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Abstract
We analyze Hamiltonians linear in the time variable for which the multistate
Landau–Zener (LZ) problem is known to have an exact solution. We show that
they either belong to families of mutually commuting Hamiltonians poly-
nomial in time or reduce to the ×2 2 LZ problem, which is considered tri-
vially integrable. The former category includes the equal slope, bow-tie, and
generalized bow-tie models. For each of these models we explicitly construct
the corresponding families of commuting matrices. The equal slope model is a
member of an integrable family that consists of the maximum possible number
(for a given matrix size) of commuting matrices linear in time. The bow-tie
model belongs to a previously unknown, similarly maximal family of quad-
ratic commuting matrices. We thus conjecture that quantum integrability
understood as the existence of nontrivial parameter-dependent commuting
partners is a necessary condition for the LZ solvability. Descendants of the

×2 2 LZ Hamiltonian are e.g. general SU(2) and SU(1, 1) Hamiltonians,
time-dependent linear chain, linear, nonlinear, and double oscillators. We
explicitly obtain solutions to all these LZ problems from the ×2 2 case.

Keywords: mesoscopic physics, cold gas, solid-state artificial atom, statistical
physics, quantum integrability, Landau–Zener problem, mathematical physics

1. Introduction

Multistate Landau–Zener (LZ) problem is an archetypical problem in non-equilibrium phy-
sics, which arises in various experimental setups, see e.g. [1–5]. The most frequently
encountered scenario deals with a Hamiltonian linear in time and the corresponding non-
stationary Schrödinger equation
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where A and B are two constant Hermitian ×N N matrices. Given the state of the system at
→ −∞t , the problem is to determine its state at → +∞t , i.e. the full asymptotic S matrix

containing necessary information about probabilities for all possible transitions. The ×2 2
problem was solved by Landau [6], Zener [7], Majorana [8] and Stückelberg [9] in 1932;
whereas for dimensions ⩾N 3, the solution is known only for a few special cases, where A
and B have very specific forms [10–13].

In this paper we attempted to catalog all known exactly solvable multistate LZ Hamil-
tonians. We find that they can be classified into two broad categories. The first type of
Hamiltonians have nontrivial commuting partners polynomial in t, which we explicitly
delineate here. We categorize these Hamiltonians as quantum integrable. These include equal
slope, bow-tie, and generalized bow-tie models. As a byproduct of this study we construct a
new family of integrable matrices quadratic in t. Then we have another type of Hamiltonians
for which the LZ problem reduces to the ×2 2 case. These descendants of the ×2 2 LZ
Hamiltonian as well as the ×2 2 LZ Hamiltonian itself are considered to be trivially
integrable as we explain below. For example, we derive solutions of the following LZ
problems from the ×2 2 one: general SU(2) and SU(1, 1) LZ Hamiltonians, time-dependent
linear chain, linear oscillator, as well as double and nonlinear oscillators (see below). Similar
to the ×2 2 case, other integrable LZ Hamiltonians produce hierarchies of solvable des-
cendants through the same procedure. Thus we conjecture quantum integrability is a
necessary condition for LZ solvability. Integrability therefore can be used as a preliminary test
for identifying new LZ solvable Hamiltonians. We must clarify that a sufficient condition for
LZ solvability is still unknown and might be more restrictive, i.e. contain additional
requirements besides integrability.

Unlike classical integrability the quantum counterpart is a nebulous concept, where
different criteria are commonly used and often it is not easy to correlate any two of them [14].
Here we adopt the approach of [15–20] and define a Hermitian matrix H t( ) that depends
linearly on a parameter t (e.g. time, interaction strength, external field etc) to be integrable if it
has at least one nontrivial commuting partner polynomial in t. Suppose =I t H t[ ( ), ( )] 0 and
I t( ) is a matrix polynomial in t of order p. We say that I t( ) is nontrivial if it cannot be
expressed in terms of powers of H t( ) no higher then p, i.e. ∑≠

=
I t c t H t( ) ( ) ( )

k

p
k

k
0

, where

c t( )k are (scalar) polynomials in t. From equation (1) we see that the Hamiltonian in the
multistate LZ problem is linear in t and so this definition for quantum integrability is quite
appropriate for our purpose. In our paper for each of the exactly solvable LZ models we stop
after finding nontrivial polynomial commuting partner of the lowest possible order and we
never had to go beyond quadratic parameter dependence. This however does not rule out
existence of even higher order nontrivial polynomial commuting partners. This definition of
quantum integrability has also been linked with other well known hallmarks of quantum
integrability, such as Yang–Baxter equation, Poisson level statistics and energy level cross-
ings [20]. Let us also note that =I t H t[ ( ), ( )] 0 does not imply conservation of I t( ) in time
due to its explicit time dependence.
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We start with the equal slope model. The Hamiltonian in N dimension is [10, 11]
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Here and in bow-tie and generalized bow-tie models below we assume ≠p 0i and ≠r ri j for
all ≠i j. We show that this Hamiltonian has maximum possible number of linearly
independent commuting partners linear in t and thus belongs to the maximal family of
commuting Hamiltonians linear in a parameter constructed in [16, 17].

Another finite dimensional LZ Hamiltonian that can be solved is the bow-tie model [12]
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We show that this Hamiltonian does not possess any nontrivial linear commuting partners but
has quadratic ones for dimensions ×4 4 and above. In this paper we explicitly write down the
general quadratic commuting partner. By counting the number of independent parameters one
can show that the number of linearly independent quadratic commuting partners equals to N,
the dimension of the Hamiltonian. This number includes multiples of H t( )2 , H t( ), and the
identity matrix and therefore in the ×3 3 case nontrivial quadratic commuting partners are
absent. We determine all quadratic matrices that commute with the bow-tie Hamiltonian and
each other, thus constructing an integrable family with only one linear and the maximum
number of quadratic commuting matrices.

Demkov and Ostrovsky [13] considered the following generalized version of the bow-tie
model:

ε
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Unlike the bow-tie case, where only one level interacts with the rest of the levels; in the
generalized bow-tie case two levels interact with the rest. In both bow-tie and generalized
bow-tie case the rest of the levels do not interact. One must also notice that in the case of
generalized bow-tie Hamiltonian the two special levels do not interact with each other either.
We show that this Hamiltonian possesses a nontrivial linear commuting partner, which we
explicitly construct. In addition, using the counting technique mentioned earlier we show that
there can only be one nontrivial linear commuting partner. Hence we call this to be a member
of the minimal linear commuting family.

Next, we turn our attention to other solvable models. It can be shown that a general ×2 2
LZ Hamiltonian can be written as σ σ= +H t

g t
( )

2 2
x z by adding a multiple of identity and
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performing a t-independent unitary transformation, where σ σ,x y and σz are the three Pauli
matrices. These transformations affect only the overall phase of Ψ t( ) and so they have no
effect on the transition probabilities [11]. This case was originally considered and solved
explicitly by Landau and Zener. However, if we consider the vector space of ×2 2 matrices
that commute with H t( ) and are linear in t, the only possible linearly independent elements
are the Hamiltonian and multiples of the identity. Moreover, in section 2 we present a general
argument proving that a nontrivial polynomial commuting partner of degree p will only come
to exist from dimension + × +p p( 2) ( 2) onward. Evidently then in the ×2 2 case non-
trivial commuting partners are impossible and so we claim this case to be trivially integrable.
Similarly, the ×3 3 bow-tie Hamiltonian in addition to having no linear in t commuting
partners cannot also have quadratic ones, unlike bow-tie Hamiltonians of higher dimensions.
Thus we consider it to be the trivial member among linear Hamiltonians with quadratic
commuting partners.

One can generalize the ×2 2 LZ problem by considering the Hamiltonian
= +H t gS tS( ) x z, where S S,x y, and Sz are the x, y, and z components of a general SU(2) spin

operator. The time evolution operator for this Hamiltonian can be expressed in terms of spin
operators in a representation independent manner, so that having solved the problem in one
(e.g. ×2 2) representation we automatically obtain the evolution operator for all repre-
sentations. In order to write all the transition probabilities explicitly, one additionally requires
the matrix elements of the Wigner matrix for SU(2) which are readily available [21]. Using
these properties of the underlying Lie algebra, Hioe solved the general SU(2) LZ
problem [22]. Since this problem directly descends from the ×2 2 case through a well-
defined general procedure, we group them together and consider the general SU(2) problem
trivially integrable as well. Various limits of the SU(2) problem also generate solvable LZ
Hamiltonians in the same trivially integrable ×2 2 class. For example, the large spin limit
yields a driven harmonic oscillator with a time dependent frequency [23]

= + +( )H t ta a g a a( ) , (5)o o
† †

where a† (a) is the particle creation (annihilation) operator and we denote the coupling
constant as go to distinguish it from that in the spin Hamiltonian. A further limit of large
occupancy transforms the oscillator into a time dependent linear chain [24]

∑= + + +
=−∞

∞ ⎡⎣ ⎤⎦( )H t nt n n g n n( ) 1 c.c. , (6)
n

lc lc

in Dirac bra-ket notation. Again, to separate the coupling constant from the above two cases,
we have denoted it as glc. To illustrate the descendant generation procedure, we explicitly
derive the LZ transition probabilities for both these models as well as the general SU(2)
Hamiltonian from the known solution of the ×2 2 LZ problem.

One can also express the ×2 2 LZ Hamiltonian in terms of the SU(1, 1) algebra as

= −H t tK ıgK( ) 0 1, where
σ σ

= =K K ı
2

,
2

z x
0 1 and

σ
=K ı

2

y
2 are the generators of the two-

dimensional non-unitary representation of SU(1, 1) [25, 26]. Similar to the SU(2) general-
ization, we promote K K,0 1, and K2 to any other SU(1, 1) representation and solve the
resulting LZ problem. For example, two well-known realizations of the SU(1, 1) algebra are
the one mode (nonlinear oscillator) and two-mode (double oscillator) realizations. The first
one leads to the following LZ problem:
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And the two-mode realization results in [23]

= + +( )H t ta a g a b ab( ) ˜ , (8)† † †

where a† (a) and b† (b) are independent bosonic creation (annihilation) operators. We obtain
transition probabilities for both these LZ problems through the same procedure as in the SU
(2) case using known formulas for the Wigner–Bargmann matrix elements [25, 27–30]. These
and other SU(1, 1) descendants of the basic ×2 2 LZ problem therefore also belong to the
same trivially integrable class. We emphasize that ‘trivially integrable’ only means that any
polynomial commuting partner must reduce to a combination of the Hamiltonian and identity
and does not imply that the corresponding LZ problem is somehow obvious or unimportant.
Equivalently, one can say that any ×2 2 Hamiltonian linear in a parameter belongs to the
maximal integrable family consisting of itself and identity. This is similar to one-dimensional
Hamiltonian systems in classical mechanics, which are all integrable because there is one
degree of freedom and one integral of motion—the Hamiltonian itself.

This method of producing LZ solvable descendants can in principle be applied to any
other solvable LZ matrix Hamiltonian [31]. Consider, for example, the ×3 3 bow-tie
Hamiltonian. It can be expressed as a linear combination of Gell-Mann matrices from the
fundamental representation of the SU(3) algebra. In the same way as the ×2 2 LZ problem is
extended to an arbitrary SU(2) spin, one can replace the ×3 3 SU(3) matrices in the bow-tie
Hamiltonian with corresponding higher dimensional ones. The result is a new exactly sol-
vable LZ problem. The general time evolution operator follows directly from the ×3 3 bow-
tie LZ problem similar to the SU(2) case discussed above. Now with the help of the formula
for a general Wigner matrix element for SU(3) group [32] one can determine the transition
probabilities for the generalized problem. Higher dimensional equal slope, bow-tie and
generalized bow-tie Hamiltonians can be similarly written as linear combinations of gen-
erators of some SU L( ) algebra, where >L 3, and thus generalized to higher dimensions at
least in principle.

The rest of the paper is organized as follows. In section 2 we give a brief review of
quantum integrability. We consider an example when all the commuting partners are linear in
a real parameter in more detail. In sections 3–5 we address equal slope, bow-tie, and gen-
eralized bow tie models, respectively. For each of these models we explicitly construct
commuting real-symmetric operators that are either linear (for equal slope and generalized
bow-tie cases) or quadratic (for bow-tie case) in t. We take up the generalized spin and related
cases and argue that they are ‘trivially’ integrable in section 6.

2. Integrable parameter dependent matrices

In classical mechanics a Hamiltonian with n degrees of freedom is said to be integrable if it
has n (maximum possible number) nontrivial integrals of motion—independent functions of
generalized coordinates and momenta that Poisson commute with the Hamiltonian and among
themselves. Then the Hamilton–Jacobi equation is completely separable, equations of motion
are exactly solvable, and the motion is constrained to an invariant torus [33]. However, it is
well known that a direct import of this definition to the realm of quantum mechanics is
fraught with severe difficulties. Main obstacles are that there are no natural well-defined
notions of a nontrivial integral and of the number of degrees of freedom, see e.g. [20] for
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further discussion. The latter issue is especially problematic for a quantum system living in a
finite dimensional Hilbert space.

A possible resolution of these difficulties was proposed in [16–20]. It was observed that
in many exactly solvable condensed matter models, such as 1D Hubbard, XXZ, Richardson
and Gaudin models, the Hamiltonian depends linearly on a certain parameter, typically an
interaction or an external field strength. Let us therefore consider an abstract Hamiltonian of
the form = +H u T uV( ) , where T and V are ×N N Hermitian matrices and u is a real
parameter. In the LZ problem we identify u = t or =u bt in the equal slope model. For
generic T and V, e.g. two randomly generated such matrices, the only Hermitian matrix
similarly linear in u that commutes with H u( ) is + +a bu cH u( ) ( ), where a b, and c are
real numbers and  is the identity matrix. We identify this as the trivial commuting partner. It
turns out that the requirement that H u( ) has a nontrivial commuting partner is a very
restrictive one, so that the set of H u( ) with at least one such nontrivial integral of motion is of
measure zero among Hermitian matrices of the form +T uV .

A Hamiltonian matrix = +H u T uV( ) is said [17, 19] to belong to a linear family of
integrable matrices if it has ⩾n 1 nontrivial partners linear in u that commute with H u( ) and
each other and, in addition, have no common u-independent symmetry. The last condition
means that there is no Hermitian u-independent matrix that commutes with H u( ) and all its
integrals of motion. Whenever common u-independent symmetries are present, the Hamil-
tonian and its commuting partners can be simultaneously block-diagonalized resulting in a
commuting set of smaller matrices until all such symmetry is exhausted. This definition
naturally leads to a classification of linear integrable matrices according to the number n of
nontrivial integrals. It turns out that the maximum possible number is = −n N 2, so n ranges
from 1 to −N 2 and the ×2 2 case is trivial as we already commented above.

Remarkably, from this definition alone all linear integrable models with
= − −n N N2, 3, −N 4 as well as a certain class of models with any other allowed number

of nontrivial commuting partners were constructed explicitly in [17, 19]. Moreover, all these
models turn out to be exactly solvable and exhibit Poisson level statistics and energy level
crossings, even when there is only a single commuting partner. We believe this justifies the
name ‘integrable’ at least for these models even when there are only a few integrals.
Apparently fixing the parameter dependence in the Hamiltonian and its commuting partners
has powerful consequences.

As an example relevant to the present paper, consider the maximal family of commuting
matrices linear in u, i.e. = −n N 2. Counting the Hamiltonian itself and the identity matrix,
these are N mutually commuting ×N N matrices of the form = +H u T uV( )i i i , i.e.

=H u H u[ ( ), ( )] 0i j for all i j, , and u. In the shared eigenbasis of Vi any maximal family can
be explicitly parametrized as follows [17]

∑

γ γ

ε ε

γ
ε ε

γ

ε ε

=
−

≠

= −
−

≠

= −
−≠

[ ]

[ ]

[ ]

H u i j

H u i j

H u u

( ) , ,

( ) , ,

( ) , (9)

i ij

i j

i j

i jj
i

i j

i ii
j i

j

i j

2

2

where γ ,i and εi are arbitrary real parameters. The above matrix can also be written in the bra-
ket notation as follows:
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∑
γ γ γ γ γ γ

ε ε
= +

+ − −

−≠

H u u i i
i j j i i i j j

( ) . (10)i

j i

i j i j j i

i j

2 2

There is a certain ‘gauge freedom’ in the choice of the parameters. In particular, we can factor
out an overall scale in γi and apply a constant shift to all εi, e.g. we can set one of the γi to 1
and one of the εi to 0. A general Hamiltonian that is a member of this commuting is an

arbitrary linear combination, ∑=
=

H u d H u( ) ( )
i

N
i i1

.
The above notion of an integrable matrix naturally generalizes to include commuting

partners with a polynomial dependence on the parameter. In the present paper we call an
×N N Hermitian = +H u T uV( ) integrable if it has at least one nontrivial Hermitian

commuting partner I u( ) that is a matrix polynomial in the real parameter u of order
⩽ −p N 2 and if H u( ) and I u( ) have no common u-independent symmetry. As already

mentioned above, nontriviality means that I u( ) cannot be expressed in terms of powers of

H u( ) no higher then p, i.e. ∑≠
=

I u c u H u( ) ( ) ( )
k

p
k

k
0

, where c u( )k are scalar polynomial
functions of u.

The restriction on the order of I u( ) stems from the observation that as long as the matrix
V is nondegenerate, commuting partners of order in u higher then −N 2 are either trivial or
reduce to lower order polynomials. Let us demonstrate this in the ×3 3 case. The statement in
this case is that a quadratic commuting matrix = + +∼ ∼

I u T uV u Q( ) 2 is either trivial or
reduces to a linear one. Indeed, =I u H u[ ( ), ( )] 0 implies = =Q V Q V[ , ] [ , ] 02 , i.e. we can
simultaneously diagonalize Q V, , and V2. There are at most three linearly independent
diagonal ×3 3 matrices and , V, and V2 are a complete set if V is nondegenerate. It follows
that α β γ= + +Q V V2 , where α β γ, , are real numbers. Now consider

α β γ′ = − − −I u I u H u H u( ) ( ) [ ( )] ( )2 . By construction the quadratic dependence cancels
out in ′I u( ), so it is linear in u and commutes with H u( ) thus proving our statement.
Similarly, in the general ×N N case commuting matrices of order −N 1 or higher in u
reduce to those of order −N 2 or lower. The restriction on the order in u in our definition of a
nontrivial integral eliminates this redundancy. Thus, a nontrivial commuting partner of degree
p can exist only for dimensions + × +p p( 2) ( 2) and higher. In particular, the ×2 2 case is
trivial and in ×3 3 one can have at most linear in u integrals.

The classification of linear integrable matrices discussed above, can be extended to
include families with polynomial dependence on the parameter. For example, families with
both linear and quadratic matrices are labeled as r s( , ), where r and s are the numbers of
nontrivial independent linear and quadratic commuting matrices, respectively. We define s so
that it cannot be reduced by combining quadratic members with squares of linear ones. In this
notation the maximal (having in total −N 1 nontrivial linear commuting members) family is
designated as −N( 1, 0) as it can be shown that there are no independent quadratic com-
muting partners. And, as we will see below, the bow-tie Hamiltonian belongs to an −N(1, 3)
family. This family contains a single linear matrix, the Hamiltonian itself, and −N( 3)
nontrivial quadratic commuting partners.

Finally, note that we can take pi to be real (and nonnegative) in Hamiltonians (2)–(4) of
the equal slope, bow-tie, and generalized bow-tie models without loss of generality. The
Hamiltonians then become real symmetric. Indeed, suppose = ∣ ∣ θ−p p ek k

ı k. Consider the

following t-independent unitary transformation  ′ =H t H t( ) ( )† , where
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It can be seen that for equal-slope and bow-tie Hamiltonian, if we take θ = 01 , the unitary
transformation introduced above gets rid of the phases of the matrix elements . Similarly by
choosing θ θ= = 01 2 , one can make all the matrix elements in the generalized bow-tie model
real. Since a t-independent unitary transformation only changes the overall phase of the wave-
functionΨ t( ) leaving the transition probabilities intact [11], for the purpose of solving the LZ
problem one can consider the real symmetric Hamiltonians without any loss of generality.
Such a transformation also does not affect the commutation relations and the t-dependence of
any polynomial commuting partners.

Moreover, assuming pi and ri to be distinct among themselves, commuting partners for
each of the above models must also be real symmetric in the same basis where the model
Hamiltonian H t( ) is real symmetric. This is a consequence of the fact that, as we show below,
the spectra of H t( ) are nondegenerate except at a finite number of values of t and of the
following lemma. A polynomial Hermitian commuting partner of a real symmetric Hamil-
tonian H t( ) with degeneracies only at a finite number of points =t ti is real symmetric.
Indeed, =H t I t[ ( ), ( )] 0 guarantees both H t( ) and I t( ) can be diagonalized in a common
basis. The matrix  that diagonalizes H t( ) is unique and orthogonal (rather than general
unitary) except maybe at a few values of t. I t( ) is diagonal in the same basis, so it is
diagonalized by the the same orthogonal matrix , i.e.   =I t I t( ) ( )T

d , where I t( )d is a
diagonal real matrix. Now one can use the inverse orthogonal transformation to get I t( ) back
from I t( )d , i.e.   =I t I t( ) ( )T

d , which is real except maybe at =t ti. Thus, I t( ) is a matrix
polynomial in t that is real at infinitely many values of t. It follows that I t( ) is real symmetric.

3. Equal slope model

In this section we show that the equal slope model (2) is of the form of equation (9). It thus belongs
to the maximal linear family and has the maximum possible number of nontrivial linear com-
muting partners. Identifying =u bt, we rewrite the ×N N equal slope Hamiltonian as follows:

=

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
H u

u p p

p a

p a

( )
0

0

. (12)

N

N N

2

2 2

On the other hand, i = 1 element of the maximally commuting linear family (9) reads

∑
γ

ε ε
γ γ

ε ε
γ γ

ε ε

γ γ
ε ε

γ
ε ε

γ γ
ε ε

γ
ε ε

=

−
− −

⋯
−

−
−

−
⋯

⋮ ⋮ ⋱ ⋮

−
⋯ −

−

≠

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

(13)H u

u

( ) 0

0

.

j

j

j

n

n

n

n n

1

1

2

1

1 2

1 2

1

1

1 2

1 2

1
2

1 2

1

1

1
2

1
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We see that the equal-slope Hamiltonian has the same matrix structure as H u( )1 in
equation (13). Now all one has to do is to determine suitable values for γi and εi such that
matrix elements of equation (13) map to matrix elements in equation (12). Using the gauge
freedom explained below equation (9), we choose γ = 11 and ε = 01 . We expect

= +H u H u x( ) ( )1 , i.e.

∑
γ

ε
γ
ε

γ
ε

γ
ε ε

γ
ε ε

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

=

+ + − ⋯ −

− + ⋯

⋮ ⋮ ⋱ ⋮

− ⋯ +

≠⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

u p p

p a

p a

u x

x

x

0

0

1
0

0
1

. (14)

N

N N

j

j

j

N

N

N

N N

2

2 2

1

2
2

2

2

2 2

To achieve a one-to-one correspondence between the matrix elements, we need

ε
+ = = …x a i N a

1
, 2, , , (15 )

i
i

∑
γ

ε
+ =

=

x b0, (15 )
j

n
j

j2

2

γ
ε

= − = …p i N c, 2, , . (15 )i

i
i

Equations (15a) and (15c) obtain

ε

γ

=
−

= ⋯

=
−

= ⋯

a x
i N

p

x a
i N

1
, 2, , ,

, 2, , . (16)

i
i

i
i

i

Substituting equation (16) into equation (15b), we find the following algebraic equation for x:

∑=
−=

x
p

x a
. (17)

i

N
i

i2

2

All N roots of equation (17) are real. This is seen by e.g. plotting both sides of this equation
taking into account that the right-hand side varies from −∞ to ∞ between any two
consecutive poles at =x ai. Plugging the value of x into equation (16), we get a set of γi and εi

that map equal slope Hamiltonian into one of the members of the maximally commuting
family, rendering equal slope case quantum integrable.

Note also that in the limit → ∞t the first term on the right-hand side of equation (2) is
negligible and H t t( ) has an apparent −N 1-fold degeneracy. This is interpreted as a multiple
level crossing violating the Wigner—von Neumann noncrossing rule—one of the tell-tale
signs of quantum integrability [17].
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4. Bow-tie model

In this section we consider the bow-tie model defined by equation (3). Ostrovsky and
Nakamura explicitly constructed the solution to the LZ problem for this Hamiltonian [12]. We
show that this model is member of a −N(1, 3) integrable family that consists of a single
linear (the bow-tie model itself) and −N 3 nontrivial quadratic commuting matrices, which
we explicitly construct. Nontrivial quadratic partners only start to exist from dimensions

×4 4.
Let us redefine the real parameter →t u in equation (3), i.e. = +H u T uV( ) , where

=

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

=

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
T

p p

p

p

V
r

r

0

0 0

0 0

,

0 0 0
0 0

0 0

. (18)

N

N N

2

2 2

The energy values E( ) of this Hamiltonian satisfy the following characteristic equation:

∑=
−=

E
p

E ur
. (19)

k

N
k

k2

2

The right-hand side of the above equation has poles at urk , where = …k N2, , and since all
the rkʼs are different, for ≠ ±∞u 0, all the poles are different as well. Now by plotting the
above equation and keeping in mind that the right-hand side varies from −∞ to ∞ between
any two consecutive poles at =E urk, one can see that the equation (19) has N distinct real
roots. Thus using the lemma proven at the very end of section 2 one expects all the
polynomial commuting partners of bow-tie Hamiltonian to be real symmetric.

Also we see from equations (19) and (18) that for this model at u = 0 the eigenvalue 0 is
−N( 2)-fold degenerate. Thus we have at least one level-crossing at u = 0 for dimensions

×4 4 and higher in the absence of any u-independent symmetry (see below), which is at odds
with the Wigner—von Neumann noncrossing rule [15, 34]. The smoking gun for quantum
integrability according to our definition however is the existence of a nontrivial commuting
partner that depends on the real parameter of the model in a polynomial fashion. We restrict
ourselves to finding such polynomial commuting partners of minimum degree.

4.1. Linear commuting partner

Here we show that the bow-tie Hamiltonian does not possess nontrivial linear commuting
partners. We have already stated that the first nontrivial partner, which is quadratic and not
linear, appears from the ×4 4 case. First, let us show that there is no u-independent sym-
metry, i.e. no Hermitian Ω ≠ a that commutes with H u( ) for all u. Indeed, Ω =H u[ , ( )] 0
for all u means Ω Ω= =T V[ , ] [ , ] 0. It follows that Ω is diagonal in the same basis where V
is diagonal and H u( ) takes the form of equation (18). In this basis the commutation relation
Ω =T[ , ] 0 obtains Ω Ω− =p ( ) 0i ii11 , which implies Ω Ω= ≡ aii 11 and therefore Ω = a .

A general linear commuting partner can be written as

= +∼ ∼
I u T uV( ) . (20)

The existence of a linear commuting partner entails =H u I u[ ( ), ( )] 0. Equating all the
coefficients of u to zero we get the following commutation relation:
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= = =∼ ∼∼ ∼⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦T V T V T T V V, , , , , 0. (21)

We notice that if we consider a special basis where V and
∼
V are simultaneously diagonal (we

call it the ‘diagonal basis’), one of the commutation relations =∼
V V([ , ] 0) is automatically

satisfied.
Our task is to determine

∼
T and

∼
V from equations (21). Let us denote the matrix elements

as = ∼
v Vk kk and = ∼

t Tkm km, where k and m range from 1 to N. There are thus + +N N N( 1) 2
unknowns. Equation (21) become

∑− + =
≠

p t t p t a( ) 0, (22 )i ii

m i
m im11

,1

− =p t p t b0, (22 )j j2 1 12

− =p v v t r c( ) , (22 )i i i i1 1

− =t r r d( ) 0, (22 )ij i j

where >i 1 and >j 2. There are + + −N N N( 1) 2 3 linearly independent equations, i.e. 3
less then the number of unknown matrix elements. Any three variables can be treated as
arbitrary parameters and the rest of them can be expressed in terms of those arbitrary
parameters. If one considers t t,11 12 and v1 to be the arbitrary parameters, equations (22) result
in

=t t a, (23 )ii 11

=t
p

p
t b, (23 )i

i
1

2
12

= +v
r

p
t v c, (23 )i

i

2
12 1

=t d0. (23 )ij

Next, we need to check whether the linear commuting partner given by equation (23) is
nontrivial. A trivial partner is of the form

α β γ= + +I u u H u( ) ( ) ( ). (24)

If the derived commuting partner is trivial, α β, and γ in equation (24) should have a unique
solution in terms of t t,11 12 and v1. For this case we can indeed obtain such a unique solution.
Specifically,

α β γ= = =t v
t

p
, , . (25)11 1

12

2

This means the commuting partner that we have found is a trivial one. Thus we conclude that
the bow-tie Hamiltonian in general does not have a nontrivial linear commuting partner.

4.2. Quadratic commuting partner

In this section we construct all nontrivial quadratic commuting partners for the bow-tie
Hamiltonian. A general quadratic commuting partner can be written as

= + +∼ ∼
I u T uV u Q( ) . (26)2
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Now in order for I u( ) to commute with = +H u T uV( ) we need

= = = =∼ ∼∼ ∼⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦T T T V T V T Q V V V Q, 0, , , , [ , ] , , [ , ] 0.

(27)

Unlike in the linear case as shown in equation (21), the commutation relations imply that we
can achieve simultaneous diagonalization of V and Q. So for the quadratic commuting partner
we designate the shared eigenbasis of Q and V to be the ‘diagonal basis’.

Our task is to determine I u( ). In the diagonal basis we only have to resolve the first three
commutation relations in equation (27). Let = =∼ ∼

t T v V,km km km km, and =q Qkk kk. Writing out
the commutation relations explicitly we get the following set of linearly independent
equations:

− =v r r a( ) 0, (28 )ij j i

∑− + =
≠

p v v p v b( ) 0, (28 )i ii

m i
m im11

,1

= −v r p q q c( ), (28 )i i i ii1 11

− =p t p t d0, (28 )j j2 1 12

− = −t r r p v p v e( ) , (28 )ij i j i j j i1 1

∑− + =
≠

p t t p t f( ) 0, (28 )i ii

m i
m im11

,1

where >i 1 and >j 2. It can be shown that for an ×N N dimensional case, one has
+N N22 variables whereas the commutation relations give rise to only + −N N 32 linearly

independent equations. So in general we have an under-determined system and the difference
between the number of variables and the number of independent linear equations is +N 3.
Treating …t t v q q, , , , , NN11 12 11 11 to be arbitrary parameters, from (28) one obtains

=v a0, (29 )ij

= +v
r

p
t v b, (29 )ii

i

2
12 11

= −v
p

r
q q c( ), (29 )i

i

i
ii1 11

=t
p

p
t d, (29 )j

j
1

2
12

=
−

−
−

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t

p p

r r

q q

r

q q

r
e, (29 )ij

i j

i j

ii

i

jj

j

11 11

∑= −
−

−
−

−

≠

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥t t

p

r r

q q

r

q q

r
f. (29 )ii

m i

m

m i

mm

m

ii

i
11

2
11 11

Note that t11 and v11 on the right-hand side add multiples of the identity matrix to I u( ), while
terms involving t p12 2 add a multiple of the Hamiltonian. Equation (29) in the bra-ket notation
reads
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∑ ∑

∑

∑∑

= + + +

+ −
−

−
−

−

+ − +

+
−

−
−

−
+

= ≠

=

= =
<

⎪ ⎪
⎪ ⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

I u t uv
t

p
H u u q

u q
p

r r

q q

r

q q

r
i i

u
p

r
q q i i

p p

r r

q q

r

q q

r
i j j i

( ) ( ) ( ) 1 1

( )( 1 1 )

( ). (30)

i

N

ii
m i

m

m i

mm

m

ii

i

i

N
i

i
ii

i

N

j

N
i j

i j

ii

i

jj

j

11 11
12

2

2
11

2

2
2

11 11

2
11

2 3

11 11

i j

Similar to the linear case, we need to check whether I u( ) is trivial or not. We remind
ourselves the form of the trivial quadratic commuting partner

α β γ δ ε ϕ= + + + + +( )I u u u u H u H u( ) ( ) ( ) ( ). (31)2 2

In order for the solution in equation (29) to be trivial we should be able to solve for
α β γ δ ε, , , , and ϕ in terms of the parameters of the system …t t v q q, , , , , NN11 12 11 11 . Since
there are +N 3 equations and six unknowns, for >N 3 the system is overdetermined and it is
impossible to find a solution. This proves that the derived quadratic commuting partner is
nontrivial.

In fact, equation (30) defines an integrable family that consists of N linearly independent
quadratic real symmetric matrices and a single linear member— ×N N bow-tie Hamiltonian
—that all mutually commute. To get the kth quadratic member of the family, I u( )k , we set

=q 1kk and the rest of qʼs to zero. Also subtracting + +t uv
t

p
H u( ) ( )11 11

12

2

and multiplying

by rk for >k 1, we obtain

∑ ∑

∑∑

= − + +

+ +

= ≠

= =
<

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥I u u u

r
p i i

p

r
i i

p p

r r
i j j i a

( ) 1 1
1

( 1 1 )

( ), (32 )

i

N

i
i

m i

m

m

i

N

j

N
i j

i j

1
2

2

2

2 3
i j

∑

= + +

+
+ − −

−
⩾

≠

I u u r k k up k k

p i i p k k p p k i p p i k

r r
k b

( ) ( 1 1 )

( )
, 2. (32 )

k k k

i k

k i k i i k

i k

2

1,

2 2

This is the maximum possible number of quadratic commuting partners a linear Hamiltonian
can have and any other such real symmetric matrix is a linear combination of I u( )k . Out of N
commuting partners I u( )k we count −N 3 nontrivial ones because there are three additional
matrices, u uH u, ( )2 , and H u( )2 , quadratic in u that commute with I u( )k and the
Hamiltonian. This is consistent with the counting below equation (31),

− = + −N N3 ( 3) 6. Specifically, we have the following three linear combinations of
I u( )k :
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 ∑ ∑ ∑ ∑= = − + =
= = = =

I u uH u r I u H u p I
I u

r
u( ) ( ), ( ) ( ) ,

( )
. (33)

k

N

k

k

N

k k

k

N

k
k

N
k

k2 2

2

2

2
1

2

2

Note that the ×3 3 bow-tie Hamiltonian does not have any nontrivial polynomial
commuting partners. There are no linear partners and higher order ones are always trivial in
three dimensions as explained above. For example, in this case one can express each of the
quadratic partners I u( )1 , I u( )2 , and I u( )3 in terms of H u( ), H u( )2 , and . The ×3 3 bow-tie
model also does not map to a spin-1 LZ problem of the form +gS tSx z and therefore does not
reduce to the ×2 2 LZ Hamiltonian. It however admits the same parametrization as higher-
dimensional bow-tie Hamiltonians and thus can be regarded as a trivial member of the
maximal quadratic family. In the same way any ×2 2 LZ Hamiltonian is a trivial member of
the maximal linear family because it can be written as +d H u d H u( ) ( )1 1 2 2 up to a multiple of
identity, where H u( )1 and H u( )2 are given by equation (10) for N = 2. Similarly one can have

×4 4 trivial members of maximal cubic commuting family etc.

5. Generalized bow-tie model

In this section we consider the generalized bow-tie model (4), the LZ problem for which was
solved by Demkov and Ostrovsky [13]. We show that this model has a single nontrivial linear
commuting partner and therefore belongs to the minimal commuting linear family. Redefining
t in equation (4) as u, we write = +H u T uV( ) , where

ε

ε

=

⋯

− ⋯

⋯
⋮ ⋮ ⋮ ⋱ ⋮

⋯

=

⋯
⋯
⋯

⋮ ⋮ ⋮ ⋱ ⋮
⋯

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
T

p p

p p

p p

p p

V r

r

2
0

0
2

0 0

0 0

,

0 0 0 0
0 0 0 0
0 0 0

0 0 0

. (34)

N

N

N N

N

3

3

3 3

3

Eigenvalues E of this Hamiltonian obey the following equation:

∑ε= +
−=

E
E

p

E ur4
. (35)

k

N
k

k

2

3

2

The right-hand side of the above equation has poles at E = 0 and =E urk, for = …k N3, , .
Again if all rkʼs are different and none of them are equal to zero, following the same argument
as that below equation (19), one can deduce that for ≠ ±∞u 0, all the roots of equation (35)
are real and distinct. Once again invoking the lemma proven at the end of section 2, we
conclude that all polynomial commuting partners of the generalized bow-tie Hamiltonian are
real symmetric in the basis of equation (34).

Considering the Hamiltonian matrix at u = 0, one can show that the eigenvalue 0 is
−N( 2) fold degenerate. Therefore, for ⩾N 4 the energy levels cross at u = 0 in the absence

of any u-independent symmetry (which can be proven using the same argument as that for the
bow-tie case) in violation of the Wigner—von Neumann non-crossing rule. The ×3 3 gen-
eralized bow-tie Hamiltonian is identical to one of the members in the ×3 3 maximally
commuting linear family (H u( )3 in our notation), and so is integrable. It should be noted that
for N = 3 a linear Hamiltonian can only have one nontrivial linear commuting partner, i.e. the
maximal and minimal commuting linear families coincide. After seeing all these indications
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one justifiably asks whether generalized bow tie model is integrable for all dimensions, just
like previously discussed equal-slope and bow-tie models.

As was done for the equal-slope case, first we try to write the generalized bow-tie
Hamiltonian as a linear combination of the family members of the maximally commuting
linear family. We start by writing out the ×4 4 Hamiltonian in full as

ε

ε
= − +

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
H u

p p

p p

p p

p p

u r

r

( )

2
0

0
2

0 0

0 0

0 0 0 0
0 0 0 0
0 0 0
0 0 0

. (36)

3 4

3 4

3 3

4 4

3

4

It can be shown that

≠ + +H u r H u r H u x( ) ( ) ( ) , (37)3 3 4 4

where x is a real number and H u( )3 , H u( )4 are the members of the maximally commuting
family defined in equation (10). This proves the ×4 4 generalized bow-tie model does not
belong to the maximally commuting family. The same applies to >N 4.

Now we adopt an approach similar to the one for finding out nontrivial commuting
partners of the bow-tie Hamiltonian. The general linear commuting partner, if it exists, can be
written as in equation (20). Denoting the matrix elements as = ∼

v Vk kk and = ∼
t Tkm km, where k

and m range from 1 to N, we obtain from equation (21)

∑ε + − =
=

t p t t a( ) 0, (38 )
m

N

m m m12

3

2 1

∑ε + − − + =
≠

t p t t t p t b
1

2
( ) 0, (38 )i i ii

m i
m im1 11 12

∑ε− + − − + =
≠

t p t t t p t c
1

2
( ) 0, (38 )i i ii

m i
m im2 22 12

+ − + =( )p t t p t t d( ) 0, (38 )j i i i j j1 2 1 2

− =t r r e( ) 0, (38 )ij i j

− =p v v t r f( ) , (38 )i i i1 1 3

− =p v v t r g( ) , (38 )i i i2 2 3

where >i 2 and >j 3. Not all of the above equations are independent. Equation (38d) is
linearly dependent on equations (38b) and (38c). Also equation (38d) (via equations (38f) and
(38g)) imposes the following constraints on vkʼs

= − + = − + = ⋯ = − +[ ] [ ] [ ]v
r

v v v
r

v v v
r

v v v
1

2 ( )
1

2 ( )
1

2 ( ) , (39)
N

N
3

3 1 2
4

4 1 2 1 2

where we treat v as an arbitrary real number.
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Equations (38) and (39) yield the solution for the commuting partner

∑
ε

=
−

=

t
v v p

r
a, (40 )

m

N
m

m
12

2 1

3

2

∑ε ε
ε

= − + − − +
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t t v v v

r

p

r
b

4
( )

4

1
, (40 )ii

i m

N
m

m
11 2 1

3

2

ε= − +t v t c
2

, (40 )22 11

= +
−

⎜ ⎟
⎛
⎝

⎞
⎠t

p

r

vr v v
d

2 2
, (40 )i

i

i

i
1

2 1

= −
−

⎜ ⎟
⎛
⎝

⎞
⎠t

p

r

vr v v
e

2 2
, (40 )i

i

i

i
2

2 1

=t f0, (40 )ij

= +
+

v
r v v v

g
2 2

. (40 )i
i 1 2

One can now collect all the matrix elements in a single equation using bra-ket notations as
follows

∑

∑

∑

∑

ε

ε

ε

ε
ε

= + + − +

+
−

+

+ + + + −

+ − − +

+ + − +

+ + − +

=

=

=

=

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

[

]

I u t uv t
v

uv

v v p

r

u
vr v v t

v

v v
r

p

r
i i

p

r
vr v v i i

vr v v i i

( ) ( ) 1 1
2

2 2

( 1 2 2 1 )

2
( )

4

( )
4

1

2
( )( 1 1 )

( )( 2 2 ) . (41)

m

N
m

m

i

N

i

i m

N
m

m

i

N
i

i
i

i

11 1 11 2

2 1

3

2

3

1 2 11

2 1

3

2

3

2 1

1 2

There are + −N N( 2 3 2) 42 independent linear equations for +N N( 2 3 2)2

unknowns in equation (38). We are left with four free parameters, which we choose to be
t v v, ,11 1 2, and v in equation (40). Following the argument outlined below equation (31), we
see that there is a single nontrivial commuting partner in equation (40). The remaining free
parameters correspond to combining this partner with multiples of the Hamiltonian and the
identity. Thus the ×N N generalized bow-tie Hamiltonian belongs to a minimal commuting
linear family. We simplify the commuting partner by setting = = =v v v1, 1, 02 1 and
subtracting − + +ε t t( )v

2 11 12 in equation (41)
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∑ ∑

∑

∑

ε
ε ε

ε

= + − + +

+ + + −

+ + + + − +

= =

=

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡⎣ ⎤⎦

( )

( ) ( )

I u u
p

r

p

r

u
r

r
i i

p

r
r i i r i i

( )
4

1
2 2

1
( 1 2 2 1 )

2
1

4
1

1

2
1 ( 1 1 ) 1 ( 2 2 ) . (42)

m

N
m

m m

N
m

m

i

N

i
i

i

N
i

i
i i

3

2

3

2

3

3

Then the general member of this commuting family is α β γ δ+ + +H u I u u( ) ( ) ( ) .

6. Descendants of the 2� 2 LZ problem

As explained in the introduction, one can take a LZ solvable matrix Hamiltonian
= +H t T tV( ) and generalize it by expressing T and V in terms of generators Gk of a suitable

Lie algebra in e.g. its lowest dimensional representation. This generalization is not unique.
For example, the ×2 2 LZ problem can be expressed in terms of both SU(2) and SU(1, 1).
For many Lie algebras the time evolution operator can also be written generally in terms of
Gk, e.g. as ∑ α=U t t G( ) exp[i ( ) ]

k k k , i.e. in a representation independent manner. We then
obtain functions α t( )k from the known solution for H t( ). Now going to another representation
of the same algebra, we get a new, higher-dimensional LZ problem with a known time
evolution operator [31]. It remains to evaluate the matrix elements of U t( ) in the new
representation. It is not important for our considerations for which Lie algebras this procedure
can be explicitly carried out. It is sufficient that this can be done at least in some instances.
Then, we call so derived LZ solvable Hamiltonians—descendants of the original H t( ). For
the purpose of classifying LZ Hamiltonians according to the number of nontrivial commuting
partners, it makes sense to ‘factor out’ this redundancy and group the entire hierarchy of such
descendants together with their lowest dimensional ancestor H t( ).

We first consider this procedure in detail for the SU(2) descendants of the ×2 2 LZ
problem. Solutions of LZ problems for the linear chain and the time-dependent linear
oscillator [23, 24] defined in the Introduction follow from the general SU(2) one in particular
limits, so we group them in the same class as well. Next, we represent the ×2 2 problem in
terms of the SU(1, 1) algebra and solve the resulting LZ problem specializing in positive
discrete representations of SU(1, 1). In particular, we derive the transition probailities for the
nonlinear and double oscillator Hamiltonians given by equations (7) and (8), respectively.
Because, as explained in section 2 and below equation (33), the ×2 2 LZ Hamiltonian is
trivially integrable, we classify all its descendants as trivially integrable as well.

6.1. Basic 2� 2 LZ problem

First, we summarize the essential results for the ×2 2 LZ Hamiltonian

σ σ= +H t
t g

( )
2 2

, (43)z x

written here as a linear combination of SU(2) generators, i.e. the Pauli matrices. The
corresponding Schrödinger equation is
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= −
− −

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎡
⎣⎢

⎤
⎦⎥

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
ı

t

C t

C t

t g
g t

C t

C t

d

d

( )

( )

1

2

( )

( )

. (44)
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Here C t( )m
j are the probability amplitudes for different mʼs that can take values

= − − + …m j j j, 1, , . In the present case =j 1 2 and = ±m 1 2. The solution to the
above equation is

=
−

−∞

−∞

− −

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

C t

C t

a t b t

b t a t

C

C

( )

( )

( ) ( )

*( ) *( )

( )

( )

, (45)
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

where a t( ) and b t( ) satisfy the normalization condition

∣ ∣ + ∣ ∣ =a t b t( ) ( ) 1. (46)2 2

We can see that the time evolution operator belongs to the corresponding SU(2) group. It can
be shown that for time evolution from−∞ to+∞, the asymptotic form of a t( ) is such that [6–
9]:

π∣ ∞ ∣ = −
⎡
⎣⎢

⎤
⎦⎥a

g
( ) exp

2
. (47)2

2

Now a general SU(2) matrix for ×2 2 dimensions can also be expressed in terms of the Euler
angles as [21]

α β γ

β α γ β γ α

β α γ β α γ
→

+ −

− − − +

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
R

ı ı

ı ı
( , , )

cos
2

exp( 2)( ) sin
2

exp( 2)( )

sin
2

exp( 2)( ) cos
2

exp ( 2)( )
. (48)

So, in terms of the Euler angles equation (47) can be recast in the following form:

β π= −
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

g
cos

2
exp

2
. (49)

2 2

6.2. SU(2) descendants

Promoting Pauli matrices in equation (43) to general spin j operators, we write down the
general SU(2) LZ Hamiltonian as

= +H t gS tS( ) , (50)s x z

where S S,x y and Sz are the generators of SU(2) algebra in ×N N dimensions. The

time evolution operator is a rotation operator that can be written as = α−U t( ) e ı t S( ) z

α β γ≡β γ− − Re e ˆ ( , , )ı t S ı t S( ) ( )y z , where α t( ), β t( ), and γ t( ) are the same as in the ×2 2
problem. Using this and the functional form of the Wigner matrix elements for the SU(2)
group [21], Hioe obtained [22] transition probabilities from one z-component (say m) to
another (say ′ >m m) for a general spin = −j N( 1) 2 as
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∑

α β γ β β

μ μ μ μ

β β

= =

= −
+ − + ′ − ′

+ − − ′ − ′ − +

×

′ ′ ′

′ ′

α γ γ α

μ

μ

μ μ

→
+ −

+ − − − +

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢⎢

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

( ) ( )
( ) ( )

P D D

j m j m j m j m

j m j m m m

( , , ) cos
2

e , sin
2

e

( 1)
( ) ! ( ) ! ! !

( ) ! ( ) ! ! !

cos
2

sin
2

,

(51)

m m
j

mm
j

mm
j ı ı

j m m m m

2 ( 2)( ) ( 2)( )
2

1
2

2 2 2 2

where μ = …0, 1, 2, . Similarly, for > ′m m , redefining μ μ− ′ + →m m , we arrive at

∑
μ μ μ μ

β β

= −
+ − + ′ − ′

+ ′ − − ′ + − −

×

′

′ ′

μ

μ

μ μ

→

+ − − − +
⎜ ⎟ ⎜ ⎟

⎡

⎣
⎢⎢⎢

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

( ) ( )
( ) ( )

P
j m j m j m j m

j m m m j m
( 1)

( ) ! ( ) ! ! !

! ! ( ) ! ( ) !

cos
2

sin
2

,

(52)

m m
j

j m m m m

1
2

2 2 2 2

where again μ = …0, 1, 2, . Here
β

cos
2

in terms of the coupling constant g is given by

equation (49). Thus explicit solution to the ×N N problem follows directly from the ×2 2
LZ problem. We therefore group the general spin Hamiltonian together with the ×2 2 case,
which is trivially integrable.

6.2.1. Time dependent oscillator and linear chain. Next, we show that time dependent
oscillator (5) and linear chain (6) LZ problems are special limits of the general SU(2) spin
case. We map both the Schrödinger equations and the transition probabilities. We do the
mapping in two steps. First we obtain the oscillator from the SU(2) spin and then the linear
chain from the oscillator.

To achieve the mapping between the general SU(2) model and the time dependent
oscillator model, we use the Holestein–Primakoff formula

= − = − = −+ − ( )S j
a a

j
a S j a

a a

j
S j a a2 1

2
, 2 1

2
, . (53)z

†
†

†
†

The above formula relates spin raising +S and lowering −S operators with oscillator
destruction a and creation a† operators. We take the large spin limit ( → ∞j ) by neglecting
terms that contain negative powers of j in the Taylor expansion of equation (53). In this limit
the SU(2) spin Hamiltonian (50) becomes

= − + +( ) ( )H t t j a a g
j

a a( )
2

. (54)† †

Thus the Schrödinger equation for the general SU(2) maps to the time dependent oscillator (5)
when

→ ∞ → → − ′ → − ′( )j
j

g g m j n m j n,
2

, ( ), . (55)o
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Now we consider the mapping between the time dependent oscillator and the time
dependent linear chain. The Schrödinger equation for the oscillator model can be written from
equation (5) as

∂
∂

= + + + ⩽ < ∞− +( )ı
C

t
g n C n C ntC n1 , 0 , (56)n

o n n n1 1

where Cn is the nth component of the oscillator wave function. Similarly from
equation (6) one notices that the Schrödinger equation for the linear chain model takes the
following form:

∂
∂

= + + −∞ < < ∞− +( )ı
C

t
g C C ntC n, . (57)n

n n nlc 1 1

Note that a constant shift → +n n a is equivalent to adding a multiple of the identity at
to the Hamiltonian without affecting the transition probability. In other words, the
transition probability from state n to n′ depends only on − ′n n . On the other hand, in the
limit

→ ∞ − ′
→ →n

n n

n
n g g, 0, , (58)o lc

Schrödinger equations (56) and (57) match, so the LZ problem for the chain is a certain limit
of that for the oscillator. This completes the mapping between all three stipulated Schrödinger
equations.

Next, we show that the transition probability from state −j n( ) to − ′j n( ) for a general
spin-j SU(2) model maps into the transition probability from state n to ′n for the time
dependent oscillator, and the transition probability from state n to ′n in the time dependent
oscillator model becomes that for the linear chain model in the limits given by equations (55)
and (58), respectively.

First we demonstrate the mapping of the transition probability formulas for ′ <n n.
Combining equations (49) and (55), we relate the Euler angle and the coupling constant for
the time dependent oscillator as

β π
= −

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

g

j
cos

2
exp . (59)o

2 2

Using the limit spelled out in equation (55), we find

β π≈ −
′ μ+ − −⎡

⎣⎢
⎤
⎦⎥ ( )gcos

2
exp . (60)

j n n

o

2 2
2

Similarly using − ≈β π⎡⎣ ⎤⎦1 cos
g

j2

2
o
2

we have,

β π
≈

′
′

μ μ− −
− +⎡

⎣⎢
⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
( )g

j
sin

2
. (61)

n n
o

n n
2 2 2

Now applying Stirlingʼs formula

π≈ − +n n n n nlog ! log
1

2
log 2 , (62)
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we obtain,

μ

− − ′

− −
≈

′ μ− +( )( )j n j n

j n
j

(2 ) ! 2 !

(2 )!
(2 ) . (63)

n n
2

Starting from equation (51) for transition probability from one z-component (say −j n) to
another (say − ′j n ) for a general SU(2) model and using equations (55), (60), (61), and (63),
one arrives at the following result:

∑
μ

μ
π π

= = −

×
′ ′ + − ′

′ −
−

′ ′

′

μ

μ

μ

→∞ − → − →

− +

→

⎛
⎝⎜

⎞
⎠⎟( ) ( )( )( )

P P

n

n

n n n

n
g g

lim
( 1)

!

!

!
2 exp , (64)

j
j n j n
j

n n

o

n n

o

osc

2 2 2

j
g go2

where → ′Pn n
osc is the transition probability from state n to state ′ <n n for the time dependent

oscillator model. Now, with the help of series expansion for associated Laguerre polynomials

∑ α= − +
−

α

=
( )L x

n
n k

x

k
( ) ( 1)

!
, (65)n

k

n
k

k

0

we obtain from equation (64)

π π π=
′

−′
′

′
′

→
− −⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( ) ( ) ( )P

n

n
g g L g

!

!
exp 2 2 2 , (66)

( )
n n o o

n n
n

n n
o

osc 2 2 ( ) 2 2

which is identical to the formula for transition probability derived earlier [23].
Finally, we relate the transition probability from n to ′ <n n for the time dependent

oscillator to that for the linear chain. To achieve this, we use the well-known formula [35]

π
π π= ′′

′ ′ ′
′

′→∞
− − − −

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) ( )( )L

g

n
n g J glim

2
2 2 2 , (67)( ) ( )

( )
n

n
n n n n n n

n n
( ) lc

2

lc
2

lc

where we have neglected terms of the order of n1 . After using equations (62) and (67) in
equation (66), we arrive at the following result:

π→ =′ ′ ′→ → − ( )P P J g2 2 , (68)n n n n n n
osc lc 2

lc

where → ′Pn n
lc denotes the transition probability from state ′n to another state n (where > ′n n ).

equation (68) again agrees with the known result [24]. To achieve the mapping for ′ >n n we
start from equation (52) and follow the same procedure as for ′ <n n. This completes the
mapping between the transition probabilities.

6.3. SU 1; 1ð Þ descendants

As mentioned above the ×2 2 LZ Hamiltonian can also be represented in terms of the
generators of the SU(1, 1) algebra.Thus redefining ‘−ıg’ to be the new coupling constant gi,
equation (43) can be re-written as

= +H t tK g K( ) , (69)i0 1

where K K,0 1 and K2 are the generators of the two-dimensional non-unitary representation of

SU(1, 1) and can be expressed in terms of the Pauli matrices as
σ σ

ı
2

,
2

z x and
σ

ı
2

y
respectively

[25, 26]. Since SU(1, 1) is a non-compact Lie group, one has to go to infinite dimensions in
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order to get a unitary representation of the group. Several such representations, where the
generators of the group are Hermitian are known and have been classified [25–28, 36–40]. In
this section we only consider the positive discrete representation of the group SU(1, 1), which
is often referred to as +Dk in the literature [27]. The eigenstates μ∣ 〉k( , ) are denoted by two
indexes, similar to the eigenstates of SU(2). For the +Dk representation of SU(1, 1),

= …k
1

2
, 1,

3

2
, and μ = + + …k k k, 1, 2, [27, 28].

In this section we examine some well-known realizations of the +Dk representation and
consider Hamiltonians of the form

= + ++ −( )H t tK g K K( ) ˜ , (70)0

where = ±±K K ıK1 2 are the raising and lowering operators and K0 is the third generator with
commutation relations

= ± = −± ± + −⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦K K K K K K, , , 2 . (71)0 0

The Casimir operator in terms of K0 and ±K is

= − ++ − − +( )K K K K K K
1

2
, (72)2

0
2

which turns out to be −k k( 1) for +Dk .
We determine the probability for transition from one eigenstate to another for various

realizations of the Hamiltonian in equation (70) with the help of known formulas for the
Wigner–Bargmann matrix elements [25, 27–30]. The first example that we consider is known
as the one-mode realization [26, 28, 30, 36] of the +Dk representation for SU(1, 1) algebra,
i.e.

= = = ++ − ⎜ ⎟⎛
⎝

⎞
⎠K a a K aa K a a

1

2
,

1

2
,

1

2

1

2
, (73)† †

0
†

where a and a† are boson creation and annihilation operators. Hamiltonian (70) becomes the
nonlinear oscillator model (7), where we dropped a nonessential multiple of the identity
matrix. One can check that the above realization satisfies the commutation relations (71). We
evaluate the Casimir operator to be − 3

16
. Thus the only possible values of k are 1

4
and 3

4
.

Although Bargmann [27] originally considered only integer and half-integer values for k,
one can extend the +Dk representation of SU(1, 1) by allowing any positive real value for k.
This leads to the irreducible unitary representation of the universal covering group SU(1, 1)
known as the projective representation of the SU(1, 1) group. In particular, the one mode
representation corresponds to a double valued projective representation of SU(1, 1), with

=k ,1

4

3

4
. For such projective representation corresponding to +Dk , the action of raising and

lowering operators on the eigenstates and the Wigner–Bargmann matrix elements remain
unaltered [28–30].

We now see that for the one-mode realization =k 1

4
corresponds to the states of

the oscillator with even number of particles whereas =k 3

4
corresponds to the states of the

oscillator with odd number of particles. Thus denoting the oscillator number operator
eigenstates as ∣ 〉n and the +Dk basis states as μ∣ 〉k, the above correspondence reads as

+ ≡ + ≡ +N N N N
1

4
,

1

4
2 ,

3

4
,

3

4
2 1 , (74)

where = …N 0, 1, 2, .
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Similar to the SU(2) scenario, here also a transition is only possible between the states
having same k. In terms of the number operator states an odd (even) state can only make a
transition into another odd (even) state. The transition probability can now be written using
the Wigner–Bargmann matrix elements [27, 29, 30] as follows

Θ

μ μ μ μ μ μ

Θ

μ μ μ μ μ μ

= −

× − ′ − ′ − + − ′ ⩾ ′

= −

× − − − + ′ − ⩽ ′

′

′
′ ′

′
′ ′

μ μ

μμ
μ μ μ μ

μμ
μ μ μ μ

→

− − +

− − +

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( ) ( )

( ) ( )

P

k z z

F k k z

k z z

F k k z

( ) 1

, 1 , 1 ,

( ) 1

, 1 , 1 , , (75)

( )

( )

k

2

2

2

2

where

Θ
μ μ

Γ μ Γ μ
Γ μ Γ μ

μ μ

Θ Θ

=
− ′

+ − +
′ + − ′ +

⩾ ′

= −

′

′

μμ

μ μ
μ μ

μμ′
−

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

k
k k

k k

k k

( )
1

!
( 1 ) ( )

1
if ,

( ) ( 1) ( ), (76)

1
2

and α β γF z( , , , ) is a hypergeometric polynomial. In the above two equations k is either equal

to
1

4
or

3

4
for the one-mode realization and μ and μ′ take values + + …k k k, 1, 2, . Similar

to equation (49), where we write down the relation between the Euler angle and the coupling
constant for the general SU(2) model, we obtain the following relation for SU(1, 1) algebra:

π= − ( )z g1 exp 2 ˜ . (77)2

Equations (75)–(77) determine transition probabilities from any state to any other state in the
one-mode LZ problem.

Next we consider the two-mode realization of the SU(1, 1) algebra [26, 28, 29, 37], i.e.

= = = ++ − ( )K a b K ab K a a bb, ,
1

2
, (78)† †

0
† †

where αa b b( ), ( )† † are the annihilation (creation) operators corresponding to two
independent oscillators. The LZ Hamiltonian (70) turns into the double oscillator model
(8), where we have added a multiple of the conserved operator −a a b b† † without affecting
any of the transition probabilities. The Casimir operator equation (72) reads

= − + = − −+ − − +
⎡
⎣⎢

⎤
⎦⎥( )( )K K K K K K a a b b

1

2

1

4
. (79)2

0
2 † † 2

The two mode state ∣ 〉n n,a b , where na and nb are particle numbers in a and b corresponds to
an SU(1, 1) basis state μ∣ 〉k, with

μ=
− +

=
+ +

k
n n n n1

2
,

1

2
. (80)

a b a b

Thus this is indeed a realization of the +Dk series for = …k , 1, ,1

2

3

2
and

μ = + + …k k k, 1, 2, [27, 28]. Therefore, the transition probabilities for the LZ
Hamiltonian (8) for different k sectors are determined by equation (75)–(77). For =n na b

these equations yield transition probabilities that exactly coincide with those obtained
earlier [23].
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In a similar manner one can also consider other realizations of the +Dk representation.
Among them the Holestein–Primakoff realization [38] is equivalent to the two mode one
described in equation (78). The advantage of the former realization though, is that unlike the
two-mode one it only involves one oscillator. Also the one-mode and two-mode realizations
can be further generalized into multi-mode representations [39, 40]. For all these different
realizations one now can solve the LZ problem using the explicit form of the Wigner–
Bargmann matrix elements spelled out in equation (75)–(77).

7. SU Nð Þ descendants of higher-dimensional solvable LZ problems

The procedure of generating solvable descendants of the previous section also applies to
higher-dimensional LZ problems [31], even though the explicit evaluation of transition
probabilities can be much more cumbersome. As an example consider the ×3 3 bow-tie
model. Its Hamiltonian (3) can be recast as

λ λ λ λ= + + +( ) ( )H t p p t a b , (81)2 1 3 4 3 8

where a b, are suitable real numbers and λi are the Gell-Mann matrices. This generalizes to
higher dimensions via replacement of λi with the corresponding matrices from other
representations of SU(3). The time evolution operator is a member of the SU(3) group and can
be parametrized e.g. as a product α β γ α β α α β γR R Rˆ ( , , ) ˆ ( , , ) ˆ ( , , )23 1 1 1 12 2 2 2 23 3 3 3 of rotation
operators of the SU(2) subgroups [32], where the the parameters αi, βi, and γi for evolution
from = −∞t to∞ are provided by the known solution of the ×3 3 LZ problem. The Wigner
matrix for SU(3) is much more complicated, but known [32], so one can in principle
determine all the transition probabilities. Higher dimensional LZ solvable models (equal-
slope, bow-tie or generalized bow-tie Hamiltonians for >N 3) similarly produce hierarchies
of potentially solvable descendants when expressed as linear combinations of the generators
of an SU N( ) algebra.

8. Discussion

In this paper we studied various known exactly solvable multistate LZ problems. It turns out
that they break down into two main categories. The first one consists of the equal slope, bow-
tie, and generalized bow-tie models. These are genuinely nontrivial multistate LZ Hamilto-
nians in that they cannot be reduced to the ×2 2 LZ problem. We found that a distinctive
feature of these models is that they all have nontrivial essentially parameter (time) dependent
commuting partners. They are therefore integrable parameter-dependent matrices according to
the definition of quantum integrability introduced in [15–20]. Specifically, the equal slope
Hamiltonian belongs the known maximal family of N commuting ×N N matrices linear in
the parameter defined in section 2. The bow-tie model does not have any linear commuting
partners. Instead it turned out to be a member of a similarly maximal, but quadratic in the
parameter, family of commuting matrices, which we explicitly constructed here. The gen-
eralized bow-tie has a single linear commuting partner and thus belongs to a minimal linear
family. The last two examples are new families of integrable matrices not contained in [15–
20]. We therefore conjectured that quantum integrability in the above sense is a necessary
condition for multistate LZ solvability.

An important open question is whether it is also sufficient, i.e. whether the LZ problem is
solvable for any matrix Hamiltonian H t( ) that has nontrivial polynomial commuting partners
or only for a certain subclass of such Hamiltonians. In particular, one can ask more narrowly
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if the LZ problem is solvable for commuting partners of the equal slope, bow-tie, and
generalized bow-tie models. Consider, for instance, the maximal commuting family of
section 2. Each of the mutually commuting basic Hamiltonians H u( )i is a different equal slope
model ( →u t). The question is whether an arbitrary linear combination, ∑=H t d H t( ) ( )

i i i ,
is also an exactly solvable LZ problem and if yes, how its solution relates to that for H t( )i .

One can also use our results to try to identify new LZ solvable models. For example, we
see that the equal slope and bow-tie models belong to maximal linear and quadratic com-
muting families, respectively. It is similarly possible to construct linear H t( ) with the max-
imum allowed number of qubic or quartic nontrivial commuting partners without any of the
lower order ones. Our results suggest that the LZ problem might be solvable for such H t( ).

The second category of exactly solvable LZ problems are those derived from the basic

×2 2 LZ Hamiltonian σ σ= +H t
g t

( )
2 2

x z or from any of the above nontrivial multistate LZ

Hamiltonians through a Lie algebraic procedure explained in the Introduction and section 6.
In this way the solution for the general SU(2) LZ Hamiltonian = +H t gS tS( )s x z follows
from that for the ×2 2 LZ problem. Various (e.g. large spin) limits of the general SU(2)
produce further exactly solvable LZ models. Similarly, an SU(1, 1) generalization of the

×2 2 LZ Hamiltonian produces the nonlinear and double oscillator models (7) and (8)
together with a complete solution of the corresponding LZ problems. We included such
descendant LZ problems in the same integrability class as the original ancestor Hamiltonian.
Interestingly, somewhat similar methods of generating higher dimensional commuting matrix
families from lower dimensional ones already exist. Consider e.g. two commuting ×N N
matrices H u( ) and I u( ) and associated operators =H H u a aˆ ( )ij i j

† and =I u I u a aˆ ( ) ( )ij i j
† ,

where ai are fermionic or bosonic annihilation operators. The commutation of H u( ) and I u( )
implies that H uˆ ( ) and I uˆ ( ) also commute. Since the total particle number np is conserved,
H uˆ ( ) and I uˆ ( ) are block-diagonal, each block corresponding to a particular value of np. The

=n 1p block returns the original matrices H u( ) and I u( ), while >n 1p blocks produce higher
dimensional commuting matrices [18]. Similarly one can also show that for certain particle
number conserving Hamiltonians, by projecting onto a specific sector of the full Hilbert
space, the problem can be solved using already known solutions of LZ problem (e.g. ×2 2
LZ Hamiltonian or the bow-tie model) [41]. It seems to make sense however to group these
higher dimensional descendants together with the original matrices in the same integrability
class.
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