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Is there even such a thing as integrability for a time-dependent
Hamiltonian???

2y H(t)U

ot /

Many-body or matrix Hamiltonian with explicit (smooth) dependence on time

Q: Under what conditions on I:[(t) is the non-stationary Schrodinger

equation exactly solvable ?



Start with time-independent integrability

Example: 1D Hubbard model — tight-binding plus onsite Coulomb (or XXZ, BCS etc.)

H(u)= Y (&l,601s+ 8,1 ,655) +uY Ry
jre=11 j

Exact solution of the stationary Schrodinger eq. via Bethe ansatz [ Lieb & Wu (1969) ]

H (u)ton (u) = Ep (w)iby (u)

Infinite sequence of integrals of motion polynomial in ¢ [ Shastry (1986) ]

[H, Hy] = [Hy, H;] = 0



Start with time-independent integrability

Example: 1D Hubbard model — tight-binding plus onsite Coulomb (or XXZ, BCS etc.)

H(u) = Z (AT Cj+1s + C;L+1 sCis) T uzﬁﬂﬁji
J,8=T4 J

Exact solution of the stationary Schrodinger eq. via Bethe ansatz [ Lieb & Wu (1969) ]
H (u)on () = En(u)n(u)

Infinite sequence of integrals of motion polynomial in ¢ [ Shastry (1986) ]
[H,H,] = [Hy, H;] =0

Suppose we make ©# a (smooth) function of time, ©4 — u(t)
In general, this will break the integrability

. - = # (0  Commuting partners are no
dt ot Ou dt longer integrals of motion

Zl[ﬁ,ﬁk] -+



Start with time-independent integrability

Example: 1D Hubbard model — tight-binding plus onsite Coulomb (or XXZ, BCS etc.)

H(u)= Y (&l,601s+ 8,1 ,655) +uY Ry
jre=11 j

Exact solution of the stationary Schrodinger eq. via Bethe ansatz [ Lieb & Wu (1969) ]
H(u)yn(u) = Bp(u)pn(u) v — u(t)

Instantaneous (adiabatic) eigenstates are no longer helpful due to Landau-Zener
tunneling between them

U(t) =Y ealt)e™ T HE Dy, (u(t))

n

e (t)| # const \onadiabatic (Landau-Zener) transitions
" between adiabatic states



Start with time-independent integrability

Example: 1D Hubbard model — tight-binding plus onsite Coulomb (or XXZ, BCS etc.)

H(U) — Z (é;r'séj—l—l s T é;"'l séjs) +u Z ﬁjTﬁji
jrs=1l j

Q): Can we make parameters of an integrable model time-dependent
without breaking the integrability, i.e. so that the non-stationary

Schrédinger eq. is exactly solvable ?

In other words, can we have integrable Landau-Zener dynamics?



Start with time-independent integrability
Example: 1D Hubbard model — tight-binding plus onsite Coulomb (or XXZ, BCS etc.)
T At N .
H(u) = Z (GjsCit1s +Ej114Cjs) T u Z itTl
7,s=T{ J

Q): Can we make parameters of an integrable model time-dependent
without breaking the integrability, i.e. so that the non-stationary

Schrédinger eq. is exactly solvable ?

In other words, can we have integrable Landau-Zener dynamics?

A: Yes, we can at least for some integrable models



Examplel: Bardeen-Cooper-Schrieffer (BCS) model of superconductivity

Fermi gas plus pairing interactions between fermions

Hpcs = Z Eklholho — Z el el ery

Like Hubbard, there is an exact solution for the spectrum [ Richardson (1964) ] and
nontrivial §J-dependent commuting partners [ Cambiaggio, Rivas, Saracena (1997) ]

In general, this breaks the integrability
g — g(t) But we’ll see that for certain special choices of g(t) the problem
remains integrable



Examplel: Bardeen-Cooper-Schrieffer (BCS) model of superconductivity

Fermi gas plus pairing interactions between fermions

Hpcs = Z Eklholho — Z el el ery

Like Hubbard, there is an exact solution for the spectrum [ Richardson (1964) ] and
nontrivial §J-dependent commuting partners [ Cambiaggio, Rivas, Saracena (1997) ]

In general, this breaks the integrability
g — g(t) But we’ll see that for certain special choices of g(t) the problem
remains integrable

1

In particular, we’ll see that there an exact solution for \I!(t) for g(t) = i
v



Example2: BCS-BEC Condensate of Ultracold Fermions (#°K, ©Li)

BEC - side Ad  BCS-side Detuning: wo ~ 2ug(B — By)

¢ >0 repulsive

| E AB

binding
: a =0 attractive

Greiner, Regal & Jin, JILA, 4°K (2004)



Example2: BCS-BEC Condensate of Ultracold Fermions (#°K, ©Li)

BEC - side Ad  BCS-side Detuning: wo ~ 2ug(B — By)

¢ >0 repulsive

> 2

. : gVFp
£ AB Resonance width: v =

binding ER
” ¢ =0 attractive

<1

Greiner, Regal & Jin, JILA, 4°K (2004)

For a narrow resonance the BCS-BEC condensate is well described by
the inhomogeneous Dicke model

HD = 281{ Cka + wo@\b + QZ (bTC kwm [; C k¢)
atoms molecules

_ b

Similar to BCS, this is a Bethe-ansatz-solvable model with §-dependent
commuting partners [ Gaudin (1983) ]



Example2: BCS-BEC Condensate of Ultracold Fermions (#°K, ©Li)

BEC - side Ad  BCS-side Detuning: wo ~ 2ug(B — By)

¢ >0 repulsive

> 2

: : g VFr
= AB Resonance width: v = <1
binding _ . EF
' ¢ < 0 attractive
Greiner, Regal & Jin, JILA, 4°K (2004)
For a narrow resonance the BCS-BEC condensate is well described by Le,

the inhomogeneous Dicke model

2 0 |, &
HD = Zc‘fk Cka + w()??'ib + g E (ch k| Ckt b c ki) e
atoms molecules K £ = —

_ b

Ground state:
(a) wg — 400 Fermigas

(C) Wo — —3 No atoms, everything condensed into a single mode b



Example2: BCS-BEC Condensate of Ultracold Fermions (#°K, ©Li)

BEC - side Ad  BCS-side Detuning: wo ~ 2ug(B — By) ;

¢ >0 repulsive

= 2 @ Tk

; . qg Vg
E AB Resonance width: v =
Dinding -

a =0 attractive

Greiner, Regal & Jin, JILA, 4°K (2004)

For a narrow resonance the BCS-BEC condensate is well described by Le,
the inhomogeneous Dicke model
(c) .k
HD — Z cQ:k Cka + WOT'L\b + g Z (bTC kiCkT =F bCkTC ki) we 5w
atoms molecules
: 8\11 A
Linear sweep across the Feshbach resonance: wg = —vt (% = H(t)V

At t — —o0: () =0, (&L _ére) = 0(k — kp)

At t — +oo: () =2, (8] 61y =? Ay = bTD
ko



Multi-level Landau-Zener problem

H(t) = A+ Bt i%—\f — H(t)U

A, B — N x N time-independent Hermitian matrices
U(t — —o0) = |in), Y(t — +o0) = Sl|in)
S — scattering matrix = ? Transition probabilities: p;—k = \Siklz

B — diagonal (diabatic basis)



Multi-level Landau-Zener problem

H(t) = A+ Bt i%—\f — H(t)U

A, B — N x N time-independent Hermitian matrices
U(t — —o0) = |in), Y(t — +o0) = Sl|in)
S — scattering matrix = ? Transition probabilities: P;—r = \Sik ]2

B — diagonal (diabatic basis)

N =2 Landau, Zener, Majorana, Stuckelberg (1932)

B 0 g/2 A2 0
H(t)_(g/Q 0 )*( 0 —)\/Q)t
U(t) — solution in terms of parabolic cylinder functions

- 2
Survival probability Doso = 1 — e~ 3 v1las \— 0
(Landau-Zener formula)

(adiabaticity)



Multi-level Landau-Zener problem

H(t) = A+ Bt i%—\f — H(t)U

A, B — N x N time-independent Hermitian matrices
U(t — —o0) = |in), Y(t — +o0) = Sl|in)
S — scattering matrix = ? Transition probabilities: P;—r = \Sik ]2

B — diagonal (diabatic basis)

N > 2 No general solution, only certain special cases

Q: Under what conditions on H(t) = A + Bt, i.e. for which A and B is

the multi-level Landau-Zener problem exactly solvable? What is the
solution?

By definition solvable iff: p; s = felem(Aija Bz‘j)



Exactly solvable multi-level Landau-Zener problems

A. Trivial/reducible MLZ problems

arbitrary spin in linear

/ A/ in time magnetic field
B 0 g/2 2 0 Oy 0z

H(t)_(g/2 0 )+( 0 _)\/Q)t—92+)\t2—>ng+)\tSz

arbitrary rep of su(2)



Exactly solvable multi-level Landau-Zener problems

A. Trivial/reducible MLZ problems

arbitrary spin in linear
in time magnetic field

H(t):(g(/)2 g(/)Q )+( AéQ _2/2 )t—gz —1—)\t7—>gS + ALS,

arbitrary rep of su(2)

The time evolution operator belongs to the SU(2) group (rotation)

U(t) = p—1a(t)S: ,—iB(t)Sy ,—iV(t)S: — ( B,7)

Euler angles a(t), 8(t) and ~(t) are the same as in the 2 x 2 LZ problem

Transition probabilities are modulus squared of the elements of the Wigner D-matrix
I\ |2

Hioe, J. Opt. Soc. Am. B 4, 1327 (1987)



Exactly solvable multi-level Landau-Zener problems

A. Trivial/reducible MLZ problems

N
Driven Quantum Ising Model: H = —JZ h(t)or +oloi 4], h(t)=—-M

After Jordan-Wigner followed by Fourier this reduces to the 2 x2 LZ problem
Dziarmaga, PRL 95, 245701 (2005)

H = JZ { — cos( ka)]czck + Sll’l(ka)[C};CT T+ Cc_kck) — h}



Exactly solvable multi-level Landau-Zener problems

A. Trivial/reducible MLZ problems

N
Driven Quantum Ising Model: H = —JZ h(t)or +oloi 4], h(t)=—-M

After Jordan-Wigner followed by Fourier this reduces to the 2 x2 LZ problem
Dziarmaga, PRL 95, 245701 (2005)

H = JZ { — cos( ka)]c,tck + s1n(l<:a)[c/£(;r T+ Cc_kck) — h}

Density of kinks in N — oo limit for a sweep across QPT

1 /ha\"
from paramagnet (h > 1) to ferromagnet at h = 0 =5 (ﬂ)

Scaling with the rate A agrees
with Kibble-Zurek mechanism

And many more trivial/reducible MLZ problems...



Exactly solvable multi-level Landau-Zener problems

B. Three irreducible exactly solvable MLZ problems since 1932

1.

HDQ(t)

Demkov-Osherov model

(0 g2
g2

a

\gv 0

A

o)

+1

Soviet Phys. JETP (1968)




Exactly solvable multi-level Landau-Zener problems

B. Three irreducible exactly solvable MLZ problems since 1932

1. Demkov-Osherov model

HDQ(t) =

2. Bow-tie model

( 0 g2
g2 a2
\gv 0

QN\ (A 0

+1

o)\

gn 0 O

0 0 Ao
+t| .

0 0 O

Soviet Phys. JETP (1968)

Ostrovsky & Nakamura, J. Phys. A (1997)

i



Exactly solvable multi-level Landau-Zener problems

B. Three irreducible exactly solvable MLZ problems since 1932

1. Demkov-Osherov model Soviet Phys. JETP (1968)
( 0 gy --- gN\ ()\ o .- 0\
gas ay - 0 O 0 --- 0
Hpo(t) = | . . N IS A .
\gN 0 --. CLN) KO 0 --- 0)
2. Bow-tie model Ostrovsky & Nakamura, J. Phys. A (1997)

3. Inhomogeneous Dicke model Sinitsyn, Yuzbashyan, Chernyak, Patra & Sun, PRL (2018)

IA{D = Z Ekélaékg — (Vt)’f?,b + g Z ([A?Té_kiékT + [A?éLTéT_ki)
k,o k



Exactly solvable multi-level Landau-Zener problems

B. Three irreducible exactly solvable MLZ problems since 1932

1. Demkov-Osherov model Soviet Phys. JETP (1968)
( 0 go --- gN\ ()\ o .- 0\
g2 az --- 0 0O 0 --- 0
Hpo(t) =] . L B e A .
\gN 0o ... aN) \0 0 --.. 0)
( P2 PN G2D3 - - DN q3Pa - - - DN GaDs - - - DN qN\
q2 D2 0 0 0
P243 4293 P3 0 0
S = P2P344 q2P344 4394 P4 0
KPQ " *PN—-14dN q2P3 " "PN-19N 43P4a - PN—-14N 44P5° - "PN—-1gN " CIN)

D=y .
pp=¢€ >, qr=1/1—Dp;

1N 13 12
S =SMy glsgl2



Exactly solvable multi-level Landau-Zener problems
Q: What is special about these models? What sets them apart from any
other Hamiltonian linear in time?

H(t)=A+ Bt A,B—- N x N time-independent Hermitian matrices

Insight from Integrable Matrix Theory (counterpart of Random Matrix
Theory for quantum regular as opposed to chaotic systems)

Owusu &Yuzbashyan, J. Phys. A (2011)
Yuzbashyan & Shastry, J. Stat. Phys. (2013)
Yuzbashyan, Shastry, Scaramazza, PRE (2016)



First, consider an abstract N x N Hermitian matrix M

<

]
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

\ /

Makes no sense to talk about its integrability



First, consider an abstract N x N Hermitian matrix M

S

|
O o oo X
OO O X O
OO X OO
O X OO0 O
X © 0 OO

\ /

Makes no sense to talk about its integrability

For example, there is no natural notion of a nontrivial integral of motion
For any M there is a full set of M,_such that [M}, M;] = [My, M] =0

N
And any integral of motion M} = Z an M™

n=1

All Hermitian matrices look the same from this point of view



The situation changes if we introduce & fix parameter dependence

Let H(t) = A+ Bt, t — real parameter and A, B — Hermitian matrices

~ ~

Suppose we require a commuting partner also linear in ¢: f[(t) — A+ Bt

[ﬁ[(t), H(t)} = 0, for all ¢

l

B,B|=0, [A B]=I[AB], [A4,A4=0

These commutation relations severely constraint matrix elements of H(¢)
For a generic/typical H(f) — no commuting partners except itself and identity

Now can separate generic matrices (no commuting partners) from special
(integrable matrices)



N x N Hamiltonians linear in a parameter separate into two distinct
classes

H(t) = A+ Bt :> !\Io commgting.partne.rs linear in-tother than
itself and identity (typical) — nonintegrable,
ﬂ need N?/2 real parameters to specify H(?)

Nontrivial commuting partners H (u)=A4,+ Bt exist —
integrable, turns out need less than 4N parameters —
measure zero in the space of linear Hamiltonians

J

1. Bethe-ansatz-like exact solution for the spectrum
2. Level crossings (typically N%/2 crossings)

3. Can generate basis-independent ensembles of integrable
matrices. Level statistics are typically Poissonian



Exactly solvable multi-level Landau-Zener problems

Q: What is special about these models? What sets them apart from any
other Hamiltonian linear in time?
H(t)=A+ Bt A,B— N x N time-independent Hermitian matrices

A: They are integrable matrices as defined above!
Patra & Yuzbashyan, J. Phys. A (2015)



Exactly solvable multi-level Landau-Zener problems

Q: What is special about these models? What sets them apart from any

other Hamiltonian linear in time?
H(t)=A+ Bt A,B— N x N time-independent Hermitian matrices

A: They are integrable matrices as defined above!

Patra & Yuzbashyan, J. Phys. A (2015
Example 1: Demkov-Osherov model Y o 1 (2105

N

Hpo = M[1)(L] + ) (gel1) (k| + gelk) (1] + axlk) (k])
k=2

Has N independent nontrivial commuting partners linear in ¢

1+ 3 9;9x19) (Kl + gjgk\/?k@l ;jgiljﬂj! — g7 |k) (k|

Hj = (t —a;)[5) (] — 9;11) (G| — g7
k#j

\Hj, Hy| = [Hj;, Hpo] = 0



Exactly solvable multi-level Landau-Zener problems

Q: What is special about these models? What sets them apart from any
other Hamiltonian linear in time?
H(t)=A+ Bt A,B— N x N time-independent Hermitian matrices

A: They are integrable matrices as defined above!

Example 2: inhomogeneous Dicke model

I:[D = Z €kéLUékg — (Vt)ﬁb + g Z ([A)T(Aj_kiékT -+ [A)ELT(AZT_IQ)
k,o k

Anderson pseudospins: s; = Pt

1 _
5 [CLTCkT -+ C]L_kic_k¢ — 1] . Sk = C—k|Ck, S: = CkTC—k¢

Hp(t) = Zeksf’{ — (vt)ngy + gz (IA)TSIZ + ZA)SI)
K K
. Sk * Sp

Hy(t) = (ex + vt)si + g(bTsy. + bsyh) + 22 Z -
pFk

k_gp

A

[H(t), H(t)] = [Hx(t), Hp(t)] =0, Vtk,p



Exactly solvable multi-level Landau-Zener problems

Q: What is special about these models? What sets them apart from any
other Hamiltonian linear in time?
H(t)=A+ Bt A,B— N x N time-independent Hermitian matrices

A: They are integrable matrices as defined above!
Patra & Yuzbashyan, J. Phys. A (2015)

3 Hy(t) = Ay, + Byt [Hp(t), Ht)] =0 Vi

Q: What is the role of these commuting partners? How do they help us
solve for the dynamics of the system?

ov .
They aren’t conserved: il =|H, Hy] + OH: = B # 0

ot



Exactly solvable multi-level Landau-Zener problems

Q: What is special about these models? What sets them apart from any
other Hamiltonian linear in time?
H(t)=A+ Bt A,B— N x N time-independent Hermitian matrices

A: They are integrable matrices as defined above!
Patra & Yuzbashyan, J. Phys. A (2015)

3 Hy(t) = Ay, + Byt [Hp(t), Ht)] =0 Vi

Q: What is the role of these commuting partners? How do they help us
solve for the dynamics of the system?

ov A
.— p— :?
7 57 H(t)V, W(t)="

A: They determine the evolution of the system with respect to
parameters other than time!

oV A
— = H, ¥
Z@xk g



Idea: The non-stationary Schrédinger equation can be consistently
embedded into a set of multi-time Schrédinger equations

” (9\11 Sinitsyn, Yuzbashyan, Chernyak, Patra & Sun, PRL (2018)
i— = HU
ot
< ov
w— =H;;V, k=1,....n—1
8a:k 9
CIZOEI/t, HQEH, ﬁk:—, wZ(ZL'(),...,CUn_l)
(93%

iRV (x) = HyU(x)

N

Consistency: @-[A{k — akjf]j — Z[I:Ik, [:]]] =0



Idea: The non-stationary Schrédinger equation can be consistently
embedded into a set of multi-time Schrédinger equations

( 8\1! Sinitsyn, Yuzbashyan, Chernyak, Patra & Sun, PRL (2018)
i— = HU
ot
. oV A
w— =H;;V, k=1,....n—1
Ba:k 9
ZCOEI/t, HQEH, ﬁk:—, w:(xo,...,xn_l)
(93%

iRV (x) = HyU(x)

Consistency: \@-[A{k — ﬁkﬁj’ —\i[[ilk, ﬁj]’: 0
| |

)ﬁ real imaginary

a Hk — ak 4 = Additional constraint

[Hk, Hj] = () — Integrability of the underlying model



Idea: The non-stationary Schrédinger equation can be consistently

embedded into a set of multi-time Schrédinger equations
Sinitsyn, Yuzbashyan, Chernyak, Patra & Sun, PRL (2018)

A

Example: inhomogeneous g (4) — 2 . (AT — | fot
p(t) = EkSE + wonpy + g b's, + bs
Dicke model () Ek: ) Ek: k k

pAk Tk TP
To= —wo =Vlt, XL =¢E€k
Oy _, » -5 _ OHp OHp .  OHy
p— p— = S p—
Dy (k—2p)? O Oee % O(—wo)

(‘)j Hk — akHj<— Additional constraint

[Hk, Hj] = () — Integrability of the underlying model



Multi-level Landau-Zener problem

Z%—\f — HU Formal solution: ¥(x) = T exp (—z/ f[kdxk) U (xg)
75
ow A
w—— = H; ¥



Multi-level Landau-Zener problem

[ 2 A~
Zaa—\f = HWV Formal solution: ¥ (x) = T exp (—z/ dexk) U (o)
P
< [
Z-Va_\Ij _ I:]k\If Path-independent
\ oxy,

Consistency: (%I:[k — 3k[:Ij — Z[I:Ik, ﬁ]] =0

|

Non-abelian gauge field Ax = —iH};, has zero curvature

[Not to be confused with zero curvature representation of nonlinear PDEs]



Multi-level Landau-Zener problem

[ 2 A~
Zaa—\f = HWV Formal solution: ¥ (x) = T exp (—z/ dexk) U (o)
P
< [
Z-Va_\Ij _ I:]k\If Path-independent
\ oxy,

Example: Demkov-Osherov model

0 go -~ gn X 0 --- 0
go ag - 0 00 --- 0
Hpo(t) = . S Bt PO Yas — a
gy 0 - ay 00 --- 0
xl{i:a’kﬁ CL:(CLQ,...,CLN)

A
ay K a3 <K an
> - >

-- =

3
|
v
&~



Multi-level Landau-Zener problem

[ 2 A~
Z%—\f = HW Formal solution: ¥ (x) = T exp (—z/ dexk) U (o)
P
< [
Z-Va_\Ij _ ﬁk\lf Path-independent
\ oxy,

Example: Demkov-Osherov model

0 go -~ gn X 0 --- 0
go ag - 0 00 --- 0
Hpo(t) = . S B : Yas — a
gy 0 - ay 00 --- 0
xki:a’ki a:(CLQ,...,CI/N)

A
a2<<633<{"§<aN

Energy levels well separated (i.e. evolution is
adiabatic and no transitions occur) everywhere v
along the contour except near crossings . .
where 2 X 2 LZ scattering events take place — 0

_ Q1N 13 ¢l2
=S5 =57, ...517517

_|_
3



Knizhnik-Zamolodchikov equations

Z’Va_qj — H \/ ]—A]j = — Z 88.‘7';8: — Gaudin magnets
389 R k
[Hj7 Hk] =0

Q: Is their any relationship between the multi-time Schrodinger

equations we derived for solvable Landau-Zener models and Knizhnik-
Zamolodchikov equations?



Generalized Knizhnik-Zamolodchikov equations

ZV@_\IJ - H I IA{j = 238? — Z — Gaudin magnets
859 kg 8] — Sk

[I:Ij?]:[k] =0

ZQeka OCHBCS — ZQSkSZ ZS Sk [HBcs,Hk] =0
k k
BCS model of superconductivity in Anderson pseudospin representation
ne — 1 _ 1
Sk, = 9 Sk = CklCk?s 51_; — CIJLTCITQ; g = 2B

Hpcs = ngckgcka QZ Ci1 chwm

Sierra, Nucl. Phys. B (2000); Amico, Falci, Fazio, J. Phys. A (2001); Sedrakyan & Galitskii,
PRB (2010); Fioretto, Caux, Gritsev, New J. Phys. (2014)



Generalized Knizhnik-Zamolodchikov equations

oA 5 p |
W = H /] H; =|2Bs%|— Z — — Gaudin magnets

J
— &

[I:Ij?]:[k] =0

ZQ&kﬁk X I:IBCS — ZQSkSZ ZS Sk [ﬁBcs,f{k]
k k

Observation: The evolution of the system W|th magnetic field B is
governed by the BCS Hamiltonian [ Yuzbashyan, Ann. Phys. (2018) ]

ov .
— = HpcsV¥
@VaB BCS

This equation is consistent with the generalized KZ equations, because the BCS

Hamiltonians satisfies the zero curvature conditions: A A
— " = 957 =
OB & Oer,

=0



KZ-BCS equations

a\:[j 2 — —
v— — H. W 2 z Sj - Sk
Zyagj 9 Hj —ZBSJ ;

J

— Gaudin magnets
€j — &k

ov ~ ; 1
. T L > . + .
ZVa — HBCS\IJ HBCS = Ek 25k3k —QB jgk Sj St



KZ-BCS equations

(. o0V A X 2 o
I — = Hj\P H. =2Bs* — 5j ' 5k — Gaudin magnets
% ﬂ J
€ j Py €j — €k
<
ov A .
ZVa—B — HBCS\IJ HBCS = ZQ&kSz ZS Sk
k

Integrable time-dependent BCS Hamiltonians: let B = B(t)
B(t) = vt = Hgcs(t) Z 2,87 — — Z $T8,

B(t) = sin(vt) = Hpcs(t) = cos(vt) 228383 — cot(vt) Zs+ S,

Solution of the non-stationary Schrédinger eq: \I!(t) — \IJKZ [B(t)]

Yuzbashyan, Ann. Phys. (2018)



What about exactly solvable multi-level Landau-Zener problems?

Three irreducible exactly solvable MLZ problems since 1932

1. Demkov-Osherov model Soviet Phys. JETP (1968)
( 0 gy --- gN\ ()\ o .- 0\
gas ay - 0 O 0 --- 0
Hpo(t) = | . . N IS A .
\gN 0 --. CLN) KO 0 --- 0)
2. Bow-tie model Ostrovsky & Nakamura, J. Phys. A (1997)

2
(el
—~
~
N——"
I

2 o

o g

SES
_|_
~

o o

=

0 0 O OO

3. Inhomogeneous Dicke model Sinitsyn, Yuzbashyan, Chernyak, Patra & Sun, PRL (2018)

An(t) = > eksi — )i + gy (blsy +bsf )
k k



There is a mapping from Gaudin magnets to each of these models!

Gaudin magnets

HjZQBSZ:— J
J Zé“'—é“k
k#j 7

Sp — 00, S5 — My — So
59 — V 2313, §8L — /2sbf
Then, | Hy — Hp(t)

Inhomogeneous Dicke model

—— Demkov-Osherov model

—

——— Bow-tie model

Hp(t) =) ewsi— (t)in+9Y (5*82 + ?5825)
k k

Plus various new integrable time-dependent Hamiltonians result if we replace spin
SU(2) with other Lie algebras or consider hyperbolic or trigonometric Gaudin magnets



. Demkov-Osherov model
Gaudin magnets

T 0 g2 -+ gn A0 -~ 0
g _S.'Sk - 0 O 0 --- 0
_ J g2 Qa2
Hj_QBS:;_Z ——Hpo(t)=|". . . |+t . .
kg CJ T Gk e > 8 e, ¢
gv 0 -+ apn 0 0 --- 0
S{+ = min
( 1x 1 \
2 SZ. = min+1
%4 _ . tot T
[ totaHj] = 0= H; = N v Block-diagonal
X
2 N o
9 1 gs
s1=1, €1 =0, sk:a—g, gk:_a—’ QB:t_Za_
k k o k

N x N block of H; — Hpo(t)
N x N blocks of ﬁj — commuting partners H,; of Hpo ()



Crucially, the new system satisfies the zero curvature condition

0 g2 - gn X 0 --- 0
g ay - 0 0O 0 --- 0

Hpo(t) = . B R Demkov-Osherov model
g 0 - ay 0O 0 --- 0

|H;, Hpo| = |H;, Hy;] = 0 «=—— Guaranteed by the mapping from Gaudins

OH, OH, 0Hpo OH

a0 9a.’ da = BT, . Unrelated to the mapping, but holds
k j k
([ OV
ZE = Hpo(1)¥ The non-stationary Schrédinger
4 eg. can be consistently
O embedded into a set of multi-

1— = H v time Schroédinger egs.
{  Oag



Solution of the generalized KZ egs. via off-shell Bethe ansatz

M N A—f-
Off-shell Bethe states: ®(\, &) = H IA/+()\Q)\O>, Z

g=1

)\—53

Yang-Yang action:

_2BZ€JSJ+2BZ)‘ ——ZZsjskln = el

J k#j
> D siln(e; — Aa) — 52 D In(Ag— A
j o« a fFa
Solution of KZ eqs:

Uz (B, e) = f{yd)\exp [_iS()\,s)
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] ®(Xe), drx=]]d\

Babujian, J. Phys. A (1993); Fioretto, Caux, Gritsev, New J. Phys. (2014)
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Solution of the non-stationary Schrodinger eq. T
for the time-dependent BCS Hamiltonians: ( )

— \IJKZ [B(t), 6]



A similar technique solves the non-stationary Schrodinger eq. for
Demkov-Osherov, bow-tie & driven inhomogeneous Dicke models

Example: Demkov-Osherov model

N
Hpo = M)A+ > (gel1) (k| + gelk) (1] + ax|k) (k])
k=2
— g;l1)
Off-shell Bethe states: ®po(n,a) = 1) — ) Jj1J
j=2 49

2

N
. n 2 a;
Yang-Yang action: & t) =nt — — E ]
8 8 DO(nva’a ) n 9 T pJ n<aj_77>

J=2
Solution of the non-stationary Schrodinger eq:

~



Summary

1 Formulated a set of conditions under which the non-stationary Schrodinger
eq. for a time-dependent quantum Hamiltonian is integrable — embedding
into a system of consistent multi-time Schrodinger egs.

(1 New intergrable H(t), e.g., the BCS model with coupling < 1/t, a Floquet
BCS model and linearly driven inhomogeneous Dicke model

[ Exactly solvable multi-level Landau-Zener problems fit into this construction

L All nontrivial integrable H(t) to date map to Gaudin magnets. Their non-
stationary Schrodinger eq. is solvable via off-shell Bethe ansatz

U This theory explains why the scattering matrix factorizes for integrable H(t)



Open Questions

1 Formulated a set of conditions under which the non-stationary Schrodinger
eq. for a time-dependent quantum Hamiltonian is integrable — embedding
into a system of consistent multi-time Schrodinger egs.

oV . .
ZE = HV aij = 8kHj
< oV o f
iV—ZI:]k\If [Hk,Hj] =0
\ Oxy,

L All nontrivial integrable H(t) to date map to Gaudin magnets. Their non-
stationary Schrodinger eq. is solvable via off-shell Bethe ansatz

Q Are there integrable H(t) that do not map to Gaudin magnets? If not,
then why? Any integrable H(t) not listed in this talk?

Q. Can we introduce time dependence into, e.g., XXZ or Hubbard
Hamiltonian without breaking integrability?

A S e S
Gaudin magnets: Hj — 2355 — E J 2k
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