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1. Many-body	system	initially	in	equilibrium

2. Strong	perturbation	pulse	drives	the	system	
far	from	equilibrium.	Easy

3. But not	too	strong. No	dissipation,	unwanted	
interactions.	The	system	evolves	coherently
with	desired Hamiltonian for	long	time.	Very 
difficult 

Quantum	Quench

Coherent Many-Body	Dynamics:



Quantum	Quench:	Coherent	Many-Body	Dynamics

Q: What	happens	to	the	system	in	time?	Where	does	it	end	up	as	a	
result	of	unitary	evolution?	Does	it	equilibrate?

|�(t � ⇥)⌅ =? ⇤Ô(t � ⇥)⌅ =?

A: Depends	on	the	system	(on	H) and	on	the	initial	condition

a. Equilibration	(thermalization)	with	some	effective T

b. No thermalization – asymptotic state – nonequilibrium 
“phase” with new properties

hÔ(t ! 1)i = Tr Ôe�Ĥ/Teff

hÔ(t ! 1)i =?



“87Rb	atoms …	do	not	noticeably	equilibrate	even	after	thousands	of	collisions.	Our	
results	are	probably	explainable	by	the	well-known	fact	that	a	homogeneous	1D	Bose	
gas	with	point-like	collisional	interactions	is	integrable.”

T.	Kinoshita,	T.	Wenger,	D.	Weiss	Nature	(2006)
A	quantum	Newton’s	cradle
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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in
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Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.
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All the curves in Fig. 3 are non-gaussian. For comparison, we have
created equilibrium 1D Bose gases with the same r.m.s. momentum
as the non-equilibrium distributions we study here. To do so, we start
with an equilibrium 3D Bose gas at an elevated temperature and
adiabatically turn on the 2D lattice. The resultant f(p ex) are nearly
perfectly gaussian. Thus, to the extent that an observed f(p ex) is not
gaussian, it has not thermalized.
Heating and loss affect the evolution of the distribution. We have

studied these processes by watching how f(p ex) evolves without any
grating pulses (see Supplementary Information). Some loss (20% or
less, depending on go) comes in the first couple of hundred milli-
seconds from three-body inelastic collisions. There is also 15% per
second loss to background gas collisions. Spontaneous emission
caused by the lattice light heats some atoms, and by leaving some
atoms in unlevitated magnetic sublevels, causes a 30% per second
loss. This last loss in turn causes most of the heating, as exiting atoms
transfer some of the momentum they pick up on their way out to
atoms that remain.
To account for loss and heating in the time evolution shown in

Fig. 3, we project how already dephased distributions would evolve

without thermalization. Specifically, we take f(p ex) at a time
to ¼ 15t, rescale it to account for loss during an observation time,
tobs, and convolve it with gaussian widths to capture the effect of the
independently measured heating during tobs (see Supplementary
Information). The blue curves in Fig. 4 were projected with a two-
component model that accurately reflects the measured heating, for
go (gd) ¼ 4 (18), 1 (3.2) and 0.62 (1.4), where the coupling strength
after dephasing, gd, is calculated using the reduced n1D that prevails
at to. The green curves are the result of a simpler single-component
projection. The similarity of the blue and green lines illustrates the
robustness of our projections (see Supplementary Information). The
red curves show the actual distributions after tobs.
The actual and projected curves overlap reasonably well, with

reduced x2 values of 1.2, 1.35 and 2.5 for Fig. 4a, b and c, respectively
(using the blue curves). In each case, the difference between the
projected and actual curves is far smaller than the difference between
either of them and a thermal distribution. To highlight the non-
gaussian shape of Fig. 4c, we have superimposed a gaussian with the
same atom number and r.m.s. width as the data. The slight discre-
pancies that exist between the actual and projected curves may result
from the ,25% loss of atoms during tobs, which reduces the inter-
action energy contribution to f(pex). By assuming that any deviation
between the projected and actual distributions is a step along the way
to thermalization, we conservatively determine a lower bound on the
thermalization time constant, t th (see Methods). t th is at least 390t,
1,910t and 200t for gd ¼ 18, 3.2 and 1.4, respectively. The data imply
that each atom continues to oscillate in the trap with the same peak
momentum it was given initially, as if there were no collisions.
Although collisions have no dynamical effect, we would like to

roughly keep track of how many have occurred. Each atom passes
N tube/2 atoms every half cycle. The probability of reflection, R, in a
pairwise collision of 1D bosons with centre of mass momentum 2"k
was calculated in ref. 22. In the limit where (2ka 1D)

2 .. 1,
R ¼ (2ka1D)

22. For our confinement parameters, R ¼ 1/22. There-
fore, in the first full cycle, the number of 2"k collisions is N tube, with
r ¼ N tube/22 reflections. After dephasing within a tube, each atom
has as many collisions, but at centre of mass momenta that range
from 2"k to near 0. As the relative velocity decreases, R increases
quadratically (until it saturates), but the ability of a collision to
redistribute momentum is reduced roughly quadratically. Accord-
ingly, we use the r derived above to keep track of reflections even after
the atoms have dephased. For the conditions in Fig. 4a, b and c, the
average number of collisions that have occurred per atom during tobs
are 600, 2,750 and 6,250, respectively, and the average number of
reflections are 27, 125 and 285. Using the results from Fig. 4, we can
set lower limits on the number of reflections required for thermal-
ization of 710, 9,600 and 2,300 for gd ¼ 18, 3.2 and 1.4, respectively.
These limits are obviously much larger than the 2.7 collisions that
characterize thermalization in a 3D gas23.
To experimentally confirm the existence of collisions in this

system, despite their lack of consequence in one dimension, we
apply the grating pulses without ever having turned on the 2D optical
lattice, and so create non-equilibrium momentum distributions in
three dimensions. Two BECs with different centre of mass velocities
collide every half cycle. At the quarter cycle times, the two BECs are
well separated spatially. This implies that collisions occur well above
the Landau critical velocity, allowing particles to scatter out of the
macroscopically occupied states24. We observe thermalization in a
two-step process. Atoms first scatter into a spherical shell in velocity,
which corresponds to the outgoing s-wave. They then scatter into a
broad range of final states. Even though the 3D densities are nearly an
order of magnitude lower than in the 1D tubes, thermalization
occurs on a ,2t timescale.
The absence of damping in 1D Bose gases has several potential

applications. Atoms undergoing Bloch oscillations in quantum
degenerate gases are candidate force sensors25. Fermions have
emerged as better for this purpose than bosons, because the absence

Figure 4 | Projected versus actual f(pex) for various gd, the dephased
average peak coupling strength. The blue and green curves are f(p ex) for
to ¼ 15t, rescaled to account for loss and convolved with the known heating
during tobs. The blue curve’s heating model is more sophisticated than that
of the green curve, but the results are insensitive to the details. The red
curves are the actual distributions at to þ tobs. a, gd ¼ 18 and tobs ¼ 15t.
b, gd ¼ 3.2 and tobs ¼ 25t. c, gd ¼ 1.4 and tobs ¼ 25t. The dashed line in c
is a gaussian with the same number of atoms and r.m.s. width as the actual
distribution. To the extent that the actual distribution conforms to the
projected distribution rather than to a gaussian, the atoms have not
thermalized.
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Higgs Amplitude Mode in the BCS Superconductors Nb1-xTixN Induced
by Terahertz Pulse Excitation
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Ultrafast responses of BCS superconductor Nb1-xTixN films in a nonadiabatic excitation regime were

investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation

with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response

in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS

gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the

order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast

manipulation of the superconducting order parameter by optical means.

DOI: 10.1103/PhysRevLett.111.057002 PACS numbers: 74.40.Gh, 74.25.Gz, 78.47.J!

With spontaneous breaking of continuous symmetry,
two types of collective excitations associated with the
order parameter emerge. One is the gapless phase mode
called as the Nambu-Goldstone mode, and the other is the
gapped amplitude mode also referred to as the Higgs mode
from the analogy to the Higgs boson in particle physics
[1,2], as schematically shown in Fig. 1(a). Recently, the
Higgs amplitude mode has been observed in strongly
interacting superfluid phases of bosonic ultracold atoms
in optical lattices by means of Bragg spectroscopy [3] and
lattice modulation [4]. The studies of the Higgs mode
realized on tabletop experiments would provide substantial
platforms for exploring the nature of symmetry-broken
states in quantum many-body physics. In condensed matter
systems, the amplitude mode has been widely observed in
charged density wave (CDW) systems by Raman or pump-
probe spectroscopy [5–8] and in an antiferromagnet by
neutron spectroscopy [9]. However, the observation of the
amplitude mode in fermionic condensates has been limited
to the specific cases of superconducting CDW compound
NbSe2 [10,11] andp-wave superfluid

3He [12,13]. Then, we
can pose a question as to whether the Higgs mode in a pure
metallic BCS superconductor (SC), which does not couple
to the radiation field, can be observed experimentally.

The amplitude mode in the BCS order parameter has
been anticipated to appear in a response to a fast perturba-
tion in nonadiabatic regime [14–23]. Depending on the
perturbation strength, the nonequilibrium dynamics would
exhibit a persistent oscillation, a transient oscillation
obeying a power-law decay, or a quantum quench of the
order parameter which cannot be described by the time-
dependent Ginzburg-Landau theory or the Boltzmann
equation [16,17]. A sudden switching of the pairing inter-
action by using Feshbach resonance in ultracold atoms [24]
is one promising way to realize such a nonequilibrium

state, while it still remains experimentally challenging.
An alternative way to induce the transient oscillation of
the order parameter has been proposed in conventional
metallic BCS SCs [19]. When a BCS ground state is non-
adiabatically excited by a short laser pulse, the coherence
between different quasiparticle (QP) states leads to the
oscillation of the order parameter. Such a nonadiabatic
excitation for BCS superconductivity requires a short
pump pulse with the duration !pump small enough com-
pared to the response time of the BCS state characterized
by the BCS gap ! as !! ¼ "=!!1. Here a near-visible
femtosecond optical pulse is not applicable, because the
huge excess energies of photoexcited hot electrons in the
order of electronvolts are transferred to the generation
of large amounts of high-frequency phonons (@!> 2!),
which in turn induce the Cooper pair breaking. This pro-
cess destroys the nonadiabatic excitation condition even
if one uses the laser pulse much shorter than !! [25,26].
Therefore, to ensure the nonadiabatic excitation, it is nec-
essary to use a short pump pulse with its photon energy
resonant to the BCS gap which is typically located in
terahertz (THz) frequency range [19]. With the recent
development of THz technology, such an intense and
monocyclelike THz pulse has become available [27], mak-
ing it possible to investigate the THz nonlinear response
in a variety of materials [28–32]. In an s-wave SC of NbN
film, the ultrafast pair breaking and the following QP
dynamics have been investigated by the intense THz
pump-THz probe (TPTP) spectroscopy [26]. Nonlinear
THz transmission experiments in NbN have also been
reported recently [33,34].
In this Letter, we investigated the coherent transient

dynamics of superconducting Nb1-xTixN films after the
THz pulse excitation in the nonadiabatic excitation regime.
The time-domain oscillation of the order parameter was
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observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in
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function of the pump intensity. (c) The power-law decay index b
as a function of the pump intensity.
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= ĤBCS|��
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hĉ�p#ĉp"i



| (t ! 1)i =? �(t ! 1) =?Q: 

A: For	moderate	perturbation	strength:

Yuzbashyan, Tsyplyatyev, Altshuler, PRL (2006)

|�(t)| = �1 + a
cos(2�1t+ ↵)p

�1t

For	stronger	perturbations												either	vanishes	or	oscillates	persistently	at	large	
times.	In	all	cases	the	superconductor	does	NOT	thermalize.
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†
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Long	time	dynamics	of	a	BCS	superconductor	in	response	to	a	sudden	
perturbation	(quantum	quench)	
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i
d|��
dt

= ĤBCS|�� Higgs	mode					
(order	parameter)

Long	time	dynamics	of	a	BCS	superconductor	in	response	to	a	sudden	
perturbation	(quantum	quench)	

HBCS is	integrable,	Richardson	(1964),	Gaudin	(1983)

Integrals	of	motion	for	HBCS – Gaudin	magnets/	central	spin	models		

[HBCS, Hk] = 0

# of integrals = # of pseudospins = # of pairs of states (k ",�k #)

Hk =
X

p

~sk · ~sp
✏k � ✏p

� szk
g
, [Hk, Hp] = 0, HBCS =

X

k

✏kHk

HBCS =
X

k

2�ks
z
k � g

X

k,p

s+k s
�
p

�(t) = g
X

p

hs�p (t)i



[H,Hi] = 0, [Hi, Hj ] = 0 ⇢ = C exp

✓
�
X

i

�iHi

◆

h (0)|Hi| (0)i = Tr ⇢Hi

bi are	determined	from:

lim
T!1

1

T

Z T

0
hO(t)idt = Tr ⇢O

Not for	finite	size,	long	range	interactions	or	global	observables

For	local	interactions &	observables	and	thermodynamic	limit	– sometimes	YES,	
sometimes	NO	– depends	on	the	set	of	available	integrals	(and	also	on	H and	the	

initial	state)

Integrable	systems	do	NOT	thermalize
Do	they	follow	Generalized	Gibbs	Ensemble	(GGE)?	

§ GGE	fails	for	1D	Heisenberg	spin	chains																																																																			
Goldstein	&	Andrei,	Phys.	Rev.	A	(2014);	Pozsgay	et.	al.	PRL	(2014)

§ Does	work	for	1D	Heisenberg	spin	chains	if	newly	discovered	integrals	are	added																																						
Ilievski	et.	al.	PRL	(2015)

When does it 
work?



[H,Hi] = 0, [Hi, Hj ] = 0 ⇢ = C exp

✓
�
X

i

�iHi

◆

h (0)|Hi| (0)i = Tr ⇢Hi

bi are	determined	from:

lim
T!1

1

T

Z T

0
hO(t)idt = Tr ⇢O

Problem:	quantum	integrability	is	NOT	well-defined!
See	e.g.	Sutherland,	Beautiful	Models	(2004),	Caux &Mossel (2011),	Yuzbashyan	&Shastry	(2013)

No	natural	notion	of	a	nontrivial integral	of	motion,	let	alone	of	a	complete	set

For	example,	for	any	set	of	Hk such	that	[H , Hk]=0, can	find	H0 so	that:

i.e.	always	only	one	functionally	independent	integral	– H itself	

Hk =
X

n

aknH
n
0

When does it 
work?

How	do	we	determine	if	we	have	the	“right”	set	of	integrals	and	the	criteria	for	the	
validity	of	GGE?

Integrable	systems	do	NOT	thermalize
Do	they	follow	Generalized	Gibbs	Ensemble	(GGE)?	



[H,Hi] = 0, [Hi, Hj ] = 0 ⇢ = C exp
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h (0)|Hi| (0)i = Tr ⇢Hi

bi are	determined	from:

lim
T!1

1
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Z T

0
hO(t)idt = Tr ⇢O

Problem:	quantum	integrability	is	NOT	well-defined!
See	e.g.	Sutherland,	Beautiful	Models	(2004),	Caux &Mossel (2011),	Yuzbashyan	&Shastry	(2013)

Integrable	systems	do	NOT	thermalize
Do	they	follow	Generalized	Gibbs	Ensemble	(GGE)?	

Without	an	independent	notion	of a	complete	set	of	nontrivial	integrals	
of	motion	GGE	is essentially	unfalsifiable	in	Quantum	Mechanics	

When does it 
work?

How	do	we	determine	if	we	have	the	“right”	set	of	integrals	and	the	criteria	for	the	
validity	of	GGE?



Classical	Integrability	is	well-defined

Do	Classical	Mechanics	before	going	Quantum?!

Definition: H(p,q) is integrable if it has n (maximum possible number)   
of functionally independent Poisson-commuting integrals 

H(p, q), where q = (q1, . . . , qn); p = (p1, . . . , pn); i.e. n degrees of freedom

{Hi(p, q), Hj(p, q)} = 0, i, j = 0, . . . , n� 1; H0(p, q) ⌘ H(p, q)

ü Unambiguous	separation	between	integrable	and	not	integrable
ü Clear	notion	of	a	complete	set	of	integrals	to	construct	GGE
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Theorem	about	averages	(Arnold, Math. Methods of CM):
For	a	non-resonant	torus	and	any	“reasonable”	observable	O(p,q)
time	average	=	phase-space	average	over	the	torus

lim
T!1

1

T

Z T

0
O (t) dt =

Z
O(')

d'

(2⇡)n

There	are	n typically	incommensurate	frequencies w1, w2, …, wn (non-resonant	torus)	

Generalized	Gibbs	Ensemble	DeMystified in	Classical	Mechanics		

Dynamics	is	on	“invariant	torus”	– n-dim	portion	of	2n-dim	phase-space	cut	
out	by	integrals	of	motion H1(p,q)=const, H2(p,q) =const, …, Hn(p,q)=const



⇢(p, q) = C exp


�
X

k

�kHk(p, q)

�

lim
T!1

1

T

Z T

0
O (t) dt =

Z
O(')

d'

(2⇡)n

lim
T!1

1

T

Z T

0
O (t) dt =

Z
O(p, q)⇢(p, q)dpdq

Additive	integrals,	
thermodynamic	limit

Generalized	(canonical)	Gibbs

Hk / n

n ! 1

⇢(p, q) = V �1
nY

k=1

� (Hk(p, q)� ↵k)

See	e.g.	Ruelle,	Stat.	Mech.:	
Rigorous	Results	(1999)

Not always the case

E.Y., Ann. Phys. (2016) 

Generalized	Gibbs	Ensemble	DeMystified in	Classical	Mechanics		
Theorem	about	averages	(Arnold, Math. Methods of CM):

Going	back	to	the	original	variables	p & q and	using	the	fact	that	this	is	a	
canonical	transform	can	prove Generalized	Microcanonical	Ensemble	(GME)

Works	for	any	system	size	(any	n)
Exceptions:	resonant	tori



Going	Quantum

⇢(p, q) = V �1
nY

k=1

� (Hk(p, q)� ↵k)

Works	for	any	system	size	(any	n)

Note:	microcanonical	ensemble	doesn’t	
work	for	finite	n

non-integrable CM 6= V �1� (H(p, q)� E)

Q: What	is	Generalized	Microcanonical	Ensemble	(GME)	in	the	quantum	
case,	i.e.	a	quantum	analog	of	r (p, q)?

Consider	a	system	where	we	can	gradually	go	from	quantum	to	classical	
while	maintaining	integrability	(e.g.	Gaudin	magnets)	

ü Is	GME	similarly	exact	in	the	quantum	case	for	a	finite	system?	If	not,	
how	does	it	improve	as													?

ü How	does	GME	compare	to	GGE?
~ ! 0



Going	Quantum

⇢(p, q) = V �1
nY

k=1

� (Hk(p, q)� ↵k)

Works	for	any	system	size	(any	n)

Note:	microcanonical	ensemble	doesn’t	
work	for	finite	n

non-integrable CM 6= V �1� (H(p, q)� E)

Q: What	is	Generalized	Microcanonical	Ensemble	(GME)	in	the	quantum	
case,	i.e.	a	quantum	analog	of	r (p, q)?

Hk(p, q) ! ˆHk works for GGE, exp

⇥
�
P

k �kHk(p, q)
⇤
! exp

h
�
P

k �k
ˆHk

i

Doesn’t work for GME because h ˆHi
ˆHki 6= h ˆHiih ˆHki



Going	Quantum

⇢(p, q) = V �1
nY

k=1

� (Hk(p, q)� ↵k)

Works	for	any	system	size	(any	n)

Note:	microcanonical	ensemble	doesn’t	
work	for	finite	n

non-integrable CM 6= V �1� (H(p, q)� E)

Q: What	is	Generalized	Microcanonical	Ensemble	(GME)	in	the	quantum	
case,	i.e.	a	quantum	analog	of	r (p, q)?
Need	to	broaden	d - functions.	
“Windows”,	i.e.	equal	weight	GME?

↵k = hĤki, Ĥk| ni = E(n)
k | ni,

S : |E(n)
k � ↵k| < �k, hÔi =

X

n2S
h n|Ô| ni
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X
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1

N
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k

|E(n)
k � ↵k| min dn

N

min |↵k|
N

|↵k|
N

NO	states	sufficiently	close	to	all	ak

↵k for quench gi = 0.5� ! gf = 2�

Doesn’t	work	well	for	many	integrals!



Going	Quantum

⇢(p, q) = V �1
nY

k=1

� (Hk(p, q)� ↵k)

Works	for	any	system	size	(any	n)

Note:	microcanonical	ensemble	doesn’t	
work	for	finite	n

non-integrable CM 6= V �1� (H(p, q)� E)

Q: What	is	Generalized	Microcanonical	Ensemble	(GME)	in	the	quantum	
case,	i.e.	a	quantum	analog	of	r (p, q)?
Need	to	broaden	d - functions.	
“Windows”,	i.e.	equal	weight	GME?

↵k = hĤki, Ĥk| ni = E(n)
k | ni,

S : |E(n)
k � ↵k| < �k, hÔi =

X

n2S
h n|Ô| ni

Doesn’t	work	well	for	many	integrals!
Or	suppose	integrals	take	discrete	values,	e.g.	fermion	occupation	#s

Ek = 1

Ek = 0

↵k

Unlike GGE or Classical Mechanics, 
NO viable generalization of the 
microcanonical ensemble for a 
quantum integrable system!

See	also	Cassidy et.	al.	PRL	(2011)

Hk = n̂k

Forget about comparing it to GGE



Going	Quantum

⇢(p, q) = V �1
nY

k=1

� (Hk(p, q)� ↵k)

Works	for	any	system	size	(any	n)

Note:	microcanonical	ensemble	doesn’t	
work	for	finite	n

non-integrable CM 6= V �1� (H(p, q)� E)

Q: What	is	Generalized	Microcanonical	Ensemble	(GME)	in	the	quantum	
case,	i.e.	a	quantum	analog	of	r (p, q)?

Functional	broadening,	e.g.	Gaussian?	 ⇢̂ = C exp


�
X

ik

(

ˆHi � µi)Mik(
ˆHk � µk)

�

µi,Mik are determined from:

h ˆHii0 = Tr(⇢̂ ˆHi) and h ˆHi
ˆHki0 = Tr(⇢̂ ˆHi

ˆHk)

Quantum Generalized Microcanonical Ensemble = 
Gaussian GME

Classical limit:
hĤiĤki ! hĤiihĤki =) ⇢̂ ! ⇢(p, q)
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FIG. 1. (color online) Schematic picture of where Gaus-
sian GME is connected. Large “1/~”, “L”, “r” represents
classical limit, thermodynamic limit, and interaction range,
respectively. Gaussian GME is designed to converge to ⇢cl in
classical limit and works (better) whenever GGE works. We
expect that Gaussian GME will work for long-range system
at thermodynamic limit.

the expense of giving unequal weights to the states in the
ensemble.

Proposal of Gaussian Generalized Microcanonical

Ensemble— Given N mutually commuting nontrivial op-
erators {Hi} (Hamiltonian is one of them), we propose a
Gaussian GME:

⇢GME =
1

Z
exp

2

4�
X

i,j

(Hi � µi)(C
�1)i,j(Hj � µj)

3

5 ,

(3)

where Z is the normalization. The parameters µi and
Ci,j are fixed by first and second moments of initial con-
ditions:

hHii0 = tr(⇢GMEHi) (4)

hHiHji0 = tr(⇢GMEHiHj) , (5)

where h. . .i0 is the initial state average. Therefore, ⇢GME

is designed to reproduce the correct expectation values
and correlations of conserved quantities. When the spec-
trum becomes unbounded and continuous, µi = hHii0
and the C matrix becomes the usual covariance matrix;
Ci,j = hHiHji0�hHii0hHji0. However, this is not neces-
sarily true for discrete (and bounded) quantum spectra.

This ensemble has a few advantages (see Figure 1 for
illustration): (1) Since Gaussian GME captures fluctu-
ations as well as means of conserved quantities, we ex-
pect it to work better than GGE always. Moreover, it
can represent GGE by a particular combination of pa-
rameters and thus Gaussian GME automatically works
if GGE works. (2) When o↵-diagonal elements of C are
negligible compared to the diagonal elements, it can be
decoupled to a product of Gaussians. Furthermore, whenp

Cii/Ei ! 0, either by taking thermodynamic limit or
classical limit, [19] ⇢GME converges to the conventional
equal-weight microcanonical ensemble in quantum case
[13, 14] and becomes a standard GME Eq. (1) [18] in

classical limit. Note that the latter statement does not
require taking the thermodynamic limit and thus applies
to both few-body and many-body systems. (3) It can be
defined for any spectrum without ambiguity in choosing
the width of microcanonical window [20] and Hi’s need
not be additive. (4) In simple examples, it turns out that
this ensemble captures the leading quantum correction as
we approach classical limit. (5) Gaussian GME is oper-
ationally simple. (6) As we show below in macroscopic
quantum systems Gaussian GME captures leading finite
size corrections beyond GGE, which are however univer-
sal (e.g. independent on the boundary conditions).

Note that in principle we could add more parameters
to match higher order moments (equivalently, cumulants)
of {Hi} and make ⇢GME even more accurate. However,
in macroscopic systems third order cumulants are typ-
ically order one, sensitive to nonuniversal physics such
as boundary conditions. This sentence may have to be
modified or removed. If diagonal ensemble has Poisson
distribution with mean E0 / V olume, the second cu-
mulant and the third cumulant are both E0. However,
since the third order cumulant of Gaussian ensemble is
zero, the di↵erence between Gaussian ensemble and diag-
onal ensemble of third order fluctuation is (E0)1/3. This
is smaller than second order fluctuation and can be ne-
glected in thermodynamic limit but this is not order one.

Therefore, we choose to stop at the second order and
show that it gives nontrivial results along three directions
in Figure 1.
Correspondence to classical GME— We study a simple

interacting system [21] to show that our GME expecta-
tion value converges to the time average value in classical
limit and captures the leading quantum correction. We
consider two interacting spins (S1,S2) in a magnetic field
along z-axis, where conserved operators are

H1 = BSz
1 + �S1 · S2 (6)

H2 = BSz
2 � �S1 · S2 . (7)

It is straightforward to check that [H1, H2] = 0 for any
magnitudes of spins, including |S1| 6= |S2|, and arbitrary
B and �. We simply use H1 as the “Hamiltonian” to
generate quantum dynamics but we stress that any linear
combination is valid. Then, ⇢GME has five independent
parameters fixed by two first moments and three second
moments of H1 and H2.

As an initial condition, we consider a product of two
spin coherent states: | (0)i = |�1i ⌦ |�2i , where each
|�i=1,2i is a spin coherent state pointing a certain di-
rection of a solid angle (✓i,�i) [22]. We set (✓1,�1) =
(⇡/2, 0.5⇡) and (✓2,�2) = (0.3⇡, 0), which is an arbitrary
choice. A coherent state is a minimal uncertainty state in
quantum regime and corresponds to and remains simply
a point in the phase space in the classical limit, where
|S| ! 1 and ~ ! 0 while ~|S| is finite. Therefore, it
is transparent to analyze the classical result and quan-
tum corrections. This is by no means a limitation of the

⇢̂ = C exp


�
X

ik

(

ˆHi � µi)Mik(
ˆHk � µk)

�

µi,Mik are determined from:

h ˆHii0 = Tr(⇢̂ ˆHi) and h ˆHi
ˆHki0 = Tr(⇢̂ ˆHi

ˆHk)

1. Well	defined	and	straightforward	to	implement	for	any	system/size	

2. Guaranteed	exact	in	classical	limit,														(any	system	size)	

3. Captures	leading	quantum	correction													(any	system	size)	

4. Works	whenever	GGE	does	and	converges	faster	(1/L2)	than	GGE	(1/L)	with	
system	size,	L,	i.e.	captures	leading	finite	size	correction

5. Works	well	for	systems	with	long-range	interactions

6. Unlike	GGE,	also	captures	fluctuations	of	local	&	global	observables

~ ! 0

(/ ~)
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and correlations of conserved quantities. When the spec-
trum becomes unbounded and continuous, µi = hHii0
and the C matrix becomes the usual covariance matrix;
Ci,j = hHiHji0�hHii0hHji0. However, this is not neces-
sarily true for discrete (and bounded) quantum spectra.

This ensemble has a few advantages (see Figure 1 for
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defined for any spectrum without ambiguity in choosing
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not be additive. (4) In simple examples, it turns out that
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is smaller than second order fluctuation and can be ne-
glected in thermodynamic limit but this is not order one.

Therefore, we choose to stop at the second order and
show that it gives nontrivial results along three directions
in Figure 1.
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interacting system [21] to show that our GME expecta-
tion value converges to the time average value in classical
limit and captures the leading quantum correction. We
consider two interacting spins (S1,S2) in a magnetic field
along z-axis, where conserved operators are
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magnitudes of spins, including |S1| 6= |S2|, and arbitrary
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generate quantum dynamics but we stress that any linear
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spin coherent states: | (0)i = |�1i ⌦ |�2i , where each
|�i=1,2i is a spin coherent state pointing a certain di-
rection of a solid angle (✓i,�i) [22]. We set (✓1,�1) =
(⇡/2, 0.5⇡) and (✓2,�2) = (0.3⇡, 0), which is an arbitrary
choice. A coherent state is a minimal uncertainty state in
quantum regime and corresponds to and remains simply
a point in the phase space in the classical limit, where
|S| ! 1 and ~ ! 0 while ~|S| is finite. Therefore, it
is transparent to analyze the classical result and quan-
tum corrections. This is by no means a limitation of the

⇢̂ = C exp


�
X

ik

(

ˆHi � µi)Mik(
ˆHk � µk)

�

µi,Mik are determined from:

h ˆHii0 = Tr(⇢̂ ˆHi) and h ˆHi
ˆHki0 = Tr(⇢̂ ˆHi

ˆHk)

Exact	in	classical	limit	and,	moreover,	captures	the	leading	quantum	correction	

Ex	1:	harmonic	oscillator

hn̂ki1 ⌘ lim
T!1

Z T

0
hn̂k(t)idt = |z|2k


1 + k(k � 1)

~!
E0

+ . . .

�
, (n̂ = a†a)

Classical limit: ~ ! 0, E0 = ~!|z|2 = fixed

hn̂kiGME ⌘ Tr(⇢̂n̂k) = |z|2k

1 + k(k � 1)

~!
E0

+ . . .

�

Ĥ =
p̂2

2m
+

m!2q̂2

2
| (0)i = |zi = coherent state, a|zi = z|zi
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FIG. 1. (color online) Schematic picture of where Gaus-
sian GME is connected. Large “1/~”, “L”, “r” represents
classical limit, thermodynamic limit, and interaction range,
respectively. Gaussian GME is designed to converge to ⇢cl in
classical limit and works (better) whenever GGE works. We
expect that Gaussian GME will work for long-range system
at thermodynamic limit.

the expense of giving unequal weights to the states in the
ensemble.

Proposal of Gaussian Generalized Microcanonical

Ensemble— Given N mutually commuting nontrivial op-
erators {Hi} (Hamiltonian is one of them), we propose a
Gaussian GME:

⇢GME =
1

Z
exp

2

4�
X

i,j

(Hi � µi)(C
�1)i,j(Hj � µj)

3

5 ,

(3)

where Z is the normalization. The parameters µi and
Ci,j are fixed by first and second moments of initial con-
ditions:

hHii0 = tr(⇢GMEHi) (4)

hHiHji0 = tr(⇢GMEHiHj) , (5)

where h. . .i0 is the initial state average. Therefore, ⇢GME

is designed to reproduce the correct expectation values
and correlations of conserved quantities. When the spec-
trum becomes unbounded and continuous, µi = hHii0
and the C matrix becomes the usual covariance matrix;
Ci,j = hHiHji0�hHii0hHji0. However, this is not neces-
sarily true for discrete (and bounded) quantum spectra.

This ensemble has a few advantages (see Figure 1 for
illustration): (1) Since Gaussian GME captures fluctu-
ations as well as means of conserved quantities, we ex-
pect it to work better than GGE always. Moreover, it
can represent GGE by a particular combination of pa-
rameters and thus Gaussian GME automatically works
if GGE works. (2) When o↵-diagonal elements of C are
negligible compared to the diagonal elements, it can be
decoupled to a product of Gaussians. Furthermore, whenp

Cii/Ei ! 0, either by taking thermodynamic limit or
classical limit, [19] ⇢GME converges to the conventional
equal-weight microcanonical ensemble in quantum case
[13, 14] and becomes a standard GME Eq. (1) [18] in

classical limit. Note that the latter statement does not
require taking the thermodynamic limit and thus applies
to both few-body and many-body systems. (3) It can be
defined for any spectrum without ambiguity in choosing
the width of microcanonical window [20] and Hi’s need
not be additive. (4) In simple examples, it turns out that
this ensemble captures the leading quantum correction as
we approach classical limit. (5) Gaussian GME is oper-
ationally simple. (6) As we show below in macroscopic
quantum systems Gaussian GME captures leading finite
size corrections beyond GGE, which are however univer-
sal (e.g. independent on the boundary conditions).

Note that in principle we could add more parameters
to match higher order moments (equivalently, cumulants)
of {Hi} and make ⇢GME even more accurate. However,
in macroscopic systems third order cumulants are typ-
ically order one, sensitive to nonuniversal physics such
as boundary conditions. This sentence may have to be
modified or removed. If diagonal ensemble has Poisson
distribution with mean E0 / V olume, the second cu-
mulant and the third cumulant are both E0. However,
since the third order cumulant of Gaussian ensemble is
zero, the di↵erence between Gaussian ensemble and diag-
onal ensemble of third order fluctuation is (E0)1/3. This
is smaller than second order fluctuation and can be ne-
glected in thermodynamic limit but this is not order one.

Therefore, we choose to stop at the second order and
show that it gives nontrivial results along three directions
in Figure 1.
Correspondence to classical GME— We study a simple

interacting system [21] to show that our GME expecta-
tion value converges to the time average value in classical
limit and captures the leading quantum correction. We
consider two interacting spins (S1,S2) in a magnetic field
along z-axis, where conserved operators are

H1 = BSz
1 + �S1 · S2 (6)

H2 = BSz
2 � �S1 · S2 . (7)

It is straightforward to check that [H1, H2] = 0 for any
magnitudes of spins, including |S1| 6= |S2|, and arbitrary
B and �. We simply use H1 as the “Hamiltonian” to
generate quantum dynamics but we stress that any linear
combination is valid. Then, ⇢GME has five independent
parameters fixed by two first moments and three second
moments of H1 and H2.

As an initial condition, we consider a product of two
spin coherent states: | (0)i = |�1i ⌦ |�2i , where each
|�i=1,2i is a spin coherent state pointing a certain di-
rection of a solid angle (✓i,�i) [22]. We set (✓1,�1) =
(⇡/2, 0.5⇡) and (✓2,�2) = (0.3⇡, 0), which is an arbitrary
choice. A coherent state is a minimal uncertainty state in
quantum regime and corresponds to and remains simply
a point in the phase space in the classical limit, where
|S| ! 1 and ~ ! 0 while ~|S| is finite. Therefore, it
is transparent to analyze the classical result and quan-
tum corrections. This is by no means a limitation of the

⇢̂ = C exp


�
X

ik

(

ˆHi � µi)Mik(
ˆHk � µk)

�

µi,Mik are determined from:

h ˆHii0 = Tr(⇢̂ ˆHi) and h ˆHi
ˆHki0 = Tr(⇢̂ ˆHi

ˆHk)

Exact	in	classical	limit	and,	moreover,	captures	the	leading	quantum	correction	

Ex	2:	2-spin	Gaudin	magnet
3

8 16 32 48

10-3

10-2

jS1j = jS2j Data
jS2j!2:0 -t

jS2j
4 8 16 32 48jh

S
z 1
i G

M
E
!

hS
z 1
i 1

j=
jh
S

z 1
i 1

j

10-6
10-5
10-4 jS1j = 1=2 Data

jS2j!3:0 -t

FIG. 2. (color online) Normalized di↵erence between time
average value and the GME expectation value of S

z
1 as a

function of |S2|. Upper panel: |S1| = |S2|. Lower panel:
|S1| = 1/2. Both cases, as S2 becomes classical, two expec-
tation values converge. Large |S2| region in the upper panel
decreases faster than 1/|S2|, which implies GME captures the
leading quantum correction.

Gaussian GME. If we start from a noncoherent state, the
classical limit would acquire additional statistical aver-
age over distribution of initial conditions. Since coherent
states forms an overcomplete basis, tackling such cases
should be straightforward.

For an observable, we choose Sz
1 , whose initial value

is zero but acquires finite time average value (propor-
tional to |S1|). We set the coupling constant � = 1
and the magnetic field B = �|S2| so that e↵ects of the
magnetic field and the interaction on the first spin are
comparable. We consider two cases: |S1| = |S2| and
|S1| = 1/2. Both cases, we increase |S2|, thus making
the second spin classical, and see how GME expecta-
tion value approaches the time average value. In the
first scenario, we expect that the time average value,
hSz

1 i1, can be expanded in 1/|S2| = 1/|S1| (which
is equivalent to expansion in ~) from classical limit as
hSz

1 i1 = a|S1|(1 + b/|S1|+ c/|S1|2 + · · · ) with some nu-
merical coe�cients. The second scenario is an amusing
situation where the first spin remains quantum while the
second spin becomes classical and thus the whole system
will be neither quantum nor classical.

Figure 2 plots the di↵erence between the time aver-
age value and GME expectation value normalized by the
time average value as a function of |S2|. As the second
spin becomes a classical spin, they converge, as claimed.
One implication is that this GME works even when the
first spin remains quantum as long the second spin be-
comes classical. Both cases, Gaussian GME captures at
least the leading quantum correction since the normal-
ized di↵erence decreases faster than 1/|S2|. Note that
convergence to time average in classical limit does not

require thermodynamic limit.
Comparison with GGE— We study a quench of a free-

fermion system, where GGE is exact in thermodynamic
limit, to demonstrate that Gaussian GME not only be-

L
40 60 80 100 120 140 160 180jh

n
1
n

2
n

3
i G

E
!

hn
1
n

2
n

3
i 1

j=
(h

n
1
ih

n
2
ih

n
3
i)

10-8

10-6

10-4

10-2

GGE
Gaussian GME
L!1:0 -t
L!2:0 -t

FIG. 3. (color online) Di↵erence between time average value
and generalized ensemble (GE - GGE and Gaussian GME)
value of n1n2n3. We normalize it by the first cumulant, which
is same for all ensembles. Gaussian GME value converges to
time average as 1/L2 while GGE does as 1/L. We choose
� = 0.3, V1 = 1.5, and V2 = 1.0 in quenched Hamiltonian and
Q = ⇡/3.

comes exact in thermodynamic limit but also works bet-
ter than GGE. The Hamiltonian is

H = �
LX

j=1

(ei�c†j+1cj + e�i�c†jcj+1)

+
LX

j=1

(V1 cos(Qj) + V2 cos(2Qj))nj , (8)

where cj annihilates a fermion at site j, nj = c†jcj , and
Q = 2⇡/M is a commensurate modulation. We impose
a periodic boundary condition and choose M = 6 (L is
a multiple of M). Initially, we prepare the state in the
ground state of H with � = V1 = V2 = 0 at half filling
and suddenly quench to finite values of �, V1, and V2,
which starts mixing M single-particle eigenstate in the
pre-quench Hamitlonian. � breaks time-reversal symme-
try and V1 with V2 break particle-hole symmetry in each
M -particle sector thus we remove symmetry protected
degeneracies in the single-particle spectrum in the post-
quench Hamiltonian. The natural integral of motion is
the mode occupation number of the post-quench Hamil-
tonian.

Since GGE captures all single-particle occupation
numbers and Gaussian GME captures all bi-linear cor-
relations of them, time average of all single-body observ-
ables is exact in GGE and Gaussian GME and that of all
two-body observables is exact in Gaussian GME regard-
less of L. Therefore, we study a three-body correlation,
hn1n2n3i. Figure 3 plots the di↵erence between time-
average value and GGE and Gaussian GME expectation
value normalized by the first cumulant, hn1ihn2ihn3i,
which is a common factor [23]. GGE shows usual 1/L
scaling [15, 24, 25] while Gaussian GME has 1/L2 scal-
ing. Therefore, Gaussian GME approaches to the exact

H1 = BSz
1 + �~S1 · ~S2, H2 = BSz

2 � �~S1 · ~S2,
[H1, H2] = 0

(a) ~ ! 0, ~S1 = ~S2 = fixed

(b) ~ ! 0, ~S2 = fixed, S1 = 1/2

Two	scenarios:	both	spins	classical	or	only	S2

D / ~2

D / ~3

| (0)i = |✓1,'1i ⌦ |✓2,'2i (coherent st.)

D =
hSz

1 iGME � hSz
1 i1

hSz
1 i1
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FIG. 1. (color online) Schematic picture of where Gaus-
sian GME is connected. Large “1/~”, “L”, “r” represents
classical limit, thermodynamic limit, and interaction range,
respectively. Gaussian GME is designed to converge to ⇢cl in
classical limit and works (better) whenever GGE works. We
expect that Gaussian GME will work for long-range system
at thermodynamic limit.

the expense of giving unequal weights to the states in the
ensemble.

Proposal of Gaussian Generalized Microcanonical

Ensemble— Given N mutually commuting nontrivial op-
erators {Hi} (Hamiltonian is one of them), we propose a
Gaussian GME:

⇢GME =
1

Z
exp

2

4�
X

i,j

(Hi � µi)(C
�1)i,j(Hj � µj)

3

5 ,

(3)

where Z is the normalization. The parameters µi and
Ci,j are fixed by first and second moments of initial con-
ditions:

hHii0 = tr(⇢GMEHi) (4)

hHiHji0 = tr(⇢GMEHiHj) , (5)

where h. . .i0 is the initial state average. Therefore, ⇢GME

is designed to reproduce the correct expectation values
and correlations of conserved quantities. When the spec-
trum becomes unbounded and continuous, µi = hHii0
and the C matrix becomes the usual covariance matrix;
Ci,j = hHiHji0�hHii0hHji0. However, this is not neces-
sarily true for discrete (and bounded) quantum spectra.

This ensemble has a few advantages (see Figure 1 for
illustration): (1) Since Gaussian GME captures fluctu-
ations as well as means of conserved quantities, we ex-
pect it to work better than GGE always. Moreover, it
can represent GGE by a particular combination of pa-
rameters and thus Gaussian GME automatically works
if GGE works. (2) When o↵-diagonal elements of C are
negligible compared to the diagonal elements, it can be
decoupled to a product of Gaussians. Furthermore, whenp

Cii/Ei ! 0, either by taking thermodynamic limit or
classical limit, [19] ⇢GME converges to the conventional
equal-weight microcanonical ensemble in quantum case
[13, 14] and becomes a standard GME Eq. (1) [18] in

classical limit. Note that the latter statement does not
require taking the thermodynamic limit and thus applies
to both few-body and many-body systems. (3) It can be
defined for any spectrum without ambiguity in choosing
the width of microcanonical window [20] and Hi’s need
not be additive. (4) In simple examples, it turns out that
this ensemble captures the leading quantum correction as
we approach classical limit. (5) Gaussian GME is oper-
ationally simple. (6) As we show below in macroscopic
quantum systems Gaussian GME captures leading finite
size corrections beyond GGE, which are however univer-
sal (e.g. independent on the boundary conditions).

Note that in principle we could add more parameters
to match higher order moments (equivalently, cumulants)
of {Hi} and make ⇢GME even more accurate. However,
in macroscopic systems third order cumulants are typ-
ically order one, sensitive to nonuniversal physics such
as boundary conditions. This sentence may have to be
modified or removed. If diagonal ensemble has Poisson
distribution with mean E0 / V olume, the second cu-
mulant and the third cumulant are both E0. However,
since the third order cumulant of Gaussian ensemble is
zero, the di↵erence between Gaussian ensemble and diag-
onal ensemble of third order fluctuation is (E0)1/3. This
is smaller than second order fluctuation and can be ne-
glected in thermodynamic limit but this is not order one.

Therefore, we choose to stop at the second order and
show that it gives nontrivial results along three directions
in Figure 1.
Correspondence to classical GME— We study a simple

interacting system [21] to show that our GME expecta-
tion value converges to the time average value in classical
limit and captures the leading quantum correction. We
consider two interacting spins (S1,S2) in a magnetic field
along z-axis, where conserved operators are

H1 = BSz
1 + �S1 · S2 (6)

H2 = BSz
2 � �S1 · S2 . (7)

It is straightforward to check that [H1, H2] = 0 for any
magnitudes of spins, including |S1| 6= |S2|, and arbitrary
B and �. We simply use H1 as the “Hamiltonian” to
generate quantum dynamics but we stress that any linear
combination is valid. Then, ⇢GME has five independent
parameters fixed by two first moments and three second
moments of H1 and H2.

As an initial condition, we consider a product of two
spin coherent states: | (0)i = |�1i ⌦ |�2i , where each
|�i=1,2i is a spin coherent state pointing a certain di-
rection of a solid angle (✓i,�i) [22]. We set (✓1,�1) =
(⇡/2, 0.5⇡) and (✓2,�2) = (0.3⇡, 0), which is an arbitrary
choice. A coherent state is a minimal uncertainty state in
quantum regime and corresponds to and remains simply
a point in the phase space in the classical limit, where
|S| ! 1 and ~ ! 0 while ~|S| is finite. Therefore, it
is transparent to analyze the classical result and quan-
tum corrections. This is by no means a limitation of the

⇢̂ = C exp


�
X

ik

(

ˆHi � µi)Mik(
ˆHk � µk)

�

Works	whenever	GGE	does	and	converges	
faster	(1/L2) than	GGE	(1/L)	as	system	size,	
L,	grows
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FIG. 2. (color online) Normalized di↵erence between time
average value and the GME expectation value of S

z
1 as a

function of |S2|. Upper panel: |S1| = |S2|. Lower panel:
|S1| = 1/2. Both cases, as S2 becomes classical, two expec-
tation values converge. Large |S2| region in the upper panel
decreases faster than 1/|S2|, which implies GME captures the
leading quantum correction.

Gaussian GME. If we start from a noncoherent state, the
classical limit would acquire additional statistical aver-
age over distribution of initial conditions. Since coherent
states forms an overcomplete basis, tackling such cases
should be straightforward.

For an observable, we choose Sz
1 , whose initial value

is zero but acquires finite time average value (propor-
tional to |S1|). We set the coupling constant � = 1
and the magnetic field B = �|S2| so that e↵ects of the
magnetic field and the interaction on the first spin are
comparable. We consider two cases: |S1| = |S2| and
|S1| = 1/2. Both cases, we increase |S2|, thus making
the second spin classical, and see how GME expecta-
tion value approaches the time average value. In the
first scenario, we expect that the time average value,
hSz

1 i1, can be expanded in 1/|S2| = 1/|S1| (which
is equivalent to expansion in ~) from classical limit as
hSz

1 i1 = a|S1|(1 + b/|S1|+ c/|S1|2 + · · · ) with some nu-
merical coe�cients. The second scenario is an amusing
situation where the first spin remains quantum while the
second spin becomes classical and thus the whole system
will be neither quantum nor classical.

Figure 2 plots the di↵erence between the time aver-
age value and GME expectation value normalized by the
time average value as a function of |S2|. As the second
spin becomes a classical spin, they converge, as claimed.
One implication is that this GME works even when the
first spin remains quantum as long the second spin be-
comes classical. Both cases, Gaussian GME captures at
least the leading quantum correction since the normal-
ized di↵erence decreases faster than 1/|S2|. Note that
convergence to time average in classical limit does not

require thermodynamic limit.
Comparison with GGE— We study a quench of a free-

fermion system, where GGE is exact in thermodynamic
limit, to demonstrate that Gaussian GME not only be-
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FIG. 3. (color online) Di↵erence between time average value
and generalized ensemble (GE - GGE and Gaussian GME)
value of n1n2n3. We normalize it by the first cumulant, which
is same for all ensembles. Gaussian GME value converges to
time average as 1/L2 while GGE does as 1/L. We choose
� = 0.3, V1 = 1.5, and V2 = 1.0 in quenched Hamiltonian and
Q = ⇡/3.

comes exact in thermodynamic limit but also works bet-
ter than GGE. The Hamiltonian is

H = �
LX

j=1

(ei�c†j+1cj + e�i�c†jcj+1)

+
LX

j=1

(V1 cos(Qj) + V2 cos(2Qj))nj , (8)

where cj annihilates a fermion at site j, nj = c†jcj , and
Q = 2⇡/M is a commensurate modulation. We impose
a periodic boundary condition and choose M = 6 (L is
a multiple of M). Initially, we prepare the state in the
ground state of H with � = V1 = V2 = 0 at half filling
and suddenly quench to finite values of �, V1, and V2,
which starts mixing M single-particle eigenstate in the
pre-quench Hamitlonian. � breaks time-reversal symme-
try and V1 with V2 break particle-hole symmetry in each
M -particle sector thus we remove symmetry protected
degeneracies in the single-particle spectrum in the post-
quench Hamiltonian. The natural integral of motion is
the mode occupation number of the post-quench Hamil-
tonian.

Since GGE captures all single-particle occupation
numbers and Gaussian GME captures all bi-linear cor-
relations of them, time average of all single-body observ-
ables is exact in GGE and Gaussian GME and that of all
two-body observables is exact in Gaussian GME regard-
less of L. Therefore, we study a three-body correlation,
hn1n2n3i. Figure 3 plots the di↵erence between time-
average value and GGE and Gaussian GME expectation
value normalized by the first cumulant, hn1ihn2ihn3i,
which is a common factor [23]. GGE shows usual 1/L
scaling [15, 24, 25] while Gaussian GME has 1/L2 scal-
ing. Therefore, Gaussian GME approaches to the exact

H = �
LX

j=1

(ei�c†j+1cj + e�i�c†jcj+1) +

LX

j=1

[V1 cos(Qj) + V2 cos(2Qj)]njExample:	

Quench from � = V1 = V2 = 0 to � = 0.3, V1 = 1.5, V2 = 1.0

GME	exact	for	linear	&	bilinear	
combinations	of	occupation	#s	for	
any	L,	so	consider:	

D

Q = ⇡/3

D =
hn̂1n̂2n̂3iGE � hn̂1n̂2n̂3i1

hn̂1ihn̂2ihn̂3i
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FIG. 1. (color online) Schematic picture of where Gaus-
sian GME is connected. Large “1/~”, “L”, “r” represents
classical limit, thermodynamic limit, and interaction range,
respectively. Gaussian GME is designed to converge to ⇢cl in
classical limit and works (better) whenever GGE works. We
expect that Gaussian GME will work for long-range system
at thermodynamic limit.

the expense of giving unequal weights to the states in the
ensemble.

Proposal of Gaussian Generalized Microcanonical

Ensemble— Given N mutually commuting nontrivial op-
erators {Hi} (Hamiltonian is one of them), we propose a
Gaussian GME:

⇢GME =
1

Z
exp

2

4�
X

i,j

(Hi � µi)(C
�1)i,j(Hj � µj)

3

5 ,

(3)

where Z is the normalization. The parameters µi and
Ci,j are fixed by first and second moments of initial con-
ditions:

hHii0 = tr(⇢GMEHi) (4)

hHiHji0 = tr(⇢GMEHiHj) , (5)

where h. . .i0 is the initial state average. Therefore, ⇢GME

is designed to reproduce the correct expectation values
and correlations of conserved quantities. When the spec-
trum becomes unbounded and continuous, µi = hHii0
and the C matrix becomes the usual covariance matrix;
Ci,j = hHiHji0�hHii0hHji0. However, this is not neces-
sarily true for discrete (and bounded) quantum spectra.

This ensemble has a few advantages (see Figure 1 for
illustration): (1) Since Gaussian GME captures fluctu-
ations as well as means of conserved quantities, we ex-
pect it to work better than GGE always. Moreover, it
can represent GGE by a particular combination of pa-
rameters and thus Gaussian GME automatically works
if GGE works. (2) When o↵-diagonal elements of C are
negligible compared to the diagonal elements, it can be
decoupled to a product of Gaussians. Furthermore, whenp

Cii/Ei ! 0, either by taking thermodynamic limit or
classical limit, [19] ⇢GME converges to the conventional
equal-weight microcanonical ensemble in quantum case
[13, 14] and becomes a standard GME Eq. (1) [18] in

classical limit. Note that the latter statement does not
require taking the thermodynamic limit and thus applies
to both few-body and many-body systems. (3) It can be
defined for any spectrum without ambiguity in choosing
the width of microcanonical window [20] and Hi’s need
not be additive. (4) In simple examples, it turns out that
this ensemble captures the leading quantum correction as
we approach classical limit. (5) Gaussian GME is oper-
ationally simple. (6) As we show below in macroscopic
quantum systems Gaussian GME captures leading finite
size corrections beyond GGE, which are however univer-
sal (e.g. independent on the boundary conditions).

Note that in principle we could add more parameters
to match higher order moments (equivalently, cumulants)
of {Hi} and make ⇢GME even more accurate. However,
in macroscopic systems third order cumulants are typ-
ically order one, sensitive to nonuniversal physics such
as boundary conditions. This sentence may have to be
modified or removed. If diagonal ensemble has Poisson
distribution with mean E0 / V olume, the second cu-
mulant and the third cumulant are both E0. However,
since the third order cumulant of Gaussian ensemble is
zero, the di↵erence between Gaussian ensemble and diag-
onal ensemble of third order fluctuation is (E0)1/3. This
is smaller than second order fluctuation and can be ne-
glected in thermodynamic limit but this is not order one.

Therefore, we choose to stop at the second order and
show that it gives nontrivial results along three directions
in Figure 1.
Correspondence to classical GME— We study a simple

interacting system [21] to show that our GME expecta-
tion value converges to the time average value in classical
limit and captures the leading quantum correction. We
consider two interacting spins (S1,S2) in a magnetic field
along z-axis, where conserved operators are

H1 = BSz
1 + �S1 · S2 (6)

H2 = BSz
2 � �S1 · S2 . (7)

It is straightforward to check that [H1, H2] = 0 for any
magnitudes of spins, including |S1| 6= |S2|, and arbitrary
B and �. We simply use H1 as the “Hamiltonian” to
generate quantum dynamics but we stress that any linear
combination is valid. Then, ⇢GME has five independent
parameters fixed by two first moments and three second
moments of H1 and H2.

As an initial condition, we consider a product of two
spin coherent states: | (0)i = |�1i ⌦ |�2i , where each
|�i=1,2i is a spin coherent state pointing a certain di-
rection of a solid angle (✓i,�i) [22]. We set (✓1,�1) =
(⇡/2, 0.5⇡) and (✓2,�2) = (0.3⇡, 0), which is an arbitrary
choice. A coherent state is a minimal uncertainty state in
quantum regime and corresponds to and remains simply
a point in the phase space in the classical limit, where
|S| ! 1 and ~ ! 0 while ~|S| is finite. Therefore, it
is transparent to analyze the classical result and quan-
tum corrections. This is by no means a limitation of the
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FIG. 4. (color online) (a) Minimum value of the distance
(Eq.(11)) between an eigenstate and conserved quantities.
Being increasing implies that no eigenstate can match the
conserved quantities and thus we cannot build a conven-
tional microcanonical ensemble. (b) Normalized di↵erence
between generalized ensemble (GE) expectation values of gaps
(Eq.(13)) and diagonal ensemble (DE) expectation values.
The Gaussian GME (GME) works better than GGE and the
di↵erence decreases with system size.

result faster. Besides scaling, Gaussian GME agrees with
time average better by orders of magnitude for this ex-
ample.

Long-range interaction— Now let’s apply the Gaussian
GME to a many-body integrable system which has not
been previously studied by means of generalized ensem-
bles. We consider the BCS model:

HBCS = 2
NX

i=1

✏iS
z
i � g

NX

i,j=1

S+
i S�

j , (9)

where Si is the spin-1/2 operator and g = �d (d = mean
level spacing of ✏i’s) is the BCS coupling strength. This
is an infinite-range model in thermodynamic limit and
has the following operators as commuting partners:

Hi = �1

g
Sz
i +

NX

j 6=i

Si · Sj

✏i � ✏j
. (10)

It is easy to check that [HBCS , Hi] = 0 and HBCS =

2
PN

i=1 ✏iHi + constant. Since the total Sz = �g
P

i Hi

is conserved, we restrict ourselves in the Sz = 0 sector.
Note that each Hi is not additive. Thus, GGE needs not
be equivalent to GME in thermodynamic limit and there
is no reason to assume exponential form of distribution
[26]. Furthermore, it is di�cult to apply techniques de-
veloped in Refs. [13, 14] due to non-additivity.

We consider a quenching process, where we begin with
the ground state of a particular value of �in and sud-
denly change the value of �fn. Specifically, we take
✏i = 2i/(N � 1) (thus d = 2/(N � 1)), �in = 0.5, and
�fn = 2.0 [27]. Precise choices of ✏i’s and quenching pa-
rameters are not important as long as the post-quench
state is not dominated by a few eigenstates [28]. We use
the exact diagonalization method to construct the diag-
onal ensemble (DE), the Gaussian GME, and GGE for

N  16. The major challenge is to numerically deter-
mine parameters in generalized ensembles, not to get the
exact eigenstates of this Bethe ansatz solvable model.

Let us consider first the criterion of the conventional
equal-weight microcanonical ensemble of this model. In
order to apply arguments of usual statistical physics,
there should be many eigentstates satisfying the conser-
vation laws. For each eigenstate |ni of the post-quench
Hamiltonian, we assign a value �n:

�n =
1

N

N�1X

i=0

|En
i � hi|
�(Ei)

, (11)

where En
i = hn|Hi|ni, hi is the initial state expectation

value of Hi (H0 = HBCS), and �(Ei) is the mean fluctu-
ation of eigenvalues near hi, where average is computed
over

p
NCNr eigenstates. In short, �n measures the “dis-

tance” of eigenstate |ni among the conserved quantities.
Figure 4 (a) plots the minimum value of �n for N = 10,
12, 14, and 16. It shows that the minimum increases with
the system size, which implies that there will be no sin-
gle eigenstate that satisfies all conservation laws within a
reasonable precision. Therefore, we cannot construct the
conventional sense of microcanonical ensemble for this
long-range model.

A natural observable of this model is the gap, � =P
ihS�

i i. However, hS�
i i is zero for each eigenstate re-

gardless of quenches since each eigenstate is an eigenstate
of Sz. Therefore, we consider two alternatives of the gap
[29]:

�(1) = g

sX

i,j

hS+
i S�

j i � Nr (12)

�(2) = g
X

i

r
1

4
� hSz

i i2 , (13)

where Nr is the number of up spins in the system (at
Sz = 0, Nr = N/2). Figure 4 (b) plots the di↵erence be-
tween �(i=1,2) of generalized ensemble and that of DE. as
a function of system size N . We observe two trends: the
Gaussian GME expectation value is always closer to DE
expectation value and the di↵erence decreases as N in-
creases. This implies that the Gaussian GME may serve
as a “good” statistical ensemble even for a long-range
system. However, we do not attempt to draw a strong
conclusion for this limited range of N and report this re-
sults as a weak evidence of validity of Gaussian GME for
a long-range model. Moreover, it seems that GGE may as
well work in thermodynamic limit although always does
less than the Gaussian GME.

As a final remark, we expect that Gaussian GME will
give more accurate results as we increase the magnitude
of spins, presumably ⇠ 1/|S|2 convergence, since it is de-
signed to capture classical GME while GGE has no rea-
sons to work in classical limit for this long-range model.
We leave testing this conjecture for a future investigation.
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FIG. 1. (color online) Schematic picture of where Gaus-
sian GME is connected. Large “1/~”, “L”, “r” represents
classical limit, thermodynamic limit, and interaction range,
respectively. Gaussian GME is designed to converge to ⇢cl in
classical limit and works (better) whenever GGE works. We
expect that Gaussian GME will work for long-range system
at thermodynamic limit.

the expense of giving unequal weights to the states in the
ensemble.

Proposal of Gaussian Generalized Microcanonical

Ensemble— Given N mutually commuting nontrivial op-
erators {Hi} (Hamiltonian is one of them), we propose a
Gaussian GME:

⇢GME =
1

Z
exp

2

4�
X

i,j

(Hi � µi)(C
�1)i,j(Hj � µj)

3

5 ,

(3)

where Z is the normalization. The parameters µi and
Ci,j are fixed by first and second moments of initial con-
ditions:

hHii0 = tr(⇢GMEHi) (4)

hHiHji0 = tr(⇢GMEHiHj) , (5)

where h. . .i0 is the initial state average. Therefore, ⇢GME

is designed to reproduce the correct expectation values
and correlations of conserved quantities. When the spec-
trum becomes unbounded and continuous, µi = hHii0
and the C matrix becomes the usual covariance matrix;
Ci,j = hHiHji0�hHii0hHji0. However, this is not neces-
sarily true for discrete (and bounded) quantum spectra.

This ensemble has a few advantages (see Figure 1 for
illustration): (1) Since Gaussian GME captures fluctu-
ations as well as means of conserved quantities, we ex-
pect it to work better than GGE always. Moreover, it
can represent GGE by a particular combination of pa-
rameters and thus Gaussian GME automatically works
if GGE works. (2) When o↵-diagonal elements of C are
negligible compared to the diagonal elements, it can be
decoupled to a product of Gaussians. Furthermore, whenp

Cii/Ei ! 0, either by taking thermodynamic limit or
classical limit, [19] ⇢GME converges to the conventional
equal-weight microcanonical ensemble in quantum case
[13, 14] and becomes a standard GME Eq. (1) [18] in

classical limit. Note that the latter statement does not
require taking the thermodynamic limit and thus applies
to both few-body and many-body systems. (3) It can be
defined for any spectrum without ambiguity in choosing
the width of microcanonical window [20] and Hi’s need
not be additive. (4) In simple examples, it turns out that
this ensemble captures the leading quantum correction as
we approach classical limit. (5) Gaussian GME is oper-
ationally simple. (6) As we show below in macroscopic
quantum systems Gaussian GME captures leading finite
size corrections beyond GGE, which are however univer-
sal (e.g. independent on the boundary conditions).

Note that in principle we could add more parameters
to match higher order moments (equivalently, cumulants)
of {Hi} and make ⇢GME even more accurate. However,
in macroscopic systems third order cumulants are typ-
ically order one, sensitive to nonuniversal physics such
as boundary conditions. This sentence may have to be
modified or removed. If diagonal ensemble has Poisson
distribution with mean E0 / V olume, the second cu-
mulant and the third cumulant are both E0. However,
since the third order cumulant of Gaussian ensemble is
zero, the di↵erence between Gaussian ensemble and diag-
onal ensemble of third order fluctuation is (E0)1/3. This
is smaller than second order fluctuation and can be ne-
glected in thermodynamic limit but this is not order one.

Therefore, we choose to stop at the second order and
show that it gives nontrivial results along three directions
in Figure 1.
Correspondence to classical GME— We study a simple

interacting system [21] to show that our GME expecta-
tion value converges to the time average value in classical
limit and captures the leading quantum correction. We
consider two interacting spins (S1,S2) in a magnetic field
along z-axis, where conserved operators are

H1 = BSz
1 + �S1 · S2 (6)

H2 = BSz
2 � �S1 · S2 . (7)

It is straightforward to check that [H1, H2] = 0 for any
magnitudes of spins, including |S1| 6= |S2|, and arbitrary
B and �. We simply use H1 as the “Hamiltonian” to
generate quantum dynamics but we stress that any linear
combination is valid. Then, ⇢GME has five independent
parameters fixed by two first moments and three second
moments of H1 and H2.

As an initial condition, we consider a product of two
spin coherent states: | (0)i = |�1i ⌦ |�2i , where each
|�i=1,2i is a spin coherent state pointing a certain di-
rection of a solid angle (✓i,�i) [22]. We set (✓1,�1) =
(⇡/2, 0.5⇡) and (✓2,�2) = (0.3⇡, 0), which is an arbitrary
choice. A coherent state is a minimal uncertainty state in
quantum regime and corresponds to and remains simply
a point in the phase space in the classical limit, where
|S| ! 1 and ~ ! 0 while ~|S| is finite. Therefore, it
is transparent to analyze the classical result and quan-
tum corrections. This is by no means a limitation of the


