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Abstract 

The explicit formulae for m-soliton solutions of the ( 1 +2)-dimensional matrix 
Davey-Stewartson equation are represented. They are found by means of the known general 
solution of the matrix Toda chain with fixed ends. These solutions are expressed through m + m 
independent solutions of a pair of linear Schrrdinger equations with Hermitian potentials. (g) 1997 
Elsevier Science B.V. 
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1. Davey-Stewartson equation 

Let u and v be two nonsingular s x s matrix functions of  x and y, i.e. each matrix 

element is a function of  the x , y  coordinates of  the two-dimensional space. Partial 

derivatives of  these functions up to some sufficiently large order are assumed to exist. 

We define the matrix Davey-Stewartson equation (DSE) as the following partial 

differential equation: 

iu, + aUxx + buyy - 2au J dy  ( u* U ) x - 2b f dx  ( uu* ) y . u = O , (1)  
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where a and b are arbitrary real numbers and z* is a Hermitian conjugate of  a matrix z. 

It will be convenient to deal not with Eq. (1) but with the following expanded system 

which we call the matrix Davey-Stewartson system (DSS):  

- 2 a u / d y  (vu)x - 2 b / d x  (uv)y . u=O,  

- 2 a / d r  (VU)x . V - 2 b v / d x  (UV)y = 0 .  

iut + aUxx + buy), 

- iv t  + aVxx + bvyy (2) 

Below, for definiteness we choose a = b = 1. It is easy to see that DSE is system (2) 

under the additional condition v = u*. We call it the condition of  reality. 

In the case s = 1 (scalar case), when u and v are the scalar functions and the order 
of  the multipliers is not essential, Eq. (1) is the usual, well-known Davey-Stewartson 

equation [ 1]. In the scalar case, soliton solutions of  DSS have been obtained in [2].  

2. Discrete substitution 

The method we use to solve the problem is based on the discrete transformation [3] 

investigation. Here, we consider a concrete discrete transformation which is important 

for our problem. 

By direct calculations it can be checked that (2) is invariant with respect to the 

following change of  the unknown matrices u and v: 

H = U  -1  , U-~ [UU-- (UxU--I)y] U:~ U [UU-- (U--1Uy)x ] . ( 3 )  

Here fi and g denote the "new" transformed operators. Invariance means that the matrices 

and ~ satisfy the same system (2) as the matrices u and v do. Mapping (3) is an 

invertible one and the "old" matrices u and v can be expressed through the "new" ones 

v=/~  -1 , u= [~i~--(~ly~-l)x]~l:~[~)~l--(~l-l~lx)y] . (4) 

Transformation (3) can be rewritten in the form of  an infinite chain of  equations in two 

equivalent ways as 

- u°+, 

or as 

(v~-l (V,)y)x =V[l_lVn -- VnlVn+l, (6) 

where (Vn, un ) is the result of  the n-time substitution (3) applied to some initial matrices 

v0 and u0. Sequences (5) and (6) with v -  I = VN = 0 boundary conditions are called 
the matrix Toda chain with fixed ends. 

In a ( l+1  )-dimensional version, mapping (3) is mentioned in [4] .  In the scalar case 

s = 1, the general solution of  the Toda chain with fixed ends has been found in [5] for 

all series o f  semi-simple algebras, except ET, E8. In [6] this result was reproduced in 
terms of  an invariant root technique applicable to all semi-simple series. 
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DSS belongs to the hierarchy of integrable systems corresponding to transforma- 

tion (3).  This hierarchy is constructed in [7]. Supersymmetric extension is considered 
in [8]. And in [9] the Lax approach to the analogues hierarchies in the ( l + l ) -  
dimensional space is discussed. 

The explicit general solution of the matrix Toda chain with fixed ends has been found 
in [ 10]. It was expressed through N + N arbitrary independent matrix functions of a 
single argument Xr(x ) ,  Y~(y) as 

N 

VO = ~ XrYr. ( 7 )  

r=l 

To (7) corresponds the following formula for uu: 

N 

tl o = Z Yr(X)Xr(y) . (8) 
r=l 

Here the matrices A" and Y are not arbitrary but in some way depend on X and Y. Both 

these results (7) and (8) will be used in further consideration. 

3. General strategy 

We are going to solve DSS (2) under the condition of reality u = v*. Here, we 

describe how the discrete transformation is used for that. A general idea is the following. 

At first, we take some obvious solution of DSS (2). It may not be a solution of 
the problem (reality condition may not be satisfied). Then, by means of the discrete 

transformation (3),  we get from that initial, obvious solution a solution that satisfies the 
condition of reality. 

For u0 = 0 the first equation of the system (2) is satisfied identically and the second 

one gives 

-ivot + VOxx + VOyy + Vl( t ,x)vo + voV2(t, y) = 0,  (9) 

where V1 and ½ are arbitrary s x s matrix functions of their arguments (these terms 

arise from the undefined integrals f dx (uv)y, f dy (uv)x in the system (2) ) .  Obviously, 
the condition of reality is not satisfied for this solution. But after a sufficient number 

of discrete transformations (3),  it is possible to come to the solution for which it is 
satisfied. To clarify this, let us consider some solution u, v satisfying the condition of 
reality u = v*. Denoting by ul and Vl and by u-1 and v-1 the results of the direct (3) and 
inverse (4) substitutions, respectively, one can easily check that u - i  = vl* and v- i  = u~'. 
On the mth step, we have U-m = Vm* and v-m = u~,, where index m ( - m )  stands for 
the result of the m-time direct (inverse) transformation. And vice versa, one can prove 
that if we begin from the solution u0 = 0, v0 and after 2m-times discrete transformations 
get blZm = U~, U2m = 0 ,  the solution in the middle of the chain automatically satisfies the 
reality condition u,,+j = vm+ 1. 



646 A.N. Leznov, E.A. Yuzbashyan/Nuclear Physics B 496 [PM] (1997) 643-653 

The system arising from the equations u0 = rE,, = 0 is already solved by formula (7).  
So it remains to solve the equation U2m = v~. It leads to the following relations between 

g r and ~',~(r] and between Yr a n d  Yo'[rl: 

X* = Xo-[r] , Y* = Yo'[r] , ( 1 0 )  

where o- denotes one of the (2m)! possible permutations of the 2m low indices. To 
solve (10), at first it is necessary to find the dependence of .~ and Y on X and Y, 

respectively. Finally, Eq. (9) in terms of Xr and Yr can be rewritten as 

- i X r t + X r x x + V l ( t , x ) X r  = 0 ,  - i Y r t + Y r x x + Y r V 2 ( t , y )  = 0 .  (11) 

Thus, to find m-soliton solutions of DSE (1),  it is necessary to undertake the following 

steps: 
- find the dependencies ~'i (Xj . . . . .  X2m) and ~ (Y1 . . . .  l~m); 
- solve the system (10) ; 
- find such a dependence of the matrix functions Xr and Yr from the time argument that 

it will satisfy system (11). 

After this, substituting X~ and Yr into (7),  we find v0, for which Um+l = u,*,+l is some 

partial (m-soliton) solution of the Davey-Stewartson equation (1). 

4 .  S c a l a r  c a s e  

To gain some experience, we firstly consider the scalar case s = 1 for which many of 
the necessary calculational steps are well known and much simpler than in the general 
matrix case. 

In this case, for the above-mentioned boundary conditions the following formulae for 

arbitrary k takes place [ 11 ] : 

Detk_ 1 Detk+ l 
u k -  - - ,  v k - - -  , D e t _ l - - 0 ,  Det0-= 1, (12) 

Detk Detk 

where Detk is the principle minor of the dimension k of the matrix (v ° - v0) ( 00 0 ) 
Ux Uxx • . . 

0 0 0 
U~O UXYo UXXYo 

yy Uxyy Uxxyy 

and v ° is determined by (7) where Xr and Y~ are arbitrary scalar functions of their 
arguments. Substituting (7) into the expression for U2m from (12) and comparing 
with (8),  we find 

~,r(X) = W 2 m - I ( X 1 , X 2  . . . . .  X r - l , X r + l  . . . .  X2m) 
W2m( X l , X  2 . . . .  X2m) ( 1 3 )  
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Here and below, Wk denotes a Wronskian of  dimension k constructed from the functions 
in the brackets 

g; . . .  g~ 
Wk(g l  . . . . .  g/,) ~- . . ". . WO = 1. (14) 

Expressions for Y~ can be got from (13) by simple exchange X ~ Y. 

In the condition of  reality (10) we use the permutation o-[r] = 2m - r + 1. To 

solve (10) and ( I 1 ), it is suitable to represent the functions Xr and Yr in the Frobenious- 

like form 

XI=(Ol, xr=(o,/ax(o2.., f ax(or, 
rl=~Ol, Yr=~'~/C~Xg'2... f ax~Or. 

From (13) we find 

(15) 

2hi 
= ' 

k=l 

2., ~f f 
k=l 

(16) 

Now the reality condition (10) takes the form 

(fI (O* = (o2m--r+2 ( r  = 2 , 3  . . . . .  2 m ) ,  (om+l = (o; ,+l  = ( o k ( o k  • ( 1 7 )  

k=l 

From ( 11 ) we have 

! ! 

( o r t  = (or ln(o~ (O (18) 

The imaginary unity i here is included into the time variable which, therefore, should be 
treated as a pure imaginary one from this moment. One can independently check that the 

systems (17) and (18) are compatible and if (18) is fulfilled for some (O~, r < m, for 

(o2m-r+2 it also holds. Hence, it is sufficient to consider only equations with r < m in the 

system (18) .  Now we introduce the new unknown functions f r I = (Ol "'" (Or, r < m +  1. 

From (18) we find 

( f 7 1  f r - -1 ) ,  = -- ( f r  ~ f r - ~  (In f r f r - I  ) ' ) '  • (19) 

From (17) it follows that J*  = f - 1  Substituting this in the (m + 1 )th equation of  the m+l ' 
last system, we have 

• ( ")3' ( J m f ~ , ) t  = fraY*, (ln f m f * _ l  . (20) 
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Eq. (20) is equivalent to the one-dimensional SchrOdinger equation with arbitrary real 

potential 

fmt  -1- )tttm= U f m ,  U = U*.  (21) 

Now let us consider the ruth equation of the system (19), 

( f ~ J  f m - , ) t  = -- ( f ~ l  fm-1  ( ln f m f m - I ) ' ) '  • (22) 

Partially solving it as 

-1 z ~ - - -  (23) f~,, f m - 1  = , (In fro f r o - I ) ' =  Zt 
Z t 

and excluding the function fro-l ,  we conclude that the function Zfm satisfies the same 
Eq. (21) as fm does. Denoting by ui (1 < i < m) m independent solutions of (21), 

we find 

Ul U2t I 

= , Z t fm = U'I U 2 
fm  ul Z fro = u2 ~ f m - l  = (24) 

Ul 

In the general case, for arbitrary i the following formula holds: 

Wm-r+l 
f r  = , r < m ,  (25) 

Wm-- r 

where Wi = Wi(u l  . . . . .  u i ) .  

To prove (25) we use the well-known Jacobi identity for determinants. Let T be some 
infinite in both directions matrix; D , ( T )  denotes the determinant of its n × n principle 
minor, T s is the matrix obtained from T by deleting its sth column and Tp is the matrix 
obtained by deleting its pth row. In this notations the Jacobi identity takes the form 

D n ( T ) D n ( T  n)  - D n ( T n ) D n ( T n )  = Dn+l ( T ) D n - l  (T )  . (26) 

From (26) the following identity can be derived: 

- - !  
W i W  i -- W [ W  i = W/_lW/+l , ( 27 )  

where Wi = Wi(ui  ~ Ui+l ) = Wi (u l ,  u2 . . . . .  u i - l ,  ui+l). 

Now let us partially solve Eq. (19) for arbitrary r, 

f r - I  = Zt f r ,  ( ln f r f r - - 1 )  t =  Zt (28) 
Z t 

Excluding f r - l  from the last system we find that f r  and Zfr are the different solutions 
of the same equation. And if f r  is given by formula (25), z f r  can be determined as 

Wm-r+l  
Zfr = - -  

Wm-r 

NOW from (28) with the help of identity (27) we easily find 
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Wm-r+2 
f r - -  1 -- - -  

Wm-r+l  

649 

Thus, formula (25) is proved by induction. 
Finally, for functions ~ from the definition of fr  and formulae (17) ,  we have 

W m - r  + 2 W m - r  
~,,~1 =UIU~ , ~ r  = W2 

m--r+l 

Win- 1 
q~l -- , q~; = ~ b 2 m - r + 2 ,  r < m .  ( 2 9 )  

Wm 

Analogues expressions take place for functions ~Ok, 

W m - r + 2 W m - r  
Om+l = V i V a ,  Or = W2 

m--r+l 

W n l -  1 
//11 -- , /P ;  = ~ /2m- - r+2 ,  r <_ m .  ( 3 0 )  W., 

In (30) ,  Wi = Wi (Ol  . . . . .  ui) and u i ~ ui(y),  1 < i < m,  are m independent solutions 
of the ( 1 + 1 )-dimensional linear Schr6dinger equation with arbitrary real potential V, 

tt VUi, V = V* (31) Uit Jr- U i = 

5. Matrix case 

Here, we consider a general problem as it has been formulated in Sections 1 and 3. 
We find m-soliton solutions of DSE for arbitrary dimension of the unknown matrix u. 
We therefore find matrix generalizations of all formulae of the previous section. It turns 
out that quasi-determinants of matrices with noncommutative entries play the role of 
usual determinants. Conception of a quasi-determinant has been recently introduced by 
Gelfand and Retarh [ 12]. We use an independent technique, more appropriate for our 
particular case, but quasi-determinants can be used as well. 

With the chain (5,6) under the above-mentioned boundary conditions we connect the 
following recurrent relations: 

n--I 

R , , = v ; l v . y ,  ~ = ~ - ] ~ ( ~ - l + R k ~ - l ) ,  (32) 
k = 0  

with the boundary conditions ~ ~- 1 for arbitrary i. From definitions (32) and Eqs. (5)  
and (6) we easily find 

SIn = ~ - ~  Rn , ~ = V o l V O y  . . . y , (33) 
k=-O 

q 

vn+~ = - v n (  S~+~ )x = ( - 1 ) n + ~ v o (  Sl ) x (  S19 ) x . . . (S~,+l)X. (34) 
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For matrix functions S q the following relation is true: 

[ ( s L l ) x ] - '  +' = ( ~ _ l ) x .  (35) 

Now let us find the dependence of  ~" on X. For this, we use the fact that each matrix 

function Xi is determined only by matrices X1 . . . . .  X2m, and, therefore, we can choose 

the matrices ]'] . . . . .  Y2m in an arbitrary way. It is convenient to choose 

y i -  I y= y2m- 1 

- ( i : l )  ~ E ' -  v0 = Xr + l!.X2 + . . .  + ( 2 m -  1) ~X2m'. (36) 

where E is the unity s × s matrix. Substituting (36) into the expression for V2m-l 

from (34) ,  we find 

- l  l = (T~m_2)x ] -1 V2m_l[~,__ o - - [ X I ( T d ) x ( T ~ ) x . . .  , (37) 

where matrices Tq are determined by the following relations: 

[(r.'_l)x] -1 (38) 

with the boundary conditions 

T~ = ~ly--o = X l l  Xq+l • (39) 

Expression (37) corresponds to the one o f  the functions ~'i. And since these functions 

can be enumerated in various ways, we can choose 

( X l )  - l  X I ( T ~ ) x ( T ~ ) x  l . . . .  (T~m_2)x =-~ F ( X l  . . . . .  X2m) . (40)  

A formula for an arbitrary i can be derived from (40) by the cycled permutation of  the 

indices 

Xi -1 = ( - 1 ) i - l F ( o ' i [ X l  . . . . .  X2m] ) . (41) 

An arbitrary multiplier can be added into formula (41).  It will be counted in the 

expression for ~. We added (--1)  i-I  to do further calculations more convenient. Using 

(41) and (34),  we find 

yl-l  l = - ( Q 2 m - 2 ) y "  - - (Q~)y ,  Yl =- G(Y1 . . . . .  l~m) , (42) 

~//-1 = (--1) iG(o ' i [Yl  . . . . .  Y2m] ) ,  (43)  

where 

Q, s+l , Q~ = Ys+lY1 - l  . (44) s = ( Q n _ l ) y  [ (Q~_l)y]  -1 

Now as in the previous section, we represent the initial functions Xr, Y~ in the Frobenious- 
like form, 
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S l  ~- ~DI , X2=~b l /dXq~2 ,  X g = q ~ l / d x q ~ 2 f d x q ~ 3  . . . . .  

YI = ~ 1  , Y2= f d x ~ 2 . ~ l ,  y~= f d x ( f d x ¢ 3 . ~ 0 2 )  .g,, . . . .  (45) 

After the permutation of the indices, the formula f o r  Xr coincides with (16). The only 
difference is that in the matrix case the order of the multipliers must be taken into 

account 

= p . = f a x 4 . 2 . ,  p ,  

~, = - s ,  ~'2 = -s/ax,/.,2., . 

X 3 = / d x ( / d x & 2 . , - ~ "  ¢2,,,)'p . . . . .  

Y3=-s/dx~O2.,fdx I / /2m_ 1 . . . . .  (46) 

where p = (¢1 '" • ~2m) -1 and s = (~P2m""" ~bj )-1.  The condition of reality taken in the 

form .Yr = X~', Yr = Y7 reads 

& 2  = q~2m--r+2, 2 < r < m,  
--1 __ (.¢~* ) - -1  

' / ' m + l  - -  ~ , , + 1  = ( 4 ' 1 ' / ' 2 ' '  " 4 ' , , , ) * ( ' / ' 1 ' / ' 2  "" "'/'.,), 
//1; = / / . t Z m _ r + 2  , 2 < r < m, 

- 1  * - 1  
~//m+l = ( ~ / / m + l )  =. --(Ipn,~lm_ 1 •-  "~//1 ) * ( I / / m , l / / m _ l . . .  ,I//l) . ( 4 7 )  

The fact that all functions Xr are solutions of the same equation (11) leads to the 

following system: 

-(&.,.), + ( 2 ( ¢ 1 ¢ 2 . . .  ¢.,.-1 ) - I  ( ¢ 1 ¢ 2 . . .  ¢,.-I ) '¢s  + ¢~.)' = O. (48) 

Introducing now the functions f71 = ¢1&2. . .  ¢r from (48), we find 

- - ( f r - l f r ' ) t  = [ £ - , f 7  ~ -- f r - l ( f r l ) ' ]  ' (49) 

Then, from (47) and (49) we conclude that fm is a solution of the ( 1 + 1 )-dimensional 
linear Schr6dinger equation with Hermitian potential 

fret + f'.', = Wfm,  W = W*. (50) 

A solution of system (49) can be found in the same way as in the previous section. The 

matrix case does not require the use of the Jacobi identity because recurrent definitions 

are used, 

f l  = u l ,  f m - r = ( U ) ) ' ' " ( U 1 ) ' U l  • (51) 

Matrix functions U~ are determined by the following recurrent relations: 

= I ( v L , ) , ]  - '  , 

with the boundary conditions 



q~! = f l  I , 

q~m+l "~ UlUl , 

For ~Pi, we derive 
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-1  
U 0 = / ~ r + l  u 1 , 

where matrices ur are different solutions of Eq. (50). Finally, for q~m-r we have 

~ m _ r = ( U ~ )  ! 0 < r < m - 2  

~* = ~2m-r+2 , 2 _< r _< m.  (52) 

~ll l l  = uI ( VIt_ 2 ) I . . . ( VoI ) IuI  , 

~ m _ , = ( U ~ ) ' ,  0 < r < m - 2 ,  

///m+l = - - V l V ~ ,  ///r* = ~//2m-r+2 , 2 < r < m,  (53) 

where 

vnq= [ (vn l_ , ) / ]  -1 (Vqn+_~)/, V~j = u l l u r +  1 

and matrices vi(y)  are different solutions of the (1 + 1)-dimensional linear Schr6dinger 

equation with an arbitrary Hermitian potential 

Vit + Vff = viM,  M = M*.  

Now substituting (52) and (53) directly into (45) and (7) and then into the formula 
for vm+l from (34), we find the m-soliton solution of the matrix DSE. We do not write 

down the corresponding expression, because it can easily be derived, but is too large to 
represent it here. 

6. The simplest example of the one-soliton solution 

Substituting m = 1 into the formulae of the last section, we find 

V0 =XlVl + X2~'2, Xl = ~ l ,  X2 =~, /dxO2, 
YI = gq , Y2 = / dx  ~2 " ~l • 

After this, we find the following expression for the one-soliton solution of the matrix 
DSE: 

Ul =~[-l  ( l  + / d x c b 2 . f  d y ~ 2 ) - l & F  1 . (54) 

The matrix functions q~(t,x) and ¢ ( t , y )  are determined by u and v solutions of the 
one-dimensional linear Schr6dinger equations, 

¢bl = u -1 , qb2 = uu* , 

$ q  = v - l  , gff2 = - v ' v ,  
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Ut + Uxx + u M l ( t , X )  = 0 ,  

vt + vyy + M2(  t, y ) v = O  , M1,2 = M1,2 . 

653 

7. Conclusion 

The main result of the paper are the explicit expressions for the m-soliton solutions 

of the (1 +2) -d imens iona l  matrix Davey-Stewartson equation. By means of the corre~ 

sponding formulae of Sections 4 and 5 these solutions are expressed through the m + m 

independent solutions of a pair of linear (1 +1 )-dimensional Schrtidinger equations. 

From the group-theoretical point of view it means that we have realized the finite- 

dimensional representation of the group of integrable mappings. This viewpoint remained 

beyond our concrete calculations. 

Note that restriction with the finite-dimensional matrices is absolutely nonessential. 

We had never used this restriction and, moreover, the dimension (s)  was not included 

in any expression. 
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