · θ2m
+ θ2m

− · · · θ1
− =

1

22m

∫
[dψ1 · · · dψ2mdχ1 · · · dχ2m](ψ1 + χ1) · · · (ψ2m + χ2m)(ψ2m − χ2m) · · · (ψ1 − χ1) =∫

[dψ1 · · · dψ2mdχ1 · · · dχ2m](χ2mψ2m)(χ2m−1ψ2m−1) · · · (χ1ψ1) =∫
[dψ1 · · · dψ2mdχ1 · · · dχ2m](χ2m · · ·χ1ψ1 · · ·ψ2m) =∫

[dψ1 · · · dψ2m](ψ1 · · ·ψ2m) =

(−1)
1
2

(2m)(2m−1) = (−1)m

(23.230)

from which we conclude that

[dθ1
− · · · dθ2m

− dθ2m
+ · · · dθ1

+] = (−1)m[dψ1 · · · dψ2mdχ1 · · · dχ2m] (23.231)

So our change of variables gives

detA = (−1)m
∫

[dψ1 · · · dψ2mdχ1 · · · dχ2m]exp

[
1

2
ψiAijψ

j − 1

2
χiAijχ

j

]
= (pfaffA)2

(23.232)

Which concludes the proof of (23.223) ♠

Remarks

1. ♣ Remarks on localization from integral over a fermion zeromode

2. ♣ Remarks on use of Pfaffian in the general definition of Euler characteristic.

3. Why is the transformation (23.222) compatible with (23.223) and the invariance of

the determinant under A→ S−1AS? The reason is that for Str = S−1 we have S is

orthogonal so that detS = ±1 and hence (detS)2 = 1.

4. Pfaffians in families. Sometimes the Pfaffian is defined as a squareroot of the determi-

nant detA of an antisymmetric matrix. This has the disadvantage that the sign of the

Pfaffian is not well-defined. In our definition, for a finite-dimensional matrix, there

is a canonical Pfaffian. On the other hand, in some problems it is important to make

sense of the Pfaffian of an anti-symmetric form on an infinite-dimensional Hilbert

space. So, one needs another definition. Since determinants of infinite-dimensional

operators can be defined by zeta-function regularization of the product of their eigen-

values one proceeds by defining the Pfaffian from the square-root of the determinant.

So, we try to define the Pfaffian as:

pfaffA
?
=

∏
λ>0

λ (23.233) eq:postv
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where the product runs over the skew eigenvalues. But this is not a good definition

for many purposes because in families skew eigenvalues can smoothly change sign.

Consider, for example the family

A(α) =

(
0 cosα

− cosα 0

)
0 ≤ α ≤ 2π (23.234) eq:smple

Then the Pfaffian according to the above definition (23.233) would not be differen-

tiable at α = π/2 and 3π/2. Really, the pfaffian is a section of a line bundle, as we

explain in Section §24 below.

One approach to pinning down the sign of the Pfaffian is simply to choose a sign at

one point of the family, and then follow the skew eigenvalues continuously. With this

definition

pfaff(A(α)) = cosα (23.235)

(in agreement with our definition for finite-dimensional forms). This is a perfectly

reasonable definition. However, in some problems involving gauge invariance one

meets quadratic forms A which should be identified up to gauge transformation.

Suppose we identify A up to orthogonal transformations. Then the equivalence class

[A(α)] is a closed family of operators for 0 ≤ α ≤ π. If we take a smooth definition of

the Pfaffian of A(α) then we find that it changes sign under α→ α+ π, so in fact, it

behaves more like the section of the Mobius band over the circle. We return to this

in Section §24.7 below.

Exercise

a.) Show that for q = 2 detA = (a12)2

b.) Show that for q = 4

Pfaff(A) = a12a34 − a13a24 + a14a23 (23.236)

Check by direct compuation that indeed

detA = (a12a34 − a13a24 + a14a23)2 (23.237)

Exercise

a.) Prove equation (23.221).

b.) Explain why we divide the sum by the order of the group of centrally-symmetric

shuffles (See Chapter 1, Sections 4 and 5) WBm.
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Exercise

Prove (23.224) by completing the argument for nontrivial Jordan form.

b.) Prove (23.224) by a direct evaluation of the integral without changing variables to

obtain the standard expression

detM =
∑
σ∈Sn

ε(σ)M1σ(1)M2σ(2) · · ·Mnσ(n) (23.238)

Exercise

Let z1, . . . , z2N be points in the complex plane. Show that(
Pfaff

1

zi − zj

)k∏
i<j

(zi − zj)` (23.239)

is a polynomial in zi of degree N(2N − 1)`− kN , so long as k ≤ `, which transforms under

S2N with the sign ε(σ)k+`.

Expressions like this have proven useful in the theory of the fractional quantum Hall

effect.

23.12.3 Gaussian integral on Rp|q

Now we put these results together and consider the general Gaussian integral on Rp|q:

(2π)−p/2
∫
Rp|q

[dt|dθ]exp

[
−1

2
taQabt

b − taBaiθi +
1

2
θiAijθ

j

]
(23.240)

We can consider the quadratic form to have matrix elements in a general supercom-

mutative ring (but they are constant in ta, θi) so we allow odd off-diagonal terms like

Bai.

We can complete the square with the change of variables:

t̃a = ta

θ̃i = θi + (A−1)ijt
aBaj

(23.241)

The change of variables formula gives [dt̃|dθ̃] = [dt|dθ] and hence we evaluate the integral

to get
Pfaff(A)√

det(Q−BA−1Btr)
(23.242)

This can be written as (Ber(Q))−1/2 where Q is the super-quadratic form

Q =

(
Q B

Btr A

)
(23.243)

but the latter expression is slightly ambiguous since there are two squareroots of detA.

– 240 –



23.12.4 Supersymmetric Cancelations

Suppose a super-quadratic form on Rn|2n is of the special form

Q =

M trM 0 0

0 0 M

0 −M tr 0

 (23.244) eq:TFT-1

where M is nonsingular and Re(M trM) > 0. Then the Gaussian integral is just

sign(detM) (23.245) eq:TFT-2

Note that M (reduced modulo nilpotents) might be a complex matrix, and the integral is

still sensible so long as Re(M trM) > 0. Therefore we define

sign(detM) :=

{
+1 | arg(detM)| < π/4

−1 | arg(detM)− π| < π/4
(23.246)

Thus, the result of the Gaussian integral (23.245) is “almost” independent of the

details of M . There is a nice “theoretical” explanation of this fact which is a paradigm for

arguments in supersymmetric field theory and topological field theory.

So, let us denote, for brevity

[dθ−dθ+] := [dθ1
− · · · dθn−dθn+ · · · dθ1

+] (23.247)

and we consider the integral

I[M ] := (2π)−n/2
∫
Rn|2n

[dt|dθ−dθ+]exp

[
−1

2
ti(M trM)ikt

k + θi+Mijθ
j
−

]
= sign(detM)

(23.248) eq:TFT-3

It is useful to introduce n additional bosonic coordinates H i and instead write this as an

integral over R2n|2n:

I[M ] = (2π)−n
∫
R2n|2n

[dtdH|dθ−dθ+]exp

[
−1

2
H iH i +

√
−1H iMijt

j + θi+Mijθ
j
−

]
(23.249) eq:TFT-1

Now, introduce the odd vector field

Q := θk−
∂

∂tk
−
√
−1Hk ∂

∂θk+
(23.250)

Note that, on the one hand, the “action” can be written as

Q(Ψ) = −1

2
H iH i +

√
−1H iMijt

j + θi+Mijθ
j
− (23.251)

where

Ψ = − i
2
θk+H

k − θi+Mijt
j (23.252)
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and on the other hand,

Q2 =
1

2
[Q,Q]+ = 0 (23.253)

So, now suppose we perturb M →M + δM . Then the change in the Gaussian integral

can be written as

δI[M ] =

∫
[dtdH|dθ−dθ+]Q(δΨ)eQ(Ψ) =

∫
[dtdH|dθ−dθ+]Q(δΨeQ(Ψ)) = 0 (23.254)

where the last inequality follows from integration by parts.

The reader might be bothered by this. The answer (23.248) does depend a little bit on

M . Moreover, why can’t we just use the argument to put M to zero? But then, of course,

the integral would seem to be ∞× 0 for M = 0. If a perturbation makes M singular then

we get a factor of ∞× 0 where the ∞ comes from the integral dt and the 0 comes from

the fermionic integral. Recall, however, that in the definition of the integral we do the

fermionic integral first and therefore
∫

[dtdH|dθ−dθ+]1 = 0. Therefore, we could replace

the integrand by

eQ(Ψ) − 1 = Q

(
Ψ +

1

2!
ΨQ(Ψ) + · · ·

)
(23.255)

There will be a term which survives the fermionic integral but it is a total derivative in ∂
∂ti

which does not vanish at infinity in field space. Thus, singular perturbations can change

the value of the integral.

23.13 References
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in Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, pp.41-96 AMS

2. D. Leites, “Introduction to supermanifolds,” 1980 Russ. Math. Surv. 35 1.

3. E. Witten, “Notes on Supermanifolds and Integration,” arXiv:1209.2199.

4. www.math.ucla.edu/ vsv/papers/ch3.pdf

5. J. Groeger, Differential Geometry of Supermanifolds, http://www.mathematik.hu-

berlin.de/ groegerj
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6. V. Varadarajan, Supersymmetry for Mathematicians: An Introduction

7. Super Linear Algebra by Kandasamy and Smarandache

For an extremely accessible discussion of the theory of schemes See

8. D. Eisenbud and J. Harris, The Geometry of Schemes, Springer GTM
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24. Determinant Lines, Pfaffian Lines, Berezinian Lines, and anomalies
sec:DETERMINANTS

24.1 The determinant and determinant line of a linear operator in finite di-

mensions

Recall that a one-dimensional vector space over κ is called a line. If L is a line then

a linear transformation T : L → L can canonically be identified with an element of κ.

Indeed, choose any basis vector v for L then T (v) = tv, with t ∈ κ, and the number t

does not depend on v. On the other hand, suppose we have two lines L1, L2. They are,

of course, isomorphic, but not naturally so. In this case if we have a linear transformation

T : L1 → L2 then there is not canonical way of identifying T with an element of κ

because there is no a priori way of identifying a choice of basis for L1 with a choice of

basis for L2. Put differently, Hom(L,L) ∼= L∨ ⊗ L ∼= κ is a natural isomorphism, but

Hom(L1, L2) ∼= L∨1 ⊗ L2 is just another line.

Now suppose that

T : V →W (24.1)

is a linear transformation between different vector spaces over κ where the dimension is

possibly larger than one. Then there is no canonical notion of the determinant as a number.

Choose ordered bases {vi} for V and {wa} for W , and define Mai to be the matrix of T

with respect to that basis. Then under this isomorphism T ∈ Hom(V,W ) ∼= V ∗ ⊗W may

be written as

T =
∑
i,a

Maiv̂i ⊗ wa (24.2)

and if dimV = dimW one can of course define the number detMai. However, a change of

basis of V by S1 and of W by S2 changes the matrix M → S−1
2 MS1 and hence leads to

detM ′ = detS−1
2 detMdetS1 (24.3)

in the new basis. If V,W are not naturally isomorphic, then we cannot naturally assign

a number we would want to call detT .

Nevertheless, there is a good mathematical construction of detT which is natural with

respect to the domain and range of T . What we do is consider the 1-dimensional vector

spaces ΛdV and Λd
′
W where d = dimV, d′ = dimW . Then there is a canonically defined

linear transformation

detT : ΛdV → Λd
′
W (24.4)

For d 6= d′ it is zero, and for d = d′ we can write it by choosing bases vi, wa. Denote the

dual basis v̂i so that T =
∑

i,jMaiv̂i ⊗ wa. Then

detT :=
1

(d!)2

∑
as,is

Ma1i1 · · ·Madid v̂i1 ∧ · · · ∧ v̂id ⊗ wa1 ∧ · · · ∧ wad (24.5) eq:detelement

The important thing about this formula is that, as opposed to the determinant defined

as a polynomial in matrix elements, the object (24.5) is natural with respect to both V

and W . That is, it is independent of basis (even though we chose a basis to write it out,
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if we change basis we get the same object. This is not true of the determinant defined as

a polynomial in matrix elements.)

While (24.5) is natural it requires interpretation. It is not a number, it is an element

of a one-dimensional vector space, i.e. a line. This line is called the determinant line of T

DET(T ) := ΛdimV (V ∗)⊗ ΛdimW (W ) (24.6) eq:detline

Thus, we have a one-dimensional vector space DET(T ) and an element of that vector

space det(T ) ∈ DET(T ).

This is a nontrivial concept because:

1. Linear operators often come in families Ts. Then DET(T ) becomes a nontrivial line

bundle over parameter space.

2. The theory extends to infinite dimensional operators such as the Dirac operator.

Indeed, in finite dimensions DET(T ) does not depend on the choice of operator T except

through its domain and target. This is no longer true in infinite dimensions.

Remarks

1. When dimV 6= dimW the line DET(T ) defined in (24.6) still makes sense, but we

must define the element in that line, detT ∈ DET(T ) to be detT = 0.

2. When W = V , that is, when they are canonically isomorphic then detMij is basis

independent. Indeed, in this case there is a canonical isomorphism

Λd(V )⊗ Λd(V ∨) ∼= κ (24.7)

(κ can be R or C, or any field.)

Example Above we considered an interesting family of one-dimensional vector spaces

L+ = {(x̂, v)|x̂ · ~σv = +v} ⊂ S2 × C2 (24.8)

For each point x̂ ∈ S2 we have a one-dimensional subspace L+,x̂ ⊂ C2. Let us let

L = S2 × C (24.9)

be another family of one-dimensional vector spaces. We can define an operator

Tx̂ : L+,x̂ → Lx̂ (24.10)

defined by just projecting to the first component of the vector v ∈ L+,x̂. To find a matrix

of Tx̂ we need to choose a basis. As we discussed we might choose a basis vector

e+ =

(
cos 1

2θ

eiφ sin 1
2θ

)
(24.11)

away from the south pole, while away from the north pole we might choose:

e− =

(
e−iφ cos 1

2θ

sin 1
2θ

)
(24.12)
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We can also simply choose 1 as a basis for C for the target of Tx̂.

With respect to this basis we would have a determinant function

detMai = cos
1

2
θ 0 ≤ θ < π (24.13)

detMai = e−iφ cos
1

2
θ 0 < θ ≤ π (24.14)

Note that the second expression does make sense at the south pole because cos π2 = 0.

Clearly this does not define a function on S2. Rather, it defines a section of a line bundle.

Moreover, it has exactly one zero.

Exercise

Consider a finite dimensional vector space V of dimension d.

a.) Show that there is a canonical isomorphism Λd(V ∨) ∼= (ΛdV )∨

b.) Show that there is a canonical isomorphism

ΛdV ∨ ⊗ ΛdV → κ (24.15)

24.2 Determinant line of a vector space and of a complex

If V is a finite-dimensional vector space of dimension d then the line ΛdV is often called

the determinant line of V and denoted

DET(V ) := ΛdimV V (24.16)

Because there is a natural isomorphism

DET(V )∨ ⊗DET(V ) ∼= κ (24.17)

and since the one-dimensional space κ acts like a multiplicative identity under ⊗, we also

denote

DET(V )−1 := DET(V )∨ (24.18)

Therefore we will also denote

(v1 ∧ · · · ∧ vd)−1 := (v1 ∧ · · · ∧ vd)∨ (24.19)

for any choice of basis {vi}.
Again, when we consider families of vector spaces, we can get interesting line bundles

from this construction:

Example Consider the Grassmannian Gr(k, n) of k-dimensional subspaces of Cn. For

each subspace W ∈ Gr(k, n) we may associate the line ΛkW . This gives another nontrivial
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family of lines which is naturally a determinant line bundle. A notable use of this De-

terminant line in physics is that it can be interpreted as the vacuum line in quantization

of n free fermions. Then the possible sets of creation operators form the Grassmannian

Gr(n, 2n). ♣Say more ♣

Now consider a short exact sequence of vector spaces:

0→ V1 → V2
π→V3 → 0 (24.20)

Then we claim there is a canonical isomorphism

DET(V1)⊗DET(V3) ∼= DET(V2) (24.21) eq:DET-MULT

To see this, consider any ordered basis {v1, . . . , vd1} for V1 and {w1, . . . , wd3} for V3. Then

lift the wa to vectors w̃a in V2 so that π(w̃a) = wa. Then

{v1, . . . , vd1 , w̃1, . . . , w̃d3} (24.22)

is an ordered basis for V2. Our canonical isomorphism (24.21) is defined by

(v1 ∧ · · · ∧ vd1)⊗ (w1 ∧ · · · ∧ wd3) 7→ v1 ∧ · · · ∧ vd1 ∧ w̃1 ∧ · · · ∧ w̃d3 (24.23)

The main point to check here is that the choice of lifts w̃a do not matter on the RHS. This

is clear since for a different choice w̃′a−w̃a ∈ V1 and the difference is annihilated by the first

part of the product. Next, under changes of bases both sides transform in the same way,

so the isomorphism is basis-independent, and hence natural. Put differently, the element

(v1 ∧ · · · ∧ vd1)−1 ⊗ (v1 ∧ · · · ∧ vd1 ∧ w̃1 ∧ · · · ∧ w̃d3)⊗ (w1 ∧ · · · ∧ wd3)−1 (24.24)

of the line given in the LHS of (24.25) is actually independent of the choice of bases

{v1, . . . , vd1}, {w1, . . . , wd3}, and the lifts w̃a. So even though we chose bases to exhibit this

element it is basis-independent, and hence natural. It gives therefore a natural isomorphism

DET(V1)−1 ⊗DET(V2)⊗DET(V3)−1 ∼= κ (24.25) eq:3-Term-Cplx

The same kind of reasoning as we used to prove (24.21) can be used to prove that if

0→ V1 → · · · → Vi
Ti→Vi+1 → · · · → Vn → 0 (24.26)

is an exact sequence, so imTi = kerTi+1, then there is a canonical isomorphism⊗
i odd

DET(Vi)
−1 ⊗

⊗
i even

DET(Vi) ∼= κ (24.27) eq:ExactSequence

Exercise Determinant of a complex

A multiplicative version of the Euler-Poincaré principal is that if

0→ V1 → · · · → Vi
di→Vi+1 → · · · → Vn → 0 (24.28)

is a complex di+1di = 0 (i.e. not necessarily exact) then there is a natural isomorphism:⊗
i odd

DET(Vi)
−1 ⊗

⊗
i even

DET(Vi) ∼=
⊗
i odd

DET(H i)−1 ⊗
⊗
i even

DET(H i) (24.29) eq:DetComplex
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24.3 Abstract defining properties of determinants

Because we want to speak of determinants and determinant lines in infinite dimensions it

can be useful to take a more abstract approach to the determinant and determinant line

of T . These can be abstractly characterized by the following three properties:

1. det(T ) 6= 0 iff T is invertible.

2. DET(T2 ◦ T1) ∼= DET(T2)⊗DET(T1)

3. If T1, T2, T3 map between two short exact sequences

0 → E1 → E2
π→ E3 → 0

T1 ↓ T2 ↓ T3 ↓
0 → F1 → F2

π→ F3 → 0

(24.30)

then

DET(T2) ∼= DET(T1)⊗DET(T3) (24.31)

canonically, and under this isomorphism

det(T2)→ detT1 ⊗ detT3 (24.32)

Exercise

Show that property (3) means, essentially, that T2 has block upper-triangular form.

Show this by considering

0 → Cn ι→ Cn+m π→ Cm → 0

T1 ↓ T2 ↓ T3 ↓
0 → Cn ι→ Cn+m π→ Cm → 0

(24.33)

where

ι : (x1, . . . , xn)→ (x1, . . . , xn, 0, . . . , 0)

π : (y1, . . . , yn+m)→ (yn+1, . . . , yn+m)
(24.34)

Show that

T2 =

(
T1 T12

0 T2

)
(24.35)

where T12 is in general nonzero.

24.4 Pfaffian Line
subsec:PfaffLine

Just as for determinants, Pfaffians are properly regarded as sections of line (bundles).

Recall that for an antisymmetric matrix A, Pfaff(StrAS) = (detS)Pfaff(A). So the

Pfaffian is basis-dependent, yet, once again, there is a basis independent notion of a Pfaffian.

Let T be an antisymmetric bilinear form on a finite-dimensional vector space V .
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Recall that a bilinear form T on a vector space V can be regarded as an element of

T : V → V ∨ (24.36)

Then, from our definition above

DET(T ) = (ΛdV ∨)⊗2 (24.37)

For an antisymmetric bilinear form we define the Pfaffian line of T to be the “squareroot”:

PFAFF(T ) := ΛdV ∨ (24.38)

On the other hand, a bilinear form defines a map V ⊗ V → κ and hence is an element

of

T ∈ V ∨ ⊗ V ∨ (24.39)

Moreover, if T is antisymmetric then it defines a 2-form

ωT ∈ Λ2V ∨ (24.40)

If d = 2m we define the Pfaffian element to be:

pfaffT :=
ωmT
m!
∈ ΛnV ∨ (24.41)

Exercise Comparing Liouville and Riemann volume forms

a.) Suppose V is a real vector space with a a positive definite symmetric form g. Show

that if Aij is the anti-symmetric matrix of T with respect to an orthonormal basis with

respect to g, then

ωmT
m!

= pfaff(A)vol (g) (24.42)

where vol (g) is the volume form of the metric, i.e. vol (g) = e1∧· · ·∧en where {e1, . . . , en}
is an ordered ON basis.

Note that if we change ordered ON bases then both pfaff(A) and vol (g) change by

detS, where S ∈ O(2m), so the product is well-defined.

b.) Let M be a symplectic manifold with symplectic form ω. Choose any Riemannian

metric g on M . Then let A(g) be the antisymmetric matrix of ω with respect to an ON

frame for g. Note that det(A(g)) does not depend on the choice of ON frame, and is

hence a globally well-defined function. Show that M is orientable iff det(A(g)) admits a

globally-defined square root on M .
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24.5 Determinants and determinant lines in infinite dimensions

24.5.1 Determinants

Now let us consider a linear operator T : H → H. We will take H to be an infinite-

dimensional separable Hilbert space. 60

Can we speak meaningfully of detT in this case? Suppose that T = 1 + ∆, where ∆ is

traceclass. Then it has a set of eigenvalues {δk}∞k=1 with

∞∑
k=1

|δk| <∞ (24.43)

In this case
∑∞

k=1 logδk is a well-defined absolutely convergent series and

detT := lim
N→∞

N∏
k=1

(1 + δk) (24.44)

is well-defined, and can be taken to be the determinant of T .

This is a good start, but the class of operators 1 + traceclass is far too small for use

in physics and mathematics. Another definition, known as the ζ-function determinant,

introduced by Ray and Singer 61 can be defined as follows:

Let T : H → H be a self-adjoint operator with discrete point spectrum {λk}∞k=1 assume

that

1. No λk = 0 (otherwise detT = 0).

2. |λk| → ∞ for k →∞.

3. If we form the series

ζT (s) :=
∑
k

λ−sk :=
∑
λk>0

λ−sk +
∑
λk<0

e−iπs|λk|−s (24.45) eq:zeta-function

then the spectrum goes to infinity rapidly enough so that ζT (s) converges to an

analytic function on the half-plane Re(s) > R0, for some R0, and admits an analytic

continuation to a holomorphic function of s near s = 0.

When these conditions are satisfied we may define

detζ(T ) := exp[−ζ ′T (0)] (24.46)

Remark: A typical example of an operator for which these conditions apply is an

elliptic operator on a compact manifold. For example, the Laplacian acting on tensors on

a smooth compact manifold, or the Dirac operator on a smooth compact spin manifold are

common examples. See Example **** below.

60This is not strictly necessary for some definitions and constructions below.
61GIVE REFERENCE.

– 249 –



The next natural question is to consider determinant lines for operators T : H1 → H2

between two “different” Hilbert spaces. Of course, we proved in Section §13 that any two

separable Hilbert spaces are isomorphic. However, there is no natural isomorphism, so

the question where an expression like detT should be valued is just as valid as in finite

dimensions. A good example is the chiral Dirac operator on an even dimensional spin

manifold. First, we must identify a suitable class of operators where such determinant

lines can make sense.

24.5.2 Fredholom Operators

Definition

a.) An operator T : H1 → H2 between two separable Hilbert spaces is said to be

Fredholm if kerT and cokT are finite-dimensional.

b.) The index of a Fredholm operator is defined to be

Ind(T ) := dim kerT − dim cokT (24.47)

Comments and Facts

1. We are generally interested in unbounded operators. Then, as we have discussed the

domain D(T ) is an important part of the definition of T . The above definition is a

little sloppy for unbounded operators. For some purposes, such as index theory one

can replace T by T/(1 + T †T ) and work with a bounded operator.

2. One often sees Fredholm operators defined with the extra requirement that im(T ) ⊂
H2 is a closed subspace. In fact, it can be shown (using the closed graph theorem)

that if T is bounded and kerT and cokT are finite dimensional then this requirement

is satisfied. ♣Give argument. ♣

3. Another definition one finds is that a bounded operator T is Fredholm iff there is

an inverse up to compact operators. That is, T is Fredholm iff there is a bounded

operator S : H2 → H1 so that TS − 1 and ST − 1 are compact operators. (Recall

that compact operators are finite-rank operators, or limits in the norm topology of

finite-rank operators.) The equivalence of these definitions is known as Atkinson’s

theorem.

4. The space of all bounded Fredholm operators F(H1,H2) inherits a topology from the

operator norm.

5. If T is Fredholm then there is an ε > 0 (depending on T ) so that if ‖ K ‖< ε then

T + K is Fredholm and Ind(T ) = Ind(T + K). Therefore, the index is a continuous

map:

Ind : F(H)→ Z (24.48)

and is hence constant on connected components.
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6. In fact, the space of Fredholm operators has infinitely many connected components,

in the norm topology, and these are in 1-1 correspondence with the integers and can

be labeled by the index.

7. Warning: In the compact-open and strong operator topologies F(H) is contractible.
62

♣♣: EXPLAIN: Even for unbounded operators (with dense domain of definition) the

definition of Fredholm is that the kernel and cokernel are finite dimensional. There is

no need to say that the range is closed. But only when the range is closed is there an

isomorphism of the kernel of T † with the cokernel. A good example is d/dx on L2([1,∞)

(or do we need the half-line?) The kernel is zero because 1 is not normalizable, so the

kernel of T † is also zero. But we can construct a lot of states which are not in the cokernel.

For example 1/xn is in the image of d/dx if n > 3/2 but not if n ≤ 3/2 since the preimage

would not be L2-normalizable. So the range is not closed and the cokernel is not isomorphic

to the kernel of the adjoint.

24.5.3 The determinant line for a family of Fredholm operators

There are two descriptions of the determinant line:

Construction 1: We define a line bundle DET first over the index zero component

F(H1,H2)0 whose fiber at T ∈ F(H1,H2) is

DET|T := {(S, λ)|S : H2 → H1, S−1T ∈ I1}/ ∼ (24.49)

where the equivalence relation is

(S1, λ1) ∼ (S2, λ2) ↔ λ2 = λ1det(S−1
2 S1) (24.50)

where S−1
2 S1 = 1 + traceclass and we use the standard definition for this.

To check this one has to check that ∼ really is an equivalence relation. Next, note

that DET|T is indeed a one-dimensional vector space with vector space structure z ·
[(S, λ)] := [(S, zλ)], so any two vectors are proportional: [(S1, λ1)] = ξ[(S2, λ2)] with

ξ = λ1λ
−1
2 det(S−1

2 S1).

The next thing to check is that, in the norm topology, the lines are indeed a continuous

family of lines.

There is a canonical section of this line: det(T ) := [(T, 1)] (in the index zero compo-

nent).

62Here is an argument provided by Graeme Segal: Identify H with L2[0, 1] and then write H ∼= Ht⊕H1−t

where Ht and H1−t are the Hilbert spaces on the intervals [0, t] and [t, 1], respectively. Then H is also

isomorphic to Ht. For an operator A on H let At be its image under this isomorphism. Then, one can check

that t 7→ At ⊕ 1H1−t is continuous in the norm topology, deforms A to 1, and stays in the set of Fredholm

operators if A is Fredholm.
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One can show that for any T there is a canonical isomorphism

DET|T ∼= DET(kerT )−1 ⊗DET(cokT ) (24.51)

The reason we can’t just use the RHS as a definition of the determinant line is that

in families T (s), we can have the spaces kerT (s) and cokT (s) jump discontinuously in

dimension.

This leads us to consider the second construction:

Construction 2: Let S be a family of Fredholm operators T (s). For any positive real

number a define

Ua = {T |a /∈ σ(T †T )} (24.52)

If T ∈ Ua then we can use the spectral decomposition of the Hermitian operator T †T to

split the Hilbert space into the “low energy” and “high energy” modes:

H = H<a ⊕H>a (24.53)

(i.e. we use the spectral projection operators). Moreover, since T is Fredholm, the “low

energy” space H<a is in fact finite-dimensional.

Now notice that we have an exact sequence:

0→ kerT → H1
<a

T→ H2
<a → cokT → 0 (24.54)

Now, using the property of determinant lines in exact sequences we conclude that there is

a canonical isomorphism

DET(kerT )−1 ⊗DET(cokT ) ∼= DET(H1
<a)
−1 ⊗DET(H2

<a) (24.55)

The advantage of using the RHS of this equation is that now we can consider what happens

on overlaps Uab = Ua ∩ Ub, where we can assume WLOG that a < b. Then

Hb = Ha ⊕Ha,b (24.56)

where Ha,b is the sum of eigenspaces with eigenvalues between a, b. Note that there is an

isomorphism Ta,b : H1
a,b → H2

a,b (which is just the restriction of T ) and hence detTa,b is

nonzero and a canonical trivialization of

DET(H1
a,b)
−1 ⊗DET(H2

a,b) (24.57)

Using these trivializations the determinant line bundles patch together to give a smooth

determinant line bundle over the whole family. ♣More detail. Warn

about gerbes. ♣

24.5.4 The Quillen norm

In physical applications we generally want our path integrals and correlation functions to

be numbers, rather than sections of line bundles. (Sometimes, we just have to live with

the latter situation.)

‖ (v1 ∧ · · · ∧ vn)−1 ⊗ (w1 ∧ · · · ∧ wm) ‖2=
det(wa, wb)

det(vi, vj)
det′ζ(T

†T ) (24.58)

♣ SHOW IT PATCHES NICELY ♣
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24.6 Berezinian of a free module

There is an analog of the determinant line of a vector space also in Z2-graded linear algebra.

Let A be a supercommutative superalgebra and consider a free module M ∼= Ap|q.
Then we can define a free module Ber(M) of rank (1|0) or (0|1) over A by assigning for

every isomorphism

M ∼= e1A⊕ · · · ⊕ ep+qA (24.59)

a basis vector in Ber(M) denoted by [e1, . . . , ep|ep+1 . . . , epq ] so that if T is an automorphism

of M then T (ei) = ekX
k
j , with the matrix elements Xk

j ∈ A and we take

[Te1, . . . , T ep|Tep+1 . . . , T epq ] = Ber(X)[e1, . . . , ep|ep+1 . . . , epq ] (24.60)

To complete the definition we take the parity of Ber(M) to be

Ber(M) ∼=

{
A1|0 q = 0mod2

A0|1 q = 1mod2
(24.61)

Now, given an exact sequence

0→M ′ →M →M ′′ → 0 (24.62)

with M ′ ∼= Ap′|q′ , M ′′ ∼= Ap′′|q′′ , and M ∼= Ap|q then there is a natural isomorphism

Ber(M ′)⊗ Ber(M ′′)→ Ber(M) (24.63) eq:BerLineMult

This isomorphism is defined by choosing a basis {e′1, . . . , e′p′+q′} for M ′ and a complemen-

tary basis {ẽ′′1, . . . , ẽ′′p′′+q′′} for M which projects to a basis {e′′1, . . . , e′′p′′+q′′} for M ′′. Then

the multiplicativity isomorphism (24.63) is defined by

[e′1, . . . , e
′
p′ |e′p′+1, . . . e

′
p′+q′ ]⊗ [e′′1, . . . , e

′′
p′′ |e′′p′′+1, . . . , e

′′
p′′+q′′ ]

→ [e′1, . . . , e
′
p′ , ẽ

′′
1, . . . , ẽ

′′
p′′ |e′p′+1, . . . e

′
p′+q′ , ẽ

′′
p′′+1, . . . , ẽ

′′
p′′+q′′ ]

(24.64)

Although we have chosen bases to define the isomorphism one can check that under changes

of bases the isomorphism remains of the same form, so in this sense it is “natural.”

Now in our discussion of integration over a superdomain the densities Dp|q on Rp|q can

be recognized to be simply Ber(Ω1Rp|q). This behaves well under coordinate transforma-

tions and so defines a sheaf on Mred on a supermanifold, and so:
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The analog of a density for a manifold is a global section of Ber(Ω1M) on a super-

manifold M.

In supersymmetric field theories, this is the kind of quantity we should be integrating. ♣Should complete

the parallel

discussion by

Berezinian line for

linear

transformation

between modules

etc. ♣

24.7 Brief Comments on fermionic path integrals and anomalies
subsec:AnomalyComments

♣dbend: [latex

command not

working]: Warning:

This section

assumes a

knowledge of many

things we have yet

covered above. It is

really out of place

here. ♣

24.7.1 General Considerations

Determinant lines are of great importance in quantum field theory, especially in the theory

of anomalies.

Typically one has a fermionic field ψ(x) and a Dirac-like-operator and the path integral

involves an expression like ∫
[dψdψ̄]exp[

∫
iψ̄Dψ] (24.65)

where
∫

[dψdψ̄] is formally an infinite-dimensional version of the Berezin integral. At least

formally this should be the determinant of D.

However, it is often the case that D is an operator between two different spaces, e.g.

on an even-dimensional spin manifold M the chiral Dirac operator is an operator

D : L2(M,S+ ⊗ E)→ L2(M,S− ⊗ E) (24.66)

where S± are the chiral spin bundles on M and E is a bundle with connection (in some

representation of the gauge group). There is no canonical way of relating bases for these

two Hilbert spaces, so detD must be an element of the determinant line DET(D).

If we have families of Dirac operators parametrized, say, by gauge fields, then we have

a determinant line bundle DET(D) over that family, and detD is a section of that line

bundle. If D is Fredholm then we can still define

DET(D) = Λmx(kerD)∨ ⊗ Λmx(cokD) (24.67)

♣Some of above

paragraph now

redundant ♣The above remarks have implications for the theory of anomalies. In particular the

geometrical theory of anomalies due to Atiyah and Singer.

In a general Lagrangian quantum field theory the path integral might look like

Z ∼
∫
B

[dφ]

∫
[dψdψ̄]exp[Sbosonic(φ) +

∫
ψ̄Dφψ + Sinteraction] (24.68)

where B is some space of bosonic fields. For example it might consist of the set of maps

from a worldvolume W to a target manifold M , in the case of a nonlinear sigma model,

or it might be the set of gauge equivalence classes of gauge fields, or some combination

of these ingredients. Note that the Dirac-like operator Dφ typically depends on φ and

Sinteraction here indicates interactions of higher order in the fermions. Let us suppose that
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the interactions between bosons and fermions can be handled perturbatively. If we first

integrate over the fermions then we obtain an expression like

Z ∼
∫
B

[dφ]exp[Sbosonic(φ)]detDφ (24.69)

where detDφ is a section of a line bundle DET (Dφ) over B, rather than a C∗-valued

function on B.

This expression is meaningless, even at the most formal level, unless the line bundle

has been trivialized with a trivial flat connection.

Remarks

1. In physical examples there is a natural connection on DET(Dφ) and it turns out that

the vanishing of the curvature is the vanishing of the “perturbative anomaly.”

2. If the perturbative anomaly is nonzero then the path integral does not even make for-

mal sense. Of course, there are many other demonstrations using techniques of local

field theory that the theory is ill-defined. But this is one elegant way to understand

that fact.

3. There can be anomaly-canceling mechanisms. One of the most interesting is the

Green-Schwarz mechanism. In this method one introduces an action exp[SGS [φ]]

which is actually not a well-defined function from B → C∗, but rather is a section

of a line bundle over B, where B is the space of bosonic fields. If the line bundle

with connection is dual to that of the fermions so that LGS ⊗ DET(Dφ) has a flat

trivialization then eSGS [φ]detDφ can be given a meaning as a well-defined function on

B. Then it can - at least formally - be integrated in the functional integral. ♣Actually, the

general mechanism

was known before

GS, but GS is a

very nice example of

the general idea. ♣

4. Even if the perturbative anomalies cancel, i.e. the connection is flat, if the space of

bosonic fields is not simply connected then the flat connection on the determinant

line can have nontrivial holonomy. This is the “global anomaly.”

In Section §24.7.3 below we will give perhaps the simplest illustration of a global

anomaly.

24.7.2 Determinant of the one-dimensional Dirac operator

As a warmup, let us consider the odd-dimensional Dirac operator on the circle. This

maps L2(S1, S) → L2(S1, S) where S is the spin bundle on the circle. There are two

spin structures. The tangent bundle is trivial and hence we can simply think of spinors

as complex functions on the circle with periodic or anti-periodic boundary conditions. So,

concretely, we identify the Dirac operator coupled to a real U(1) gauge field as

Da =
d

dt
+ ia(t) (24.70)
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where t ∼ t+ 1 is a coordinate on S1, a(t) ∈ R is periodic and identified via gauge trans-

formations, and D acts on complex-valued functions which are periodic or antiperiodic.

The operator Da is Fredholm and maps H → H, detDa as a complex number. The first

simplification we can make is that we can gauge a(t) to be constant. But we cannot remove

the constant by a well-defined gauge transformation since
∮
a(t)dt is gauge invariant. Once

this is done the eigenfunctions are e2πi(n+ε)t where n ∈ Z and ε = 1
2 for AP and ε = 0 for

P boundary conditions. The eigenvalue is then 2πi(n+ ε) + ia. Note that we can account

for both boundary conditions by shifting a → a ± 2πε so we will temporarily set ε = 0 to

simplify the formulae.

We could proceed by evaluating the ζ function. However, it is actually easier to proceed

formally as follows:

detDa
?
=

∏
n∈Z

(2πin+ ia) (24.71)

It is good to rearrange this formal expression by putting together the positive and negative

integers and separating out the n = 0 term:

∏
n∈Z

(2πin+ ia) = ia
∞∏
n=1

(2πin+ ia)(−2πin+ ia)

= (ia)

∞∏
n=1

(2πn)2(1− a2

(2πn)2
)

=

( ∞∏
n=1

(2πn)2

)(
ia
∞∏
n=1

(1− a2

(2πn)2
)

) (24.72)

Note that we can separate out the infinite factor
∏∞
n=1(2πn)2, and what remains contains

all the a-dependence and is in fact a well-defined product so we have:

det(Da) = (ia)
∞∏
n=1

(1− a2

(2πn)2
) = 2i sin(a/2) (24.73) eq:DetCF

where we have used the famous formula

∞∏
n=1

(
1− z2

n2

)
=

sinπz

πz
(24.74)

This is the result for P-boundary conditions. The result for AP-boundary conditions is

obtained by shifting a→ a+ π

Remark: Using ζ-function regularization the “constant”
(∏∞

n=1(2πn)2
)

can be argued
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to be in fact = 1 as follows:

∞∏
n=1

(2πn)2 = exp[
∞∑
n=1

log(2πn)2]

= exp[− d

ds
|s=0

∑
n=1

(2πn)−2s]

= exp[− d

ds
|s=0(2π)−2sζ(2s)]

= exp[2log(2π)ζ(0)− 2ζ ′(0)]

= 1

(24.75)

where in the last line we used the expansion of the Riemann zeta function around s = 0:

ζ(s) = −1

2
− slog

√
2π +O(s2) (24.76)

The first equality above is formal. The second is a definition. The remaining ones are

straightforward (and rigorous) manipulations.

24.7.3 A supersymmetric quantum mechanics
subsubsec:SQM-SpinStructure

Now, let us consider a supersymmetric quantum mechanics with target space given by a

Riemannian manifold (M, gµν). If xµ, µ = 1, . . . , n = dimM , are local coordinates in a

patch of M then there are maps from the one-dimensional worldline (xµ(t), ψµ(t)). We can

think of (xµ(t), ψµ(t)) as functions on the supermanifold ΠTM and we have a map from

R1|0 → ΠTM . The action is:

S =

∫
dt
{
gµν(x(t))ẋµẋν + iψa[

d

dt
δab + ẋµ(t)ωabµ (x(t))]ψb

}
(24.77) eq:SQM

Here gµν is a Riemannian metric on M and ωabµ dx
µ is a spin connection. The a, b = 1, . . . , n

refer to tangent space indices.

Let us consider just the theory of the fermions in a fixed bosonic background.

Consider briefly the Hamiltonian quantization of the system. Classically the bosonic

field is just a point x0 ∈M . The canonical quantization relations on the fermions ψa gives

a real Clifford algebra:

{ψa, ψb} = 1 (24.78)

If n = 2m then the irreducible representations are the chiral spin representations of M .

Therefore, the wavefunctions of the theory are sections of a spinor bundle over M . There-

fore, the Hilbert space is L2(M ;S), the L2 sections of the spin bundle over M . Therefore,

if the theory is sensible, M should be spin. It is interesting to see how that constraint

arises just by considering the path integral on the circle.

Let us consider the path integral on the circle, so t ∼ t + 1. Again, we focus on the

fermionic part of the path integral, so fix a loop x : S1 →M .

The fermionic path integral gives, formally pfaff(DA) where

DA = i

(
d

dt
δab +Aab(t)

)
(24.79) eq:DeeA
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where Aab(t) is the real so(2m) gauge field

Aab(t) = ẋµ(t)ωabµ (x(t)). (24.80) eq:LoopGF

It is very useful to generalize the problem and consider the operator DA in (24.79) for

an arbitrary SO(2m) gauge field Aab(t), with a, b = 1, . . . , 2m. So we consider the Berezin

integral

Z =

∫
[dψa(t)]e

∫ 1
0 iψ

a(t)( ddt δ
ab+Aab(t))ψb(t)dt (24.81)

Formally, this is just pfaff(DA). In this infinite-dimensional setting we have two approaches

to defining it:

1. We can consider the formal product of skew eigenvalues and regularize the product,

say, using ζ-function regularization. Then we must choose a sign for each skew eigenvalue.

2. We can evaluate the determinant and attempt to take a squareroot.

We will explain (2), leaving (1) as an interesting exercise.

24.7.4 Real Fermions in one dimension coupled to an orthogonal gauge field

So, we want to evaluate det(DA), where DA : L2(S1,R2m)→ L2(S1,R2m). (Note we have

complexified our fermions by doubling the degrees of freedom to compute the determinant.)

All the gauge invariant information is in P exp
∮
A(t)dt ∈ SO(2m). By a constant

orthogonal transformation the path ordered exponent can be put in a form

P exp

∮
A(t)dt = R(α1)⊕R(α2)⊕ · · · ⊕R(αm) (24.82) eq:Cartan

and by a single-valued gauge transformation Aab(t) can be gauged to a form which is

t-independent. Recall that

R(α) =

(
cosα sinα

− sinα cosα

)
(24.83)

so that the gauge invariant information only depends on αi ∼ αi + 2π.

Therefore using gauge transformations we can reduce the problem of evaluating det(DA)

to the evaluation of the determinant of

Dα =
d

dt
+

(
0 α

−α 0

)
(24.84) eq:RealD

We can diagonalize the matrix and hence we get the Dirac operator

Dα =
d

dt
+

(
iα 0

0 −iα

)
(24.85)

Now, using the result (24.73) above we learn that

(PfaffDα)2 = 4 sin2(α/2) = det(1−R(α)) (24.86) eq:twotwo
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In general, for the antisymmetric operator DA (24.79) coupled to any SO(2m) gauge

field on the circle we have

(PfaffDA)2 = det(1− hol(A)) (24.87)

Now we would like to take a square root of the determinant to define the Pfaffian.

Let us consider a family of operators parametrized by g ∈ SO(2m) with P exp
∮
Adt = g.

Then det(1 − g) is a function on SO(2m) which is conjugation invariant, and hence we

can restrict to the Cartan torus (24.82). It is clear that this does not have a well-defined

square-root. If we try to take
∏m
i=1 2 sin(αi/2) then the expression has an ill-defined sign

because we identify αi ∼ αi + 2π. The expression does have a good meaning as a section

of a principal Z2 bundle over SO(2m). Put differently, if we pull back the function to

Spin(2m):

1→ Z2 → Spin(2m)→ SO(2m)→ 1 (24.88)

then the function det(1− g̃) (where we take the determinant in the 2m-dimensional repre-

sentation) does have a well-defined square-root. To see this it suffices to work again with

the Cartan torus since the functions are conjugation invariant and therefore we need really

only consider

1→ Z2 → Spin(2)→ SO(2)→ 1 (24.89)

The group Spin(2) is the group of even invertible elements

r(β) := exp[βe1e2/2] = cos(β/2) + sin(β/2)e1e2 (24.90)

in the Clifford algebra C`+2. Here β ∼ β + 4π. The projection to SO(2) is given by

r(β) 7→ R(α) with α = β, but a full period in α only lifts to a half-period in β. So on

Spin(2m) we have √
det(1− g̃) =

m∏
i=1

(2 sinβi/2) (24.91)

and this expression is well-defined.

Remark: In fact, this expression has a nice interpretation in terms of the characters

in the chiral spin representations:

m∏
i=1

(2 sinβi/2) = i−m (chS+(g̃)− chS−(g̃)) (24.92)

24.7.5 The global anomaly when M is not spin

Let us now return to our supersymmetric quantum mechanics above. We have learned that

after integrating out the fermions the path integral on the circle is

Z(S1) =

∫
[dxµ(t)]e−

∫ 1
0 dtgµν(x(t))ẋµẋν

√
det(1−Hol(x∗ω)) (24.93)

where now for a given loop in the manifold x : S1 →M we are using the holonomy of the

orthogonal gauge field (24.80).
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The question is: Can we consistently define the sign of the square root over all of loop

space LM = Map(S1 →M)?

Let us fix a point x0 ∈M and choose a basis for the tangent space at x0. Then consider

based loops x(t) that begin and end at x0. Then Hol(x∗ω) defines a map from based loops

Ωx0(M) → SO(2m). If M is a spin manifold then there is a well-defined lift of this map

to Spin(2m). Then a well-defined square-root exists. ♣Put in

commutative

diagram ♣On the other hand, it can be shown using topology that if M is not spin then there

will be a family of based loops: xµ(t; s) = xµ(t; s+ 1) so that at s = 0 we have a constant

map to a point xµ(t; 0) = xµ0 ∈ M and xµ(t; s) loops around a nontrivial 2-sphere in M

such that ♣Picture of the

lasso of the 2-sphere

♣

√
det(1−Hol(x∗ω))|s=0 = −

√
det(1−Hol(x∗ω))|s=1 (24.94)

Thus, if M is not spin, the fermionic path integral in the SQM theory (24.77) cannot

be consistently defined for all closed paths xµ(t) and therefore the path integral does not

makes sense. This is an example of a global anomaly.

Remark: Recall the exercise from §24.4. Apply this to the 2-form on LM defined

by:

ω =

∮ 1

0
dtδxa(t)

(
d

dt
δab + ẋµ(t)ωabµ (x(t))

)
δxb(t) (24.95)

One can argue that ω is closed and nondegenerate, hence it is a symplectic form. Then

we can interpret the above remarks as the claim that A manifold M is spin iff LM is

orientable.
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25. Quadratic Forms And Lattices

Lattices show up in many ways in physics. The study of lattices in 2 and 3 dimensions is

quite useful in solid state physics, in part because the types of atoms in a crystal are (by

definition of a crystal) invariant under translation by a lattice. Higher dimensional lattices

have also played a role in solid state physics, in the context of “quasicrystals” and also in

the classification of quantum Hall states.
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In this course we will encounter many very symmetric higher dimensional lattices as

root lattices and weight lattices of Lie algebras. These encode many important aspects of

the representation theory of compact Lie groups.

It turns out that many special lattices, such as even unimodular lattices play a dis-

tinguished role in string theory and in conformal field theory through vertex operator

constructions. Lattices also play an important role in the study of compactifications of

string theory.

Lattices of charges are again of importance in studying duality symmetries in super-

symmetric quantum field theory and string theory.

In math lattices are studied for their own sake, as very beautiful objects, but they

also have far flung connections to other branches of math such as number theory and

error-correcting codes. See Conway & Sloane, Sphere Packings, Lattices, and Groups for a

comprehensive survey. Finally, they are also important in topology (as intersection forms),

especially in the topology of four-manifolds.

25.1 Definition

The word “lattice” means different things to different people. For some people it is a finitely

generated free abelian group. In this case, up to isomorphism there is just one invariant:

the rank, and any “lattice” in this sense is just Zr, up to isomorphism. To some people

it is a regular array of points in some space (we will regard these as lattices embedded in

a space.) In these notes we take a “lattice” to be a finitely generated free Abelian group

with the extra data of a nondegenerate symmetric bilinear form: 63

Definition A lattice Λ is a free abelian group equipped with a nondegenerate,

symmetric bilinear quadratic form:

〈·, ·〉 : Λ× Λ→ R (25.1)

where R is a Z-module. Thus:

1. 〈v1, v2〉 = 〈v2, v1〉, ∀v1, v2 ∈ Λ.

2. 〈nv1 +mv2, v3〉 = n〈v1, v3〉+m〈v2, v3〉, ∀v1, v2, v3 ∈ Λ, and n,m ∈ Z.

3. 〈v, w〉 = 0 for all w ∈ Λ implies v = 0.

When R = Z we say we have an integral lattice. We will also consider the cases

R = Q,R.

We say that two lattice (Λ1, 〈·, ·〉1) and (Λ2, 〈·, ·〉2) are equivalent if there is a group

isomorphism φ : Λ1 → Λ2 so that φ∗(〈·, ·〉2) = 〈·, ·〉1. The automorphism group of the

lattice is the group of φ’s which are isomorphisms of the lattice with itself. These can be

a finite or infinite discrete groups and can be very interesting.

There is a simple way of thinking about lattices in terms of matrices of integers. A

(finitely generated) free abelian group of rank n is isomorphic, as a group, to Zn. Therefore,

63Hence, sometimes the term “quadratic module” is used.
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we can choose an ordered integral basis {ei}ni=1 for the lattice (that is, a set of generators

for the abelian group) and then define the n× n Gram-Matrix

Gij := 〈ei, ej〉. (25.2)

Of course, the basis is not unique, another one is defined by

ẽi :=
∑
j

Sjiej (25.3) eq:chgbss

where, now, the matrix S must be both invertible and integral valued, that is

S ∈ GL(n,Z) (25.4) eq:intgrlequivi

Under the change of bases (25.3) the Gram matrix changes to

G→ G̃ = StrGS (25.5) eq:intgrlequiv

So lattices can be thought of as symmetric nondegenerate matrices of integers with an

equivalence relation given by (25.5).

Remark. As we will soon begin to see, the classification of lattices is somewhat

nontrivial. In fact, it is an extremely subtle and beautiful problem, only partially solved.

By contrast, the classification of integral antisymmetric forms is fairly straightforward.

Any such form can be brought by an integral transformation to the shape: 64 ♣Clarify which

addition of Lang’s

book you are

referring to. ♣
(

0 d1

−d1 0

)
⊕

(
0 d2

−d2 0

)
⊕

(
0 d3

−d3 0

)
⊕ · · · ⊕

(
0 dk
−dk 0

)
(25.6) eq:antisymm

and this form is unique if we require di > 0 and d1|d2| · · · |dk. This is important in the

quantization of certain mechanical systems with compact coordinates and momenta. It

classifies the integral symplectic forms on a torus, for example.

Exercise

a.) Show that the group of integer invertible matrices whose inverses are also integer

matrices form a group. This is the group GL(n,Z).

Note that it is not the same as the set of integer matrices which are invertible. For

example (
2 3

1 1

)
∈ GL(2,Z) (25.7)

but (
2 1

1 3

)
/∈ GL(2,Z) (25.8)

64For a proof see Lang, Algebra, p. 380.
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b.) Show that for S ∈ GL(n,Z), we necessarily have |detS| = 1.

c.) SL(n,Z) is the subgroup of matrices of determinant 1. What is the center of

SL(n,Z)?

Figure 17: A picture of some important two-dimensional lattices embedded into Euclidean R2.

From Wikipedia. fig:latticeii

Figure 18: A three-dimensional lattice, known as the body centered cubic lattice. fig:BodyCenteredCubic

25.2 Embedded Lattices

Quite often we do not think of lattices in the above abstract way but rather as a discrete
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Figure 19: A three-dimensional lattice, known as the face centered cubic lattice. fig:FCC-Lattice

subgroup of Rm. 65 See for example Figure 17, above for some rank 2 lattices in R2 and

Figures 18 and 19 for some embedded lattices in R3.

To describe an embedded lattice we can consider the generators to be linearly inde-

pendent vectors ~e1, · · · , ~en ∈ Rm. (Necessarily, m ≥ n). Define

Λ ≡ {
n∑
i=1

`i~ei|`i ∈ Z}. (25.9) eq:lattice

As an Abelian group, under vector addition, Λ is isomorphic to Zn. Moreover, if Rm is

equipped with a symmetric quadratic form (e.g. the Euclidean metric) then the lattice

inherits one:

〈·, ·〉 : Λ× Λ→ R (25.10)

We simply restrict the quadratic form to the subset Λ ⊂ Rm. (We can also go the other

way: The tensor product

Λ⊗Z R ∼= Rn (25.11)

so by extending scalars from Z to R a quadratic form on an abstract rank n lattice deter-

mines one on Rn.)

If the coordinates of the vectors are ~ei = (ei1, . . . , eim) (so we view vectors as 1 ×m
matrices) then we can form an n×m generating matrix

M =

e11 e12 · · · e1m

...
...

...

en1 en2 · · · enm

 (25.12)

The lattice is the set of vectors ξM where ξ ∈ Zn is viewed as a 1 × n matrix. If we use

the Euclidean metric on Rm to induce the bilinear form on Λ then the Gram-Matrix is the

65By a discrete subgroup we mean, heuristically, that there are no accumulation points. Technically, the

action on G should be properly discontinuous.
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n × n matrix, G = MM tr. Different generating matrices are related by M 7→ StrM , for

S ∈ GL(n,Z).

Example 1: The most obvious example is Λ = Zn ⊂ Rn. For n = 2 this is a square lattice,

for n = 3 it is the simple cubic lattice. For general n we will refer to it as a “hypercubic

lattice.” The automorphisms will be linear transformations on the vectors, and using the

standard basis we can identify them with n × n matrices. The matrices must be integral

matrices to preserve Zn. But they must also be in in O(n;R) to preserve the quadratic

form M trM = 1, that is Str1S = 1. Since the rows and columns must square to 1 and be

orthogonal these are signed permutation matrices. Therefore

Aut(Zn) = Zn2 o Sn (25.13) eq:AutZn

where Sn acts by permuting the coordinates (x1, . . . , xn) and Zn2 acts by changing signs

xi → εixi, εi ∈ {±1}.

Example 2 As a good example of the utility of allowing m > n let us define:

An := {(x0, x1, . . . , xn) ∈ Zn+1|
n∑
i=0

xi = 0} ⊂ Rn+1 (25.14) eq:AnDef

A group of automorphisms of the lattice An is is rather obvious from (25.14), namely

the symmetric group Sn+1 acts by permutation of the coordinates. Another obvious sym-

metry is (x0, . . . , xn) 7→ (−x0, . . . ,−xn). These generate the full automorphism group

Aut(An) = Z2 × Sn+1 n > 1 (25.15)

for n = 1, A1
∼=
√

2Z ⊂ R and the automorphism group is just Z2.

A nice basis is given by

αi = ~ei − ~ei−1 i = 1, . . . , n (25.16) eq:Anbasis

where ~ei, i = 0, . . . , n, are the standard basis vectors in Rn+1. The Gram matrix is then

the famous Cartan matrix for An:

Gij = Cij = 2δi,j − δi,j−1 − δi,j+1 i, j = 1, . . . , n (25.17)

The corresponding matrix is tridiagonal:

C(An) =



2 −1 0 · · · · · · 0

−1 2 −1 · · · · · · 0

0 −1 2 · · · · · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 · · · · · · 2 −1 0

0 · · · · · · −1 2 −1

0 · · · · · · 0 −1 2


(25.18)
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Note that we could project two basis vectors of A2 into a plane R2 to get

α1 =
√

2(1, 0)

α2 =
√

2(−1

2
,

√
3

2
)

(25.19) eq:atwo

and as a check we can use these to compute ♣Give a figure and

say how the

projection is done.

♣

C(A2) =

(
2 −1

−1 2

)
(25.20)

Using these vectors we generate a beautifully symmetric hexagonal lattice in the plane.

♣ FIGURE OF HEXAGONAL LATTICE HERE ♣
Similarly we have

C(A3) =

 2 −1 0

−1 2 −1

0 −1 2

 (25.21)

and we could also realize the lattice as the span of vectors in R2

α1 =

α2 =

α3 =

(25.22) eq:atwo

Example 3 Consider the set of points Dn ⊂ Zn defined by

Dn := {(x1, . . . , xn) ∈ Zn|x1 + · · ·+ xn = 0 mod2} (25.23)

If we embed into Rn in the obvious way then we can use the Euclidean metric to induce

an integer-valued quadratic form. To get some intuition, let us consider D3. This is known

as the “face-centered-cubic” or fcc lattice. To justify the name note that there is clearly

a lattice proportional to the cubic lattice and spanned by (2, 0, 0), (0, 2, 0), and (0, 0, 2).

However in each xy, xz, and yz plane the midpoint of each 2 × 2 square is also a lattice

vector. Choosing such midpoint lattice vectors in each plane gives a generating matrix:

M =

 1 −1 0

0 1 −1

−1 −1 0

 (25.24)

and one then computes

MM tr =

 2 −1 0

−1 2 −1

0 −1 2

 (25.25)

so in fact D3
∼= A3. (This reflects a special isomorphism of simple Lie algebras.)
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Example 4 The n-dimensional bcc lattice, BCCn, where bcc stands for “body-centered

cubic” is the sublattice of Zn consisting of (x1, . . . , xn) so that the xi are either all even or

all odd. Note that if all the xi are odd then adding ~e produces a vector with all xi even,

where ~e = (1, 1, . . . , 1) = ~e1 + · · ·+ ~en. Therefore, we can write:

BCCn = 2Zn ∪ (2Zn + ~e) (25.26)

Clearly 2Zn is proportional to the “cubic” lattice. Adding in the orbit of ~e produces one

extra lattice vector inside each n-cube of side length 2, hence the name bcc.

Example 5: Now take R2 as a vector space but we do not use the Euclidean metric on

R2 to induce the bilinear form on Λ. Rather we use the Minkowski signature metric

R1,1 = {(t, x)|〈(t, x), (t, x)〉 = −t2 + x2} (25.27) eq:2DMink

Let R > 0, and consider the lattice Λ(R) generated by

e1 =
1√
2

(
1

R
,

1

R
)

e2 =
1√
2

(−R,R)

(25.28) eq:nafi

Note that for any R we have simply:

Gij =

(
0 1

1 0

)
(25.29)

So, manifestly, as lattices these are all isomorphic, although as embedded lattices they

depend on R.

♣ FIGURE OF e1, e2 IN THE PLANE ♣

Remarks: Solids comprised of a single element will form simple three-dimensional

lattices in nature, at least in the limit that they are infinitely pure and large. Those on

the LHS of the periodic table tend to be bcc e.g. the alkali metals of column one and Ba,

Ra, while those towards the right tend to be fcc (e.g. Cu, Ni, Ag, Au, Pt, Ir, Al, Pb) or

the column of noble gases (except He).

Exercise

If Λ is a lattice, let 2Λ be the lattice of elements divisible by 2, i.e., vectors ~v such that
1
2~v ∈ Λ. Show that 2Λ is a subgroup of Λ. Suppose ~v is not divisible by 2. Is 2Λ + ~v a

subgroup?
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Exercise Automorphisms of Zn

Check that the group of signed permutations is isomorphic to the semidirect product

(25.13). Write explicitly α : Sn → Aut(Zn2 ).

25.3 Some Invariants of Lattices

What can we say about the classification of lattices?

If we were allowed to take S ∈ GL(n,R) then Sylvester’s theorem guarantees that we

can change basis to put the Gram matrix into diagonal form so that

G̃ij = Diag{−1t,+1s} (25.30)

This provides us with two important invariants of the lattice, the signature and the rank.

The rank is

r = t+ s (25.31)

and we will define the signature to be

σ = s− t (25.32)

When we work of R = Z there are going to be more invariants:

Example: Consider two lattices:

A. ΛA = e1Z⊕ e2Z with form:

GA =

(
−1 0

0 +1

)
(25.33)

B. ΛB = e1Z⊕ e2Z with form:

GB =

(
0 1

1 0

)
(25.34)

We ask:

Can these be transformed into each other by a change of basis with S ∈ GL(2,Z)?

The answer is clearly “yes” over R because they both have Lorentzian signature.

The answer is clearly “no” over Z because the norm-square of any vector in ΛB is even

(n1e1 + n2e2)2 = 2n1n2, while this is not true of ΛA.

The lattice ΛB is an important lattice, it is denoted by II1,1 or by H(1). 66

Definition. A lattice Λ is called an even lattice if, for all x ∈ Λ

〈x,x〉 ∈ 2Z (25.35)

(Note: This does not preclude 〈x, y〉 being odd for x 6= y. ) A lattice is called odd if it is

not even.

66Some authors use the notation U(1). We do not use this notation since it can cause confusion.
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Note that under G→ StrGS,

(StrGS)ii =
∑
k

(Ski)
2Gkk + 2

∑
k<j

GkjSkiSji (25.36)

Now, S ∈ GL(n,Z), so the Sij are integers, so if the diagonal elements of G are even in

one basis then they are even in all bases.

In order to describe our next invariant of lattices we need to introduce the dual lattice.

Given a lattice Λ we can define the dual lattice 67

Λ∗ := HomZ(Λ,Z) (25.37) eq:dualf

where Hom means a Z-linear mapping.

As we have now seen several times, given the data of a bilinear form there is a Z-linear

map ` : Λ→ Λ∗ defined by

`(v)(v′) := 〈v, v′〉. (25.38)

This has no kernel for a nondegenerate form and hence we can consider Λ ⊂ Λ∗ and so we

may form:

D(Λ) := Λ∗/Λ (25.39)

This abelian group is known as the discriminant group, or glue group.

Next we make Λ∗ into a lattice by declaring ` to be an isometry onto its image:

〈v, w〉Λ = 〈`(v), `(w)〉Λ∗ (25.40) eq:isometry

We then extend to the rest of Λ∗ to make it a lattice,

To make this more concrete suppose ei is a basis for Λ and let êi be the dual basis for

Λ∗ so that

êi(ej) = δij (25.41)

It follows that

`(ei) =
∑
j

Gij ê
j (25.42)

Now, using (25.40) it follows that Λ∗ has the Gram matrix

〈êi, êj〉 = Gij (25.43)

where GijGjk = δik.

Note that in general Λ∗ is not an integral lattice since Gij will be a rational matrix if

Gij is an integral matrix. Let us denote

g := detGij (25.44)

67The lattice Λ∗ is closely related to the reciprocal lattice of solid state physics. However, there are some

differences. Conceptually, the reciprocal lattice is an embedded lattice, embedded in momentum space.

Moreover, there are some normalization differences by factors of 2π. More importantly, the reciprocal

lattice depends on things like lattice spacings.
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Gij =
1

g
Ĝij (25.45)

where Ĝij is a matrix of integers.

Lemma The discriminant group is a finite abelian group of order g

Proof : To see that it is finite we note that

gêj = `(Ĝijej) (25.46)

and hence [gêj ] = 0 in the discriminant group. Therefore, every element is torsion and

hence the group is finite. By the classification of finite abelian groups we see that the order

|D(Λ)| divides g.

In fact |D(Λ)| = g as the following argument shows:

If Λ ⊂ Rn is an embedded lattice of maximal rank, and both the dual pairing and the

Gram-matrix are inherited from the standard Euclidean bilinear form on Rn and we may

write:

êi =
∑
j

Gijej

ei =
∑
j

Gij ê
j

(25.47) eq:dualbs

Now use the notion of fundamental domain defined in the next chapter. By comparing

the volume of a unit cell of Λ∗ to that of Λ we find:

|D(Λ)| =
√

detGij√
detGij

= detGij (25.48)

concluding the proof ♠ ♣Would be better

to give an argument

that does not use

the fundamental

domain. ♣Moreover, D(Λ) inherits a bilinear form valued in Q/Z. (Recall that an abelian group

is a Z-module and one can define bilinear forms modules over a ring.) Specifically, we

define

b ([v1], [v2]) = 〈v1, v2〉modZ (25.49)

The finite group D(Λ) together with its bilinear form to Q/Z is an invariant of the

lattice.

Example 1: Consider Λ = νZ ⊂ R. We use the standard Euclidean metric on R so that

ν2 must be an integer n. Then Λ∗ = 1
νZ. Note that Λ ⊂ Λ∗, indeed, D(Λ) ∼= Z/nZ so

[Λ∗ : Λ] = n (25.50)

There are only two choices of basis for Λ, namely e1 = ±ν. The Gram matrix is G11 =

ν2 = n. The bilinear form on the discriminant group is

b
( r
ν

+ νZ,
s

ν
+ νZ

)
=
rs

n
modZ (25.51)
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Example 2: A∗1. The Gram matrix is just the 1×1 matrix 2 so if A1 = Zα then A∗1 = Zλ,

with λ = 1
2α. The discriminant group is clearly Z2.

Example 3: A∗2: Consider the Cartan matrix

C(A2) = Gij =

(
2 −1

−1 2

)
(25.52) eq:gmtx

and detGij = 3.

We easily compute

Gij =
1

3

(
2 1

1 2

)
(25.53) eq:gmtxop

and hence the dual basis is given by

λ1 =
1

3
(2α1 + α2)

λ2 =
1

3
(α1 + 2α2)

(25.54) eq:dualbas

The group Λ∗/Λ ∼= Z3. Since α1 = 2λ1 − λ2, α2 = −λ1 + 2λ2, 2λ1 = λ2modΛ. So one

set of representatives is given by 0modΛ, λ1modΛ, 2λ1modΛ. Alternatively, we could take

λ2modΛ as the generator.

If we take the embedding *** above then

λ1 = (
1√
2
,

1√
6

)

λ2 = (0,

√
2

3
)

(25.55) eq:dualbasp

generate a triangular lattice.

♣ FIGURE ♣
As we shall see, the hexagonal lattice Λ is the root lattice of SU(3), while Λ∗ is the

weight lattice.

Example 4: A∗n. One could just invert the Cartan matrix and proceed as above. (See

exercise below.) However, an alternative route is to view An as embedded in Zn+1 ⊗ R as

above. Then relative to the basis αi (25.16) above we will find a dual basis:

λi · αj = δij . (25.56)

Writing out the equation in components one easily finds (and even more easily checks):

λ1 =

− n

n+ 1
,

1

n+ 1
, . . . ,

1

n+ 1︸ ︷︷ ︸
n times

 (25.57)
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Now that we have λ1 it is also easy to solve for the λi, i > 1 in terms of λ1 from:

α1 = 2λ1 − λ2

α2 = −λ1 + 2λ2 − λ3

...
...

αn = −λn−1 + 2λn

(25.58)

to get

λ2 = 2λ1 − α1

λ3 = 3λ1 − 2α1 − α2

λ4 = 4λ1 − 3α1 − 2α2 − α1

...
...

λn+1 = (n+ 1)λ1 − nα1 − (n− 1)α2 − · · · − αn

(25.59)

and explicit substitute of the vectors shows that λn+1 = 0.

Thus

λi =

− i

n+ 1
, . . . ,− i

n+ 1︸ ︷︷ ︸
j times

,
j

n+ 1
, . . . ,

j

n+ 1︸ ︷︷ ︸
i times

 (25.60)

where i+ j = n+ 1. ♣CHECK THIS!! ♣

Thus, the discriminant group is cyclic,

D(An) ∼= Z/(n+ 1)Z (25.61)

and is generated, for example, by [λ1]. Therefore, to compute the quadratic form it suffices

to compute

b([λ1], [λ1]) = − 1

n+ 1
modZ (25.62)

The inverse Cartan matrix is given in the exercise below.

Example 5: D∗n: We claim the dual lattice of the “n-dimensional fcc lattice” is one half

of the “n-dimensional bcc lattice”:

D∗n =
1

2
BCCn (25.63) eq:fcc-dual

To see this note first that if x ∈ BCCn and y ∈ Dn then x · y is even. This is obvious if all

the xi are even, and if they are all odd then
∑

i xiyi =
∑

i(2ni + 1)yi =
∑

i yi = 0mod2,

by the definition of Dn. Therefore 1
2BCCn ⊂ D∗n. Conversely, if v ∈ D∗n then 2vi must

be integer, since 2ei ∈ Dn, and moreover, looking at the products with (1,−1, 0, . . . , 0),

(0, 1,−1, 0, . . . , 0) and so forth gives

v1 − v2 = k1

v2 − v3 = k2

...
...

vn−1 − vn = kn−1

(25.64)
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Multiply these equations by 2. Then 2vi are integers, and on the RHS we have even integers.

Therefore the 2vi are all even or all odd. Therefore D∗n ⊂ 1
2BCCn, and this establishes

(25.63). ♣So give the

discriminant group!

♣

Remark: Combining Example 5 with the observation above on the periodic table we see

that the periodic table has a (very approximate) self-duality! It works best for exchanging

the first and last column (excluding H, He). A conceptual reason for this is the following.
68 The noble gases have a filled electron shell and to a good approximation act as hard

spheres. So their crystal structure should be a minimal sphere packing in three-dimensional

space. This means they should be hcp or fcc, and many-body effects break the degeneracy

to fcc. On the other hand, in the first column we have a filled shell with a single electron.

Therefore, to a good approximation the metals can be treated in the free one-electron pic-

ture. Then their Fermi surface is a sphere in momentum space. Now, this Fermi surface is a

good approximation to the boundary of the Wigner-Seitz cell. Therefore the crystal struc-

ture is given by solving a sphere-packing problem in momentum space! Fcc in momentum

space implies bcc in real space.

Exercise Inverse of a generalized Cartan matrix

Let aα, α = 1, . . . , r be a set of positive integers and consider the generalized Cartan

matrix

Gαβ = aαδα,β − δα+1,β − δα−1,β (25.65)

a.) Show that the inverse matrix is

Gαβ =

{
1
nqαpβ 1 ≤ α ≤ β ≤ r
1
npαqβ 1 ≤ α ≤ β ≤ r

(25.66)

Where n = detGαβ and the integers pα, qα and n are defined as follows.

Define [x, y] := x − 1
y , then [x, y, z] = [x, [y, z]], then [x, y, z, w] = [x, [y, z, w]], etc.

That is, these are continued fractions with signs. Now in terms of these we define pα, qα
from

pj−1

pj
= [aj , aj+1, . . . , ar]

qj+1

qj
= [aj , aj−1, . . . , a1] 1 ≤ j ≤ r

(25.67)

with boundary conditions q1 = 1, pr = 1.

b.) Show that n = p0.

c.) Show that

[2, 2, . . . , 2︸ ︷︷ ︸
r times

] =
r + 1

r
(25.68)

♣So give the inverse

Cartan matrix in

matrix form ♣

68This argument was worked out with K. Rabe.
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25.3.1 The characteristic vector

The next useful invariant of a lattice is based on a

Definition A characteristic vector on an integral lattice is a vector w ∈ Λ such that

〈v, v〉 = 〈w, v〉mod2 (25.69) eq:chrctvctr

for every v ∈ Λ.

Lemma A characteristic vector always exists.

Proof : Consider the lattice Λ/2Λ. Denote elements in the quotient by v̄. Note that the

quadratic form Q(v) = 〈v, v〉 descends to a Z2-valued form q(v̄) = 〈v̄, v̄〉mod2. Moreover,

over the field κ = Z2 note that q is linear :

q(v̄1 + v̄2) = q(v̄1) + q(v̄2) + 2〈v̄1, v̄2〉 = q(v̄1) + q(v̄2) (25.70)

But any linear function must be of the form q(v̄) = 〈v̄, w̄〉. Now let w ∈ Λ be any lift of w̄.

This will do. ♠
Note that characteristic vectors are far from unique. Indeed, if w is a characteristic

vector and v is any other vector then w+ 2v is characteristic. Moreover, any characteristic

vector is of this form if the form is nondegenerate when reduced mod two. Therefore the

quantity

µ(Λ) := 〈w,w〉mod8 (25.71)

does not depend on the choice of w and is an invariant of the lattice Λ.

Remark There is a great deal of magic associated with the number 8 in lattice theory. ♣Say more? ♣

25.3.2 The Gauss-Milgram relation
♣ALSO DERIVE

THIS FROM THE

MODULAR

TRANSFORMA-

TION LAW FOR

LATTICE THETA

FUNCTIONS:

TAKE LIMIT AS

Im tau GOES TO

INFINITY AND

COMPARE ♣

The invariants we have just described are all related by a beautiful formula sometimes

called the Gauss-Milgram sum formula:

Let Λ be an integral lattice. Choose a characteristic vector w ∈ Λ and define the

quadratic function

Q : Λ⊗ R→ R (25.72)

by

Q(v) =
1

2
〈v, v − w〉 (25.73)

Note that Q takes integral values on Λ and rational values on Λ∗. Moreover, if x ∈ Λ∗

note that

Q(x+ v) = Q(x) + 〈x, v〉+
1

2
〈v, v − w〉 (25.74) eq:Qshift

and the second and third terms are in fact integral, so that if we may define

q : D(Λ)→ Q/Z (25.75)
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by

q(x̄) := Q(x)modZ (25.76)

where x is any lift of x̄ to Λ. Thanks to (25.74), q(x̄) is well-defined.

This is an example of a quadratic function on a finite group. It satisfies

q(x̄+ ȳ)− q(x̄)− q(ȳ) + q(0̄) = b(x̄, ȳ) (25.77)

Now, the Gauss-Milgram sum formula states that if D = D(Λ) then

∑
x̄∈D

e2πiq(x̄) =
√
|D|e2πi

(
σ(Λ)−µ(Λ)

8

)
(25.78)

Proof :

Let us begin with the one-dimensional case Λ = νZ with ν2 = n is a positive integer.

Then, as we have seen D = Z/nZ, and

b(x̄, ȳ) =
x̄ȳ

n
mod 1 (25.79)

Moreover, we can take ♣Fix

normalization? ♣

w =

{
0 n even

1 n odd
(25.80) eq:charctr

So we have Q(x) = x(x−w)
2n , Let q(x) = Q(x)mod1.

Now we would like to evaluate:

Sn =
∑
D
e2πiq(x) (25.81)

Evaluation: Let g(t) :=
∑n−1

x=0 e
2πiQ(x+t). Note that g(t+ 1) = g(t) so that

g(t) =

+∞∑
−∞

cke
−2πikt (25.82)

We want g(0) =
∑
ck. Write

ck =

∫ 1

0
g(t)e2πiktdt =

∫ n

0
e2πi(Q(t)+kt)dt (25.83)

So now write

g(0) =
∑
k∈Z

ck =

∞∑
k=−∞

∫ n

0
e2πiQ(t)e2πiktdt (25.84)

But

Q(t+ kn) = Q(t) +Q(kn) + tk (25.85)
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and Q(kn) is an integer. Therefore,

+∞∑
k=−∞

∫ n

0
e2πiQ(t+kn)dt =

∫ +∞

−∞
e2πiQ(t)dt =

√
π

−iπ/n
e2πiw

2

8n (25.86)

so ∑
D
e2πiq(x) =

√
n =
√
nexp[2πi

(
1

8
− 〈w,w〉

8

)
] (25.87)

Now, for the opposite signature we just take the complex conjugate.

Finally, to go to the general case note that we could have run a very similar argument

by considering

g(t) =
∑

x̄∈Λ∗/Λ

e2πiQ(x+t) (25.88)

The Fourier analysis is very similar. Once we get to the Gaussian integral we can diagonalize

it over R and then factorize the result into the one-dimensional case. ♠ ♣Spell out the

details some more

here! ♣Remarks

1. Note that it follows that for self-dual lattices µ(Λ) = σ(Λ)mod8.

2. Quadratic functions on finite abelian groups and quadratic refinements

♣ Explain the general problem of finding a quadratic refinement of a bilinear form

on a finite abelian group. ♣

3. Gauss sums in general

25.4 Self-dual lattices

Definition: An integral lattice is self-dual, or unimodular if Λ = Λ∗. Equivalently, Λ is

unimodular if the determinant of the integral Gram matrix is detGij = ±1.

Example 1: The Narain lattices generated by (25.28) above satisfy Λ(R)∗ = Λ(R) and

are unimodular for all R.

Example 2: Of course, if Λ1 and Λ2 are unimodular then so is Λ1⊕Λ2. So H(1)⊕· · ·H(1)

with d factors is an even unimodular lattice of signature (d, d). Similarly, It,s ∼= Zd with

quadratic form:

Diag{(−1)t, (+1)s} (25.89)

on Zd, d = t+ s, is an odd unimodular lattice.

Example 3: Positive definite even unimodular. There is a class of very interesting positive

definite even unimodular lattices which are of rank r = 8k for k a positive integer. Introduce

the vector

s = (
1

2
, . . . ,

1

2
) ∈ Q8k (25.90)
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Γ8k :=
{

(x1, · · ·x8k) ∈ Z8k|
∑

xi = 0(2)
}

∪
{

(x1, · · · , x8) ∈ Z8k + s|
∑

xi = 0(2)
} (25.91)

Let us check this lattice is even unimodular:

a.) Integral: The only nonobvious part is whether the product of two vectors from

Z8k+s is integral. Write these as xi = ni+
1
2 , yi = mi+

1
2 where ni,mi ∈ Z and

∑
ni = 0(2)

and
∑
mi = 0(2). Then∑

(ni +
1

2
)(mi +

1

2
) =

∑
nimi +

1

2
(
∑

ni +mi) + 2k ∈ Z (25.92)

b.) Even: Use n2
i = ni(2) for ni integral.

c.) Self-dual: Suppose (v1, . . . , v8k) ∈ Γ∗8k. Then, vi ± vj ∈ Z and therefore 2vi ∈ Z
and moreover, the vi are either all integral or all half-integral. Now,

s · v =
1

2

∑
i

vi ∈ Z (25.93)

implies
∑
vi = 0(2), hence v ∈ Γ8k, and hence Γ∗8k ⊂ Γ8k implies it is unimodular.

The case k = 1 defines what is known as the E8-lattice, which is of particular interest

in group theory and some areas of physics. Here is a particular lattice basis:

α1 =
1

2
(e1 + e8)− 1

2
(e2 + e3 + e4 + e5 + e6 + e7)

α2 = e1 + e2

α3 = e2 − e1

α4 = e3 − e2

α5 = e4 − e3

α6 = e5 − e4

α7 = e6 − e5

α8 = e7 − e6

(25.94)

The form αi · αj is the famous E8 matrix:

2 0 −1 0 0 0 0 0

0 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0

0 −1 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2


(25.95)
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One can check that this is in fact of determinant 1. This data is often encoded in a

Dynkin diagram shown in Figure 20. A dot corresponds to a basis vector. Two dots are

connected by a single line if αi ·αj = −1 (i.e. if the angle between them is 2π/3). One gets

Figure 20: Dynkin diagram of the E8 lattice. The numbers attached to the nodes have some

interesting magical problems which will be discussed later. fig:E8-Dynkin-Diagram

Remarks

1. The automorphism group of the E8 lattice is an extremely intricate object. It is

known as the Weyl group of E8 and it is generated by the reflections in the hyper-

planes orthogonal to the simple roots αi listed above. There is an obvious subgroup

isomorphic to

(Z2)7 n S8 (25.96)

where the S8 acts by permuting the coordinates and (Z2)7 ∼= (Z2)8/Z2 is the group of

sign-flips xi → εixi where an even number of signs are flipped. What is not obvious
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Figure 21: A projection of the 240 roots of the E8 root lattice in a two-dimensional plane. Copied

from http://www.madore.org/ david/math/e8w.html. fig:ProjectedE8Roots

is that this group is only a subgroup and in fact the full Weyl group has order

|W (E8)| = 278!× 135

= 8!× (1 · 2 · 3 · 4 · 5 · 6 · 4 · 2 · 3)

= 214 × 35 × 52 × 7

= 696729600

(25.97)

2. ♣ SAY SOMETHING ABOUT VECTORS OF SQUARELENGTH TWO ♣

25.4.1 Some classification results

There are some interesting results on the classification of unimodular lattices. We now

briefly review some of the most important ones.

The nature of the classification of lattices depends very strongly on the signature and

rank of the form. For example, the classification of definite integral forms is a very difficult

problem which remains unsolved in general.

By contrast, the classification is much simpler for indefinite signature: (i.e. t > 0, s > 0).

♣ EXPLAIN THE PROOF IN SERRE’S BOOK. THIS IS A BEAUTIFUL AND

SIMPLE APPLICATION OF GENERAL IDEAS OF K-THEORY ♣
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1. Odd unimodular lattices are unique. By change of basis we always get the lattice:

Γ ≈ It,s. (25.98)

2. Even unimodular lattices only exist for (t − s) = 0mod8 and are again unique for s, t

both nonzero. They are denoted:

Γ ≈ IIt,s (25.99)

An explicit consturction of IIt,s may be given by taking the lattice of d-tuples of points

(x1, . . . , xd) ∈ Rt,s, with d = t+ s, where the xi are either all integral, or all half-integral,

and in either case
∑
xi = 0mod2.

Although the indefinite even unimodular lattices are unique, their embedding into Rp,q

is highly nonunique. We have already seen this in example 3 above.

Note that Λ(R) = Λ(1/R). The inequivalent embeddings of II1,1 into R1,1 are

parametrized by R ≥ 1.

There are some partial results on positive definite even unimodular lattices.

1. In fact, they only exist for

dimΛ = 0mod8 (25.100)

2. In any dimension there is a finite number of inequivalent lattices. In fact, we can

count them! That is, we can count them using the Smith-Minkowski-Siegel “mass formula”

which gives a formula for ∑
[Λ]

1

|Aut(Λ)|
=
|Bn/2|
n

∏
1≤j<n/2

|B2j |
4j

(25.101)

The sum on the left is over inequivalent even unimodular positive definite lattice of dimen-

sion n. The B2j are the Bernoulli numbers defined by

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
= 1− x

2
+
x2

12
− x4

720
± · · · (25.102)

The growth of the Bernoulli number is given by Euler’s result:

B2n = (−1)n+1 2(2n)!

(2π)2n
ζ(2n) (25.103)

and hence the product on the RHS grows very fast. (Note that ζ(2n) is exponentially close

to 1. ♣Say how RHS

grows with the rank

r. ♣♣ Reference: A. Eskin, Z. Rudnik, and P. Sarnak, “A Proof of Siegel’s Weight For-

mula,” (There should be a simple topological field theory proof.) ♣
In higher dimensions there can be many inequivalent even integral unimodular lattices.

The number n(d) of such lattices is known to be:
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n(8) = 1

n(16) = 2

n(24) = 24

n(32) > 80× 106

(25.104) eq:inequiv

Indeed, if we compute the RHS of the SMS formula for n = 8 then we get

B4

4
× B2

4
× B4

8
× B6

12
=

(
1

120

)
×
(

1

24

)
×
(

1

240

)
×
(

1

504

)
=

1

696729600
(25.105)

This is exactly one over the order of the automorphism group of E8, confirming n(d) = 1. ♣Surely there is a

simpler proof of

uniqueness... ♣Of the 24 even unimodular lattices in dimension 24 one stands out, it is the Leech

lattice, which is the unique lattice whose minimal length-square is 4.

There are many constructions of the Leech lattice, but one curious one is that we

consider the light-like vector:

w = (70; 24, 23, . . . , 3, 2, 1, 0) (25.106)

in II1,25 ⊂ R1,25 and consider the lattice w⊥/wZ. This is a positive definite even integral

lattice of rank 24. Note that the vectors of length-squared two are not orthogonal to w. ♣Need to explain

why this

construction gives a

self-dual lattice. ♣

Remarks

1. Topology of 4-manifolds.

2. Abelian Chern-Simons theory.

Exercise

Compute the number of vectors of square-length = 2 in ΛR(E8).

Exercise For any integer k construct an even unimodular lattice whose minimum

length vector is 2k.

Exercise Narain lattices

Let V be a vector space and V ∨ be the dual space.
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Using only the dual pairing one defines a natural signature (d, d) nondegenerate metric

on V ⊕ V ∨:

〈(x, `), (x′, `′)〉 := `′(x)− `(x′) (25.107)

a.) Show that if Λ ⊂ V is a lattice then

ΛN := {(p+ w, p− w)|p ∈ Λ, w ∈ Λ∗} (25.108)

is an even unimodular lattice.

b.) Show that the space of inequivalent embedded lattices isomorphic to IId,d is

O(d, d;Z)\O(d, d;R) ♣This is out of

place. We haven’t

done quotients yet.

♣

Exercise

Show that the lattice of (x1, . . . , xd) ∈ Rt,s, with xi all integral or all half-integral and∑
xi = 0(2) is an even self-dual lattice.

Hint: Use the same procedure as in the E8 case above.

Exercise

Show that if s > t then IIs,t must be isomorphic as a lattice to a lattice of the form

II1,1 ⊕ · · · ⊕ II1,1 ⊕ E8 ⊕ · · · ⊕ E8 (25.109)

while if t > s it is of the form

II1,1 ⊕ · · · ⊕ II1,1 ⊕ E8(−1)⊕ · · · ⊕ E8(−1) (25.110)

of signature ((+1)l, (−1)l+8m).

Exercise Lattice Theta functions

If Λ is a positive definite lattice one can associate to it the Theta function

ΘΛ :=
∑
v∈Λ

q
1
2

(v,v) (25.111)

This is a series in q1/2 and it converges absolutely for |q1/2| < 1. This function counts the

number of lattice vectors of a given length.
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For τ a complex number of positive imaginary part define q := e2πiτ . Using the Poisson

summation formula show that the theta functions for Λ and Λ∗ are related by:

ΘΛ(−1/τ) = (−iτ)dimΛ/2 1√
|D(Λ)|

ΘΛ∗(τ) (25.112)

♣♣ EXPLAIN RELATION OF FINITE HEISENBERG GROUPS AND THETA

FUNCTIONS ♣♣

25.5 Embeddings of lattices: The Nikulin theorem

♣ Explain the terminology “glue group” ♣

25.6 References

Reference: For much more about lattices, see

J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices, and Groups.

A beautiful and concise treatment of some of the material above can be found in:

J.-P. Serre, A Course on Arithmetic

26. Positive definite Quadratic forms

Criteria for A to be positive definite:

A > 0 iff the determinants of all minors is positive.

If A is a positive definite matrix with integer entries then it satisfies some remarkable

properties:

1. Kronecker’s theorem: ‖ A ‖≥ 2 or ‖ A ‖= 2 cos(π/q), q ≥ 3.

2. Perron-Frobenius theorem: A has a maximal positive eigenvalue and the eigenvector

can be taken to have all positive entries. (Actually, the PF theorem is far more general.)

See V. Jones, et. al. Coxeter graphs... and Gantmacher, for a discussion.

Nice Application: GOOGLE search algorithm PageRank

27. Quivers and their representations

Nice application of linear algebra.

– 283 –


