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We study a quantum quench in a 1D system possessing Luttinger liquid (LL) and Mott insulating

ground states before and after the quench, respectively. We show that the quench induces power law

amplification in time of any particle density inhomogeneity in the initial LL ground state. The scaling

exponent is set by the fractionalization of the LL quasiparticle number relative to the insulator. As an

illustration, we consider the traveling density waves launched from an initial localized density bump.

While these waves exhibit a particular rigid shape, their amplitudes grow without bound.
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The shattering of cold glass in hot water is but one of
many spectacular effects that can be induced by a rapid
thermal quench in classical media. What happens when an
isolated quantum phase of matter is subject to a sudden,
violent deformation of its systemHamiltonian (a ‘‘quantum
quench’’)? This question is now under vigorous investi-
gation in cold atomic gases [1–4]. Long-time, out-of-
equilibrium physics already observed in gases confined to
one [2], two [3], and three [4] spatial dimensions includes
oscillatory collapse and revival phenomena [2,4] and topo-
logical defect formation [3,5].

In this Letter, we study interaction quenches in one-
dimensional (1D) quantum many body systems. Prior
theory assuming spatially uniform dynamics has consi-
dered the postquench distribution of quasiparticles [6],
correlation functions [7,8], thermalization [6,9], quantum
critical scaling [10], etc. On the other hand, the stability of
homogeneous solutions with respect to the spontaneous
eruption of spatial nonuniformity is by no means guaran-
teed, due to the coupling between modes with different
momenta and the extensive quantity of energy injected into
the system by the quench. Indeed, homogeneous external
perturbations are known to generate large spatial modula-
tions in a variety of physical contexts [5,11]. We show here
that quantum quenches can produce strongly inhomo-
geneous states via a mechanism that is ubiquitous in 1D.

We consider quenches across a quantum critical point,
with initial (pre-) and final (postquench) Hamiltonians
possessing Luttinger liquid (LL) and Mott insulator ground
states, respectively. Specifically, we quench into the insu-
lating phase of the quantum sine-Gordon model at the
‘‘Luther-Emery’’ (LE) point [8,10,12–14], where we are
able to determine the dynamics analytically. The pre-
quench ground state has an inhomogeneous density profile
!0ðxÞ, which acts as a ‘‘seed’’ generating fluctuations in the
space-time dynamics of local observables [15]. We find
that an arbitrarily small deviation of !0ðxÞ from a constant
is dynamically amplified by the time evolution, see,

e.g., Figs. 1 and 2. We argue that the mechanism respon-
sible for the amplification is quasiparticle fractionaliza-
tion, a generic attribute of gapless interacting particles in
1D [12,16]. We further illustrate the amplification effect
for a localized (Gaussian) initial density ‘‘bump.’’ This
bump gives rise to a pair of nondispersive, noninteracting
density waves that exhibit a rigid shape, with amplitudes
that grow in time as a power law. We have dubbed these
traveling density waves ‘‘supersolitons’’; an example is
depicted in Fig. 2.
Specifically, for the Fourier transform ~!ðt; kÞ of the

density operator expectation value !ðt; xÞ, we find the fol-
lowing exact asymptotic result, valid in the long time limit:

~!ðt; kÞ
~!0ðkÞ

¼ cosðkt0Þ !A"ðjkjt0Þ"=2 cos
!
jkjt0 þ #"

4

"
: (1)

Here A" is a nonuniversal, k-independent constant and
t0 & t= !K, where !K ¼ 1=4 locates the LE point (see below);

(x−t')

 x−t' 

ρR

FIG. 1 (color online). Space-time evolution of the right-
moving number density !R after Luttinger liquid to Mott insu-
lator quench, demonstrating the instability of spatially uniform
dynamics; fainter (bolder) traces depict earlier (later) times. An
infinitesimally small initial density inhomogeneity grows with-
out bound. The figure is obtained from Eq. (1) with " ¼ 0:8,
A" ¼ 4:7, and an initial density profile !0ðxÞ given by a sum of
150 cosines with random amplitudes, phases, and wave numbers.
Amplification occurs for any nonzero ", corresponding to a
nonzero fractionalization of the initial LL quasiparticles with
respect to the insulator.
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the quench is performed at t0 ¼ 0. The exponent" in Eq. (1)
is determined by the relative fractionalization of the LL
quasiparticle number with respect to the Mott insulator,

" & ð !K=2K þ K=2 !KÞ ! 1; (2)

whereK is the Luttinger parameter characterizing the initial
Hamiltonian. Equation (1) implies that the density splits
into nondispersing left- and right-moving components,
!ðt; xÞ ¼ !Rðx! t0Þ þ !Lðxþ t0Þ. Interestingly, the long
time response is linear in ~!0 and enhanced at shorter wave-
lengths due to the fractional derivative (jkj"=2) factor. For
"> 0, the fluctuations of !R;L are continuously amplified
by the quench, as demonstrated in Fig. 1.

In the rest of this Letter, we explain the setup and
calculations leading to Eq. (1). Before the quench, our
cold atom system is assumed to reside in the ground state
j0i!0

of the LL Hamiltonian

Hi ¼
Z

dx
#
vK

2

!
d$̂

dx

"
2
þ v

2K

!
d%̂

dx

"
2
! !0ðxÞ

q
ffiffiffiffi
#

p d%̂

dx

%
; (3)

where v is the sound velocity,K is the Luttinger parameter,
and !0ðxÞ=q is an external chemical potential, with q &
K=v#. The Hamiltonian in Eq. (3) governs the low-energy,
long-wavelength physics of many gapless 1D cold atomic
and condensed matter quantum systems [12,17]; in this
Letter, we have in mind a 1D optical lattice gas of spin-
polarized, neutral Fermi atoms, but other interpretations
are possible. The short-ranged interatomic interactions
determine v and K; repulsive (attractive) interactions cor-
respond to K < 1 (K > 1), while the free Fermi gas has
K ¼ 1 and v equal to the bare Fermi velocity. The boson
fields $̂ and %̂ encode fluctuations of the long-wavelength
fermion number density :!̂: and current :Ĵ: on top of the
filled Fermi sea via

ffiffiffiffi
#

p
:!̂: ¼ d%̂=dx and

ffiffiffiffi
#

p
:Ĵ: ¼ d$̂=dx,

where : ' ' ' : denotes normal ordering with respect to the
homogeneous ground state j0i!0¼0. These satisfy the

commutation relations ½:!̂ðxÞ:; :Ĵðx0Þ:) ¼ !ði=#Þðd=dxÞ*
&ðx! x0Þ. Via the axial anomaly, the static chemical
potential in Eq. (3) writes an arbitrary density profile
into j0i!0

,

!0
h0j:!̂ðxÞ:j0i!0

¼ !0ðxÞ; !0
h0j:ĴðxÞ:j0i!0

¼ 0: (4)

We perform the quench at time t ¼ 0. The dynamics for
t > 0 are generated by the translationally invariant, ‘‘final
state’’ Hamiltonian Hf, which favors a gapped, Mott in-
sulating ground state. Specifically, Hf is the Hamiltonian
of the quantum sine-Gordon model,

Hf ¼ 1

Kf

Z
dx

#
1

2

!
d"̂

dx

"
2
þ 1

2

!
d#̂

dx

"
2

þ M

#'
cosð2

ffiffiffiffiffiffiffiffiffiffiffiffi
4#Kf

q
#̂Þ

%
: (5)

In Eq. (5) we have expressedHf in terms of the canonically

rescaled boson variables "̂ & ffiffiffiffiffiffi
Kf

p
$̂ and #̂ & %̂=

ffiffiffiffiffiffi
Kf

p
.

The Mott gap-inducing interparticle interactions set the
parameters M and Kf. In the context of a Fermi lattice
gas at commensurate filling, the ‘‘Luttinger parameter’’ Kf

characterizes pure forward scattering, while M gives the
strength of backward scattering umklapp interactions; ' is
a cutoff-dependent length scale. The ground state of Hf is
gapped for arbitrarily small M over the regime 0<Kf <
1=2, in which the quantum sine-Gordon model is inte-
grable [12]. The solitons and antisolitons of the classical
sine-Gordon equation appear as massive Dirac fermions in
the quantum version [18]. Solitons repel antisolitons for
1=4<Kf < 1=2 and attract them for 0<Kf < 1=4; in the
latter case, additional bosonic bound states (breathers)
appear in the spectrum. We choose to quench to the bound-
ary between these two regimes, where Kf ¼ !K & 1=4. At
this special ‘‘Luther-Emery’’ point, the interactions be-
tween the quantum solitons switch off, and Hf can be
refermionized [12] in terms of a massive noninteracting
soliton field $,

Hf ¼
1
!K

Z
dx$y

!
!i"̂3 d

dx
þ !M"̂2

"
$: (6)

In this equation, $ is a two-component Dirac fermion that
is related to the boson fields in Eq. (5) via the bosonization

identity, $ð1;2Þ / exp½i ffiffiffiffi
#

p ð"̂+ #̂Þ); "̂2;3 are Pauli matri-
ces in the standard basis. The mass gap !M in Eq. (6) is a
nonuniversal, cutoff-dependent quantity.
It is instructive to rewrite Hi [Eq. (3)] in terms of $,

Hi ¼
Z

dx
&
~v$y

!
!i"̂3 d

dx

"
$! !0ðxÞ

2q
$y$

þ #~v

2K2 ½ !K2 ! K2):$y$::$y$:

'
; (7)

where ~v & Kv= !K. Comparing Eqs. (6) and (7), we see that
the quench with K ¼ !K is special. For this case only
(‘‘noninteracting’’ quench), the quasiparticles of the initial

(t,x)

Q = 0.01
Q = 10

ρ1
Q

x

FIG. 2 (color online). The right-moving ‘‘supersoliton’’. The
number density evolution after Luttinger liquid to Mott insulator
quench is depicted as in Fig. 1, but here for a Gaussian initial
profile

ffiffiffiffi
#

p
%!0ðxÞ ¼ Q expð!x2=%2Þ (heavy black line), with

" ¼ 0:7 and % ¼ 3, now obtained via numerical integration of
the exact bosonization result [19]. Time series for two different
Q are plotted; the densities are normalized relative to these. The
evolution is reflection symmetric about x ¼ 0.
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and final Hamiltonians are in one-to-one correspondence.
At any other value of K ! !K (‘‘interacting quench’’), an
elementary excitation of the initial state carries a fraction
of the final state quasiparticle number; that is, the ‘‘quasi-
particle’’ excitations of the initial LL phase carry K= !K ¼
4K of the global Uð1Þ $ fermion number charge [16].
When viewed in terms of $, the transition between Hi

and Hf permits a dual interpretation as a LL to band
insulator quench. Correlation functions in the homogene-
ous quench [!0ðxÞ ¼ 0] have been previously studied in
Refs. [8,13,14].

To characterize the postquench dynamics, we consider
the expectation values of the particle number (!), kinetic
(K) and potential (U) energy densities (the latter two
observables are defined with respect to Hf):

!ðt; xÞ ¼ ð1=2Þ!0
h0j:$yðt; xÞ$ðt; xÞ:j0i!0

; (8a)

Kðt; xÞ & !ði=2Þ!0
h0j$yðt; xÞ"̂3@

$
x$ðt; xÞj0i!0

; (8b)

Uðt; xÞ & !0
h0j$yðt; xÞ"̂2$ðt; xÞj0i!0

; (8c)

where f@
$
g & f@g! ð@fÞg. In these equations, $ðt; xÞ

denotes the Heisenberg picture fermion operator whose
dynamics are generated by Hf in Eq. (6). U gives the
expectation of the cosine operator in the sine-Gordon
model [Eq. (5)], and can be interpreted as a (squared) order
parameter for the Mott phase. We compute !, K, and U
by solving the Heisenberg equations of motion for $ðt; xÞ
in terms of the Schrödinger picture components
$ð1;2Þð0; xÞ; the expectation values of products of the latter
in the initial state j0i!0

are obtained via the bosonization
mapping [12]. Exact results for !, K, and U at any time
t , 0 will appear elsewhere [19].

The postquench observables in Eq. (8) depend upon
!0ðxÞ, !M, and the exponent " defined via Eq. (2). The
noninteracting quench with K ¼ !K has " ¼ 0, while
the interacting quench (K ! !K) has "> 0. We confine
ourselves to the range 0 - "< 1, for which the
!0ðxÞ-dependent contributions to !, K, and U are given
by ultraviolet (UV) convergent integrals [19]. At " ¼ 1,
these acquire logarithmic UV divergences, suggesting the
onset of a sensitive dependence to lattice scale details.

We now describe our main results, which concern the
!0ðxÞ-dependent contributions to !,K, andU; the behav-
ior of K and U for the homogeneous quench !0 ¼
!ðt; xÞ ¼ 0 will be discussed elsewhere [19]. The exact
leading asymptotic expression for !ðt; xÞ in the limit
t ! 1 was already given by Eq. (1), above. Let us special-
ize this result to a localized initial density profile. The
interacting ("> 0) versus noninteracting (" ¼ 0)
quenches yield qualitatively different behaviors. For the
interacting quench, Eq. (1) implies that !ðt; xÞ develops a
nondispersive response to the initial condition for any
0<"< 1. For example, a Gaussian density bump,ffiffiffiffi
#

p
%!0ðxÞ ¼ Q expð!x2=%2Þ, induces the following

asymptotic space-time evolution for t . 1= !M:

!ðt; xÞ ¼ Q

2
ffiffiffiffi
#

p
%
e!½ðx!t0Þ2=%2)

! Q

2%

&ð1! "Þ
&ð1þ"2 Þ

#ðK !M'Þ2t0ffiffiffi
2

p
%

%
"=2

F"

!
x! t0

%

"

þ fx ! !xg; (9)

where F"ðzÞ & expð!z2=2ÞD"=2ð
ffiffiffi
2

p
zÞ, D(ðxÞ denotes the

parabolic cylinder function, t0 ¼ t= !K, and we have written
out the explicit form of the prefactor A", which is non-
universal for "> 0 and depends upon !M'. The naive
continuum calculation gives !M' ¼ 15=16. The divergence
of the prefactor at " ¼ 1 indicates the onset of sensitivity
to the UV sector of the theory.
Equation (9) implies that an antecedent Gaussian density

bump splits into right- and left-moving nondispersive
waves, for generic Q, %, and K ! !K ("> 0). In the long
time limit, the leading response is strictly linear in Q, with
an amplitude that grows as t0"=2. Two Gaussian bumps
initially separated by a distance d . % can be used to
create left- and right-moving waves which pass through
each other without changing their form [19]. We dub these
rigid, noninteracting density waves ‘‘supersolitons’’ to dis-
tinguish them from the elementary quantum solitons anni-
hilated by the fermion field $. We have confirmed the
asymptotic result in Eq. (9) by comparing to numerical
integration of the exact bosonization expression for !. The
supersoliton is exhibited in Fig. 2.
Although the precise shape of the supersoliton implied by

Eq. (9) deforms continuously with ", it exhibits the same
positive-negative ‘‘dipolar’’ peak profile for any 0<"< 1
(see Fig. 2). The negative density dip represents a local
evacuation of the filled Fermi sea, which is infinitely deep in
the Luttinger model [12]. For any "> 0, the integral of
the second term in Eq. (9) over real x vanishes, consis-
tent with particle number conservation. In the limit of the

(t,x)ρ (t,x)

x

x

ρ

FIG. 3 (color online). The number density evolution as in
Fig. 2, but for the noninteracting quench K ¼ !K (" ¼ 0). The
initial bump (heavy black line) has area Q ¼ 0:1 in the main
figure andQ ¼ 1 in the inset; in both cases% ¼ 3. The evolution
is reflection symmetric about x ¼ 0. Now there is no fraction-
alization of the initial LL quasiparticles with respect to the
insulator and, consequently, the dynamics are simply dispersive
with no supersolitons or inhomogeneity growth.
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noninteracting quench"! 0, the right-hand side of Eq. (9)
vanishes; in this case, the response obtains entirely from
subleading terms that do not grow with t (and conserve the
particle number), but which we have not written here. The
same is true in Eq. (1) because A" ! 1 when "! 0.

Figure 3 depicts the number density !ðt; xÞ for the case
" ¼ 0, obtained by numerical integration of the exact
result. The main message of this figure is that the non-
interacting postquench dynamics are ‘‘passive’’ and dis-
persive, depending sensitively upon the details of the initial
inhomogeneity and showing no amplification.

In the interacting quench, the supersoliton is also ob-
served in the relative kinetic energy density, defined as
&K½t; x;!0) & K½t; x;!0) !K½t; x; 0), shown in Fig. 4.
By contrast, we find that the potential energy density
Uðt; xÞ does not exhibit the supersoliton on top of the
homogeneous background it acquires after the quench.
The amplification in Eq. (1) does not therefore appear
related to a Kibble-Zurek process [5] in the order parameter.

We interpret the growth mechanism in Eqs. (1) and (9)
by analogy to the equilibrium tunneling density of states
(TDOS) (ð!Þ in a LL [16]. Upon tunneling into a one
channel quantum wire with Luttinger parameter K, the
conductance at a bias ! ¼ eV diminishes as (ð!Þ /
j!j", where " is defined as in Eq. (2), but with !K ¼ 1.
In the limit ! ! 0, (ð!Þ vanishes because the fractional-
ization of a ‘‘whole’’ electron into LL ‘‘quasiparticles’’
with charge Ke is prohibited by phase space restrictions
[16]. In the quench studied here, the evolution due to the
massive final state Hamiltonian Hf can be viewed as a
spectroscopy of the initial LL state; the analog of the
frequency ! in the TDOS is the evolution interval !M2t.
We might therefore anticipate !ðt; xÞ / t", with " defined
by Eq. (2). That the leading power is "=2 in Eqs. (1) and
(9) results from a cancelation of t" terms.

In a lattice model realization of the quench (see Ref. [19]
for an example), the supersoliton growth is cut off at a time
scale of order tc / 1= !M2a, where a denotes the lattice
spacing. The dynamics become sensitive to model details

(i.e., irrelevant operators) for t * tc. Any real system will
ultimately thermalize due to interactions with its environ-
ment and deviations from integrability.
In conclusion, we have shown that a quantum quench

can beget a strongly inhomogeneous state, due to the inter-
play between quasiparticle fractionalization and the pres-
ence of a mass scale in the final state Hamiltonian.
Fractionalization is a robust feature of 1D gapless phases,
so we expect the inhomogeneity proliferation to occur in
many 1D quantum quenches. It would be interesting to
consider quenches to final states away from the free fer-
mion LE point where (super?) soliton-soliton interactions
can play a role in the dynamics.
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