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Abstract

The explicit formulae for m-soliton solutions of the (14-2)-dimensional matrix
Davey-Stewartson equation are represented. They are found by means of the known general
solution of the matrix Toda chain with fixed ends. These solutions are expressed through m + m
independent solutions of a pair of linear Schrodinger equations with Hermitian potentials. © 1997
Elsevier Science B.V.
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1. Davey—Stewartson equation

Let u and v be two nonsingular s X s matrix functions of x and y, i.e. each matrix
element is a function of the x,y coordinates of the two-dimensional space. Partial
derivatives of these functions up to some sufficiently large order are assumed to exist.

We define the matrix Davey-Stewartson equation (DSE) as the following partial
differential equation:

i, + Qug, + buyy — 2au/dy (W u), — Zb/dx (uu*)y -u=0, (1)
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where a and b are arbitrary real numbers and z* is a Hermitian conjugate of a matrix z.
It will be convenient to deal not with Eq. (1) but with the following expanded system
which we call the matrix Davey-Stewartson system (DSS):

i, + auyy + buyy, — 2au/dy (vu), — 2b/dx (uv)y-u=0,

—ivt + AUy + buyy — 2a/dy (vu)y-v— 2bu/dx (uv),=0. (2)

Below, for definiteness we choose a = b = 1. It is easy to see that DSE is system (2)
under the additional condition v = u*. We call it the condition of reality.

In the case s =1 (scalar case), when u and v are the scalar functions and the order
of the multipliers is not essential, Eq. (1) is the usual, well-known Davey-Stewartson
equation [1]. In the scalar case, soliton solutions of DSS have been obtained in [2].

2. Discrete substitution

The method we use to solve the problem is based on the discrete transformation [3]
investigation. Here, we consider a concrete discrete transformation which is important
for our problem.

By direct calculations it can be checked that (2) is invariant with respect to the
following change of the unknown matrices u and v:

p=v', b= [uu—(uxu—])y]vzu[uu——(u"lu},)x] ) (3)
Here ii and 7 denote the “new” transformed operators. Invariance means that the matrices
ii and U satisfy the same system (2) as the matrices # and v do. Mapping (3) is an
invertible one and the “old” matrices u and v can be expressed through the “new” ones

v=a"",  u=[ap - (Ga")]a=a (o - (@, . (4)
Transformation (3) can be rewritten in the form of an infinite chain of equations in two
equivalent ways as

-1 _, -1 -1 =1
((Un)xvn ) = UnUy_p — Ung1ly Un+1 =0, (5)

y

or as
-1 -1 -1
(u,, (v,,)y)x = U, Un = Uy Ungls (6)

where (vp, u,) is the result of the n-time substitution (3) applied to some initial matrices
vo and ug. Sequences (5) and (6) with U:} = vy = 0 boundary conditions are called
the matrix Toda chain with fixed ends.

In a (1+1)-dimensional version, mapping (3) is mentioned in [4]. In the scalar case
s = 1, the general solution of the Toda chain with fixed ends has been found in [5] for
all series of semi-simple algebras, except E7, Eg. In [6] this result was reproduced in
terms of an invariant root technique applicable to all semi-simple series.
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DSS belongs to the hierarchy of integrable systems corresponding to transforma-
tion (3). This hierarchy is constructed in [7]. Supersymmetric extension is considered
in {8]. And in [9] the Lax approach to the analogues hierarchies in the (1+1)-
dimensional space is discussed.

The explicit general solution of the matrix Toda chain with fixed ends has been found
in [10]. It was expressed through N + N arbitrary independent matrix functions of a
single argument X, (x),Y,(y) as

N
vo=Y XY, (7)
r=1
To (7) corresponds the following formula for uy:
N —~— ~
uy =) ()X (y). (8)

r=1\

Here the matrices X and Y are not arbitrary but in some way depend on X and Y. Both
these results (7) and (8) will be used in further consideration.

3. General strategy

We are going to solve DSS (2) under the condition of reality u = v*. Here, we
describe how the discrete transformation is used for that. A general idea is the following.
At first, we take some obvious solution of DSS (2). It may not be a solution of
the problem (reality condition may not be satisfied). Then, by means of the discrete
transformation (3), we get from that initial, obvious solution a solution that satisfies the
condition of reality.

For up = 0 the first equation of the system (2) is satisfied identically and the second
one gives

—ivo; + Voyy + Voyy + Vi(2, x)00 + 0oV2(1,y) =0, (9)

where V| and V, are arbitrary s x s matrix functions of their arguments (these terms
arise from the undefined integrals f dx (uv),, f dy (uv), in the system (2) ). Obviously,
the condition of reality is not satisfied for this solution. But after a sufficient number
of discrete transformations (3), it is possible to come to the solution for which it is
satisfied. To clarify this, let us consider some solution u, v satisfying the condition of
reality u = v*. Denoting by u; and v; and by u_; and v_, the results of the direct (3) and
inverse (4) substitutions, respectively, one can easily check that u_; = v;* and v = 1.
On the mth step, we have u_, = v,* and v_,, = u;,, where index m (—m) stands for
the result of the m-time direct (inverse) transformation. And vice versa, one can prove
that if we begin from the solution ug = 0, vy and after 2m-times discrete transformations
get Uz, = UG, U2y = 0, the solution in the middle of the chain automatically satisfies the
reality condition up1 = v}, .
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The system arising from the equations uy = v, = 0 is already solved by formula (7).
So it remains to solve the equation uy, = vg. It leads to the following relations between
X, and X[, and between Y, and Y5, ):

Xr=Xptn, Y =Yon, (10)

where o denotes one of the (2m)! possible permutations of the 2m low indices. To
solve (10), at first it is necessary to find the dependence of X and Y on X and Y,
respectively. Finally, Eq. (9) in terms of X, and ¥, can be rewritten as

_er1+erx+‘/1(t’x)Xr=O9 _IY;'1+erx+Yr‘/2(t,y)=0 (11)

Thus, to find m-soliton solutions of DSE (1), it is necessary to undertake the following

steps:

- find the dependencies )?,- (Xy,...,Xom) and }N’, n,...%.;

- solve the system (10);

- find such a dependence of the matrix functions X, and Y, from the time argument that
it will satisfy system (11).

After this, substituting X, and ¥, into (7), we find vy, for which uyy = v}, is some

partial (m-soliton) solution of the Davey-Stewartson equation (1).

4. Scalar case

To gain some experience, we firstly consider the scalar case s = 1 for which many of
the necessary calculational steps are well known and much simpler than in the general
matrix case.

In this case, for the above-mentioned boundary conditions the following formulae for

arbitrary k takes place [11]:

_ Det;_; _ Detyy 1

= , Det_; =0, Detg =1, 12
Det;, Det, -1 eto (12)

?

where Det, is the principle minor of the dimension k of the matrix (v° = vg)

0 0 0

4 UX Uxx

0 0 0

U)' UX)’ Uxxy

o .0 .0

Uyy Usyy Ugxyy - - -

and v° is determined by (7) where X, and ¥, are arbitrary scalar functions of their
arguments. Substituting (7) into the expression for uz, from (12) and comparing
with (8), we find

Wom—1(X1, X2, -« o, Xre1, Xr i1 - - - Xom)

13
Wom(X1, X2, ... Xom) (13)

X, (x) =
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Here and below, W) denotes a Wronskian of dimension k constructed from the functions
in the brackets

81 &2 .- 8k
/ ’ !
81 &2 1
Wk(gl,...,gk)E: . . s W()El. (]4)
g}k—]) gék_l) gik—l)

Expressions for Y, can be got from (13) by simple exchange X — Y.

In the condition of reality (10) we use the permutation o[r] = 2m — r + 1. To
solve (10) and (11), it is suitable to represent the functions X, and ¥, in the Frobenious-
like form

X1=¢1, X,=¢1/dx¢2.../dx¢,,
N=i. Yr=¢1/dx¢z.../dx¢,. (15)

From (13) we find

2m

%= ([T8)". %= ([1¢)" [arem... [axder 0
k=1 k=1

Now the reality condition (10) takes the form

m ~1
6 =dm-riz (r=23...2m),  dua=dh = ([[&udi) . (7

k=1

From (11) we have

"o !
r—1

¢ro=| ¢ [ma JI6% ) | - (18)

k=1

The imaginary unity { here is included into the time variable which, therefore, should be
treated as a pure imaginary one from this moment. One can independently check that the
systems (17) and (18) are compatible and if (18) is fulfilled for some ¢,, r < m, for
dam—ri2 it also holds. Hence, it is sufficient to consider only equations with r < m in the
system ( 18). Now we introduce the new unknown functions f7! = ¢ ---¢,, r < m+1.
From (18) we find

7 et e= = (F7 o (n fofre)') (19)

From (17) it follows that f;, = ,;+11. Substituting this in the (m+ 1)th equation of the

last system, we have

Unfide=(fufi (0 fmfi)') (20)
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Eq. (20) is equivalent to the one-dimensional Schrodinger equation with arbitrary real
potential

fui+ fm=Ufm, U=U". (21)
Now let us consider the mth equation of the system (19),

o' fme)i = = (F frmr (0 fnfm)') (22)
Partially solving it as

falfar=2's (nfufa) == (23)

and excluding the function f,_;, we conclude that the function zf,, satisfies the same
Eq. (21) as fy does. Denoting by u; (1 < i < m) m independent solutions of (21),
we find

uy U
bW
Sm=ui, me=u2=>fm—l=zfm= " (24)
In the general case, for arbitrary i the following formula holds:
Win—r
fr=Tgs rsm, (25)

where W; = W;(uy,...,u;).

To prove (25) we use the well-known Jacobi identity for determinants. Let T be some
infinite in both directions matrix; D,(T) denotes the determinant of its n X n principle
minor, T* is the matrix obtained from T by deleting its sth column and T}, is the matrix
obtained by deleting its pth row. In this notations the Jacobi identity takes the form

Dy (T)Dn(T;) — Dp(T") Dy(Ty) = D1 (T) D1 (T) . (26)
From (26) the following identity can be derived:
WiW:‘ —WW; =W, Wy, (27)

where W; = Wi(u; — uip1) = Wiui,ug, .. U1, ti1).
Now let us partially solve Eq. (19) for arbitrary r,

fror=2'fr  (nfifion) = -j— (28)

Excluding f,_; from the last system we find that f, and zf, are the different solutions
of the same equation. And if f, is given by formula (25), zf, can be determined as

Wm—r+l
dr=y

Now from (28) with the help of identity (27) we easily find
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Wm—r+2

fr—l = .
Wm—r+l

Thus, formula (25) is proved by induction.
Finally, for functions ¢, from the definition of f, and formulae (17), we have

Win—ri2Wp-
¢m+l =L’1UT, ¢r=_mvv++2_n.z_r’
nm—-r+1
Wm-—l
b1 = W & =dwm—ri2, r<m. (29)
m

Analogues expressions take place for functions ¢,

* Wm—r+2Wm—r
wnwl =00y, (/fr = >
W31—r+]
Wii— x
(//] = —m-l s ll’r = l/’2n1~r+2 s r<m. (30)
Wa
In (30), W; = Wi(v1,...,u;) and v; = v(y), 1 <i < m, are m independent solutions

of the (1 + 1)-dimensional linear Schrodinger equation with arbitrary real potential V,

vV =V, V=V, (31)

5. Matrix case

Here, we consider a general problem as it has been formulated in Sections | and 3.
We find m-soliton solutions of DSE for arbitrary dimension of the unknown matrix u.
We therefore find matrix generalizations of all formulae of the previous section. It turns
out that quasi-determinants of matrices with noncommutative entries play the role of
usual determinants. Conception of a quasi-determinant has been recently introduced by
Gelfand and Retarh [12]. We use an independent technique, more appropriate for our
particular case, but quasi-determinants can be used as well.

With the chain (5,6) under the above-mentioned boundary conditions we connect the
following recurrent relations:

n—1

Ry=v vy, SI=> (ST +RSTY, (32)

k=0

with the boundary conditions S? = 1 for arbitrary i. From definitions (32) and Eqgs. (5)
and (6) we easily find

n
Y=Y Ra.  St=v5'voy...y, (33)
k=0 N~
q
Uni1=—0n(She)x = (=1 (S (S3)x -+ (Shy s (34)
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For matrix functions S7 the following relation is true:
—1
SE=[(S_):] " (ST (35)

Now let us find the dependence of X on X. For this, we use the fact that each matrix
function X; is determined only by matrices X),..., Xz,, and, therefore, we can choose
the matrices ¥;, ..., Y, in an arbitrary way. It is convenient to choose

i—1 2m—1

y Y
X+ Xt X,
E, vy = X T 2 % Y b3 (36)

Y
=G

where E is the unity s x s matrix. Substituting (36) into the expression for v,, |
from (34), we find

— -1
Vimtl g = = [X1 (T (T a - (Ta)s] s (37)

where matrices T are determined by the following relations:

-1
T¢ = [(To_Ds] " (T D, (38)
with the boundary conditions
Toq = Sg|y=0 = X1_1X61+1 . (39)

Expression (37) corresponds to the one of the functions 5(1. And since these functions
can be enumerated in various ways, we can choose

XD =X (T (T (Thy2) e = F(x15. .. Xom) - (40)

A formula for an arbitrary i can be derived from (40) by the cycled permutation of the
indices

)?l._l=(—l)i_lF(O'[[XI,---,x2m])- (4D

An arbitrary multiplier can be added into formula (41). It will be counted in the
expression for ¥;. We added (—1)‘~! to do further calculations more convenient. Using
(41) and (34), we find

Y l=—(Qha)y (@), N =GM,... .5y, (42)

Y = (—1)iG(ail Y. ... Yam]) s (43)
where

05 = (O, [0, Q8=Yny . (44)

Now as in the previous section, we represent the initial functions X,, ¥, in the Frobenious-
like form,
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Xi=d¢1, X2=¢1/dx¢2, X3=¢1/dx¢2/dx¢3,

Nn=y, Yz=/dx‘/f2'lﬂ1, Y3=/dx</dx¢3-¢/2>~¢//|, .. (45)

After the permutation of the indices, the formula for X, coincides with (16). The only
difference is that in the matrix case the order of the multipliers must be taken into
account

§1=p, §2=/dxq§2m-p, i3=/dx</dx¢2m—l'¢2m>'ps

Yi=—s, )72=~s/dx¢2,,,, )73=«s/dx¢2m/dx1//2m_|, e, (46)

where p = (¢ -- ¢am) "1 and s = (o - - - 1) "', The condition of reality taken in the
form X, = X}, Y, =Y reads
¢*=¢zm 2, 2<r<m,
= (b)) = (Didr ) (D1 D)
b =dm-ria, 2<r<m,
Yl = W) 7 = =Wty 01 WYt - ) (47)

The fact that all functions X, are solutions of the same equation (11) leads to the
following system:

—(bs)i + (21 1) (D1 1) b+ ) =0, (48)
Introducing now the functions f' = ¢1¢, ... ¢, from (48), we find
ot e = [ f7 = fa (DT (49)

Then, from (47) and (49) we conclude that f,, is a solution of the (14 1)-dimensional
linear Schrodinger equation with Hermitian potential

fnt;+f:,:=wfm; w=Ww". (50)

A solution of system (49) can be found in the same way as in the previous section. The
matrix case does not require the use of the Jacobi identity because recurrent definitions
are used,

fizur,  fuer=UH - (U) ur. (51)

Matrix functions U4 are determined by the following recurrent relations:

Ud= (U [T

with the boundary conditions
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Uj = up iy,
where matrices u, are different solutions of Eq. (50). Finally, for ¢,_, we have
dr=fi"s  pur=(U)', 0<r<m-2,
Gt =muy, @ =iz, 2<r<m. (52)
For 4;, we derive

P =01 (Vo) - (V) v,
Ymer =(UD', 0<r<m-2,

1/’m+1 = —UIUT ’ l/I: = (//Zm—r+2 ’ 2 S r S m, (53)
where
-1 _
Vi= (Vo] vED S W= e

and matrices v;(y) are different solutions of the (1+ 1)-dimensional linear Schrodinger
equation with an arbitrary Hermitian potential

U,‘,+UI{/=U,'M, M=M".

Now substituting (52) and (53) directly into (45) and (7) and then into the formula
for v+ from (34), we find the m-soliton solution of the matrix DSE. We do not write
down the corresponding expression, because it can easily be derived, but is too large to
represent it here.

6. The simplest example of the one-soliton solution
Substituting m = 1 into the formulae of the last section, we find
vo=X1h + Xo 12, Xy =¢1, X2=¢l/dx¢2,

=4, Y2=/dX¢//2'4/f1-

After this, we find the following expression for the one-soliton solution of the matrix
DSE:

-1
up =y (1+/dx¢z/dyt//z) o7t (54)

The matrix functions ¢(¢,x) and (¢, y) are determined by u and v solutions of the
one-dimensional linear Schrodinger equations,

dr=u"", b2 = uu™,

s=v"", g =—v',
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Up + Uy +uM1(tax) =0’
v 4 vy + Ma(t,y)v=0, Myy=M7,.

7. Conclusion

The main result of the paper are the explicit expressions for the m-soliton solutions
of the (1+42)-dimensional matrix Davey-Stewartson equation. By means of the corre-
sponding formulae of Sections 4 and 5 these solutions are expressed through the m + m
independent solutions of a pair of linear (1+1)-dimensional Schrodinger equations.

From the group-theoretical point of view it means that we have realized the finite-
dimensional representation of the group of integrable mappings. This viewpoint remained
beyond our concrete calculations.

Note that restriction with the finite-dimensional matrices is absolutely nonessential.
We had never used this restriction and, moreover, the dimension (s) was not included
in any expression.
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