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Strong-coupling expansion for the pairing Hamiltonian for small superconducting metallic grains
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The paper is devoted to the study of the effects due to superconducting pairing in small metallic grains. We
explicitly determine the low-energy spectrum of the problem at strong superconducting coupling and in the
limit of large Thouless conductance. We start with the strong-coupling limit and develop a systematic expan-
sion in powers of the inverse coupling constant for the many-particle spectrum of the system. The strong-
coupling expansion is based on the formal exact solution of the Richardson model and converges for realistic
values of the coupling constant. We use this expansion to study the low-energy excitations of the system, in
particular energy and spin gaps in the many-body spectrum.
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I. INTRODUCTION

Since the mid-1990’s, when Ralph, Black, and Tinkha
succeeded in resolving the discrete excitation spectrum
nanoscale superconducting metallic grains,1 there has been
considerable effort to describe theoretically superconduc
correlations in such grains~see, e.g., Ref. 2 for a review!.
However, very few explicit analytical results relevant for t
low-energy physics of superconducting grains have been
tained, since, in contrast to bulk materials, the discretenes
single-electron levels plays an important role. In this pa
we address this problem in the regime of well-develop
superconducting correlations.

The electron-electron interactions in weakly disorde
grains with negligible spin-orbit interaction are described
a simple Hamiltonian,3

Huniv5HBCS2JS~S11!, ~1!

HBCS5(
i ,s

e icis
† cis2ld (

i , j 51

N

ci↓
† ci↑

† cj↑cj↓ , ~2!

where e i are single-electron energy levels,d is the mean
level spacing,cis

† and cis are creation and annihilation op
erators for an electron on leveli, andS and N are the total
spin and number of levels, respectively. There are only
sample-dependent coupling constants:l andJ, which corre-
spond to superconducting correlations and spin-exchang
teractions, respectively. Throughout the present paper, fo
sake of brevity, we consider only the less trivial case
ferromagnetic exchange,J.0.

Although Hamiltonian~1! is integrable4,5 and solvable by
Bethe’sAnsatz, the exact solution6 yields a complicated se
of coupled polynomial equations@see Eq.~3! below#. As a
consequence, very few explicit results have been derived
most studies resorted to numerics based on the exact
tion. The purpose of the present paper is to remedy this s
ation and to build a simple and intuitive picture of the low
energy physics of isolated grains in the superconduc
phase.

It is well known that physical observables of a superco
ductor are nonanalytic in the coupling constantl at l50.
On the other hand, the opposite limit of largel turns out to
0163-1829/2003/68~21!/214509~8!/$20.00 68 2145
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be regular and relatively simple. Here we use the exact
lution to obtain an explicit expansion in powers of 1/l for
the ground state and low-lying excitation energies.

We will distinguish between two types of excitation
ones that preserve the number of Cooper pairs~the number
of doubly occupied orbitals! and ones that do not. Only th
latter excitations are capable of carrying nonzero spin
turns out that forJ50 to the lowest order in 1/l both types
of excitations are gapped with the same gaplNd. We com-
pute explicitly the two gaps to the next nonzero order in 1l
and find the gap for pair-breaking excitations to be larg
The difference between the two gaps turns out to be of
order of d2/D, where d is the mean single-particle leve
spacing andD is the BCS energy gap, i.e., the differen
vanishes in the thermodynamical limit. We were not able
determine the convergence criteria for the strong-coup
expansion exactly; however, we present evidence that
expansion converges up to realistic values ofl between
lc1'1 andlc2'1/p.

The Hamiltonian~2! was studied extensively in 1960s i
the context of pair correlations in nuclear matter~see, e.g.,
Ref. 7!. A straightforward but important observation was th
singly occupied levels do not participate in pair scatterin8

Hence, the labels of these levels are good quantum num
and their contribution to the total energy is only through t
kinetic and the spin-exchange terms in Eq.~1!. Due to this
‘‘blocking effect’’ the problem of diagonalizing the ful
Hamiltonian~1! reduces to finding the spectrum of the BC
Hamiltonian~2! on the subspace of either empty or doub
occupied~‘‘unblocked’’! orbitals. The latter problem turn
out to be solvable6 by Bethe’sAnsatz. The spectrum is ob-
tained from the following set of algebraic equations for u
known parametersEi :

2
1

ld
1( 8

j 51

m 2

Ei2Ej

5 (
k51

n 1

Ei22ek

, i 51, . . . ,m ~3!

wherem is the number of pairs andn is the number of un-
blocked orbitalsek . Bethe’s Ansatzequations~3! for the
BCS Hamiltonian~2! are commonly referred to as Richard
son’s equations. The eigenvalues of the full Hamiltonian~1!
are known to be related to Richardson parameters,Ei , via
©2003 The American Physical Society09-1
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E5(
i 51

m

Ei1(
B

eB2JS~S11!, ~4!

where(BeB is a sum over singly occupied~‘‘blocked’’ ! or-
bitals andS is the total spin of blocked orbitals~i.e., the total
spin of the system!.

BCS results9 for the energy gap, condensation energy,
citation spectrum, etc., are recovered from the exact solu
~3! in the thermodynamical limit.10 The proper limit is ob-
tained by taking the number of levels,N, to infinity, so that
Nd→2D5const, m5n/25N/2, whereD is an ultraviolet
cutoff usually identified with Debye energy. In particular, f
equally spaced levelse i , the energy gapD and the ground
state energy in the thermodynamical limit are

D~l!5
D

sinh~1/l!
, Egr

BCS52Dm coth~1/l!. ~5!

Since the BCS Hamiltonian~2! contains only three energ
scales:D, D, andd, there are only two independent dime
sionless parameters:N and l. The perturbation theory in
small l breaks down in the superconducting state as is
ready suggested by BCS formulas~5!. Thus, it is natural to
consider the opposite limit of largel and treat the kinetic
term in Hamiltonian~1! as a perturbation.

The paper is organized as follows. In Sec. II we consi
the limit l→`, which is the zeroth order of our expansio
In this limit one can determine the spectrum straightf
wardly by representing the BCS Hamiltonian~2! in terms of
Anderson pseudospin operators.11 In particular, one finds tha
at J50 excitations with nonzero spin to the lowest order
1/l have the same gap~the spin gap! as spinless excitations
Next, we rederive the same results from Richardson’s eq
tions ~3! and also show that in the limitl→` the roots of
Richardson’s equations are zeros of Laguerre polynomia

In Sec. III Bethe’sAnsatzequations~3! are used to ex-
pand the ground state and low-lying excitation energies
series in 1/l. We write down several lowest orders explicit
and give recurrence relations that relate thekth-order term to
preceding terms. These relations can be used to readily
pand up to any reasonably high order in 1/l. Finally, we
compute the spin gap to the next nontrivial order in 1/l and
demonstrate that atJ50 the first excited state always hav
zero spin.

II. THE STRONG-COUPLING LIMIT

In this section we analyze the lowest order of the stro
coupling expansion. As the strength of the coupling cons
l increases, the spectrum of the BCS Hamiltonian~2! under-
goes dramatic changes as compared to the spectrum of
interacting HamiltonianHBCS(l50). First, there is a region
of small l where the superconducting coupling causes o
small perturbations in the electronic system. This reg
shrinks to zero in the thermodynamical limit and is rough
determined by the conditionD(l)<d,12 where D(l) is
given by Eq.~5!. For largerl the perturbation theory inl
breaks down13 and strong superconducting correlations d
velop in the system. A representative energy level diagram
21450
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shown in Fig. 1. In the crossover regime the spectrum d
plays numerous level crossings that reflect the breakdow
perturbation theory inl. The fact that the crossings occur fo
random single electron levelse i , i.e., in the absence of an
spatial symmetry, is a characteristic feature of quant
integrability.14

The lowest order of the strong-coupling expansion is o
tained by neglecting the kinetic energy term in the BC
Hamiltonian~2!. This limit can in principle be realized in a
grain of an ideal regular shape.15 In this case the single
electron levels are highly degenerate and if the energy
tance between degenerate many-body levels is much la
than ld, only the partially filled Fermi level is relevant
Then, the kinetic term in Eq.~2! is simply a constant propor
tional to the total number of particles and can be set to ze

An efficient way to obtain the spectrum of Hamiltonia
~1! in the strong-coupling limit is by representing the inte
action term in the BCS Hamiltonian in terms of Anders
pseudospin-1/2 operators:11

Ki
z5

ci↑
† ci↑1ci↓

† ci↓21

2
, Ki

15~Ki
1!†5ci↑

† ci↓ . ~6!

The pseudospin is defined only on unblocked levels, wher
has all properties of spin 1/2, i.e., proper commutation re
tions and definite values ofKW i

253/4.
The interaction term in the BCS Hamiltonian~2! takes a

simple form in terms ofKW i :

HBCS
` 52ldK1K252ld@K~K11!2~Kz!21Kz#, ~7!

whereKW 5( iKW i is the total pseudospin of the unblocked le
els. Thez projection of the total pseudospin according to E

FIG. 1. Results of exact numerical diagonalization. Energies
the BCS Hamiltonian~2! for m54 pairs andn58 unblocked
single-particle levelse i versus coupling constantl. All energies are
measured in units of the mean level spacingd. The single-particle
levelse i are computer-generated random numbers. As the stre
of the couplingl increases, the levels coalesce into narrow we
separated rays~bands!. The width of these bands vanishes in th
limit l→` @see Eq.~47! and the discussion around it#. Slopes of
the rays and the number of states in each ray are given by Eqs~7!,
~15!, and ~12!. The ground state is nondegenerate, while the fi
group of excited states containsn2157 states. Note also the leve
crossings forl;1 ~see the inset on the above graph!.
9-2
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STRONG COUPLING EXPANSION FOR THE PAIRING . . . PHYSICAL REVIEW B68, 214509 ~2003!
~6! is Kz5m2n/2, wherem and n are the total number o
pairs and unblocked~either doubly occupied or empty! lev-
els, respectively. It is simple to check that replacing a dou
occupied level with two singly occupied ones does not aff
the differencem2n/2. As a result,

Kz5m2
n

2
5M2

N

2
, ~8!

whereM is the maximum possible number of pairs andN is
the total number of levels, respectively. Hence, the last
terms in Eq.~7! yield a constant independent of the numb
of blocked levels. This constant can be set to zero by
overall shift of all energies. Therefore, the full Hamiltonia
~1! in the strong-coupling limit is

Huniv
` 52ldK~K11!2JS~S11!. ~9!

Since there aren pseudospin 1/2’s the total pseudospinK
takes values betweenuKzu andn/2,

n

2
>K>Um2

n

2U, ~10!

while the total spinS ranges from 0~1/2! to M2m(M2m
11/2) for even~odd! total number of electrons. For the sak
of brevity, let us from now on consider only the case of ev
total number of electrons. Then, the sum of the total spin
pseudospin is constrained by

K1S<
N

2
. ~11!

The degree of degeneracyD(K,S,n) of each level is16

D~K,S!5
n! ~2K11!

~n/21K11!! ~n/22K !!

3
~N2n!! ~2S11!

@~N2n!/21S11#! @~N2n!/22S#!
.

~12!

The ground state of Hamiltonian~9! has the maximum pos
sible pseudospin,K5N/2, and minimal possible spin,S
50, provided thatld.J ~recall that we consider only pos
tive values of the exchange couplingJ).

There are two ways to create an elementary excitat
First, one can decrease the total pseudospinK while keeping
the total number of pairsM unchanged. The second type
excitations corresponds to breaking pairs and blocking so
of the single-electron levels. These excitations can contrib
to the total spin of the grainS. They also affect the pseu
dospin since its maximal valueKmax5n/2 is determined by
the number of unblocked levels. The lowest-lying excitatio
correspond toK5N/221, which can be achieved both wit
and without breaking a single Cooper pair. Therefore,
find from Eq. ~9! that the pair-conserving excitations a
separated by a gapDpair5Nld while pair-breaking excita-
tions can lower their energy by having nonzero spinS. Since
the maximum value ofS for two unpaired electrons isS
51, we getDspin5Nld22J. In the opposite caseJ.ld,
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K50 and the total spin has the maximum possible valuS
5M in the ground state, i.e.,J5ld is the threshold of
Stoner instability in the strong-coupling limit.

The above results can be obtained directly from the ex
solution~3!. Moreover, individual parametersEi can also be
determined and, since eigenstates of the BCS Hamilton
~2! are given in terms ofEi ~see Ref. 6!, this can be used to
calculate various correlation functions in the strong-coupl
limit.

The value of the total pseudospinK turns out to be related
to the number,r, of those roots of equations~3! that diverge
in the limit l→` ~see below!. To the lowest order in 1/l we
can neglect single-electron levelse i in Eqs. ~3! for these
roots

2
1

ld
1( 8

j 51

r
2

Ei2Ej
5

n8

Ei
, i 51, . . . ,r , ~13!

where n85n12r 22m and the summation excludesj 5 i .
For the remainingm2r roots we have

(
k51

n
1

Ei22ek
50, i 5r 11, . . . ,m2r . ~14!

Multiplying each equation in~13! by Ei and adding all Eqs.
~13!, we obtain the eigenenergies of the BCS Hamilton
~2! for n unblocked levels andm pairs:

E52ldr~n22m1r 11!. ~15!

Comparing this to Eqs.~7! and ~8!, we find the relationship
betweenr andK:

r 5K1m2n/2. ~16!

Since the total pseudospin,K, is constrained by relation~10!,
the number,r, of diverging Richardson parameters,Ei , is
also constrained:

2m2n<r<m if n,2m

0<r<m if n>2m. ~17!

Below in this section we show that Eqs.~13! have a unique
solution. As a result, the degeneracy of energy levels~12! is
equal to the number of solutions of Eqs.~14! for the remain-
ing Ei . This number can be computed17,18 directly from Eq.
~14! and indeed coincides with Eq.~12!.

Finally, Eqs.~13! can be solved to determine paramete
Ei to the lowest order in 1/l ~see also Refs. 19 and 20!. To
this end it is convenient to introduce a polynomialf (x) of
order r with zeros atx5xi5Ei /(ld)

f ~x!5)
i 51

r

~x2xi !. ~18!

Using

lim
x→xi

f 9~x!

f 8~x!
5(

j Þ i

2

xi2xj
,

9-3
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YUZBASHYAN, BAYTIN, AND ALTSHULER PHYSICAL REVIEW B 68, 214509 ~2003!
one can rewrite Eqs.~13! as

F~xi !50 where F~x!5x f8~x!2x f9~x!1n8 f 8~x!.
~19!

SinceF(x) and f (x) are two polynomials of the same degr
r with the same rootsxi , they are proportional to each othe
The coefficient of proportionality is the ratio of coefficien
at xr and, according to Eq.~19!, is equal tor. Therefore,
F(x)5r f (x), or equivalently

x f92~x1n8! f 81r f 50. ~20!

The only polynomial solution to this equation is the Lague

polynomialLr
212n8 . Thus, to the orderl the nonvanishing

roots of Richardson’s equations~3! in the strong-coupling
limit are determined by

Lr
212n8S Ei

ldD50, n85n12r 22m, ~21!

wherer is the number of nonvanishing roots to the orderl.
This number and the total pseudospin are related by Eq.~16!.
The ground state hasr 5m, the first degenerate group o
excited states corresponds tor 5m21, etc. The constrain
r>2m2n in relation~17! follows from the requirement tha
the roots of Eq.~21! be nonvanishing.19 Moreover, it can be
shown19 using conditions~17! that all Richardson paramete
Ei are complex for even values ofr, while for oddr there is
a single real~negative! root. The fact that the roots of Eq
~13! are generally complex was also noted in Ref. 18 on
basis of the numerical solution of Richardson’s equations

III. THE STRONG-COUPLING EXPANSION

Now we turn to the expansion in powers of 1/l around
the strong-coupling limit. The evolution of energy leve
with l can be viewed as a motion of one-dimensional p
ticles whose positions are the energies of the BCS Ha
tonian ~2! ~see, e.g., Refs. 21 and 14!. Then, single-electron
levels e i determine the initial conditions atl50. As the
coupling l increases beyond the crossover between
weakly perturbed Fermi gas and the regime of strong su
conducting correlations, the particles gradually lose
memory of their initial positions and eventually the spectru
becomes independent ofe i . In this limit, the excited levels
coalesce into highly degenerate rays with a universal sl
@see Fig. 1 and Eq.~15!#. In the strong-coupling expansio
the system of one-dimensional particles evolves from lar
to smallerl. One expects this evolution to be nonsingu
until we come close to the level crossings~see the beginning
of the preceding section!, i.e. the crossover region, wher
both expansions inl and in 1/l break down.

A quantitative estimate of the convergence of the 1/l ex-
pansion can be obtained by considering various limit
cases. In the thermodynamical limit the ground-state ene
is given by BCS expression~5!. This limit is equivalent to
keeping only the terms of orderN in the 1/l expansion. We
observe from BCS expressions~5! that the expansion in 1/l
converges forl.1/p. In the opposite case of one pair an
two levels, 2M5N52, the ground-state energy can be co
21450
e

r-
il-

e
r-
e

e

r
r

g
y

-

puted exactly by, e.g., solving Eqs.~3! with the result

Egr
2 52d~l1A11l2!. ~22!

In this case the expansion of the ground-state energy~22! in
1/l converges forl.1. In general, we believe that strong
coupling expansion yields convergent rather than asympt
series with the radius of convergence betweenlc1'1 and
lc2'1/p.

Later in this section we develop an efficient algorithm f
calculating the low-energy spectrum to any order in 1/l.
While the pseudospin representation detailed in the prec
ing section provides a simple and intuitive description of t
strong-coupling limit, the usual perturbation theory becom
unmanageable beyond the first two orders in 1/l. An ap-
proach based on Bethe’sAnsatzequations, on the other hand
turns out to be well suited for the purposes of systema
expansion.

A. The ground state

Here we expand the ground-state energy in 1/l. Richard-
son’s equations~3! lead to recurrence relations for the coe
ficients of the expansion. From these relations the grou
state energy can be computed to any reasonably high ord
1/l, e.g., we write down the energy up to 1/l7. As men-
tioned above we take the number of electrons to be even
consider only the case whenld.J. As we have seen in the
preceding section, this inequality ensures that in the gro
state all levels are unblocked and all electrons are paired,
Richardson’s equations~3! should be solved at

m5M , n5N.

We begin by introducing a convenient set of variables

sp[(
k51

N

~2ek!
p, sp[(

i 51

M
1

Ei
p

. ~23!

Variablessp can be expanded into series in the inverse c
pling constantl:

sp5 (
k50

`

ap
kl2k2p. ~24!

Next, we rewrite Richardson’s equations~3! in a form more
suitable for our purpose. We divide the equation forEi by Ei

p

with p>21 and add allM equations for eachp. Expanding
1/(122ek /Ei) in 2ek /Ei and using an identity

(
i . j

2

Ei2Ej
S 1

Ei
p

2
1

Ej
pD 5psp112 (

k51

p

sp2k11sk ,

we obtain
9-4
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Egr~M ,N,sp!5(
i 51

M

Ei52M ~N2M11!ld2 (
k51

`

sksk

52M ~N2M11!ld

2d(
j 50

` S (
k51

j 11

skak
j 2k11D l2 j ~25!

2
sp

ld
2 (

k51

p

sp2k11sk5~N2p!sp111(
j 51

`

sjs j 1p11 ,

p>0. ~26!

Now pluggingsp5(k50
` ap

kl2k2p into the last equation
and setting the coefficient atl2h2p21 to zero, we obtain

ap
h

d
1 (

k51

p

(
s50

h

ap2k11
h2s ak

s1 (
k51

h

skap1k11
h2k 52~N2p!ap11

h .

~27!

Note that froms05M it follows that a0
05M anda0

k50 for
k>1. The values ofa0

k serve as boundary conditions fo
recurrence relations~27!. Note also that according to Eq
~27! the coefficientsah

p do not depend onl as expected from
their definition ~24!. Coefficientsap

0 determinesp for the
ground state to the lowest nonvanishing order in 1/l and
therefore can be expressed in terms of zeros of the Lagu
polynomial ~21! with r 5M . Using Eq.~21!, we obtain

ap
0dp5~21!p

dp

dxp
ln LM

212N~x!ux50.

According to Eq.~25! in order to determine the ground-sta
energy to order 1/l j one has to calculate the firstj 2p12
coefficientsap

k in the expansion ofsp . To do this, we first
computeap

0 for p< j 11, thenap
1 for p< j , then ap

2 for p
< j 21, etc. In other words, we start from thea1

0 element of
matrix ap

h and use recurrence relations~27! to move down
the first column of this matrix untilaj 11

0 , then to move down
the second column froma1

1 to aj
1 , etc.

While we were not able to expressap
k in terms ofp andk

explicitly, the above procedure allows for an efficient calc
lation, e.g., usingMATHEMATICA , of the ground-state energ
to any given order. For example, the ground-state energ
order 1/l2 is

Egr~M ,N,sp!52M ~N2M11!ld1
s1M

N

2S s22
s1

2

N D M ~N2M !

N2~N21!ld

2S s22
s1

2

N D s1

M ~N2M !~N22M !

N4~N21!~ld!2
21450
rre

-

to

1S s32
s1s2

N D M ~N2M !~N22M !

N3~N21!~N22!~ld!2
.

~28!

From Eq.~28! one can make several observations.
~1! For N5M the first two terms give the exact energ

This is seen by noting thatN5M means that all levels are
doubly occupied, i.e., there is only one state. Averag
Hamiltonian~1! over this state gives the exact energy of t
system, which turns out to be equal to the first two terms
Eq. ~28!. Therefore, the remaining terms in the 1/l series for
the ground-state energy are proportional toN2M .

~2! WhenN52M , all terms with even nonzero powers o
1/l vanish. This can be demonstrated, e.g., by writing
kinetic term in the BCS Hamiltonian~2! in terms of pseu-
dospin operators~6!

H~l50!5(
i 51

N

2e iKi
z1

s1

2
[H01

s1

2
~29!

and noting thatN52M correspond to the zeroz projection
of the total pseudospin. In this case, by Wigner-Ecka
theorem,22 Ki

z has nonzero matrix elements only for trans
tions K→K61, while matrix elements for transitionsK
→K are equal to zero. The terms with even nonzero pow
of 1/l vanish because they contain at least one matrix
ment of H0 from Eq. ~29! between states with the sameK.
These terms are therefore proportional toN22M . Even
terms also vanish whene i ’s are distributed symmetrically
with respect to zero. Hence, they reflect an asymmetry in
distribution ofe i . For example, the ground-state energy f
N52M and equidistant single-electron levels distribut
symmetrically between6D56(m21/2)d is

E0
2m52DmFl

2m12

2m21
1

2m11

3~2m21!l
2

16m2122m17

180~2m21!2l3

1
128m31380m21344m193

7560~2m21!3l5
1O~1/l7!G . ~30!

One can check that in the limitm→` this expression repro
duces the BCS result~5! for the ground-state energy up t
terms of order 1/l7, while for m51 we recover Eq.~22!.
Note also that the casep5N in Eq. ~27! does not seem to be
problematic as atp5N the factors of 1/(N2p) in Eqs.~28!
and ~30! are always compensated by a factor of (N2p) in
the numerator of the corresponding term.

~3! Richardson’s equations~3! remain invariant if single-
electron levelsek are shifted byd and parametersEi are
shifted by 2d. The total energyE5( i 51

M Ei then shifts by
2Md. Note that this shift is entirely contained in the seco
term of expansion~28!. Thus, the remaining combinations o
sk at each power of 1/l are ‘‘shiftless.’’ For example,
9-5
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s22
s1

2

N
→s212ds11Nd22~s1

212Nds11N2d2!/N

5s22
s1

2

N
.

B. Excited states

Let us now expand energies of low-lying excitations
1/l. These expansions turn out to be analogous to that
the ground-state energy. We begin with the excitations
conserve the number of pairs and then turn to the sim
case of pair-breaking excitations.

It was demonstrated in Sec. II that forld.J lowest pair-
conserving excitations correspond to total pseudospinK
5N/221 and total spinS50, whereN is the total number
of single-particle levels. The number of such states accord
to degeneracy formula~12! is N21 and their energy is
2ldK(K11) according to Eq.~9!. We also know from Sec
II that for these states one of the parametersEi ~say EM)
remains finite asl→`, while all others diverge in this limit.

To distinguishEM from the rest of parametersEi , we
denote it byh. Richardson’s equations~3! read

2
1

ld
1 ( 8

j 51

M21
2

Ei2Ej
5 (

k51

N
1

Ei22ek
2

2

Ei2h
, i ,M

~31!

2
1

ld
2 (

j 51

M21
2

Ej2h
5 (

k51

N
1

h22ek
, i 5M . ~32!

Expanding the left-hand side~LHS! of Eqs. ~31! in 2ek /Ei
andh/Ei and performing the same manipulations that lead
Eqs.~25! and ~26! for the ground state, we obtain

(
i 51

M21

Ei52~M21!~N2M !ld2 (
k51

`

~sk22hk!sk ,

~33!

2
sp

ld
2 (

k51

p

sp2k11sk

5~N2p22!sp111(
j 51

`

~sj22h j !s j 1p11 , p>0

~34!

where nowsp5( i 51
M211/Ei

p . We see that replacements

M→M21, N→N22, sp→sp22hp ~35!

transform Eqs.~33! and ~34! into Eqs.~25! and ~26! for the
ground state. Thus, energies of the firstN21 excited states
are

Epair5 (
i 51

M21

Ei1EM5Egr~M21,N22,sp22hp!1h. ~36!

Let us also rewrite Eq.~32! for h as
21450
or
at
er

g

o

(
k51

N
1

h22ek
52

1

ld
22s122hs222h2s32•••. ~37!

One can see@by, e.g., sketching the LHS of Eq.~37!# that
this equation hasN21 roots with thekth root lying between
2ek and 2ek11. To the lowest order in 1/l this equation
reads

(
k51

N
1

h022ek
50. ~38!

Equations~34! and~37! are to be solved iteratively orde
by order in 1/l. The procedure is similar to that for th
ground state, e.g., recurrent relations analogous to Eq.~27!
can also be derived. The only difference is that the coe
cients at powers of 1/l now depend also onh0, which has to
be obtained from Eq.~38!. For example, the excitation ene
gies ~36! to the first two orders in 1/l are

Epair52~M21!~N2M !ld1
~s122h0!~M21!

N22
1h0 ,

~39!

Epair2Egr5Nld1h0~122 f !, ~40!

where

f 5~M21!/~N21!'M /N ~41!

is the filling ratio.
Energies of higher excitations can be computed in

same way by solving 2,3,4, . . . coupled equations of the
type ~38!. For instance, energies of the next group of exci
levels to the first two orders in 1/l are determined by solu
tions of the system

(
k51

n
1

h122ek
5

2

h12h2
, (

k51

n
1

h222ek
52

2

h12h2
.

Now let us consider pair-breaking excitations. Forld
.J low-energy excitations of this sort correspond to brea
ing a single pair of electrons thereby decreasing the num
of pairs by 1 and the number of unblocked levels by 2. L
the single-electron levels occupied by two unpaired electr
have energiesea andeb . Since the lowest energy is achieve
by having the unpaired electrons in a triplet state~recall that
J.0 corresponds to the ferromagnetic exchange!, the energy
of lowest pair-breaking excitations according to Eq.~4! is

Espin5ea1eb22J1Egr„N22,M21,sp2~2ea!p2~2eb!p
….

~42!

Note that, unlikeh in Eq. ~36!, single-electron energiesea
andeb do not depend onl. Therefore, to compute the energ
of pair-breaking excitations we need only recursion relatio
~27! for the ground state withN85N22, M 85M21, and
sp85sp2ea

p2eb
p . In particular, to the first two orders in 1/l

we get from Eq.~28!
9-6
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Espin52~M21!~N2M !g1
~s122ea22eb!~M21!

N22

1ea1eb22J,

Espin2Egr'Nld1~ea1eb!~122 f !22J. ~43!

It is instructive to compare the above results with the B
theory.9 For this purpose let us write the energies of t
pair-conserving excitations for largeM andN up to the order
1/l.

Epair2Egr'2Dl1hk~122 f !1hk
2f ~12 f !

Dl
, ~44!

whereD5Nd, f is the filling ratio ~41!, and hk is the kth
root of Eq. ~37!. In deriving the above equation from Eq
~40! and ~28! we shifted the single-electron levels so th
ē i5(( i 51

N e i)/N50. In BCS theory~i.e., in the limit N,M
→`) pair-conserving excitation energies are10

2A~ek2m!21D2, ~45!

wherem is the chemical potential andD is the gap. In the
strong-coupling regime bothm and D are of orderl. Ex-
panding the square root in expression~45! in small ek up to
ek

2 , we see that term~45! and relation~44! coincide to this
order if we identify

hk52ek D5DlA4 f ~12 f !, m5~2 f 21!Dl.

The first of these equations follows from Eq.~37! in the limit
of largeN, while the remaining two can be derived from th
BCS equation for the gap and chemical potential~see, e.g.,
Ref. 10!. Similarly one can check that pair-breaking excit
tions ~42! correspond to two Bogoliubov quasiparticles wi
total energy

A~ea2m!21D21A~eb2m!21D2. ~46!

Note that in the BCS limit the difference between pa
breaking and pair-conserving excitations disappears and
pression~45! simply corresponds to two quasiparticles in
singlet state, each having the energyA(ek2m)21D2.

We have seen in Sec. II~see also Fig. 1! that in the strong-
coupling limit many-particle energy levels of the BC
Hamiltonian~2! coalesce into narrow well-separated ban
Expression~44! can be used to estimate the ratio of the wid
of the first band,W1, to the single-particle bandwidthD
5Nd:

W1

D
'2~122 f !1

f ~12 f !

l
, ~47!

whereW1 is the width. Note that at half filling,f 51/2, the
width of the first band goes to zero asl→`. In general, it
follows from the Wigner-Eckart theorem22 @see the discus
sion in item~2! under the ground-state formula~28!# that at
half-filling widths of higher bands also vanish asl→`.

According to the BCS equations for the excitation en
gies ~44! and ~46! the gapsDspin5@Espin2Egr#min and Dpair
5@Epair2Egr#min for the two types of excitations coincide i
the thermodynamical limit. We have also seen in Sec. II@see
the discussion bellow degeneracy formula~12!# that when
21450
t

-

x-

.

-

0,J,ld andJ/(ld) remains finite asl→`, spin-1 exci-
tations have lower energy as compared to pair-conserv
excitations. If, however,J;d or smaller, keepingJ to the
lowest order in 1/l in excitation energy~42! is not justified.
In this case the two gaps are the same to this order. Th
fore, it is interesting to setJ50 and evaluate the gaps to th
next nonzero order.

Depending on the filling ratiof @see Eq.~41!# we can
distinguish two different cases.

~1! f Þ1/2. Lowest-lying excitations correspond to sma
est or largest possible values ofh0 andea1eb depending on
the sign of (122 f ). To determine the maximal and minima
h0, note that thekth root of Eq.~38! lies between 2ek and
2ek11. If N is large andek2ek11→0 asN→`, the smallest
and largest solutions of Eq.~38! are h0

min'2e1 and h0
max

'2en respectively. We have from relations~40! and ~43!

Dspin2Dpair5du122 f u.0, ~48!

where we have useden2en21'e22e1'd andd is the mean
level spacing.

~2! f 51/2. To the first two orders in 1/l, Dspin2Dpair
50. In the next order we obtain from Eqs.~28!, ~36!, and
~42!

Dpair2Dspin5
h0

222ea
222eb

2

2Nld
, ~49!

where we shifted single electron levels so thatē i

5(( i 51
N e i)/N50. We show in the Appendix using Eq.~38!

for h0 that the minimal value ofh0
2 is always smaller than

that of 2(ea
21eb

2). Therefore,Dspin.Dpair.
Thus, atJ50 the pair-breaking excitations always have

larger gap in the strong-coupling limit. Note that forl50
the situation is opposite as it always costs less energy
move one of the two electrons on the highest occup
single-electron levels to the next available level. Since
cording to BCS expression~5! the energy gap in the strong
coupling limit is 2D'2Dl5Nld, we see from Eq.~49!
that at half–fillingDpair2Dspin'd2/D, i.e., the difference be-
tween the two gaps vanishes in the thermodynamical lim

IV. CONCLUSION

We determined the spectrum of the universal Hamilton
~1! in the strong superconducting coupling (l>1) limit
@Eqs.~9!, ~12!, and~21!# and developed a systematic expa
sion in 1/l around this limit@Eqs.~27!, ~28!, ~36!, and~42!#
for the ground state and low-lying excitation energies. W
detailed an algorithm by which these energies can be exp
itly evaluated up to arbitrary high order in 1/l and estimated
that the expansion converges forl.lc , wherelc lies be-
tweenlc1'1 andlc2'1/p. Technically, this expansion is
based on the existence of the exact solution6 of the BCS
Hamiltonian~2!. We found that in the strong-coupling limi
Richardson parameters are zeros of appropriate Lagu
polynomials~21! and analyzed their behavior at large enou
but finite l.

We found that it is important to distinguish between tw
types of excitations in the problem: those that conserve
9-7
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total number of paired electrons and those that do not.
determined the energy gaps for both types and found tha
zero spin-exchange constant,J50, in contrast to the weak
superconducting coupling limit, the gap for pair-breaking e
citations is always larger@Eqs.~48! and ~49!#.

We believe there are two physically motivated questio
within the scope of validity~see Ref. 3! of the universal
Hamiltonian~1! that still need further clarification. The firs
problem is to develop a quantitative description of the cro
over between a perturbed Fermi gas and the region of st
superconducting correlations~see Ref. 13 and the discussio
in the beginning of Secs. II and III!. The second problem is
to study analytically the interplay between superconduct
correlations and spin exchange~see, e.g., Ref. 23!.

APPENDIX

We show here using Eq.~38! for h0 that the minimal
value ofh0

2 is always smaller than that of 2(ea
21eb

2), i.e.,

x0
2,2~a21b2!, ~A1!

wherex0 is the smallest in the absolute value solution of@Eq.
~38!#, a andb are the two smallest in absolute value sing
electron levelse i , anduau<ubu. Indeed, consider a functio

g~x!5 (
k51

N
1

x22ek
. ~A2!

To prove relation~A1! we need to show thatg(x) has a zero
on the interval (2c,c), where

c5A2~a21b2!.

For N52 there is only one zero,x05e11e2, and relation
~A1! clearly holds. ConsiderN.2.
. A

ev

21450
e
at

-

s

-
ng

g

-

First, note thatg(x) has a single pole atx5a on this
interval from 2c to c, and g(a1).0, while g(a2),0.
~See Fig. 2.! Hence, there is a zero betweenc and 2c if
eitherg(c),0 or g(2c).0. To show that this is the case
is sufficient to demonstrate thatg(c)2g(2c),0. We have

g~c!2g~2c!5(
i 51

N
2c

c224e i
2

5 (
e iÞa,b

2c

c224e i
2

,

which is indeed negative sincec2,4e i
2 for all e i excepte i

5a,b.

FIG. 2. A schematic plot of the functiong(x)5(k51
N @1/(x

22ek)# on the interval from2c to c, wherec5A2(a21b2), a and
b are the two smallest in absolute value single-electron levelse i ,
anduau<ubu. Note that since 2ubu.c there is only one pole on this
interval. In the vicinity of 2a we haveg(x)'1/(x22a) and there-
fore g(x) is positive on the immediate right ofx52a and negative
on the left.
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