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Coherent Many-Body	Dynamics
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1. Interacting	system	initially	in	equilibrium

2. Strong	perturbation	pulse	drives	the	system	
far	from	equilibrium.	Easy

3. But not	too	strong. No	dissipation,	
decoherence,	controlled	interactions.	The	
system	evolves	coherently with	desired	
Hamiltonian for	long	time.	Very difficult 
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Coherent Many-Body Dynamics

A	Man	Just	Tight	Rope	Walked	Across	A	Gorge	Near	The	Grand	
Canyon	With	No	Safety	Net	For	23	Minutes	And	Survived
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Coherent	Many-Body	Dynamics:	Quantum	Quench

Q: What	happens	to	the	system	in	time?	Where	does	it	end	up as	a	
result	of	unitary	evolution?	Does	it	equilibrate?

|�(t � ⇥)⌅ =? ⇤Ô(t � ⇥)⌅ =?

A: Depends	on	the	system	(on	H)

a. Equilibration	(thermalization)	with	some	effective T

b. No equilibration – asymptotic state – nonequilibrium 
“phase” with properties distinct from equilibrium 
phases

hÔ(t ! 1)i = Tr Ôe�Ĥ/Teff

hÔ(t ! 1)i =?
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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in

LETTERS

Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.
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“87Rb	atoms …	do not noticeably equilibrate even	after	thousands	of	collisions.	
Our	results	are	probably	explainable	by	the	well-known	fact	that	a	homogeneous	1D	
Bose	gas	with	point-like	collisional	interactions	is	integrable.”
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All the curves in Fig. 3 are non-gaussian. For comparison, we have
created equilibrium 1D Bose gases with the same r.m.s. momentum
as the non-equilibrium distributions we study here. To do so, we start
with an equilibrium 3D Bose gas at an elevated temperature and
adiabatically turn on the 2D lattice. The resultant f(p ex) are nearly
perfectly gaussian. Thus, to the extent that an observed f(p ex) is not
gaussian, it has not thermalized.
Heating and loss affect the evolution of the distribution. We have

studied these processes by watching how f(p ex) evolves without any
grating pulses (see Supplementary Information). Some loss (20% or
less, depending on go) comes in the first couple of hundred milli-
seconds from three-body inelastic collisions. There is also 15% per
second loss to background gas collisions. Spontaneous emission
caused by the lattice light heats some atoms, and by leaving some
atoms in unlevitated magnetic sublevels, causes a 30% per second
loss. This last loss in turn causes most of the heating, as exiting atoms
transfer some of the momentum they pick up on their way out to
atoms that remain.
To account for loss and heating in the time evolution shown in

Fig. 3, we project how already dephased distributions would evolve

without thermalization. Specifically, we take f(p ex) at a time
to ¼ 15t, rescale it to account for loss during an observation time,
tobs, and convolve it with gaussian widths to capture the effect of the
independently measured heating during tobs (see Supplementary
Information). The blue curves in Fig. 4 were projected with a two-
component model that accurately reflects the measured heating, for
go (gd) ¼ 4 (18), 1 (3.2) and 0.62 (1.4), where the coupling strength
after dephasing, gd, is calculated using the reduced n1D that prevails
at to. The green curves are the result of a simpler single-component
projection. The similarity of the blue and green lines illustrates the
robustness of our projections (see Supplementary Information). The
red curves show the actual distributions after tobs.
The actual and projected curves overlap reasonably well, with

reduced x2 values of 1.2, 1.35 and 2.5 for Fig. 4a, b and c, respectively
(using the blue curves). In each case, the difference between the
projected and actual curves is far smaller than the difference between
either of them and a thermal distribution. To highlight the non-
gaussian shape of Fig. 4c, we have superimposed a gaussian with the
same atom number and r.m.s. width as the data. The slight discre-
pancies that exist between the actual and projected curves may result
from the ,25% loss of atoms during tobs, which reduces the inter-
action energy contribution to f(pex). By assuming that any deviation
between the projected and actual distributions is a step along the way
to thermalization, we conservatively determine a lower bound on the
thermalization time constant, t th (see Methods). t th is at least 390t,
1,910t and 200t for gd ¼ 18, 3.2 and 1.4, respectively. The data imply
that each atom continues to oscillate in the trap with the same peak
momentum it was given initially, as if there were no collisions.
Although collisions have no dynamical effect, we would like to

roughly keep track of how many have occurred. Each atom passes
N tube/2 atoms every half cycle. The probability of reflection, R, in a
pairwise collision of 1D bosons with centre of mass momentum 2"k
was calculated in ref. 22. In the limit where (2ka 1D)

2 .. 1,
R ¼ (2ka1D)

22. For our confinement parameters, R ¼ 1/22. There-
fore, in the first full cycle, the number of 2"k collisions is N tube, with
r ¼ N tube/22 reflections. After dephasing within a tube, each atom
has as many collisions, but at centre of mass momenta that range
from 2"k to near 0. As the relative velocity decreases, R increases
quadratically (until it saturates), but the ability of a collision to
redistribute momentum is reduced roughly quadratically. Accord-
ingly, we use the r derived above to keep track of reflections even after
the atoms have dephased. For the conditions in Fig. 4a, b and c, the
average number of collisions that have occurred per atom during tobs
are 600, 2,750 and 6,250, respectively, and the average number of
reflections are 27, 125 and 285. Using the results from Fig. 4, we can
set lower limits on the number of reflections required for thermal-
ization of 710, 9,600 and 2,300 for gd ¼ 18, 3.2 and 1.4, respectively.
These limits are obviously much larger than the 2.7 collisions that
characterize thermalization in a 3D gas23.
To experimentally confirm the existence of collisions in this

system, despite their lack of consequence in one dimension, we
apply the grating pulses without ever having turned on the 2D optical
lattice, and so create non-equilibrium momentum distributions in
three dimensions. Two BECs with different centre of mass velocities
collide every half cycle. At the quarter cycle times, the two BECs are
well separated spatially. This implies that collisions occur well above
the Landau critical velocity, allowing particles to scatter out of the
macroscopically occupied states24. We observe thermalization in a
two-step process. Atoms first scatter into a spherical shell in velocity,
which corresponds to the outgoing s-wave. They then scatter into a
broad range of final states. Even though the 3D densities are nearly an
order of magnitude lower than in the 1D tubes, thermalization
occurs on a ,2t timescale.
The absence of damping in 1D Bose gases has several potential

applications. Atoms undergoing Bloch oscillations in quantum
degenerate gases are candidate force sensors25. Fermions have
emerged as better for this purpose than bosons, because the absence

Figure 4 | Projected versus actual f(pex) for various gd, the dephased
average peak coupling strength. The blue and green curves are f(p ex) for
to ¼ 15t, rescaled to account for loss and convolved with the known heating
during tobs. The blue curve’s heating model is more sophisticated than that
of the green curve, but the results are insensitive to the details. The red
curves are the actual distributions at to þ tobs. a, gd ¼ 18 and tobs ¼ 15t.
b, gd ¼ 3.2 and tobs ¼ 25t. c, gd ¼ 1.4 and tobs ¼ 25t. The dashed line in c
is a gaussian with the same number of atoms and r.m.s. width as the actual
distribution. To the extent that the actual distribution conforms to the
projected distribution rather than to a gaussian, the atoms have not
thermalized.
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Free	expansion	of	interacting	1D	Bose	gas	out	of	a	trap

87Rb	atoms	in	a	1D	harmonic	trap
Kinoshita	et.	al.	Science	(2004)	

|�i� = |ground state of Hi�

As ! and r approach each other (! " 1) and
the bosons start to fermionize, the rate at
which both ! and r change decreases. We
observe the stabilization of r by measuring the
1D cloud length. We also measure ! by remov-
ing the axial confinement and letting the atoms
expand in 1D. With more squeezing, the inter-
action energy decreases, because although the
higher 3D density tends to yield stronger inter-
actions, the reduction in wave function overlap
exerts a greater effect. With more localized
wave functions, the kinetic energy starts to
dominate. The net effect is that ! quickly ap-
proaches the asymptote to its high ! value.
Very far in the TG limit (! "" 1), like classical
beads on a string or like noninteracting fermi-
ons, transverse squeezing of TG atoms would
have no effect on either r or !.

The starting point for our experiment is a
nearly pure 87Rb BEC in the lowest internal
energy state, which we produce by all-optical
means every 3 s (27). The atoms are confined
in a horizontal crossed dipole trap made with
1.06-#m yttrium-aluminum-garnet (YAG)
laser light (28) (Fig. 2). The trap power, P,
and waist size, w0, are dynamically variable,
but typically we perform the 1D experiments
with P $ 12 or 320 mW, w0 $ 70 #m, and
2 % 105 BEC atoms (supporting online text).
We use high-intensity fluorescent imaging
to measure cloud sizes (29) (supporting
online text). By scanning P and progres-
sively reducing the 3D trapped cloud, we
determine the resolution of the optical sys-
tem to be wir $ 20 & 1 #m.

We create an ensemble of parallel 1D
traps (20) by superimposing on the crossed
dipole trap a 2D optical lattice (Fig. 2),
made from two horizontal, orthogonal
standing waves with slightly different fre-
quencies (30). The lattice is generated by a
Ti-sapphire laser, 3.2 THz to the blue of the
D2 line, with a 600-#m waist and up to 700
mW per beam. The depth of the lattice, U0,
can thus reach 16 #K!kB $ 87 Erec, where
kB is the Boltzmann constant and Erec is the
atom’s recoil energy. The maximum trans-
verse oscillation frequency, '!/2(, is 70.7
kHz. The blue-detuned lattice anti-traps in
the axial direction, but only very weakly for
our atoms, which are in the transverse
ground state. The net vertical oscillation
frequency, 'v, is reduced from its value in
the crossed dipole trap by at most 2.8% by
the lattice light, so we can scan the trans-
verse confinement without affecting the
axial confinement. The very large lattice
beam waist and large w0 compared with the

initial cloud size means that '! and 'v are
nearly the same for the whole ensemble of
)6400 1D traps. The traps differ only in
the number of atoms each contains, Ntube.
For P $ 12 mW (320 mW), Ntube ) 54
(270) for the central tubes.

The 2D lattice is turned on slowly, to avoid
nonadiabatic excitation of 1D breathing modes
and keep the atoms in the lowest energy axial
state. Adiabaticity is achieved by observing the
in situ vertical cloud size after the lattice is
turned on and keeping residual oscillations be-
low 10% (supporting online text). When turned
fully on, the lattice light causes spontaneous
emission at a rate of 0.4 Hz, and background
gas collisions occur at 0.4 Hz. Either event
usually causes an atom to leave the trap, and we
observe that 15% of the atoms are lost by the
time we make our 1D measurements. To ensure
that the remaining atoms are still near zero
temperature, we reverse the procedure for turn-
ing on the lattice and measure how many atoms
return to the BEC in the crossed dipole trap. Of
the remaining atoms, 80% return to the 3D
BEC, which implies that the thermal energy in
1D is not substantial.

Tunneling between tubes while the lattice
is turned on may lead to a redistribution of
atoms among the 1D tubes. We do not ob-
serve this in the measured horizontal width,
wh, when the atoms are trapped in both light
traps. To the extent that tunneling does occur,
it has a minimal effect, after the tubes are
averaged, on our 1D calculations.

To measure !, we suddenly turn off only
the crossed dipole trap and let the atoms
expand ballistically while they are still in
the 1D tubes. With P $ 12 mW, when U0 *
20 Erec, the transverse width of the atomic
ensemble (Fig. 3A, squares) increases, bal-

Fig. 2. Scheme illustrating the experiment. The
large, blue-detuned crossed beam pairs form the
2D optical lattice that strongly confines atoms in
1D tubes (out of the page). The arrangement of
the tubes is illustrated in the magnified circle. The
smaller, red-detuned crossed traveling waves trap
the atoms axially (out of the page, which corre-
sponds to up in the experiment). The collection of
tubes is imaged transversely, without resolving
individual tubes.

Fig. 3. Plot of the 1D temperature versus the transverse confinement. (A)
At P $ 12 mW, the atoms act like a TG gas. (B) At P $ 320 mW, the
atoms act like a BEC. The circles denote T1D, which is proportional to +.
TG theory curves (short-dashed lines) are valid for ! "" 1, mean field
theory curves (long-dashed lines) are valid for ! ** 1, and exact 1D Bose
gas theory curves (solid lines) are valid for all values of !. The theory
curves have no free parameters. Error bars in the theory curve

reflect uncertainty in the input experimental parameters, the most
important being the crossed dipole trap size (&2 #m) and, secondarily,
the atom number (&10%). See table S1 for detailed experimental
parameters. The solid squares represent the change in the square of the
horizontal width, ,wh

2, measured from 7 to 17 ms after the crossed
dipole trap has been shut off. The system is purely 1D only above U0 )
20 Erec, when the interaction between tubes is negligible.
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87Rb	atoms	in	a	1D	harmonic	trap
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At t = 0 the	trap	is	removed	and	the	gas	
expands	in	1D	governed	by:

As ! and r approach each other (! " 1) and
the bosons start to fermionize, the rate at
which both ! and r change decreases. We
observe the stabilization of r by measuring the
1D cloud length. We also measure ! by remov-
ing the axial confinement and letting the atoms
expand in 1D. With more squeezing, the inter-
action energy decreases, because although the
higher 3D density tends to yield stronger inter-
actions, the reduction in wave function overlap
exerts a greater effect. With more localized
wave functions, the kinetic energy starts to
dominate. The net effect is that ! quickly ap-
proaches the asymptote to its high ! value.
Very far in the TG limit (! "" 1), like classical
beads on a string or like noninteracting fermi-
ons, transverse squeezing of TG atoms would
have no effect on either r or !.

The starting point for our experiment is a
nearly pure 87Rb BEC in the lowest internal
energy state, which we produce by all-optical
means every 3 s (27). The atoms are confined
in a horizontal crossed dipole trap made with
1.06-#m yttrium-aluminum-garnet (YAG)
laser light (28) (Fig. 2). The trap power, P,
and waist size, w0, are dynamically variable,
but typically we perform the 1D experiments
with P $ 12 or 320 mW, w0 $ 70 #m, and
2 % 105 BEC atoms (supporting online text).
We use high-intensity fluorescent imaging
to measure cloud sizes (29) (supporting
online text). By scanning P and progres-
sively reducing the 3D trapped cloud, we
determine the resolution of the optical sys-
tem to be wir $ 20 & 1 #m.

We create an ensemble of parallel 1D
traps (20) by superimposing on the crossed
dipole trap a 2D optical lattice (Fig. 2),
made from two horizontal, orthogonal
standing waves with slightly different fre-
quencies (30). The lattice is generated by a
Ti-sapphire laser, 3.2 THz to the blue of the
D2 line, with a 600-#m waist and up to 700
mW per beam. The depth of the lattice, U0,
can thus reach 16 #K!kB $ 87 Erec, where
kB is the Boltzmann constant and Erec is the
atom’s recoil energy. The maximum trans-
verse oscillation frequency, '!/2(, is 70.7
kHz. The blue-detuned lattice anti-traps in
the axial direction, but only very weakly for
our atoms, which are in the transverse
ground state. The net vertical oscillation
frequency, 'v, is reduced from its value in
the crossed dipole trap by at most 2.8% by
the lattice light, so we can scan the trans-
verse confinement without affecting the
axial confinement. The very large lattice
beam waist and large w0 compared with the

initial cloud size means that '! and 'v are
nearly the same for the whole ensemble of
)6400 1D traps. The traps differ only in
the number of atoms each contains, Ntube.
For P $ 12 mW (320 mW), Ntube ) 54
(270) for the central tubes.

The 2D lattice is turned on slowly, to avoid
nonadiabatic excitation of 1D breathing modes
and keep the atoms in the lowest energy axial
state. Adiabaticity is achieved by observing the
in situ vertical cloud size after the lattice is
turned on and keeping residual oscillations be-
low 10% (supporting online text). When turned
fully on, the lattice light causes spontaneous
emission at a rate of 0.4 Hz, and background
gas collisions occur at 0.4 Hz. Either event
usually causes an atom to leave the trap, and we
observe that 15% of the atoms are lost by the
time we make our 1D measurements. To ensure
that the remaining atoms are still near zero
temperature, we reverse the procedure for turn-
ing on the lattice and measure how many atoms
return to the BEC in the crossed dipole trap. Of
the remaining atoms, 80% return to the 3D
BEC, which implies that the thermal energy in
1D is not substantial.

Tunneling between tubes while the lattice
is turned on may lead to a redistribution of
atoms among the 1D tubes. We do not ob-
serve this in the measured horizontal width,
wh, when the atoms are trapped in both light
traps. To the extent that tunneling does occur,
it has a minimal effect, after the tubes are
averaged, on our 1D calculations.

To measure !, we suddenly turn off only
the crossed dipole trap and let the atoms
expand ballistically while they are still in
the 1D tubes. With P $ 12 mW, when U0 *
20 Erec, the transverse width of the atomic
ensemble (Fig. 3A, squares) increases, bal-

Fig. 2. Scheme illustrating the experiment. The
large, blue-detuned crossed beam pairs form the
2D optical lattice that strongly confines atoms in
1D tubes (out of the page). The arrangement of
the tubes is illustrated in the magnified circle. The
smaller, red-detuned crossed traveling waves trap
the atoms axially (out of the page, which corre-
sponds to up in the experiment). The collection of
tubes is imaged transversely, without resolving
individual tubes.

Fig. 3. Plot of the 1D temperature versus the transverse confinement. (A)
At P $ 12 mW, the atoms act like a TG gas. (B) At P $ 320 mW, the
atoms act like a BEC. The circles denote T1D, which is proportional to +.
TG theory curves (short-dashed lines) are valid for ! "" 1, mean field
theory curves (long-dashed lines) are valid for ! ** 1, and exact 1D Bose
gas theory curves (solid lines) are valid for all values of !. The theory
curves have no free parameters. Error bars in the theory curve

reflect uncertainty in the input experimental parameters, the most
important being the crossed dipole trap size (&2 #m) and, secondarily,
the atom number (&10%). See table S1 for detailed experimental
parameters. The solid squares represent the change in the square of the
horizontal width, ,wh

2, measured from 7 to 17 ms after the crossed
dipole trap has been shut off. The system is purely 1D only above U0 )
20 Erec, when the interaction between tubes is negligible.
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Q: What	happens	to	the	system	in	time?	Where	does	it	end	up	as	a	
result	of	unitary	evolution?	Does	it	equilibrate?

A: Bosons	fermionize,	momentum	distribution	approaches	Fermi-
Dirac,	the	system	does	NOT	equilibrate	(thermalize).



Higgs Amplitude Mode in the BCS Superconductors Nb1-xTixN Induced
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Ultrafast responses of BCS superconductor Nb1-xTixN films in a nonadiabatic excitation regime were

investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation

with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response

in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS

gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the

order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast

manipulation of the superconducting order parameter by optical means.

DOI: 10.1103/PhysRevLett.111.057002 PACS numbers: 74.40.Gh, 74.25.Gz, 78.47.J!

With spontaneous breaking of continuous symmetry,
two types of collective excitations associated with the
order parameter emerge. One is the gapless phase mode
called as the Nambu-Goldstone mode, and the other is the
gapped amplitude mode also referred to as the Higgs mode
from the analogy to the Higgs boson in particle physics
[1,2], as schematically shown in Fig. 1(a). Recently, the
Higgs amplitude mode has been observed in strongly
interacting superfluid phases of bosonic ultracold atoms
in optical lattices by means of Bragg spectroscopy [3] and
lattice modulation [4]. The studies of the Higgs mode
realized on tabletop experiments would provide substantial
platforms for exploring the nature of symmetry-broken
states in quantum many-body physics. In condensed matter
systems, the amplitude mode has been widely observed in
charged density wave (CDW) systems by Raman or pump-
probe spectroscopy [5–8] and in an antiferromagnet by
neutron spectroscopy [9]. However, the observation of the
amplitude mode in fermionic condensates has been limited
to the specific cases of superconducting CDW compound
NbSe2 [10,11] andp-wave superfluid

3He [12,13]. Then, we
can pose a question as to whether the Higgs mode in a pure
metallic BCS superconductor (SC), which does not couple
to the radiation field, can be observed experimentally.

The amplitude mode in the BCS order parameter has
been anticipated to appear in a response to a fast perturba-
tion in nonadiabatic regime [14–23]. Depending on the
perturbation strength, the nonequilibrium dynamics would
exhibit a persistent oscillation, a transient oscillation
obeying a power-law decay, or a quantum quench of the
order parameter which cannot be described by the time-
dependent Ginzburg-Landau theory or the Boltzmann
equation [16,17]. A sudden switching of the pairing inter-
action by using Feshbach resonance in ultracold atoms [24]
is one promising way to realize such a nonequilibrium

state, while it still remains experimentally challenging.
An alternative way to induce the transient oscillation of
the order parameter has been proposed in conventional
metallic BCS SCs [19]. When a BCS ground state is non-
adiabatically excited by a short laser pulse, the coherence
between different quasiparticle (QP) states leads to the
oscillation of the order parameter. Such a nonadiabatic
excitation for BCS superconductivity requires a short
pump pulse with the duration !pump small enough com-
pared to the response time of the BCS state characterized
by the BCS gap ! as !! ¼ "=!!1. Here a near-visible
femtosecond optical pulse is not applicable, because the
huge excess energies of photoexcited hot electrons in the
order of electronvolts are transferred to the generation
of large amounts of high-frequency phonons (@!> 2!),
which in turn induce the Cooper pair breaking. This pro-
cess destroys the nonadiabatic excitation condition even
if one uses the laser pulse much shorter than !! [25,26].
Therefore, to ensure the nonadiabatic excitation, it is nec-
essary to use a short pump pulse with its photon energy
resonant to the BCS gap which is typically located in
terahertz (THz) frequency range [19]. With the recent
development of THz technology, such an intense and
monocyclelike THz pulse has become available [27], mak-
ing it possible to investigate the THz nonlinear response
in a variety of materials [28–32]. In an s-wave SC of NbN
film, the ultrafast pair breaking and the following QP
dynamics have been investigated by the intense THz
pump-THz probe (TPTP) spectroscopy [26]. Nonlinear
THz transmission experiments in NbN have also been
reported recently [33,34].
In this Letter, we investigated the coherent transient

dynamics of superconducting Nb1-xTixN films after the
THz pulse excitation in the nonadiabatic excitation regime.
The time-domain oscillation of the order parameter was
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observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in
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FIG. 2 (color online). (a) The open circles show the temporal
evolution of the change of the probe E field, !Eprobe, at tgate ¼ t0
as a function of tpp in sample A at 4 K. The solid curves show

the fitted results with Eq. (1). (b) The oscillation frequency f
obtained from the fits and the asymptotic gap energy 2!1 as a
function of the pump intensity. (c) The power-law decay index b
as a function of the pump intensity.
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Ultrafast responses of BCS superconductor Nb1-xTixN films in a nonadiabatic excitation regime were

investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation

with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response

in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS

gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the

order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast

manipulation of the superconducting order parameter by optical means.
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With spontaneous breaking of continuous symmetry,
two types of collective excitations associated with the
order parameter emerge. One is the gapless phase mode
called as the Nambu-Goldstone mode, and the other is the
gapped amplitude mode also referred to as the Higgs mode
from the analogy to the Higgs boson in particle physics
[1,2], as schematically shown in Fig. 1(a). Recently, the
Higgs amplitude mode has been observed in strongly
interacting superfluid phases of bosonic ultracold atoms
in optical lattices by means of Bragg spectroscopy [3] and
lattice modulation [4]. The studies of the Higgs mode
realized on tabletop experiments would provide substantial
platforms for exploring the nature of symmetry-broken
states in quantum many-body physics. In condensed matter
systems, the amplitude mode has been widely observed in
charged density wave (CDW) systems by Raman or pump-
probe spectroscopy [5–8] and in an antiferromagnet by
neutron spectroscopy [9]. However, the observation of the
amplitude mode in fermionic condensates has been limited
to the specific cases of superconducting CDW compound
NbSe2 [10,11] andp-wave superfluid

3He [12,13]. Then, we
can pose a question as to whether the Higgs mode in a pure
metallic BCS superconductor (SC), which does not couple
to the radiation field, can be observed experimentally.

The amplitude mode in the BCS order parameter has
been anticipated to appear in a response to a fast perturba-
tion in nonadiabatic regime [14–23]. Depending on the
perturbation strength, the nonequilibrium dynamics would
exhibit a persistent oscillation, a transient oscillation
obeying a power-law decay, or a quantum quench of the
order parameter which cannot be described by the time-
dependent Ginzburg-Landau theory or the Boltzmann
equation [16,17]. A sudden switching of the pairing inter-
action by using Feshbach resonance in ultracold atoms [24]
is one promising way to realize such a nonequilibrium

state, while it still remains experimentally challenging.
An alternative way to induce the transient oscillation of
the order parameter has been proposed in conventional
metallic BCS SCs [19]. When a BCS ground state is non-
adiabatically excited by a short laser pulse, the coherence
between different quasiparticle (QP) states leads to the
oscillation of the order parameter. Such a nonadiabatic
excitation for BCS superconductivity requires a short
pump pulse with the duration !pump small enough com-
pared to the response time of the BCS state characterized
by the BCS gap ! as !! ¼ "=!!1. Here a near-visible
femtosecond optical pulse is not applicable, because the
huge excess energies of photoexcited hot electrons in the
order of electronvolts are transferred to the generation
of large amounts of high-frequency phonons (@!> 2!),
which in turn induce the Cooper pair breaking. This pro-
cess destroys the nonadiabatic excitation condition even
if one uses the laser pulse much shorter than !! [25,26].
Therefore, to ensure the nonadiabatic excitation, it is nec-
essary to use a short pump pulse with its photon energy
resonant to the BCS gap which is typically located in
terahertz (THz) frequency range [19]. With the recent
development of THz technology, such an intense and
monocyclelike THz pulse has become available [27], mak-
ing it possible to investigate the THz nonlinear response
in a variety of materials [28–32]. In an s-wave SC of NbN
film, the ultrafast pair breaking and the following QP
dynamics have been investigated by the intense THz
pump-THz probe (TPTP) spectroscopy [26]. Nonlinear
THz transmission experiments in NbN have also been
reported recently [33,34].
In this Letter, we investigated the coherent transient

dynamics of superconducting Nb1-xTixN films after the
THz pulse excitation in the nonadiabatic excitation regime.
The time-domain oscillation of the order parameter was
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observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in
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FIG. 2 (color online). (a) The open circles show the temporal
evolution of the change of the probe E field, !Eprobe, at tgate ¼ t0
as a function of tpp in sample A at 4 K. The solid curves show

the fitted results with Eq. (1). (b) The oscillation frequency f
obtained from the fits and the asymptotic gap energy 2!1 as a
function of the pump intensity. (c) The power-law decay index b
as a function of the pump intensity.
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057002-3observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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“With	the	recent	development	of	THz	
technology,	such	an	intense	and	monocyclelike
THz	pulse	has	become	available.”
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Ultrafast responses of BCS superconductor Nb1-xTixN films in a nonadiabatic excitation regime were

investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation

with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response

in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS

gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the

order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast

manipulation of the superconducting order parameter by optical means.
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With spontaneous breaking of continuous symmetry,
two types of collective excitations associated with the
order parameter emerge. One is the gapless phase mode
called as the Nambu-Goldstone mode, and the other is the
gapped amplitude mode also referred to as the Higgs mode
from the analogy to the Higgs boson in particle physics
[1,2], as schematically shown in Fig. 1(a). Recently, the
Higgs amplitude mode has been observed in strongly
interacting superfluid phases of bosonic ultracold atoms
in optical lattices by means of Bragg spectroscopy [3] and
lattice modulation [4]. The studies of the Higgs mode
realized on tabletop experiments would provide substantial
platforms for exploring the nature of symmetry-broken
states in quantum many-body physics. In condensed matter
systems, the amplitude mode has been widely observed in
charged density wave (CDW) systems by Raman or pump-
probe spectroscopy [5–8] and in an antiferromagnet by
neutron spectroscopy [9]. However, the observation of the
amplitude mode in fermionic condensates has been limited
to the specific cases of superconducting CDW compound
NbSe2 [10,11] andp-wave superfluid

3He [12,13]. Then, we
can pose a question as to whether the Higgs mode in a pure
metallic BCS superconductor (SC), which does not couple
to the radiation field, can be observed experimentally.

The amplitude mode in the BCS order parameter has
been anticipated to appear in a response to a fast perturba-
tion in nonadiabatic regime [14–23]. Depending on the
perturbation strength, the nonequilibrium dynamics would
exhibit a persistent oscillation, a transient oscillation
obeying a power-law decay, or a quantum quench of the
order parameter which cannot be described by the time-
dependent Ginzburg-Landau theory or the Boltzmann
equation [16,17]. A sudden switching of the pairing inter-
action by using Feshbach resonance in ultracold atoms [24]
is one promising way to realize such a nonequilibrium

state, while it still remains experimentally challenging.
An alternative way to induce the transient oscillation of
the order parameter has been proposed in conventional
metallic BCS SCs [19]. When a BCS ground state is non-
adiabatically excited by a short laser pulse, the coherence
between different quasiparticle (QP) states leads to the
oscillation of the order parameter. Such a nonadiabatic
excitation for BCS superconductivity requires a short
pump pulse with the duration !pump small enough com-
pared to the response time of the BCS state characterized
by the BCS gap ! as !! ¼ "=!!1. Here a near-visible
femtosecond optical pulse is not applicable, because the
huge excess energies of photoexcited hot electrons in the
order of electronvolts are transferred to the generation
of large amounts of high-frequency phonons (@!> 2!),
which in turn induce the Cooper pair breaking. This pro-
cess destroys the nonadiabatic excitation condition even
if one uses the laser pulse much shorter than !! [25,26].
Therefore, to ensure the nonadiabatic excitation, it is nec-
essary to use a short pump pulse with its photon energy
resonant to the BCS gap which is typically located in
terahertz (THz) frequency range [19]. With the recent
development of THz technology, such an intense and
monocyclelike THz pulse has become available [27], mak-
ing it possible to investigate the THz nonlinear response
in a variety of materials [28–32]. In an s-wave SC of NbN
film, the ultrafast pair breaking and the following QP
dynamics have been investigated by the intense THz
pump-THz probe (TPTP) spectroscopy [26]. Nonlinear
THz transmission experiments in NbN have also been
reported recently [33,34].
In this Letter, we investigated the coherent transient

dynamics of superconducting Nb1-xTixN films after the
THz pulse excitation in the nonadiabatic excitation regime.
The time-domain oscillation of the order parameter was
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observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in

86420-2-4

1

0

nJ/cm
2

 9.6
 8.5
 7.9
 7.2
 6.4
 5.6
 4.8
 4.0

3

2

1

0
105

0.8

0.6

0.4

0.2

0.0

 
        

(a)

(b)

2

(c)

pump/ =0.57

Pump Energy (nJ/cm2)

b
f(

T
H

z)

tpp (ps)

E
pr

ob
e(

t g
at

e=
t 0

) 
 (

ar
b.

 u
ni

ts
)

f

τ τ

FIG. 2 (color online). (a) The open circles show the temporal
evolution of the change of the probe E field, !Eprobe, at tgate ¼ t0
as a function of tpp in sample A at 4 K. The solid curves show

the fitted results with Eq. (1). (b) The oscillation frequency f
obtained from the fits and the asymptotic gap energy 2!1 as a
function of the pump intensity. (c) The power-law decay index b
as a function of the pump intensity.
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i
d|��
dt
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How	to	address	condensate	dynamics?
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Anderson pseudospins

How	to	address	condensate	dynamics?

⇥̇sk = (�2⇥�+ 2�kẑ)⇥ ⇥sk

Bloch eqs.

Complex/vector 
representation:

✏ Order parameter:
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Anderson pseudospins

How	to	address	condensate	dynamics?

⇥̇sk = (�2⇥�+ 2�kẑ)⇥ ⇥sk

Bloch eqs.

Complex/vector 
representation:

✏

Mean	field	exact	in	thermodynamic	limit	due	to	the	infinite	
range	of	interactions.	Can	replace	quantum	spins	with	
classical	spins	(vectors)!
Equilibrium:	Anderson	(1958);	Richardson	(1977),	etc.
Dynamics:	Anderson	(1958);	Volkov,	Kogan	(1973);	Galaiko	(1972),	etc.
Quench	dynamics:	Faribault,	Calabrese,	Caux	(2009)
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Anderson pseudospins

How	to	address	condensate	dynamics?

⇥̇sk = (�2⇥�+ 2�kẑ)⇥ ⇥sk

Bloch eqs.

Complex/vector 
representation:

✏

Mean	field	exact	in	thermodynamic	limit	when	b is	
macroscopically	occupied.	Can	replace	quantum	
spins/oscillator	with	classical	spins/oscillator!
Equilibrium:	Richardson	(1977),	Gaudin	(1983)	etc.
Quench	dynamics:	Strater,	Tsyplyatyev,	Faribault	(2012)		

Order parameter:

P.	W.	Anderson
i
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2D	p-wave	topological	superconductor

p
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'

V (�) =
1X
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ein�

n = 0 – s-wave
n = ±1 – p-wave

Spinless	(or	spin-polarized)	fermions	in	2D:	p-wave	BCS	Hamiltonian
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kĉk � g

X

k,p

k · p ĉ†kĉ
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Fully	gapped,	non	s-waveEk =
q

(�k � µ)2 + k2�2
0

2D	p-wave	topological	superconductor

Spinless	(or	spin-polarized)	fermions	in	2D:	p-wave	BCS	Hamiltonian
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“p	+	i	p”	superconducting	ground	state:



At fixed density n:
• µ is a monotonically 

decreasing function of D0  

(coupling g)

BCS BEC

2D	p-wave	topological	superconductor

Spinless	(or	spin-polarized)	fermions	in	2D:	p-wave	BCS	Hamiltonian
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kĉk � g

X

k,p

k · p ĉ†kĉ
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“p	+	i	p”	superconducting	ground	state:
At fixed density n:

• µ is a monotonically 
decreasing function of D0  

(coupling g)

BCS BEC

2D	p-wave	topological	superconductor

Spinless	(or	spin-polarized)	fermions	in	2D:	p-wave	BCS	Hamiltonian
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Pseudospin	representation:
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BCS

BEC
v Weak-pairing	BCS	state	topologically	non-trivial
v Strong-pairing	BEC	state topologically	trivial

Volovik	(1988);	Read	&	Green	(2000)

Pseudospin	winding	number	Q	:

2D	p-wave	topological	superconductor

Q =

8
<

:

1, µ > 0 (�0 < �QCP) BCS

0, µ < 0 (�0 > �QCP) BEC
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Retarded	GF	winding	number	W	:

ü Same	as	pseudospin	winding	Q in	ground	state
ü Signals	presence	of	chiral	edge	states



Quantum	quench:	sudden	change	of	interaction	strength:

2D	weak-pairing	BCS	p+ip superconductor:	Fully-gapped,	“strong”	topological	state	(class	D)

BCS BEC

Is topological order robust against hard 
nonequilibrium driving???

| (0)i = | (p+ ip) ground state for gii

Far	from	equilibrium	topological	superconductivity?

| (t ! 1)i =? �(t ! 1) =?Q: 

gi ! gf at t = 0
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�kĉ�pĉp



Quantum Quench

HBCS =
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Need to solve full (infinitely) many classical spin evolution:

Superconductor ?�0

Initial state, �sk(t = 0) = . . . , determined by quench (perturbation) details

Nonlinear,	many-body,	far	from	equilibrium	– normally	
would	be	intractable	analytically

How	to	address	condensate	dynamics?
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Black,	Ralph,	Tinkham	(1996)

But	it	turns	out all	these	pairing	models	are	integrable…
BCS	=	1-channel	model

(nuclear	superconductivity)																				
Richardson	&	Sherman	(1964)									
“Exact	eigenstates of	the	
pairing-force	Hamiltonian”

A.	Bohr,	B.	R.	Mottelson,		D.	Pines	(1958)

Applications	to	superconducting	qubits (finite	size	
corrections		to	the	BCS	theory):	Von	Delft	(2001);	
Dukelsky	&	Sierra	(1999);	Schechter	et.	al.	(2001)	…

Odd

Even

Topological	(p+ip)	superconductor
Richardson	(2002)	
“New	Class	of	Solvable	and	Integrable												
Many-Body	Models”
Dunning,	Ibanez,	Links,	Sierra	&	Zhao	(2010)																			
“Exact	solution	of	the	p+ip	pairing			
Hamiltonian…”

Rombouts,	Dukelsky,	and	Ortiz	(2010)		
“…integrable	p+ip	fermionic	superfluid”

Inhomogeneous	Dicke	=	2-channel	model
Gaudin	(1983)		
“La	fonction	d'onde	de	Bethe”



Integrals	of	motion	for H2ch – Gaudin	magnets

Hp = (2✏p � !)szp + g
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H2ch = !N̂ +
X

p

Hp Richardson-Gaudin	integrability:	
quantum/equilibrium/finite	size		– Bethe	Ansatz	like	
solution	for	the	spectrum,	Richardson	(1964);	Gaudin	
(1983).	



Integrals	of	motion	for H2ch – Gaudin	magnets
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Need to solve full (infinitely) many classical spin evolution:

�̇ = �i!�� ig2
X

k

s�k⇥̇sk = (�2⇥�+ 2�kẑ)⇥ ⇥sk

H2ch = !N̂ +
X

p

Hp

Nonlinear	integrable	PDE,	cf.	Korteweg–de	Vries,	nonlinear	
Schrodinger,	Landau-Lifshitz,	sine-Gordon	etc.		Difference	– nonlocal	
(integro-differential),	no	translational	invariance.	Requires	a	
nonstandard	approach.

Richardson-Gaudin	integrability:	
quantum/equilibrium/finite	size		– Bethe	Ansatz	like	
solution	for	the	spectrum,	Richardson	(1964);	Gaudin	
(1983).	

Condensate dynamics: nonequilibrium/thermodynamic (continuum) limit/classical



Integrals	of	motion	for	H2ch – Gaudin	magnets
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H2ch = !N̂ +
X

p

Hp

p-wave

Sklyanin (1987) “Separation	of	variables	in	the	Gaudin	model”
Kuznetsov (1992)	“Quadrics	on	real	Riemannian	spaces	…	connection	with	Gaudin	magnet”
Takasaki	(1998)	“Gaudin	Model,	KZ	Equation,	and	Isomonodromic Problem	on	Torus”
Frenkel (2004)	“Gaudin	model	and	opers”...

Advanced	approach	to	“Richardson-Gaudin”	integrability
(secret	life	of	Gaudin	models):

Exact solution for condensate dynamics:

E.Y.,	Altshuler,	Kuznetsov,	Enolskii,	J.	Phys.	A	(2005)
E.Y.,	Altshuler,	Tsyplyatyev,	PRL	(2006)

Foster,	Dzero,	Gurarie,	E.Y.,	PRB	(2014)
Foster,	Gurarie,	Dzero,	E.Y.,	PRL	(2014)

BCS	s-wave

2-channel	model
E.Y.,	Dzero,	Gurarie,	Foster,	PRA	(2015)



Q: Can	we	explicitly	determine	the	large	time	dynamics	after	a	
quench	from	the	exact	solution?		

A: For	realistic	(e.g.	quench)	initial	data	the	exact	solution	is	too	
complicated	to	be	directly	useful

| (t ! 1)i =? �(t ! 1) =?

But… there is a remarkable # of degrees of freedom 
reduction mechanism. In thermodynamic limit the system 
“flows in time” to a small number m of new “renormalized” 
spins. “RG in time” in exact solution (new technique in the 
theory of classical integrability)



Q: Can	we	explicitly	determine	the	large	time	dynamics	after	a	
quench	from	the	exact	solution?		

A: For	realistic	(e.g.	quench)	initial	data	the	exact	solution	is	too	
complicated	to	be	directly	useful

| (t ! 1)i =? �(t ! 1) =?

But… there is a remarkable # of degrees of freedom 
reduction mechanism. In thermodynamic limit the system 
“flows in time” to a small number m of new “renormalized” 
spins. “RG in time” in exact solution (new technique in the 
theory of classical integrability)

At t ! 1 the # of spins e↵ectively drops from n = 1 to m.

For a quench in any of the above pairing models m = 0, 1 or 2
depending on the strength of the quench.

�(t ! 1) after quench = �(t) for Hred

Hred = same Hamiltonian, but for m = 0, 1, 2 new spins



�(t ! 1) after quench = �(t) for Hred

Hred = same Hamiltonian, but for m = 0, 1, 2 new spins

Example: H2ch m =2 H2ch =
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vThis	is	a	particular	solution	of	original	eqs.	of	motion
vThis	D(t) is	realized	at	large	times for	certain	quenches	
vak,	bk,	 gk,…	are	determined	by	the	integrals	of	motion

�(t) = �gb(t)



�(t ! 1) after quench = �(t) for Hred

Hred = same Hamiltonian, but for m = 0, 1, 2 new spins

Example: H2ch m =2 H2ch =
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Long	time	asymptote	of	
the	order	parameter:



�(t ! 1) after quench = �(t) for Hred

Hred = same Hamiltonian, but for m = 0, 1, 2 new spins

Example: H2ch m =1 H2ch =
X

k

2✏ks
z
k + !b†b+ g

X

k

�
b†s�k + bs+k

�

b = b

x

� ib

y

,

~

b = b

x

x̂+ b

y

ŷ
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Original	spins:
Long	time	asymptote	of	
the	order	parameter:

v This	is	a	particular	solution	of	original	eqs.	of	motion
v This	D(t) is	realized	at	large	times for	certain	quenches	
v bk,	 gk,…	are	determined	by	the	integrals	of	motion

t ! 1

e! ⌘ 2µ1
Redefine:

�(t ! 1) = �1e�2iµ1t

~sk(t) = �kb(t) + �kẑ



�(t ! 1) after quench = �(t) for Hred

Hred = same Hamiltonian, but for m = 0, 1, 2 new spins

Example: H2ch m =0 H2ch =
X
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Original	spins:
Long	time	asymptote	of	
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v This	is	a	particular	solution	of	original	eqs.	of	motion
v This	D(t) is	realized	at	large	times for	certain	quenches	
v gk,…	are	determined	by	the	integrals	of	motion
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What	happens	to	the	system	in	
time?	Where	does	it	end	up	as	a	
result	of	unitary	evolution?	Does	it	
equilibrate?

I. No equilibration (thermalization) at all

II. System goes into an asymptotic state with properties quite 
distinct from equilibrium ( new “phase” of superfluid matter). 

III. Three main far from equilibrium “phases” (as opposed to only 
one in equilibrium at T = 0) common to all our models

IV. Which “phase” is realized depends on the strength of the 
quench

V. Not specific to integrable models. More general mechanism at 
work. Consider e.g.  [	Scaramazza,	E.Y.	(2018)	]

A: 

Superconductor ?�0

Q: 

H =

X

k

2✏ks
z
k + !b†b+

X

k

gk
�
b†s�k + bs+k

�
, gk – any momentum-dependent coupling



Atomic	s-wave	superfluid	– ultracold	fermions	(40K,	6Li)

Away	from	unitary	point	OR for	narrow	resonance

Detuning:

Gap:

� ⇡ 2µB(B �B0)

Resonance	width:	 � =
g2⌫F
✏F

!i!f
Greiner,	Regal	&Jin,	JILA,	40K (2004)

Quantum	quench:	sudden	change	of	detuning: !i ! !f at t = 0

H2ch =
X

k
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z
k + !b†b+ g

X

k

�
b†s�k + bs+k

�

�(t) = �gb(t)

Each	quench	is	characterized	by	three	parameters: !i,!f , �
Equivalently	can	choose: �0i,�0f , �

�0i,�0f – ground state gaps for !i,!f
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Exact	quench	phase	diagram:	2-channel	model	in	3d

Phases	II	and	II’:
Order	parameter	amplitude	goes	
to	a	constant

Phase	I:																																																																																																												
Order	parameter	vanishes,																					
but	nonzero	superfluid	stiffness							
(gapless	superconductivity)

Phase	III:					
Order	parameter	amplitude																				
oscillates	periodically

�(t) ! 0, ns = n/2

|�(t)| �
q

a+ b2dn2 [bt, k0]

Asymptotic	states	of	2-channel	dynamics

µ1 > 0
BCS

µ1 < 0
BEC

µ1 = 0 line

�0i,�0f – ground state gaps for !i,!f

�(t) ! �1e�2iµ1t,

�1 6= �0f

!i ! !f at t = 0
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Exact	quench	phase	diagram:	2-channel	model	in	3d

Phases	II	and	II’:
Order	parameter	amplitude	goes	
to	a	constant

Asymptotic	states	of	2-channel	dynamics

µ1 > 0
BCS

µ1 < 0
BEC

µ1 = 0 line

�0i,�0f – ground state gaps for !i,!f
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Ultrafast responses of BCS superconductor Nb1-xTixN films in a nonadiabatic excitation regime were

investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation

with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response

in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS

gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the

order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast

manipulation of the superconducting order parameter by optical means.
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With spontaneous breaking of continuous symmetry,
two types of collective excitations associated with the
order parameter emerge. One is the gapless phase mode
called as the Nambu-Goldstone mode, and the other is the
gapped amplitude mode also referred to as the Higgs mode
from the analogy to the Higgs boson in particle physics
[1,2], as schematically shown in Fig. 1(a). Recently, the
Higgs amplitude mode has been observed in strongly
interacting superfluid phases of bosonic ultracold atoms
in optical lattices by means of Bragg spectroscopy [3] and
lattice modulation [4]. The studies of the Higgs mode
realized on tabletop experiments would provide substantial
platforms for exploring the nature of symmetry-broken
states in quantum many-body physics. In condensed matter
systems, the amplitude mode has been widely observed in
charged density wave (CDW) systems by Raman or pump-
probe spectroscopy [5–8] and in an antiferromagnet by
neutron spectroscopy [9]. However, the observation of the
amplitude mode in fermionic condensates has been limited
to the specific cases of superconducting CDW compound
NbSe2 [10,11] andp-wave superfluid

3He [12,13]. Then, we
can pose a question as to whether the Higgs mode in a pure
metallic BCS superconductor (SC), which does not couple
to the radiation field, can be observed experimentally.

The amplitude mode in the BCS order parameter has
been anticipated to appear in a response to a fast perturba-
tion in nonadiabatic regime [14–23]. Depending on the
perturbation strength, the nonequilibrium dynamics would
exhibit a persistent oscillation, a transient oscillation
obeying a power-law decay, or a quantum quench of the
order parameter which cannot be described by the time-
dependent Ginzburg-Landau theory or the Boltzmann
equation [16,17]. A sudden switching of the pairing inter-
action by using Feshbach resonance in ultracold atoms [24]
is one promising way to realize such a nonequilibrium

state, while it still remains experimentally challenging.
An alternative way to induce the transient oscillation of
the order parameter has been proposed in conventional
metallic BCS SCs [19]. When a BCS ground state is non-
adiabatically excited by a short laser pulse, the coherence
between different quasiparticle (QP) states leads to the
oscillation of the order parameter. Such a nonadiabatic
excitation for BCS superconductivity requires a short
pump pulse with the duration !pump small enough com-
pared to the response time of the BCS state characterized
by the BCS gap ! as !! ¼ "=!!1. Here a near-visible
femtosecond optical pulse is not applicable, because the
huge excess energies of photoexcited hot electrons in the
order of electronvolts are transferred to the generation
of large amounts of high-frequency phonons (@!> 2!),
which in turn induce the Cooper pair breaking. This pro-
cess destroys the nonadiabatic excitation condition even
if one uses the laser pulse much shorter than !! [25,26].
Therefore, to ensure the nonadiabatic excitation, it is nec-
essary to use a short pump pulse with its photon energy
resonant to the BCS gap which is typically located in
terahertz (THz) frequency range [19]. With the recent
development of THz technology, such an intense and
monocyclelike THz pulse has become available [27], mak-
ing it possible to investigate the THz nonlinear response
in a variety of materials [28–32]. In an s-wave SC of NbN
film, the ultrafast pair breaking and the following QP
dynamics have been investigated by the intense THz
pump-THz probe (TPTP) spectroscopy [26]. Nonlinear
THz transmission experiments in NbN have also been
reported recently [33,34].
In this Letter, we investigated the coherent transient

dynamics of superconducting Nb1-xTixN films after the
THz pulse excitation in the nonadiabatic excitation regime.
The time-domain oscillation of the order parameter was
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observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in
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“…oscillation	frequency	is	in	excellent	accordance	with	the	value	
of	the	asymptotic	gap	energy… The	results	are	well	accounted	for	
by	the	theoretically	anticipated	BCS	order	parameter	oscillation”
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Exact	quench	phase	diagram:	2-channel	model	in	2d

Phases	II	and	II’:
Order	parameter	amplitude	goes	
to	a	constant

Phase	I:																																																																																																												
Order	parameter	vanishes,																					
but	nonzero	superfluid	stiffness							
(gapless	superconductivity)

Phase	III:					
Order	parameter	amplitude																				
oscillates	periodically
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Quantum	quench:	sudden	change	of	interaction	strength:

2D	weak-pairing	BCS	p+ip superconductor:	Fully-gapped,	“strong”	topological	state	(class	D)
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that Region III is topologically non-trivial, and the os-
cillating order parameter induces Majorana edge modes.
Region III therefore realizes a Floquet topological super-
fluid, yet this differs from a conventional Floquet system
[25–28] as it is not driven externally. Instead, the peri-
odic modulation is self-generated by the dynamics. This
is the main result of this Letter.

Let us now describe how this result is obtained. We
briefly recount the setup of the problem from Ref. [15].
Neglecting the terms responsible for the losses, the gas
can be described by the Hamiltonian [1]

Ĥ =
∑

p

p2

2m
â†
pâp −

λ

V

∑

p,q,k

q · k â†
p

2
+q

â†
p

2
−q

âp

2
−kâp

2
+k.

(1)
Here â†

p and âp create and annihilate fermions of mass
m with momentum p, λ > 0 denotes their interaction
strength, and V is the volume of the system. In the fol-
lowing, we imagine fixing the coupling strength to some
initial value λ = λi, and preparing the system of atoms
in the corresponding ground state. Then we suddenly
change (quench) the coupling to a different value λf . We
then evaluate how the state of the fermions evolves in
time after this quench.

What makes such a calculation possible is the exact
integrability of a simplified version of the Hamiltonian
governing the interacting fermions [29], given by

Ĥ =
∑

p

p2

2m
â†
pâp −

2λ

V

∑

q,k

′
qk â†

qâ†
−qâ−kâk. (2)

Here the symbol
∑′ signifies that the summation is over

only those p and q that satisfy px > 0 and qx > 0, a
convenient restriction one can make already in Eq. (1)
because the terms summed over p, q and k in that equa-
tion are invariant under q → −q and k → −k.

The Hamiltonian in Eq. (2) differs from the realistic
one given by Eq. (1) in two ways. First, the interaction
terms in Eq. (1) with p ̸= 0 have been removed. This is a
standard approximation in the theory of superconductiv-
ity: the only terms retained in the interaction are those
responsible for the pairing of the fermions into Cooper
pairs or strongly-bound molecules which then Bose con-
dense. Since our goal is to predict dynamics from a given
initial state, our results will hold over a time interval in
which the effects of terms neglected in Eq. (2) remain
small. This is the minimum of t3 and tpb, where tpb is the
pair-breaking lifetime induced by p ̸= 0 terms [16, 30].
Time scales are discussed at the end of this article.

The second difference between Eqs. (1) and (2)
amounts to choosing for the initial state one with px+ipy

symmetry. Under this condition, one can show [15] that
the Hamiltonian indeed reduces to (2).

We can now bring the formidable machinery developed
using the integrability of the equations of motion [19–22]
following from Eq. (2) to bear on our problem. More

precisely, we first replace the problem as governed by the
Hamiltonian

Ĥeff =
∑

p

p2

2m
â†
pâp +

[

∆(t)
∑′

p
p â†

pâ†
−p + h.c.

]

, (3)

where ∆(t) is the amplitude of the gap function, defined
as

∆(t) = −
2λ

V

∑′

p
p ⟨ â−pâp ⟩ . (4)

This amounts to neglecting the quantum fluctuations in
∆(t). It is well known [32, 33] that fluctuations induce
only finite-size corrections for reduced BCS-type Hamil-
tonians as in Eq. (2). The reason is that ∆(t) is a global,
not merely a local mean field. It becomes macroscopic
and classical if the number of fermions is sufficiently large

A

FIG. 1: Phase diagram showing the three regimes (I–III) of
non-equilibrium superfluidity reached after a quantum quench
in a p-wave gas [15]. Each point in this phase diagram repre-
sents a particular quench, wherein one takes an initial state
with order parameter amplitude ∆i, and subsequently ramps
the strength of attractive atom-atom interactions to weaker or
stronger pairing. The initial state is specified via the vertical
axis. The horizontal axis measures ∆f , which is the ampli-
tude one would find in the ground state of the post-quench
Hamiltonian. The diagonal line ∆i = ∆f is the case of no
quench; ∆QCP locates the BCS-BEC ground state transition
[31]. Each off-diagonal point to the left (right) of this line de-
notes a particular quench from stronger-to-weaker (weaker-to-
stronger) pairing. The Regions labeled I, II, III denote three
different regimes of non-equilibrium superfluid dynamics. For
a strong-to-weak quench in I, the order parameter ∆(t) de-
cays to zero. A quench in II leads to a non-zero steady-state
order parameter amplitude. A weak-to-strong quench in III

induces persistent oscillations in |∆(t)|. W denotes the wind-
ing number described in the text. Quenches in II with W = 1
and in III produce topological states. Point “A” specifies a
quench from very weak initial pairing that produces a Floquet
topological state, which could be accessible experimentally.
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FIG. 2: Majorana edge modes for a quench-induced time-
dependent state of p-wave superfluidity. The Floquet spec-
trum (top) of ln U(T ) for a system on a finite cylinder is
plotted in the large time asymptotic regime for a quench in
Region III, point “A” in Fig. 1. The horizontal axis rep-
resents the momentum along the boundary, the vertical axis
the quasienergies multiplied by the period of oscillations, both
ranging from −π to π. The edge states can be clearly seen
crossing in the center of the figure. The bottom left shows
the orbit swept by ∆∞(t) in the complex ∆ plane at this
point in Region III. The bottom right plots the maximum
∆max ≡ max |∆(t)| as a function of ∆f for quenches from
very weak initial pairing (∆i → 0) in III.

trum for U(T ) at a point deep within Region III, indi-
cated in Fig. 1 as point A. This quench is located at
∆i/∆QCP = 0.0065, ∆f/∆QCP = 0.83. To generate the
plot shown in Fig 2, we placed the superfluid on the lat-
tice, with 50 lattice constants within the width of the
cylinder [31]. The hopping amplitude on this lattice was
chosen to be J = 1/2, so that the system would be below
half filling, yet the total bandwidth was as small as possi-
ble to prevent the spectrum from folding too many times
onto itself and obscuring the graph. Crossing edge states
in the center of the figure prove that the time-dependent
superfluid for this particular quench is topological in the
Floquet sense. We conjecture that the entire Region III

is topological, but proving this requires further work.

A natural quench from the point of view of experiment
would start from the non-interacting Fermi gas at ∆i = 0.
Such a quench is much harder to describe than those
studied here so far. Technically, the zero-temperature
Fermi-Dirac distribution is a point of unstable equilib-
rium for the classical equations of motion studied above,

so naively it does not evolve in time. In reality, quantum
or thermal fluctuations will generate an initial condition
with nonzero px + ipy and px − ipy order parameter am-
plitudes, and these will compete in the subsequent dy-
namics. The precise outcome of this evolution is difficult
to predict. Instead, we assume that it is possible to first
switch on very weak attraction which results in some ini-
tial very small yet nonzero ∆i of pure px + ipy type.
Then we quench this state into a far stronger interacting
regime; as long as the quench resides within Region III

we expect the resulting state to be in the topological Flo-
quet phase. (Point A where ∆i ≪ ∆f is a good example
of such a quench.) At the same time, if the interactions
after the quench are stronger than the threshold depicted
Fig. 1, we will end up in the non-topological (W = 0) do-
main of Region II.

We conclude with a discussion of relevant time scales.
The main effect of the p ̸= 0 terms in Eq. (1) is to
mediate pair-breaking collisions [16, 30], associated to
a pair-breaking rate 1/tpb that can be calculated within
the quantum Boltzmann equation. For quenches confined
to the BCS regime, the lifetime can be estimated using
Fermi liquid theory [22, 30, 35], leading to

tpb/tF ∼ (εF /Emin)
2 , (8)

where tF = 1/εF is the inverse Fermi energy and Emin =

∆f

√

2µf − ∆2
f is the ground state quasiparticle energy

gap. Quenches in Region III that produce topological
Floquet states reside entirely within the BCS regime; for
these, the ratio tpb/tF can easily be an order of magni-
tude, and grows rapidly larger as ∆f is reduced. The
inverse three-body loss rate can be estimated to be

t3/tF ∼ (ℓ/b)α, (9)

where ℓ ∼ 1000 nm (b ∼ 5 nm) is the interparticle sepa-
ration (Van der Waals length) [10, 11]. Near resonance,
the exponent α = 1, with t3 ∼ 20 ms in experiments
[13, 14]. However, towards the weak BCS regime t3 be-
comes orders of magnitude larger with α = 4 [10], making
three-body losses essentially irrelevant for the creation of
a weakly paired initial state.

In numerical simulations of our model [15], we find
that the asymptotic behavior is reached very quickly in
Region III over a time t <

∼ tF . For quenches from weak
initial pairing, the period T of oscillations in the order
parameter magnitude can be estimated as [15, 31]

T ∼ (εF /Emin) tF ∼
√

tF tpb.

In the BCS regime we always have εF > 2Emin, so that

tF < T < min(tpb, t3), (10)

where t3 is associated to the (larger) post-quench cou-
pling strength. Eq. (10) implies that there is a window in

Floquet spectrum	for	a	quench	in	Region	III,	point	“A”.	
Majorana edge-modes	for	a	time-dependent	state	of	
p-wave	superfluidity are	xing in	the	center.

No external drive – quench-induced!

gi ! gf at t = 0

�0i

�0f

Foster, Gurarie, Dzero, E.Y., PRL (2014) 



All this happens in time. What about space? 

|�(0)� = |gr. state for gi�

�(t)

– homogeneous	in	space

– spatially	uniform	quench

– homogeneous	in	space

Can spatial inhomogeneities be induced by a 
uniform quench?

gi ! gf at t = 0



magnetic	domain	formation	in	ferromagnetic	BEC	following	a	sudden	
quench	of	the	applied	magnetic	field,	Sadler	et	al.,	Nature	(London),	2006

Pattern formation: cosmology in a lab
Parameter (coupling) quench – “Big Bang”



Quench-induced	parametric	resonance??

Parametric resonance in 
continuous media?

Phase III:     
Order parameter oscillates periodically

d⇥sk
dt

= (�2⇥�+ 2�kẑ)⇥ ⇥sk

|⇥bk| =
q

�2k + |⇥�|2

23

2. Pairing energy dynamics

We first consider a quench confined to the weak-pairing
BCS region with {∆(i)

0 ,∆(f)
0 } ≪ ∆QCP. In phase III,

the corresponding roots take the form u{1,2},± ≃ 2µ(i)
0 ±

2iδ1,2, where δ1,2 is of order
√
µ(i)

0 ∆(i)
0 ≪ µ(i)

0 . Here µ(i)
0 ≃

2πn denotes the chemical potential in the initial state;
see Sec. III E 1 for details. To leading order, Eqs. (4.26)–
(4.28) simplify as follows:

m ≃ µ(i)
0 , ρ ≃ −1

4
(u2

1,i + u2
2,i), σ ≃

(u2
1,i − u2

2,i)
2

32µ(i)
0

,

Ur ∼ O
(
∆(i)

0

)2
, ψ+ ∼ O

(
∆(i)

0

)4
. (4.29)

Given that R ∼ O
(
∆(i)

0

)2
and retaining only the leading

terms, Eq. (4.22) reduces to

Ṙ2 ≃ 8µ(i)
0 R (R+ − R) (R− R−) ,

R± =
1

8µ(i)
0

(u1,i ± u2,i)
2 .

(4.30)

This has the same structure as the previously-studied
s-wave case.6,10,12,13 The turning points of the modulus
|∆±| ≡

√
R± are proportional to the sum and differ-

ence of the isolated root pairs’ imaginary parts. At the
boundary of phase III marked β(−)

c in Fig. 15, the imag-
inary part of pair one vanishes |u1,i| → 0, leading to the
collapse of the oscillatory amplitude.
Eq. (4.30) has the solution

|∆|(t) = ui√
2µ(i)

0

dn

(
uit

∣∣∣∣
u1,iu2,i

u2
i

)
,

ui ≡ 1
2 (u1,i + u2,i) ,

(4.31)

where |∆| =
√
R and dn (z|M) denotes the Jacobi elliptic

function (M = k2 is the modulo parameter). Just inside
of phase III near the boundary with II, the period of

|∆|(t) is T ≃ 2π/u2,i ∼ O(
√
µ(i)

0 ∆(i)
0 )−1, valid in the

weak pairing limit {∆(i)
0 ,∆(f)

0 } ≪ ∆QCP.
Next we consider general phase III quenches. Using

Eqs. (4.26)–(4.28) and taking ψ = ψ+, the fourth-order
polynomial in Eq. (4.22) can be factored. The result is

Ṙ2 = (R+ − R)(R − R−)(R + R̃+)(R+ R̃−), (4.32a)

where

R± ≡ 1

2

[√
(|u1|− u1,r) ±

√
(|u2|− u2,r)

]2
,

R̃± ≡ 1

2

[√
(|u1|+ u1,r) ±

√
(|u2|+ u2,r)

]2
.

(4.32b)

The above is an elliptic EOM for the pairing energy R,
which executes undamped periodic motion between the
turning points R− ≤ R ≤ R+.

FIG. 16: Persistent order parameter oscillations following
a quench. The same as Fig. 7, but for quench coordinates
{∆(i)

0 ,∆(f)
0 } = {0.00503, 0.961}.

In Figs. 7 and 16, representative order parameter os-
cillations for phase III quenches are shown. The blue
solid curves are the results of numerical simulations of the
BCS Hamiltonian in Eq. (2.3) for 5024 classical Anderson
pseudospins. The red dashed curves in these figures are
solutions to Eq. (4.32a), with parameters in Eq. (4.32b)
extracted from the roots.
We define

R0 ≡ R+ + R−

2
, Rd ≡ R+ − R−

2
, (4.33)

and introduce dimensionless amplitude y via

R(t) ≡ R0 + Rd y(t),

y1 ≡ R0 + R̃−

Rd
, y2 ≡ R0 + R̃+

Rd
.

(4.34)

The relative amplitude y is constrained to −1 ≤ y ≤ 1,
while 1 ≤ y1 ≤ y2. Eq. (4.32a) becomes

ẏ2 =R2
d(1− y2)(y + y1)(y + y2). (4.35)

The solution may be written as

y(t) =
2y2 cn2 (αt|M)− (y2 + 1)

(y2 + 1)− 2 cn2 (αt|M)
, (4.36)

where cn (z|M) denotes the Jacobi elliptic function (M =
k2 is the modulo parameter). In terms of the roots,

R0 =
1

2
(|u1|+ |u2|− u1,r − u2,r) ,

Rd =
√
|u1|− u1,r

√
|u2|− u2,r,

y2 =
|u1|+ |u2|+

√
|u1|+ u1,r

√
|u2|+ u2,r

Rd
,

M =
u1,iu2,i

α2
,

α =
1

2

√
(u1,r − u2,r)2 + (u1,i + u2,i)2.

(4.37)



dielectric	ferromagnet	in	a	uniaxial	field	(YIG)

Spin	wave	turbulence

microscopic	theory	of		spin	wave	turbulence
Zakharov, L’vov & Starobinets, 1974

(0, 2�)

�̇sp = �b(t)⇥ �sp(~p,⌦)

(�~p,⌦)



Cooper	pair	turbulence

“bubble” of a superfluid

Typical	situation	– random	superposition	of	bubbles

Flow	of	energy	to	progressively	smaller	length	scales

�r0 – position

A(t) – periodic with

random amplitude

r
t

L � �

Spontaneous	eruption	of	spatial	inhomogeneities	confirmed	recently	in	numerical	
simulations	of	2D	attractive	Hubbard	model,	Chern&	Barros,	arXiv:1803.04118v2;	
see	also	Dzero,	E.Y.,	Altshuler,	arXiv:1806.03474



Amplitude	dynamics	in	nonadiabatic	regime

Collision less relaxation of the energy gap in superconductors 
A. F. Volkov and Sh. M. Kogan 
Institute of Radio and Electronics. USSR Academy of Sciences 
(Submitted June IS, 1973) 
Zh. Eksp. Teor. Fiz. 65, 2038-2046 (November 1973) 

Equations are derived for equal-time Green's functions and describe the dynamics of superconductors 
during a time that is short in comparison with the electron energy relaxation times T ph and Tee' 

The time evolution of small initial perturbations of the order parameter 6. is investigated. It is 
established that following initial perturbations of a definite type the energy gap relaxes only as a 
result of inelastic collisions of the electrons during a time on the order of T ph , Tee. In the 
general case, the order parameter at t 0( T ph' T" oscillates with a frequency - 26. and with an 
amplitude that attenuates asymptotically with time in accord with a power law. 

1. INTRODUCTION 
Much progress has been made recently in the prob-

lem of the nonstationary phenomena in superconductors. 
Equations describing the kinetics of superconductors 
were obtained. These equations are of simplest form in 
the case of gapless superconducti vity(1-3]. In this case 
they are closed equations for the order parameter D. 
and generalize the Ginzburg- L'lndau equations. At the 
same time, there are many problems in which an im-
portant role is played precisely by the presence of the 
finite gap in the energy spectrum of the superconductor. 
One such problem arises in the problem of perturbation 
relaxation in superconductors. It is easy to verify that 
in gapless superconductors the perturbations of D. de-
crease exponentially to zero. What remains unclear is 
the character of the relaxation of D. in the absence of 
external field in superconductors with gaps. In particu-
lar, one can conceive of a situation in which the pertur-
bations of D. experience natural undamped oscillations [4] 

(within a time short in comparison with the inelastic-
relaxation times). The kinetics of superconductors with 
finite gaps is described by sufficiently complicated 
equations, obtained by Eliashberg[5] for equal-time 
Green's functions. 

In this paper examine, on the basis of equations 
derived from the Eliashberg equations, the behavior of 
a small initial perturbation of D. in the absence of 
fields, and in a time interval small in comparison with 
the electron energy-relaxation times. 

which reach 10-8 sec in order of magnitude. 

It will be shown below that for a definite type of per-
turbation, the characteristic time of variation of the 
initial perturbation is D. -t, which is small in comparison 
with Tph and Tee' Then the inelastic collisions of the 
electrons do not influence the evolution of the perturba-
tion during the course of times that are short in com-
parison with Tph and Tee, and the corresponding colli-
sion integrals can be neglected. This enables us to 
Simplify greatly the initial Eliashberg equations for the 
equal-time Green's functions and to change over to 
eq uations relative to Green's functions with coinciding 
times (accurate to The derived equations can be 
regarded as "collisionless" kinetic equations for the 
superconductor. 

In Sec. 2 we derive first the Eliashberg equations by 
a different method, which in essence is a generalization 
of the Keldysh technique[6] to the case of superconduc-
tors. This approach is Simplest and most lucid. 
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2. DERIVATION OF THE FUNDAMENTAL 
EQUATIONS 

Keldysh's method consists of ordering the second-
quantization operators in the Green's functions on a 
double time-dependent contour conSisting of two axes, 
one extending from - "" to +"", and the other from +"" 
to - 00. The time on the second axis is assumed to be 
longer (in the sense of ordering of the operators) than 
any time on the first axis, while the ordering of the 
operators on the second axis is in antichronological 
order, i.e., the operator with the' smallest time, closest 
to - 00, is located to the left. In accordance with the 
fact that the time of each of the two I/! operators in the 
Green's function can be either on the first or on the 
second axis of the contour, four functions making up the 
matrix are possible. In the case of generalization to 
include superconductors, it is necessary to introduce 
also the spin indices of the operators (the Gor'kov-
Nambu technique[7]): 

$,(1;)==$.(1;), $,+(1;)==$,(1;), 

where 1 is the aggregate of the spatial coordinates and 
time, and i is the index of the temporal axis. Thus, the 
Single-particle Green's function of the electrons 

(1 ) 

constitutes a matrix both in the spin indices (a, fl) and 
in the temporal indices (i, k), while the angle brackets 
denote averaging with the denSity matrix taken at the 
instant to at which the Heisenberg operators coincide 
with the Schrodinger operators. 

In addition to the functions (1), we define also the 
retarded and advanced functions, and also the function 
introduced by Ke ldysh [6] : 

Ga,n (11') =i-'8 (t.-t,') ({$a (1), $,+ (1') }+>, 
(11') =i8 (t,' -t.) ( {$a (1), $,+ (1') h>, 

G.,"(11') =Ga,"+Ga,"=i-'([ $a(1), $,+(1') 1->. 
(2 ) 

From the definitions (1) and (2) we get the following 
relations[6] (the spin indices have not been written out): 

G"+G"=G"+G2I , 

GA=G It _G21 =Gt2 _G'I.2, 

GR=G"-G"=G"-G". 
(3) 

If the system contains no fields acting directly on 
the electron spins, and if the spin-orbit interaction can 
be neglected, then 

(11'), (4) 

where the bar over the index denotes its replacement by 
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Collisionless	relaxation	of	the	energy	gap	in	superconductors

HBCS =
X

k

2�ks
z
k � g

X

k,p

s+k s
�
p

⇥̇sk = (�2⇥�+ 2�kẑ)⇥ ⇥sk + ⇥I
coll

(k)

�sk – classical spins (vectors), |�sk| = 1

⇤Icoll(k) ⇠ �⇤sk/⇥", ⇤̇sk ⇠ �⇤sk/⇥�

Nonadiabatic regime: tpert  �� ⌧ �"
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H2ch + non-condensed modes: pair-breaking	rates	in	the	long	time	
steady	state

vMolecular	production	rate
Ø Much	slower	for	quenches	to	the	far	BCS	side
Ø For	quenches	to	the	far	BEC	side	(in	the	steady	state)
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⇠ |µ1|, ⌧
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⌧ ⌧
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v Two-particle	collisions
Ø For	quenches	to	far	BCS

Ø For	quenches	to	far	BEC:	similar	result
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