Integrable time-dependent Hamiltonians

Emil Yuzbashyan

Integrable systems in Mathematics,
Condensed Matter and Statistical Physics
16 July – 10 August 2018

Is there even such a thing as integrability for a time-dependent Hamiltonian???

$$i\frac{\partial\Psi}{\partial t} = \hat{H}(t)\Psi$$

Many-body or matrix Hamiltonian with explicit (smooth) dependence on time

 $m{Q:}$ Under what conditions on $\hat{H}(t)$ is the non-stationary Schrödinger equation exactly solvable?

Example: 1D Hubbard model – tight-binding plus onsite Coulomb (or XXZ, BCS etc.)

$$\hat{H}(u) = \sum_{j,s=\uparrow\downarrow} (\hat{c}_{js}^{\dagger} \hat{c}_{j+1s} + \hat{c}_{j+1s}^{\dagger} \hat{c}_{js}) + u \sum_{j} \hat{n}_{j\uparrow} \hat{n}_{j\downarrow}$$

Exact solution of the stationary Schrödinger eq. via Bethe ansatz [Lieb & Wu (1969)]

$$\hat{H}(u)\psi_n(u) = E_n(u)\psi_n(u)$$

Infinite sequence of integrals of motion polynomial in u [Shastry (1986)]

$$[\hat{H}, \hat{H}_k] = [\hat{H}_k, \hat{H}_j] = 0$$

Example: 1D Hubbard model – tight-binding plus onsite Coulomb (or XXZ, BCS etc.)

$$\hat{H}(u) = \sum_{j,s=\uparrow\downarrow} (\hat{c}_{js}^{\dagger} \hat{c}_{j+1s} + \hat{c}_{j+1s}^{\dagger} \hat{c}_{js}) + u \sum_{j} \hat{n}_{j\uparrow} \hat{n}_{j\downarrow}$$

Exact solution of the stationary Schrödinger eq. via Bethe ansatz [Lieb & Wu (1969)]

$$\hat{H}(u)\psi_n(u) = E_n(u)\psi_n(u)$$

Infinite sequence of integrals of motion polynomial in u [Shastry (1986)]

$$[\hat{H}, \hat{H}_k] = [\hat{H}_k, \hat{H}_j] = 0$$

Suppose we make u a (smooth) function of time, $u \to u(t)$ In general, this will break the integrability

$$\frac{d\hat{H}_k}{dt} = i[\hat{H}, \hat{H}_k] + \frac{\partial \hat{H}_k}{\partial t} = \frac{\partial \hat{H}_k}{\partial u} \frac{du}{dt} \neq 0 \qquad \text{Commuting partners are no longer integrals of motion}$$

Example: 1D Hubbard model – tight-binding plus onsite Coulomb (or XXZ, BCS etc.)

$$\hat{H}(u) = \sum_{j,s=\uparrow\downarrow} (\hat{c}_{js}^{\dagger} \hat{c}_{j+1s} + \hat{c}_{j+1s}^{\dagger} \hat{c}_{js}) + u \sum_{j} \hat{n}_{j\uparrow} \hat{n}_{j\downarrow}$$

Exact solution of the stationary Schrödinger eq. via Bethe ansatz [Lieb & Wu (1969)]

$$\hat{H}(u)\psi_n(u) = E_n(u)\psi_n(u) \qquad u \to u(t)$$

Instantaneous (adiabatic) eigenstates are no longer helpful due to *Landau-Zener tunneling* between them

$$\Psi(t) = \sum_{n} c_n(t)e^{-i\int dt E_n(u(t))}\psi_n(u(t))$$

 $|c_n(t)| \neq ext{const}$ Nonadiabatic (Landau-Zener) transitions between adiabatic states

Example: 1D Hubbard model – tight-binding plus onsite Coulomb (or XXZ, BCS etc.)

$$\hat{H}(u) = \sum_{j,s=\uparrow\downarrow} (\hat{c}_{js}^{\dagger} \hat{c}_{j+1s} + \hat{c}_{j+1s}^{\dagger} \hat{c}_{js}) + u \sum_{j} \hat{n}_{j\uparrow} \hat{n}_{j\downarrow}$$

Q: Can we make parameters of an integrable model time-dependent without breaking the integrability, i.e. so that the non-stationary Schrödinger eq. is exactly solvable?

In other words, can we have integrable Landau-Zener dynamics?

Example: 1D Hubbard model – tight-binding plus onsite Coulomb (or XXZ, BCS etc.)

$$\hat{H}(u) = \sum_{j,s=\uparrow\downarrow} (\hat{c}_{js}^{\dagger} \hat{c}_{j+1s} + \hat{c}_{j+1s}^{\dagger} \hat{c}_{js}) + u \sum_{j} \hat{n}_{j\uparrow} \hat{n}_{j\downarrow}$$

Q: Can we make parameters of an integrable model time-dependent without breaking the integrability, i.e. so that the non-stationary Schrödinger eq. is exactly solvable?

In other words, can we have integrable Landau-Zener dynamics?

A: Yes, we can at least for some integrable models

Example1: Bardeen-Cooper-Schrieffer (BCS) model of superconductivity

Fermi gas plus pairing interactions between fermions

$$\hat{H}_{BCS} = \sum_{k,\sigma} \varepsilon_k \hat{c}_{k\sigma}^{\dagger} \hat{c}_{k\sigma} - g \sum_{j,k} \hat{c}_{j\uparrow}^{\dagger} \hat{c}_{j\downarrow}^{\dagger} \hat{c}_{k\downarrow} \hat{c}_{k\uparrow}$$

Like Hubbard, there is an exact solution for the spectrum [Richardson (1964)] and nontrivial g-dependent commuting partners [Cambiaggio, Rivas, Saracena (1997)]

$$g o g(t)$$
 In general, this breaks the integrability But we'll see that for certain special choices of $g(t)$ the problem remains integrable

Example1: Bardeen-Cooper-Schrieffer (BCS) model of superconductivity

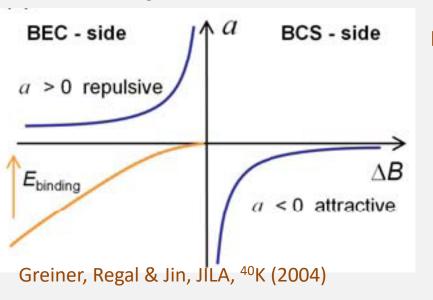
Fermi gas plus pairing interactions between fermions

$$\hat{H}_{BCS} = \sum_{k,\sigma} \varepsilon_k \hat{c}_{k\sigma}^{\dagger} \hat{c}_{k\sigma} - g \sum_{j,k} \hat{c}_{j\uparrow}^{\dagger} \hat{c}_{j\downarrow}^{\dagger} \hat{c}_{k\downarrow} \hat{c}_{k\uparrow}$$

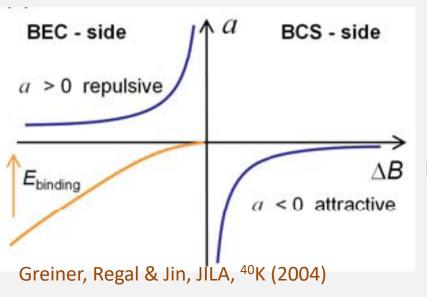
Like Hubbard, there is an exact solution for the spectrum [Richardson (1964)] and nontrivial g-dependent commuting partners [Cambiaggio, Rivas, Saracena (1997)]

$$g o g(t)$$
 In general, this breaks the integrability But we'll see that for certain special choices of $g(t)$ the problem remains integrable

In particular, we'll see that there an exact solution for $\Psi(t)$ for $g(t)=rac{1}{
u t}$



Detuning: $\omega_0 \approx 2\mu_B(B-B_0)$



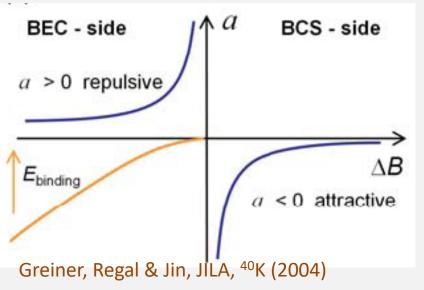
Detuning: $\omega_0 \approx 2\mu_B(B-B_0)$

Resonance width:
$$\gamma = \frac{g^2 \nu_F}{\varepsilon_F} \ll 1$$

For a narrow resonance the BCS-BEC condensate is well described by the inhomogeneous Dicke model

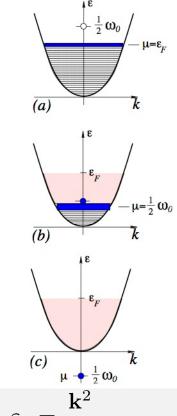
$$\hat{H}_{\mathrm{D}} = \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} + \omega_{0} \hat{n}_{b} + g \sum_{\mathbf{k}} \left(\hat{b}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} + \hat{b} \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \right)$$
atoms molecules
$$\hat{n}_{b} = \hat{b}^{\dagger} \hat{b}$$

Similar to BCS, this is a Bethe-ansatz-solvable model with g-dependent commuting partners [Gaudin (1983)]



Detuning: $\omega_0 \approx 2\mu_B(B-B_0)$

Resonance width: $\gamma = \frac{g^2 \nu_F}{\varepsilon_F} \ll 1$



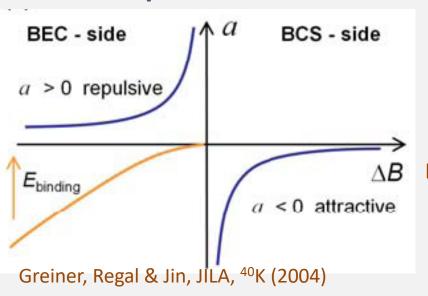
For a narrow resonance the BCS-BEC condensate is well described by the inhomogeneous Dicke model

$$\hat{H}_{\mathrm{D}} = \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} + \omega_{0} \hat{n}_{b} + g \sum_{\mathbf{k}} \left(\hat{b}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} + \hat{b} \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \right)$$
atoms molecules
$$\hat{n}_{b} = \hat{b}^{\dagger} \hat{b}$$

$$\varepsilon_{\mathbf{k}} = \frac{\mathbf{k}^2}{2m}$$

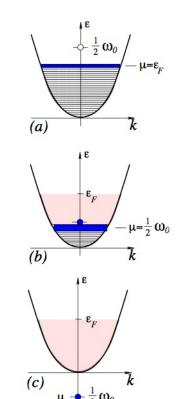
Ground state:

- (a) $\omega_0 \to +\infty$ Fermi gas
- (c) $\omega_0
 ightarrow -\infty$ No atoms, everything condensed into a single mode b



Detuning: $\omega_0 \approx 2\mu_B(B-B_0)$

Resonance width: $\gamma = \frac{g^2 \nu_F}{\varepsilon_F} \ll 1$



For a narrow resonance the BCS-BEC condensate is well described by the inhomogeneous Dicke model

$$\hat{H}_{\mathrm{D}} = \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} + \omega_{0} \hat{n}_{b} + g \sum_{\mathbf{k}} \left(\hat{b}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} + \hat{b} \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \right)$$
 atoms molecules

Linear sweep across the Feshbach resonance:
$$\omega_0 = -\nu t$$
 $i\frac{\partial \Psi}{\partial t} = \hat{H}(t)\Psi$

At
$$t \to -\infty$$
: $\langle \hat{n}_b \rangle = 0$, $\langle \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} \rangle = \theta(k - k_F)$

At
$$t \to +\infty$$
: $\langle \hat{n}_b \rangle = ?$, $\langle \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} \rangle = ?$

$$\hat{n}_b = \hat{b}^{\dagger} \hat{b}$$

Multi-level Landau-Zener problem

$$H(t) = A + Bt$$
 $i\frac{\partial \Psi}{\partial t} = \hat{H}(t)\Psi$

 $A, B - N \times N$ time-independent Hermitian matrices

$$\Psi(t \to -\infty) = |\text{in}\rangle, \quad \Psi(t \to +\infty) = S|\text{in}\rangle$$

$$S$$
 – scattering matrix = ? Transition probabilities: $p_{i \to k} = |S_{ik}|^2$

B – diagonal (diabatic basis)

Multi-level Landau-Zener problem

$$H(t) = A + Bt$$
 $i\frac{\partial \Psi}{\partial t} = \hat{H}(t)\Psi$

 $A, B - N \times N$ time-independent Hermitian matrices

$$\Psi(t \to -\infty) = |\text{in}\rangle, \quad \Psi(t \to +\infty) = S|\text{in}\rangle$$

S – scattering matrix = ? Transition probabilities: $p_{i \to k} = |S_{ik}|^2$

B – diagonal (diabatic basis)

$$N=2$$
 Landau, Zener, Majorana, Stuckelberg (1932)

$$H(t) = \begin{pmatrix} 0 & g/2 \\ g/2 & 0 \end{pmatrix} + \begin{pmatrix} \lambda/2 & 0 \\ 0 & -\lambda/2 \end{pmatrix} t$$

 $\Psi(t)$ – solution in terms of parabolic cylinder functions

Survival probability
$$p_{0\to 0}=1-e^{-\frac{\pi g^2}{\lambda}}\to 1 \text{ as } \lambda\to 0$$
 (adiabaticity)

Multi-level Landau-Zener problem

$$H(t) = A + Bt$$
 $i\frac{\partial \Psi}{\partial t} = \hat{H}(t)\Psi$

 $A, B - N \times N$ time-independent Hermitian matrices

$$\Psi(t \to -\infty) = |\text{in}\rangle, \quad \Psi(t \to +\infty) = S|\text{in}\rangle$$

S – scattering matrix = ? Transition probabilities: $p_{i \to k} = |S_{ik}|^2$

B – diagonal (diabatic basis)

N > 2 No general solution, only certain special cases

Q: Under what conditions on H(t) = A + Bt, i.e. for which A and B is the multi-level Landau-Zener problem exactly solvable? What is the solution?

By definition solvable iff: $p_{i \to k} = f_{\text{elem}}(A_{ij}, B_{ij})$

arbitrary spin in linear

A. Trivial/reducible MLZ problems

 $H(t) = \left(\begin{array}{cc} 0 & g/2 \\ g/2 & 0 \end{array}\right) + \left(\begin{array}{cc} \lambda/2 & 0 \\ 0 & -\lambda/2 \end{array}\right) t = g\frac{\sigma_x}{2} + \lambda t \frac{\sigma_z}{2} \xrightarrow{\text{arbitrary rep of su(2)}} \text{su(2)}$

Trivial/reducible MLZ problems

arbitrary spin in linear in time magnetic field

$$H(t) = \left(\begin{array}{cc} 0 & g/2 \\ g/2 & 0 \end{array}\right) + \left(\begin{array}{cc} \lambda/2 & 0 \\ 0 & -\lambda/2 \end{array}\right) t = g\frac{\sigma_x}{2} + \lambda t\frac{\sigma_z}{2} \xrightarrow{\text{arbitrary rep of su(2)}} \inf \lim_{z \to z} \inf \lim_{z \to z} \operatorname{magnetic field} \operatorname$$

The time evolution operator belongs to the SU(2) group (rotation)

$$U(t) = e^{-i\alpha(t)\hat{S}_z} e^{-i\beta(t)\hat{S}_y} e^{-i\gamma(t)\hat{S}_z} \equiv \hat{R}(\alpha, \beta, \gamma)$$

Euler angles $\alpha(t)$, $\beta(t)$ and $\gamma(t)$ are the same as in the 2 × 2 LZ problem

Transition probabilities are modulus squared of the elements of the Wigner D-matrix

$$p_{m \to m'} = |\langle m | \hat{R}(\alpha, \beta, \gamma) | m' \rangle|^2$$

Hioe, J. Opt. Soc. Am. B 4, 1327 (1987)

A. Trivial/reducible MLZ problems

Driven Quantum Ising Model:
$$H=-J\sum_{n=1}^{\infty}\left[h(t)\sigma_n^x+\sigma_n^z\sigma_{n+1}^z\right], \quad h(t)=-\lambda t$$

After Jordan-Wigner followed by Fourier this reduces to the 2×2 LZ problem

Dziarmaga, PRL 95, 245701 (2005)

$$H = J \sum_{k} \left\{ 2[h - \cos(ka)] c_k^{\dagger} c_k + \sin(ka) [c_k^{\dagger} c_{-k}^{\dagger} + c_{-k} c_k] - h \right\}$$

A. Trivial/reducible MLZ problems

Driven Quantum Ising Model:
$$H=-J\sum_{n=1}^{N}\left[h(t)\sigma_{n}^{x}+\sigma_{n}^{z}\sigma_{n+1}^{z}\right], \quad h(t)=-\lambda t$$

After Jordan-Wigner followed by Fourier this reduces to the 2×2 LZ problem Dziarmaga, PRL 95, 245701 (2005)

$$H = J \sum_{k} \left\{ 2[h - \cos(ka)] c_{k}^{\dagger} c_{k} + \sin(ka) [c_{k}^{\dagger} c_{-k}^{\dagger} + c_{-k} c_{k}] - h \right\}$$

Density of kinks in
$$N \to \infty$$
 limit for a sweep across QPT from paramagnet $(h \gg 1)$ to ferromagnet at $h = 0$
$$n = \frac{1}{2\pi} \left(\frac{\hbar\lambda}{2J}\right)^{1/2}$$

Scaling with the rate λ agrees with Kibble-Zurek mechanism

And many more trivial/reducible MLZ problems...

- B. Three irreducible exactly solvable MLZ problems since 1932
 - 1. Demkov-Osherov model

Soviet Phys. JETP (1968)

$$H_{\text{DO}}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & a_N \end{pmatrix} + t \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

- Three irreducible exactly solvable MLZ problems since 1932
 - **Demkov-Osherov model**

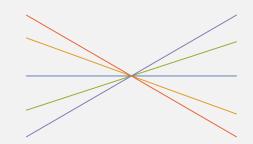
Soviet Phys. JETP (1968)

$$H_{\mathrm{DO}}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & a_N \end{pmatrix} + t \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

Bow-tie model

Ostrovsky & Nakamura, J. Phys. A (1997)

$$H_{\rm bt}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & 0 \end{pmatrix} + t \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix}$$



- B. Three irreducible exactly solvable MLZ problems since 1932
 - Demkov-Osherov model

Soviet Phys. JETP (1968)

$$H_{\text{DO}}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & a_N \end{pmatrix} + t \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

2. Bow-tie model

Ostrovsky & Nakamura, J. Phys. A (1997)

$$H_{\rm bt}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & 0 \end{pmatrix} + t \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix}$$

3. Inhomogeneous Dicke model

Sinitsyn, Yuzbashyan, Chernyak, Patra & Sun, PRL (2018)

$$\hat{H}_{\mathrm{D}} = \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} - (\nu t) \hat{n}_{b} + g \sum_{\mathbf{k}} \left(\hat{b}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} + \hat{b} \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \right)$$

B. Three irreducible exactly solvable MLZ problems since 1932

1. Demkov-Osherov model

Soviet Phys. JETP (1968)

$$H_{\text{DO}}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & a_N \end{pmatrix} + t \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$S = \begin{pmatrix} p_2 \cdots p_N & q_2 p_3 \cdots p_N & q_3 p_4 \cdots p_N & q_4 p_5 \cdots p_N & \cdots & q_N \\ q_2 & p_2 & 0 & 0 & \cdots & 0 \\ p_2 q_3 & q_2 q_3 & p_3 & 0 & \cdots & 0 \\ p_2 p_3 q_4 & q_2 p_3 q_4 & q_3 q_4 & p_4 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_2 \cdots p_{N-1} q_N & q_2 p_3 \cdots p_{N-1} q_N & q_3 p_4 \cdots p_{N-1} q_N & q_4 p_5 \cdots p_{N-1} q_N & \cdots & q_N \end{pmatrix}$$

$$p_k = e^{-\frac{\pi g_k^2}{\lambda}}, \quad q_k = \sqrt{1 - p_k^2}$$

$$S = S_{LZ}^{1N} \dots S_{LZ}^{13} S_{LZ}^{12}$$

Q: What is special about these models? What sets them apart from any other Hamiltonian linear in time?

$$H(t) = A + Bt$$
 $A, B - N \times N$ time-independent Hermitian matrices

Insight from Integrable Matrix Theory (counterpart of Random Matrix Theory for quantum regular as opposed to chaotic systems)

Owusu & Yuzbashyan, J. Phys. A (2011) Yuzbashyan & Shastry, J. Stat. Phys. (2013) Yuzbashyan, Shastry, Scaramazza, PRE (2016)

First, consider an abstract N x N Hermitian matrix M

Makes no sense to talk about its integrability

First, consider an abstract N x N Hermitian matrix M

$$M = \begin{pmatrix} \times & 0 & 0 & 0 & 0 \\ 0 & \times & 0 & 0 & 0 \\ 0 & 0 & \times & 0 & 0 \\ 0 & 0 & 0 & \times & 0 \\ 0 & 0 & 0 & 0 & \times \end{pmatrix}$$

Makes no sense to talk about its integrability

For example, there is no natural notion of a nontrivial integral of motion For any M there is a full set of M_k such that $[M_k,M_j]=[M_k,M]=0$

And any integral of motion
$$M_k = \sum_{n=1}^N a_n M^n$$

All Hermitian matrices look the same from this point of view

The situation changes if we introduce & fix parameter dependence

Let H(t) = A + Bt, t – real parameter and A, B – Hermitian matrices

Suppose we require a commuting partner also linear in t: $\widetilde{H}(t) = \widetilde{A} + \widetilde{B}t$

$$\left[\widetilde{H}(t),H(t)\right]=0, \text{ for all } t$$

$$\downarrow \downarrow$$

$$\left[\widetilde{B},B\right]=0, \quad \left[\widetilde{A},B\right]=\left[A,\widetilde{B}\right], \quad \left[\widetilde{A},A\right]=0$$

These commutation relations severely constraint matrix elements of H(t)For a generic/typical H(t) – no commuting partners except itself and identity

Now can separate generic matrices (no commuting partners) from special (integrable matrices)

N x N Hamiltonians linear in a parameter separate into two distinct classes

$$H(t) = A + Bt \Longrightarrow$$

No commuting partners linear in t other than itself and identity (typical) – nonintegrable, need $N^2/2$ real parameters to specify H(t)

Nontrivial commuting partners $H_k(u)=A_k+B_kt$ exist – integrable, turns out need less than 4N parameters – measure zero in the space of linear Hamiltonians

- 1. Bethe-ansatz-like exact solution for the spectrum
- 2. Level crossings (typically $N^2/2$ crossings)
- 3. Can generate basis-independent ensembles of integrable matrices. Level statistics are typically Poissonian

Q: What is special about these models? What sets them apart from any other Hamiltonian linear in time?

$$H(t) = A + Bt$$
 $A, B - N \times N$ time-independent Hermitian matrices

A: They are integrable matrices as defined above!

Patra & Yuzbashyan, J. Phys. A (2015)

Q: What is special about these models? What sets them apart from any other Hamiltonian linear in time?

$$H(t) = A + Bt$$
 $A, B - N \times N$ time-independent Hermitian matrices

A: They are integrable matrices as defined above!

Example 1: Demkov-Osherov model

$$H_{DO} = \lambda t |1\rangle\langle 1| + \sum_{k=2}^{N} (g_k |1\rangle\langle k| + g_k |k\rangle\langle 1| + a_k |k\rangle\langle k|)$$

Has N independent nontrivial commuting partners linear in t

$$H_{j} = (t - a_{j})|j\rangle\langle j| - g_{j}|1\rangle\langle j| - g_{j}|j\rangle\langle 1| + \sum_{k \neq j} \frac{g_{j}g_{k}|j\rangle\langle k| + g_{j}g_{k}|k\rangle\langle j| - g_{k}^{2}|j\rangle\langle j| - g_{j}^{2}|k\rangle\langle k|}{a_{k} - a_{j}}$$

$$[H_j, H_k] = [H_j, H_{DO}] = 0$$

Q: What is special about these models? What sets them apart from any other Hamiltonian linear in time?

$$H(t) = A + Bt$$
 $A, B - N \times N$ time-independent Hermitian matrices

A: They are integrable matrices as defined above!

Example 2: inhomogeneous Dicke model

$$\hat{H}_{D} = \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} - (\nu t) \hat{n}_{b} + g \sum_{\mathbf{k}} \left(\hat{b}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} + \hat{b} \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \right)$$

Anderson pseudospins: $s_{\mathbf{k}}^z \equiv \frac{1}{2} \left[c_{\mathbf{k}\uparrow}^\dagger c_{\mathbf{k}\uparrow} + c_{-\mathbf{k}\downarrow}^\dagger c_{-\mathbf{k}\downarrow} - 1 \right], \quad s_{\mathbf{k}}^- \equiv c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow}, \quad s_{\mathbf{k}}^+ \equiv c_{\mathbf{k}\uparrow}^\dagger c_{-\mathbf{k}\downarrow}^\dagger$

$$\hat{H}_{\mathrm{D}}(t) = \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} s_{\mathbf{k}}^{z} - (\nu t) \hat{n}_{b} + g \sum_{\mathbf{k}} \left(\hat{b}^{\dagger} s_{\mathbf{k}}^{-} + \hat{b} s_{\mathbf{k}}^{+} \right)$$

$$\hat{H}_{\mathbf{k}}(t) = (\varepsilon_{\mathbf{k}} + \nu t)s_{\mathbf{k}}^{z} + g(\hat{b}^{\dagger}s_{\mathbf{k}}^{-} + \hat{b}s_{\mathbf{k}}^{+}) + 2g^{2}\sum_{p \neq k} \frac{\vec{s}_{\mathbf{k}} \cdot \vec{s}_{\mathbf{p}}}{\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{p}}}$$

$$[\hat{H}(t), \hat{H}_{\mathbf{k}}(t)] = [\hat{H}_{\mathbf{k}}(t), \hat{H}_{\mathbf{p}}(t)] = 0, \quad \forall t, \mathbf{k}, \mathbf{p}$$

Q: What is special about these models? What sets them apart from any other Hamiltonian linear in time?

$$H(t) = A + Bt$$
 $A, B - N \times N$ time-independent Hermitian matrices

A: They are integrable matrices as defined above!

Patra & Yuzbashyan, J. Phys. A (2015)

$$\exists H_k(t) = A_k + B_k t : [H_k(t), H(t)] = 0 \quad \forall t$$

Q: What is the role of these commuting partners? How do they help us solve for the dynamics of the system?

$$i\frac{\partial\Psi}{\partial t} = \hat{H}(t)\Psi, \quad \Psi(t) = ?$$

They aren't conserved:
$$\frac{dH_k}{dt} = i[H, H_k] + \frac{\partial H_k}{\partial t} = B_k \neq 0$$

Q: What is special about these models? What sets them apart from any other Hamiltonian linear in time?

$$H(t) = A + Bt$$
 $A, B - N \times N$ time-independent Hermitian matrices

A: They are integrable matrices as defined above!

Patra & Yuzbashyan, J. Phys. A (2015)

$$\exists H_k(t) = A_k + B_k t : [H_k(t), H(t)] = 0 \quad \forall t$$

Q: What is the role of these commuting partners? How do they help us solve for the dynamics of the system?

$$i\frac{\partial\Psi}{\partial t} = \hat{H}(t)\Psi, \quad \Psi(t) = ?$$

A: They determine the evolution of the system with respect to parameters other than time!

$$i\frac{\partial\Psi}{\partial x_k} = \hat{H}_k\Psi$$

Idea: The non-stationary Schrödinger equation can be consistently embedded into a set of multi-time Schrödinger equations

$$i\frac{\partial\Psi}{\partial t} = \hat{H}\Psi$$

embedded into a set of multi-time Schrödinger equations
$$\begin{cases} i\frac{\partial\Psi}{\partial t}=\hat{H}\Psi \\ i\nu\frac{\partial\Psi}{\partial x_k}=\hat{H}_k\Psi, \quad k=1,\dots,n-1 \\ x_0\equiv\nu t, \quad \hat{H}_0\equiv\hat{H}, \quad \partial_k=\frac{\partial}{\partial x_k}, \quad \boldsymbol{x}=(x_0,\dots,x_{n-1}) \end{cases}$$

$$i\nu\partial_k\Psi(\boldsymbol{x})=\hat{H}_k\Psi(\boldsymbol{x})$$
 Consistency: $\partial_j\hat{H}_k-\partial_k\hat{H}_j-i[\hat{H}_k,\hat{H}_j]=0$

Consistency: $\partial_i \hat{H}_k - \partial_k \hat{H}_i - i[\hat{H}_k, \hat{H}_i] = 0$

Idea: The non-stationary Schrödinger equation can be consistently embedded into a set of multi-time Schrödinger equations

$$i\frac{\partial\Psi}{\partial t} = \hat{H}\Psi$$

$$i\nu \frac{\partial \Psi}{\partial m} = \hat{H}_k \Psi, \quad k = 1, \dots, n-1$$

embedded into a set of multi-time Schrödinger equations
$$\begin{cases} i\frac{\partial\Psi}{\partial t}=\hat{H}\Psi \\ i\nu\frac{\partial\Psi}{\partial x_k}=\hat{H}_k\Psi, \quad k=1,\dots,n-1 \\ x_0\equiv\nu t, \quad \hat{H}_0\equiv\hat{H}, \quad \partial_k=\frac{\partial}{\partial x_k}, \quad \boldsymbol{x}=(x_0,\dots,x_{n-1}) \end{cases}$$

$$i\nu\partial_k\Psi(\boldsymbol{x})=\hat{H}_k\Psi(\boldsymbol{x})$$
 Consistency:
$$\partial_j\hat{H}_k-\partial_k\hat{H}_j-i[\hat{H}_k,\hat{H}_j]=0$$

$$i\nu\partial_k\Psi(\boldsymbol{x}) = \hat{H}_k\Psi(\boldsymbol{x})$$

Consistency: $\partial_j \hat{H}_k - \partial_k \hat{H}_j - i[\hat{H}_k, \hat{H}_j] = 0$ real imaginary

$$[\hat{H}_k, \hat{H}_i] = 0$$

 $\begin{cases} \partial_j \hat{H}_k = \partial_k \hat{H}_j & \longrightarrow \text{Additional constraint} \\ [\hat{H}_k, \hat{H}_j] = 0 & \longleftarrow \text{Integrability of the underlying model} \end{cases}$

Idea: The non-stationary Schrödinger equation can be consistently embedded into a set of multi-time Schrödinger equations

Sinitsyn, Yuzbashyan, Chernyak, Patra & Sun, PRL (2018)

Example: inhomogeneous Dicke model

$$\hat{H}_{\mathrm{D}}(t) = \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} s_{\mathbf{k}}^{z} + \omega_{0} \hat{n}_{b} + g \sum_{\mathbf{k}} \left(\hat{b}^{\dagger} s_{\mathbf{k}}^{-} + \hat{b} s_{\mathbf{k}}^{+} \right)$$

$$\hat{H}_{\mathbf{k}}(t) = (\varepsilon_{\mathbf{k}} - \omega_0) s_{\mathbf{k}}^z + g(\hat{b}^{\dagger} s_{\mathbf{k}}^- + \hat{b} s_{\mathbf{k}}^+) + 2g^2 \sum_{p \neq k} \frac{\vec{s}_{\mathbf{k}} \cdot \vec{s}_{\mathbf{p}}}{\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{p}}}$$

$$x_0 = -\omega_0 = \nu t, \quad x_k = \varepsilon_{\mathbf{k}}$$

$$\frac{\partial H_{\mathbf{k}}}{\partial \varepsilon_{\mathbf{p}}} = 2g^2 \frac{\vec{s}_{\mathbf{k}} \cdot \vec{s}_{\mathbf{p}}}{(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{p}})^2} = \frac{\partial H_{\mathbf{p}}}{\partial \varepsilon_{\mathbf{k}}} \qquad \frac{\partial H_{\mathbf{D}}}{\partial \varepsilon_{\mathbf{k}}} = s_{\mathbf{k}}^z = \frac{\partial H_{\mathbf{k}}}{\partial (-\omega_0)}$$

$$\begin{cases} \partial_j \hat{H}_k = \partial_k \hat{H}_j & \qquad \text{Additional constraint} \\ [\hat{H}_k, \hat{H}_j] = 0 & \qquad \text{Integrability of the underlying model} \end{cases}$$

$$\begin{cases} i\frac{\partial\Psi}{\partial t} = \hat{H}\Psi & \text{Formal solution:} \Psi(\boldsymbol{x}) = T\exp\left(-i\int_{\mathcal{P}}\hat{H}_k dx_k\right)\Psi(\boldsymbol{x}_0) \\ i\nu\frac{\partial\Psi}{\partial x_k} = \hat{H}_k\Psi \end{cases}$$

$$\begin{cases} i \frac{\partial \Psi}{\partial t} = \hat{H} \Psi & \text{Formal solution:} \Psi(\boldsymbol{x}) = T \exp\left(-i \int_{\mathcal{P}} \hat{H}_k dx_k\right) \Psi(\boldsymbol{x}_0) \\ i \nu \frac{\partial \Psi}{\partial x_k} = \hat{H}_k \Psi & \text{Path-independent} \end{cases}$$

Consistency:
$$\partial_j \hat{H}_k - \partial_k \hat{H}_j - i[\hat{H}_k, \hat{H}_j] = 0$$

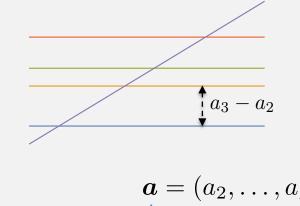
Non-abelian gauge field $A_k = -i\hat{H}_k$ has zero curvature

[Not to be confused with zero curvature representation of nonlinear PDEs]

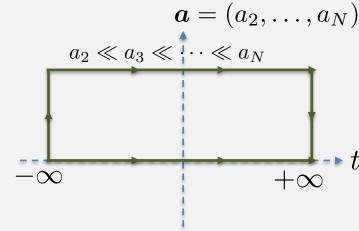
$$\begin{cases} i\frac{\partial\Psi}{\partial t} = \hat{H}\Psi & \text{Formal solution:} \Psi(\boldsymbol{x}) = T\exp\left(-i\int_{\mathcal{P}}\hat{H}_k dx_k\right)\Psi(\boldsymbol{x}_0) \\ i\nu\frac{\partial\Psi}{\partial x_k} = \hat{H}_k\Psi & \text{Path-independent} \end{cases}$$

Example: Demkov-Osherov model

$$H_{\text{DO}}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & a_N \end{pmatrix} + t \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$



$$x_k = a_k$$



$$\begin{cases} i\frac{\partial\Psi}{\partial t} = \hat{H}\Psi & \text{Formal solution:} \Psi(\boldsymbol{x}) = T\exp\left(-i\int_{\mathcal{P}}\hat{H}_k dx_k\right)\Psi(\boldsymbol{x}_0) \\ i\nu\frac{\partial\Psi}{\partial x_k} = \hat{H}_k\Psi & \text{Path-independent} \end{cases}$$

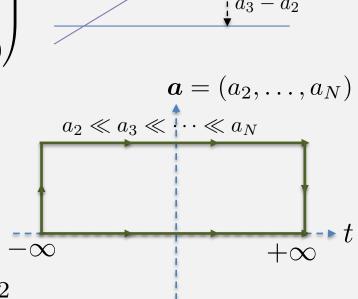
Example: Demkov-Osherov model

$$H_{\text{DO}}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & a_N \end{pmatrix} + t \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$x_k = a_k$$

Energy levels well separated (i.e. evolution is adiabatic and no transitions occur) everywhere along the contour except near crossings where 2×2 LZ scattering events take place

$$\Rightarrow S = S_{\mathrm{LZ}}^{1N} \dots S_{\mathrm{LZ}}^{13} S_{\mathrm{LZ}}^{12}$$



Knizhnik-Zamolodchikov equations

$$i\nu\frac{\partial\Psi}{\partial\varepsilon_j}=\hat{H}_j\Psi \qquad \qquad \hat{H}_j=-\sum_{k\neq j}\frac{\vec{s}_j\cdot\vec{s}_k}{\varepsilon_j-\varepsilon_k} - \text{Gaudin magnets}$$

$$[\hat{H}_j, \hat{H}_k] = 0$$

Q: Is their any relationship between the multi-time Schrödinger equations we derived for solvable Landau-Zener models and Knizhnik-Zamolodchikov equations?

Generalized Knizhnik-Zamolodchikov equations

$$i
urac{\partial\Psi}{\partialarepsilon_{j}}=\hat{H}_{j}\Psi$$

$$\hat{H}_{j}=\boxed{2Bs_{j}^{z}}-\sum_{k
eq j}rac{\vec{s}_{j}\cdot\vec{s}_{k}}{arepsilon_{j}-arepsilon_{k}} ext{- Gaudin magnets}$$

$$[\hat{H}_i, \hat{H}_k] = 0$$

$$\sum_{k} 2\varepsilon_{k} \hat{H}_{k} \propto \hat{H}_{BCS} = \sum_{k} 2\varepsilon_{k} s_{k}^{z} - \frac{1}{2B} \sum_{j,k} s_{j}^{+} s_{k}^{-} \qquad [\hat{H}_{BCS}, \hat{H}_{k}] = 0$$

BCS model of superconductivity in Anderson pseudospin representation

$$s_k^z = \frac{\hat{n}_k - 1}{2}, \quad s_k^- = c_{k\downarrow} c_{k\uparrow}, \quad s_k^+ = c_{k\uparrow}^\dagger c_{k\downarrow}^\dagger; \qquad g = \frac{1}{2B}$$

$$\hat{H}_{BCS} = \sum_{k,\sigma} \varepsilon_k \hat{c}_{k\sigma}^{\dagger} \hat{c}_{k\sigma} - g \sum_{j,k} \hat{c}_{j\uparrow}^{\dagger} \hat{c}_{j\downarrow}^{\dagger} \hat{c}_{k\downarrow} \hat{c}_{k\uparrow}$$

Sierra, Nucl. Phys. B (2000); Amico, Falci, Fazio, J. Phys. A (2001); Sedrakyan & Galitskii, PRB (2010); Fioretto, Caux, Gritsev, New J. Phys. (2014)

Generalized Knizhnik-Zamolodchikov equations

$$i\nu\frac{\partial\Psi}{\partial\varepsilon_j}=\hat{H}_j\Psi \qquad \qquad \hat{H}_j=\boxed{2Bs_j^z}-\sum_{k\neq j}\frac{\vec{s}_j\cdot\vec{s}_k}{\varepsilon_j-\varepsilon_k} \text{ - Gaudin magnets}$$

$$[\hat{H}_i, \hat{H}_k] = 0$$

$$\sum_{k} 2\varepsilon_{k} \hat{H}_{k} \propto \hat{H}_{BCS} = \sum_{k} 2\varepsilon_{k} s_{k}^{z} - \frac{1}{2B} \sum_{j,k} s_{j}^{+} s_{k}^{-} \qquad [\hat{H}_{BCS}, \hat{H}_{k}] = 0$$

Observation: The evolution of the system with magnetic field B is governed by the BCS Hamiltonian [Yuzbashyan, Ann. Phys. (2018)]

$$i\nu \frac{\partial \Psi}{\partial B} = \hat{H}_{\rm BCS} \Psi$$

This equation is consistent with the generalized KZ equations, because the BCS

Hamiltonians satisfies the zero curvature conditions:

$$\frac{\partial \hat{H}_k}{\partial B} = 2s_k^z = \frac{\partial \hat{H}_{\text{BCS}}}{\partial \varepsilon_k}$$

KZ-BCS equations

$$\begin{cases} i\nu \frac{\partial \Psi}{\partial \varepsilon_j} = \hat{H}_j \Psi \\ i\nu \frac{\partial \Psi}{\partial B} = \hat{H}_{BCS} \Psi \end{cases}$$

$$i\nu \frac{\partial \Psi}{\partial B} = \hat{H}_{\rm BCS} \Psi$$

$$\hat{H}_j = 2Bs_j^z - \sum_{k \neq j} rac{ec{s}_j \cdot ec{s}_k}{arepsilon_j - arepsilon_k}$$
 – Gaudin magnets

$$\hat{H}_{BCS} = \sum_{k} 2\varepsilon_k s_k^z - \frac{1}{2B} \sum_{j,k} s_j^+ s_k^-$$

KZ-BCS equations

$$\begin{cases} i\nu \frac{\partial \Psi}{\partial \varepsilon_j} = \hat{H}_j \Psi \\ i\nu \frac{\partial \Psi}{\partial B} = \hat{H}_{\text{BCS}} \Psi \end{cases}$$

$$\hat{H}_j = 2Bs_j^z - \sum_{k
eq j} rac{ec{s}_j \cdot ec{s}_k}{arepsilon_j - arepsilon_k}$$
 – Gaudin magnets

$$i\nu \frac{\partial \Psi}{\partial B} = \hat{H}_{\rm BCS} \Psi$$

$$\hat{H}_{BCS} = \sum_{k} 2\varepsilon_k s_k^z - \frac{1}{2B} \sum_{j,k} s_j^+ s_k^-$$

Integrable time-dependent BCS Hamiltonians: let B=B(t)

$$B(t) = \nu t \implies$$

$$B(t) = \nu t \implies \hat{H}_{BCS}(t) = \sum_{j} 2\varepsilon_{j} \hat{s}_{j}^{z} - \frac{1}{\nu t} \sum_{j,k} \hat{s}_{j}^{+} \hat{s}_{k}^{-}$$

$$B(t) = \sin(\nu t) \Longrightarrow$$

$$B(t) = \sin(\nu t) \Longrightarrow \hat{H}_{BCS}(t) = \cos(\nu t) \sum_{j} 2\varepsilon_{j} \hat{s}_{j}^{z} - \cot(\nu t) \sum_{j,k} \hat{s}_{j}^{+} \hat{s}_{k}^{-}$$

Solution of the non-stationary Schrödinger eq: $\Psi(t) = \Psi_{\mathrm{KZ}}[B(t)]$

What about exactly solvable multi-level Landau-Zener problems?

Three irreducible exactly solvable MLZ problems since 1932

1. Demkov-Osherov model

Soviet Phys. JETP (1968)

$$H_{\text{DO}}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & a_N \end{pmatrix} + t \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

2. Bow-tie model

Ostrovsky & Nakamura, J. Phys. A (1997)

$$H_{\mathrm{bt}}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & 0 \end{pmatrix} + t \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix}$$

3. Inhomogeneous Dicke model

Sinitsyn, Yuzbashyan, Chernyak, Patra & Sun, PRL (2018)

$$\hat{H}_{D}(t) = \sum_{k} \varepsilon_{k} s_{k}^{z} - (\nu t) \hat{n}_{b} + g \sum_{k} \left(\hat{b}^{\dagger} s_{k}^{-} + \hat{b} s_{k}^{+} \right)$$

There is a mapping from Gaudin magnets to each of these models!

$$\begin{array}{l} \text{Gaudin magnets} \\ \hat{H}_j = 2Bs_j^z - \sum_{k \neq j} \frac{\vec{s}_j \cdot \vec{s}_k}{\varepsilon_j - \varepsilon_k} \end{array} \\ \begin{array}{l} \text{Demkov-Osherov model} \\ \\ \hline s_0 \to \infty, \\ \hat{s}_0^- \to \sqrt{2}s\hat{b}, \\ \hat{s}_0^+ \to \sqrt{2}s\hat{b}^\dagger, \\ \\ \text{Then,} \end{array} \\ \begin{array}{l} \hat{s}_0^z \to \hat{n}_b - s_0 \\ \hat{s}_0^+ \to \sqrt{2}s\hat{b}^\dagger, \\ \hat{H}_0 \to \hat{H}_D(t) \end{array}$$

Plus various new integrable time-dependent Hamiltonians result if we replace spin SU(2) with other Lie algebras or consider hyperbolic or trigonometric Gaudin magnets

Demkov-Osherov model

Gaudin magnets

$$\hat{H}_j = 2Bs_j^z - \sum_{k \neq j} \frac{\vec{s}_j \cdot \vec{s}_k}{\varepsilon_j - \varepsilon_k} \longrightarrow_{H_{\mathrm{I}}}$$

 $N \times N$ block of $H_1 \longrightarrow H_{DO}(t)$

$$\hat{H}_{j} = 2Bs_{j}^{z} - \sum_{k \neq j} \frac{\vec{s}_{j} \cdot \vec{s}_{k}}{\varepsilon_{j} - \varepsilon_{k}} \longrightarrow H_{\mathrm{DO}}(t) = \begin{pmatrix} 0 & g_{2} & \cdots & g_{N} \\ g_{2} & a_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_{N} & 0 & \cdots & a_{N} \end{pmatrix} + t \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

Block-diagonal

$$[S_{\mathrm{tot}}^z, \hat{H}_j] = 0 \Rightarrow H_j = \begin{bmatrix} S_{\mathrm{tot}}^z = \min + 1 \\ N \times N \end{bmatrix}$$

$$\vdots$$

$$s_1 = 1, \quad \varepsilon_1 = 0, \quad s_k = \frac{g_k^2}{a_k^2}, \quad \varepsilon_k = -\frac{1}{a_k}, \quad 2B = t - \sum_{k=2}^N \frac{g_k^2}{a_k}$$

 $N \times N$ blocks of $\hat{H}_i \longrightarrow \text{commuting partners } H_j \text{ of } H_{\text{DO}}(t)$

Crucially, the new system satisfies the zero curvature condition

$$H_{\mathrm{DO}}(t) = \begin{pmatrix} 0 & g_2 & \cdots & g_N \\ g_2 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & a_N \end{pmatrix} + t \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \quad \text{Demkov-Osherov model}$$

$$[H_j,H_{\mathrm{DO}}]=[H_j,H_k]=0$$
 —— Guaranteed by the mapping from Gaudins

$$\frac{\partial H_j}{\partial a_k} = \frac{\partial H_k}{\partial a_j}, \ \frac{\partial H_{\mathrm{DO}}}{\partial a_k} = \frac{\partial H_k}{\partial t} \qquad \qquad \text{Unrelated to the mapping, but holds}$$

$$\begin{cases} i\frac{\partial\Psi}{\partial t} = H_{\mathrm{DO}}(t)\Psi \\ i\frac{\partial\Psi}{\partial a_{k}} = H_{k}\Psi \end{cases}$$

$$i\frac{\partial\Psi}{\partial a_k} = H_k\Psi$$

The non-stationary Schrödinger eq. can be consistently embedded into a set of multitime Schrödinger eqs.

Solution of the generalized KZ eqs. via off-shell Bethe ansatz

Off-shell Bethe states:
$$\Phi(\boldsymbol{\lambda}, \boldsymbol{\varepsilon}) = \prod_{\alpha=1}^{M} \hat{L}^{+}(\lambda_{\alpha})|0\rangle, \quad \hat{L}^{+}(\lambda) = \sum_{j=1}^{N} \frac{\hat{s}_{j}^{+}}{\lambda - \varepsilon_{j}}$$

Yang-Yang action:

$$S(\lambda, \varepsilon) = -2B \sum_{j} \varepsilon_{j} s_{j} + 2B \sum_{\alpha} \lambda_{\alpha} - \frac{1}{2} \sum_{j} \sum_{k \neq j} s_{j} s_{k} \ln(\varepsilon_{j} - \varepsilon_{k}) + \sum_{j} \sum_{\alpha} s_{j} \ln(\varepsilon_{j} - \lambda_{\alpha}) - \frac{1}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \ln(\lambda_{\beta} - \lambda_{\alpha})$$

Solution of KZ eqs:

$$\Psi_{\mathrm{KZ}}(B, \boldsymbol{\varepsilon}) = \oint_{\gamma} d\boldsymbol{\lambda} \exp\left[-\frac{i\mathcal{S}(\boldsymbol{\lambda}, \boldsymbol{\varepsilon})}{\nu}\right] \Phi(\boldsymbol{\lambda}, \boldsymbol{\varepsilon}), \quad d\boldsymbol{\lambda} = \prod_{\alpha=1}^{M} d\lambda_{\alpha}$$

Babujian, J. Phys. A (1993); Fioretto, Caux, Gritsev, New J. Phys. (2014)

Solution of the generalized KZ eqs. via off-shell Bethe ansatz

Off-shell Bethe states:
$$\Phi(\boldsymbol{\lambda}, \boldsymbol{\varepsilon}) = \prod_{\alpha=1}^{M} \hat{L}^{+}(\lambda_{\alpha})|0\rangle, \quad \hat{L}^{+}(\lambda) = \sum_{j=1}^{N} \frac{\hat{s}_{j}^{+}}{\lambda - \varepsilon_{j}}$$

Yang-Yang action:

$$S(\lambda, \varepsilon) = -2B \sum_{j} \varepsilon_{j} s_{j} + 2B \sum_{\alpha} \lambda_{\alpha} - \frac{1}{2} \sum_{j} \sum_{k \neq j} s_{j} s_{k} \ln(\varepsilon_{j} - \varepsilon_{k}) + \sum_{j} \sum_{\alpha} s_{j} \ln(\varepsilon_{j} - \lambda_{\alpha}) - \frac{1}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \ln(\lambda_{\beta} - \lambda_{\alpha})$$

Solution of KZ eqs:

$$\Psi_{\mathrm{KZ}}(B, \boldsymbol{\varepsilon}) = \oint_{\gamma} d\boldsymbol{\lambda} \exp\left[-\frac{i\mathcal{S}(\boldsymbol{\lambda}, \boldsymbol{\varepsilon})}{\nu}\right] \Phi(\boldsymbol{\lambda}, \boldsymbol{\varepsilon}), \quad d\boldsymbol{\lambda} = \prod_{\alpha=1}^{M} d\lambda_{\alpha}$$

Babujian, J. Phys. A (1993); Fioretto, Caux, Gritsev, New J. Phys. (2014)

Solution of the non-stationary Schrödinger eq. for the time-dependent BCS Hamiltonians: $\Psi(t)=\Psi_{ ext{KZ}}[B(t),m{arepsilon}]$

A similar technique solves the non-stationary Schrödinger eq. for Demkov-Osherov, bow-tie & driven inhomogeneous Dicke models

Example: Demkov-Osherov model

$$H_{DO} = \lambda t |1\rangle\langle 1| + \sum_{k=2}^{N} (g_k |1\rangle\langle k| + g_k |k\rangle\langle 1| + a_k |k\rangle\langle k|)$$

Off-shell Bethe states:
$$\Phi_{\mathrm{DO}}(\eta, \boldsymbol{a}) = |1\rangle - \sum_{j=2}^{N} \frac{g_{j}|j\rangle}{a_{j} - \eta}$$

Yang-Yang action:
$$\mathcal{S}_{\mathrm{DO}}(\eta, m{a}, t) = \eta t - rac{\eta^2}{2} + \sum_{j=2}^N p_j^2 \ln\left(rac{a_j}{a_j - \eta}
ight)$$

Solution of the non-stationary Schrödinger eq:

$$\Psi_{\rm DO}(t, \boldsymbol{a}) = \oint_{\gamma} d\eta e^{-i\mathcal{S}_{\rm DO}(\eta, \boldsymbol{a}, t)} \Phi_{\rm DO}(\eta, \boldsymbol{a})$$

Summary

- ☐ Formulated a set of conditions under which the non-stationary Schrödinger eq. for a time-dependent quantum Hamiltonian is integrable embedding into a system of consistent multi-time Schrödinger eqs.
- \square New intergrable H(t), e.g., the BCS model with coupling $\propto 1/t$, a Floquet BCS model and linearly driven inhomogeneous Dicke model
- ☐ Exactly solvable multi-level Landau-Zener problems fit into this construction
- \square All nontrivial integrable H(t) to date map to Gaudin magnets. Their non-stationary Schrödinger eq. is solvable via off-shell Bethe ansatz
- \Box This theory explains why the scattering matrix factorizes for integrable H(t)

Open Questions

☐ Formulated a set of conditions under which the non-stationary Schrödinger eq. for a time-dependent quantum Hamiltonian is integrable — embedding into a system of consistent multi-time Schrödinger eqs.

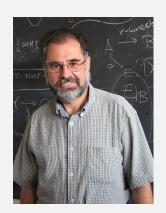
$$\begin{cases} i\frac{\partial\Psi}{\partial t} = \hat{H}\Psi \\ i\nu\frac{\partial\Psi}{\partial x_k} = \hat{H}_k\Psi \end{cases} \Longrightarrow \begin{cases} \partial_j\hat{H}_k = \partial_k\hat{H}_j \\ [\hat{H}_k, \hat{H}_j] = 0 \end{cases}$$

- \square All nontrivial integrable H(t) to date map to Gaudin magnets. Their non-stationary Schrödinger eq. is solvable via off-shell Bethe ansatz
 - Q Are there integrable H(t) that do not map to Gaudin magnets? If not, then why? Any integrable H(t) not listed in this talk?
 - Q Can we introduce time dependence into, e.g., XXZ or Hubbard Hamiltonian without breaking integrability?

Gaudin magnets:
$$\hat{H}_j=2Bs_j^z-\sum_{k\neq j}\frac{\vec{s}_j\cdot\vec{s}_k}{\varepsilon_j-\varepsilon_k}$$

Aniket Patra Rutgers

Nikolai Sinitsyn LANL



Vladimir Chernyak *Wayne State Univ.*

Chen Sun
Texas A&M Univ.

- Patra & Yuzbashyan, J. Phys. A 48, 245303 (2015).
- ☐ Sinitsyn, Yuzbashyan, Chernyak, Patra & Sun, Phys. Rev. Lett 120, 190402 (2018).
- Yuzbashyan, Ann. Phys. 392, 323 (2018).

