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Quantum Quench

Many-body system initially in equilibrium

2. Strong perturbation pulse drives the system
far from equilibrium. Easy

3. But not too strong. No dissipation, unwanted

interactions. The system evolves coherently
with desired Hamiltonian for long time. very

diffieult

Coherent Many-Body Dynamics: ZM — ([:[O -+ I:[ t) |¢>
at 1n



Quantum Quench: Coherent Many-Body Dynamics

Q.’ What happens to the system in time? Where does it end up as a
result of unitary evolution? Does it equilibrate?

A

Wt = 00)) =2 (Ot = o0)) =7

A « Depends on the system (on H) and on the initial condition

a. Equilibration (thermalization) with some effective T

(Ot = o)) = Tr Oe=H/Tets
b. No thermalization - asymptotic state - nonequilibrium
"phase” with new properties

A

(Ot — 0)) =7



A guantum Newton’s cradle
T. Kinoshita, T. Wenger, D. Weiss Nature (2006)
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“8’Rb atoms ... do not noticeably equilibrate even after thousands of collisions. Our
results are probably explainable by the well-known fact that a homogeneous 1D Bose
gas with point-like collisional interactions is integrable.”
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Higgs Amplitude Mode in the BCS Superconductors Nb;., Ti,N Induced

by Terahertz Pulse Excitation

Ryusuke Matsunaga,l Yuki 1. Hamada,' Kazumasa Makise,2 Yoshinori Uzawa,3

Hirotaka Terai,” Zhen Wang,2 and Ryo Shimano'

WGP

14(0)) = [lnoneq. state produced by the pulse)

Hpcg = Zeké}; Cko — chch k¢c—p¢CpT
k,o
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= BCS|Y)

Higgs mode
(order parameter)
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OE prope(lgate=1p) (arb. units)
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Long time dynamics of a BCS superconductor in response to a sudden
perturbation (quantum quench)

Hpcg = Zekck Cko — chch k¢c—p¢CpT
k,o
dY)

= Hpcs|y) .
dt Higgs mode _ A .
(order parameter) At) gZ(C_ppr

O: Yt — ) =7 At — o0) =7
aCOS(QAOOt + )

Aot

Yuzbashyan, Tsyplyatyev, Altshuler, PRL (2006)

A: For moderate perturbation strength: |A(t)| = A

For stronger perturbations |A(¢)| either vanishes or oscillates persistently at large
times. In all cases the superconductor does NOT thermalize.



Order parameter dynamics

a
8A(typ) = Cy + Cytyy + —— cos(2nfty, + ¢)

tpp E. Yuzbashyan et al.,
PRL 96, 230404 (2006).
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Long time dynamics of a BCS superconductor in response to a sudden
perturbation (quantum quench)

_ + -
Hpcg = E 2exs — g g Sk Sp
k k.p

dly)
Y = Hgcs|y) Higgs mode

(order parameter)

A(t) =g (sp(t))

p

Hy is integrable, Richardson (1964), Gaudin (1983)

Integrals of motion for Hyg — Gaudin magnets/ central spin models

Ho=S2%% %k (g g0, Hpes=Y e = [Hpos, Hi] =0
k

€l — €
pk P g

# of integrals = # of pseudospins = # of pairs of states (k 1,—k |)



Integrable systems do NOT thermalize
Do they follow Generalized Gibbs Ensemble (GGE)?

[; are determined from:
\H,H;] =0, [H;,H;]=0 pZCeXp( Zﬂz ) (0)|H;|¥(0)) = Tr pH;
1t When does it
lim —/ O(t))dt = Tr pO
T—oo 1" Jg O g work?

Not for finite size, long range interactions or global observables

For local interactions & observables and thermodynamic limit — sometimes YES,
sometimes NO — depends on the set of available integrals (and also on H and the
initial state)

= GGE fails for 1D Heisenberg spin chains
Goldstein & Andrei, Phys. Rev. A (2014); Pozsgay et. al. PRL (2014)

= Does work for 1D Heisenberg spin chains if newly discovered integrals are added
llievski et. al. PRL (2015)



Integrable systems do NOT thermalize
Do they follow Generalized Gibbs Ensemble (GGE)?

[; are determined from:
\H,H;] =0, [H;,H;]=0 pZCeXp( Zﬂz ) (0)|H;|¥(0)) = Tr pH;
1t _ When does it
lm / (O())dt = Tr pO o1 dog

How do we determine if we have the “right” set of integrals and the criteria for the
validity of GGE?

Problem: quantum integrability is NOT well-defined!
See e.g. Sutherland, Beautiful Models (2004), Caux &Mossel (2011), Yuzbashyan &Shastry (2013)

No natural notion of a nontrivial integral of motion, let alone of a complete set

For example, for any set of H, such that [H, H,]=0, can find H, so that:
Hk = Z aang}

i.e. always only one functionally independent integral — H itself



Integrable systems do NOT thermalize
Do they follow Generalized Gibbs Ensemble (GGE)?

[; are determined from:
\H,H;] =0, [H;,H;]=0 pZCeXp( Zﬂz ) (0)|H;|¥(0)) = Tr pH;
1t _ When does it
lm / (O())dt = Tr pO o1 dog

How do we determine if we have the “right” set of integrals and the criteria for the
validity of GGE?

Problem: quantum integrability is NOT well-defined!
See e.g. Sutherland, Beautiful Models (2004), Caux &Mossel (2011), Yuzbashyan &Shastry (2013)

Without an independent notion of a complete set of nontrivial integrals
of motion GGE is essentially unfalsifiable in Quantum Mechanics



Classical Integrability is well-defined

H(p,q), where ¢ = (q1,...,qn); p = (P1,-..,DPn); i.e. n degrees of freedom

Definition: H(p,q) 1s integrable if 1t has #» (maximum possible number)
of functionally independent Poisson-commuting integrals

{H:(p,q),Hj(p,q)} =0, 4,j=0,...,n—1; Hy(p,q) = H(p,q)

U

v’ Unambiguous separation between integrable and not integrable
v' Clear notion of a complete set of integrals to construct GGE

Do Classical Mechanics before going Quantum?!



Generalized Gibbs Ensemble DeMystified in Classical Mechanics

Dynamics is on “invariant torus” — n-dim portion of 2n-dim phase-space cut
out by integrals of motion H,(p,q)=const, H,(p,q) =const, ..., H, (p,q)=const

There are n typically incommensurate frequencies o;, ®,, ..., ®, (non-resonant torus)

Lissajous figures
1:2

sin wqt

sin CUQt 3:4

Theorem about averages (Arnold, Math. Methods of CM):
For a non-resonant torus and any “reasonable” observable O(p,q)
time average = phase-space average over the torus

lim %/O O (t) dt:/O(gp) (ngn

T'— 00



Generalized Gibbs Ensemble DeMystified in Classical Mechanics
Theorem about averages (Arnold, Math. Methods of CM):

3 [0 foor s

Going back to the original variables p & ¢ and using the fact that this is a
canonical transform can prove Generalized Microcanonical Ensemble (GME)

, 1 [t E.Y., Ann. Phys. (2016)
lim — / O (1) dt = / O(p, q)p(p, q)dpdq
0

T—so00 1’

Works for any system size (any n)

—1
p(p,q) =V H 0 (Hy(p,q) — o) Exceptions: resonant tori
k=1

Additive integrals,
thermodynamic limit
See e.g. Ruelle, Stat. Mech.:

Hk XN \ Rigorous Results (1999) p(p7 CeXp[ Z Bka p7 ]

n — oo

Generalized (canonical) Gibbs

Not always the case




Going Quantum
p(p,q) =V~ ﬁ 5 (Hy(p,q) — ag,) Note: mic.ro.canonical ensemble doesn’t
o work for finite n
Works for any system size (any #n)  non-integrable CM # V1§ (H(p, q) — E)

0: What is Generalized Microcanonical Ensemble (GME) in the quantum
case, i.e. a quantum analog of p (p, ¢)?

Consider a system where we can gradually go from quantum to classical
while maintaining integrability (e.g. Gaudin magnets)

v Is GME similarly exact in the quantum case for a finite system? If not,
how does it improve as i — (07?
v' How does GME compare to GGE?



Going Quantum

p(p,q) =V~ H 5 (Hi(p, q) — ax) Note: mlc.ro.canonlcal ensemble doesn’t
o work for finite n

Works for any system size (any n)  non-integrable CM #£ V16 (H(p, q) — E)

0: What is Generalized Microcanonical Ensemble (GME) in the quantum
case, i.e. a quantum analog of p (p, ¢)?

Hi(p,q) — H,. works for GGE, exp[— > 1 B Hi(p, q)] — exp [— >k &Jﬂ}

Doesn’t work for GME because <I:Izlﬁfk> + <I:Iz><ﬁk:>



Going Quantum

p(p,q) =V~ H 5 (Hi(p, q) — ax) Note: mlc.ro.canonlcal ensemble doesn’t
o work for finite n

Works for any system size (any n)  non-integrable CM #£ V16 (H(p, q) — E)

0: What is Generalized Microcanonical Ensemble (GME) in the quantum
case, i.e. a quantum analog of p (p, ¢)?

Need to broaden & - functions. ar = (Hy),  Hiltn) = BV i),
Windows”, i.e. equal weight GME? 5. |5(™ — ay| < 8k, (0) =D (1a|Ol¢n)
. S
Doesn’t work well for many integrals! e
|Ozk| Hpcg = 2261(812; — gz SISE
sl e ° N k k,p
ay, for quench g; = 0.50 — gf = 20
015 B 1 (n)
dn—NZwk — ay,| i 55 s
0.1F k L P k
N He=) -
0.05 J P €k — €p g
min |o|
0 1TO 11 12 13 14 1‘5 16 N

- NO states sufficiently close to all ¢,



Going Quantum

Note: microcanonical ensemble doesn’t

q) =V"1 0 (Hg(p,q) — a
pp;4) kI;[l (Hx(p, ) 2 work for finite n
Works for any system size (any n)  non-integrable CM #£ V16 (H(p, q) — E)

0: What is Generalized Microcanonical Ensemble (GME) in the quantum
case, i.e. a quantum analog of p (p, ¢)?

Need to broaden & - functions. ar = (Hy), Hglgn) = B ,),
“Windows”, i.e. equal weight GME? s |E™ —ay| <8, (O) =3 (¢ulOln)
nesS

Doesn’t work well for many integrals!

Or suppose integrals take discrete values, e.g. fermion occupation #s

H, =np Unlike GGE or Classical Mechanics,
Lkr =1 NO viable generalization of the
__________________ Qg microcanonical ensemble for a

quantum integrable system!

See also Cassidy et. al. PRL (2011) For'geT about Compar'ing it to GGE



Going Quantum

p(p,q) =V~ H 5 (Hi(p, q) — ax) Note: mlc.ro.canonlcal ensemble doesn’t
o work for finite n

Works for any system size (any n)  non-integrable CM #£ V16 (H(p, q) — E)

0: What is Generalized Microcanonical Ensemble (GME) in the quantum
case, i.e. a quantum analog of p (p, ¢)?

Functional broadening, e.g. Gaussian? 5 — (¥ exp [_ Z(ﬁz _ Mz)Mzk(IA{k — 1uz)
ik

o A ) ) i, M are determir}edA from: o

(HiHy) — (H;)(Hp) = p — p(p, q) (Hi)o = Tr(pH;) and (H;Hy)o = Tr(pH; Hy)

Classical limit:

Quantum Generalized Microcanonical Ensemble =
Gaussian GME




1

1 Classical GME (all interactions and system size) pA — O exp [_ g (ﬁz — /*LZ)M’Lk ([A{k S /’Lk)

%

(ShocritEaEnge) M My, are determigedA from: o
T (H;)o = Tr(pH;) and (H;Hy)o = Tr(pH; H},)

Long-range

Cﬁl/h”

¢,

. Well defined and straightforward to implement for any system/size
. Guaranteed exact in classical limit, 7~ — 0 (any system size)
. Captures leading quantum correction (x &) (any system size)

. Works whenever GGE does and converges faster (1/L%) than GGE (1/L) with
system size, L, i.e. captures leading finite size correction

. Works well for systems with long-range interactions

Unlike GGE, also captures fluctuations of local & global observables



y Classical GME (all interactions and system size) p'\ — C eXp [_ g (ﬁz S ,LLZ)M’Lk‘ (ﬁk - Mk)

%+ ik

(ShoifaEnge) Wi, M are determir}edA from: o
Wy > <H >0 — Tl"(pH) and <H’LHIC>O — Tr(ﬁHsz)

Long-range

661/h37

Exact in classical limit and, moreover, captures the leading quantum correction

N2 2 ~2
Ex 1: harmonic oscillator [ — p mw-q
2m 2

14(0)) = |z) = coherent state, a|z) = z|z)
Classical limit: A — 0, Ey = hw|z|* = fixed

T

n = lim n” — |2|?* — @ n=ala
. = Jim [ ko) =1 {14 k- D5 4| G=dla




A Classical GME (all interactions and system size) p'\ — O eXp [_ g (ﬁz S /’LZ)M’L]{ (ﬁk’ - Mk)

%

(Sho(r;tEaEnge) M My, are determiI}edA from: o
T (H;)o = Tr(pH;) and (H;Hy)o = Tr(pH; H},)

Long-range

Cﬁl/h”

Exact in classical limit and, moreover, captures the leading quantum correction

Ex 2: 2-spin Gaudin magnet H{ = BSf + 75‘1 . §2, Hy = BS§ — 7§1 - §2,

[H17 HQ] =0
107 . .
‘ | D o K2 11(0)) = |01, p1) ® |02, p2) (coherent st.)
r —9—’81‘ = ‘SQ‘ Data
1077 |85~ fit Two scenarios: both spins classical or only .S,
| | ] (a) h — 0, hS; = hS, = fixed
e -=-|S;| = 1/2 Data| |
5 _|S2|—3.0 fit
10°r (b) A — 0, hSy = fixed, S; =1/2
1007
4 8 \812? 32 48 D_ <Sf>GME — <Sf>oo

(5T) o0



Classical GME (all interactions and system size) pA — O eXp [_ g (ﬁz S ,LLZ)M’Lk ([A{k - Mk)

%

GGE
shortrange)l ~ Works whenever GGE does and converges

faster (1/L?) than GGE (1/L) as system size,

Cﬁl/h”

CCL”
“r’ L, grows
Long-range
L L
Example: H = —Z( i ;+1cj +e” "%TCJH ) + Z [V1 cos(Qj) + Vacos(2Q7)] n;
j=1 j=1
D—-I-'-—' —I— 7 GME exact for linear & bilinear
102} T+ -+-4+-4-4 4+ 4+ combinations of occupation #s for
T GGE any L, so consider:
104t ¥ Gaussian GME A ———
- -L710 fig D — (N1M2N3)GE — <n1n2n3>oo
— L2V fit - ~ - ~
(1) (R2) (N3)
10_6%
Q=mn/3
10'8 L L L L Il L L PO T IS SR AT SRR SN SN ST SHNT SN SO TN ST SR SN T ST ST S NN T ST S
40 60 80 100 120 140 160 180

L
Quench from ¢ =V; =V =0to ¢ =0.3,V; =1.5,V5 =1.0



Classical GME (all interactions and system size)

 §

GGE
(short-range)

Cﬁl/h”

S

“wr”
.0 L

Long-range

Example: Hpcg = Z 2eksk gz sk p

(b)7 510
6 -
— G--.
gs!g‘\\ e
< LR 9
<4' =AY, GME TBe
@4l |-=AP, GME T
<? o AD, GGE
| -3 A® GGE
2 |
m @\e/e\e
O
ﬂ EI\E/E\EI
1. | | |
10 N 16

p = Cexp [— > (Hi — i) Mg (Hy, — Mk)]

ik

Works well for systems with long-range
interactions. Likely exactin N — oo limit,
since dynamics become effectively classical

§k’§ S

Hk:E :—P__k
€k — €

D k p g

Canonical order parameters:

N - # of spins, s = 1/2, total §% =0

Quench g; = 0.50 — g¢ = 2.00, where 0 = spacing between ek
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.\S“ Classical GME (all interactions and system size)
—
Yuzbashyan, Ann. Phys. 367, 288 (2016) = %
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