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Abstract
We investigate the connection between energy level crossings in integrable
systems and their integrability, i.e. the existence of a set of non-trivial integrals
of motion. In particular, we consider a general quantum Hamiltonian linear in
the coupling u,H(u) = T + uV , and require that it has the maximum possible
number of nontrivial commuting partners also linear in u. We demonstrate
how this commutation requirement alone leads to: (1) an exact solution for the
energy spectrum and (2) level crossings, which are always present in these
Hamiltonians in violation of the Wigner–von Neumann non-crossing rule.
Moreover, we construct these Hamiltonians explicitly by resolving the above
commutation requirement and show their equivalence to a sector of Gaudin
magnets (central spin Hamiltonians). In contrast, fewer than the maximum
number of conservation laws does not guarantee level crossings.

PACS number: 03.65.−w

1. Introduction

Level crossings—the emergence of degeneracies in a physical system at a certain value of some
tuned system coupling—underlie a myriad of compelling phenomena, including anomalies in
relaxation rates [1], the onset of quantum chaos [2], quantum phase transitions [3], Berry’s
phase [4, 5] etc. It is widely believed that these degeneracies can often be understood in terms
of a certain underlying symmetry. However, in many cases this connection between symmetry
and degeneracy remains mysterious. This is especially true for quantum integrable systems,
e.g. the 1D Hubbard, anisotropic Heisenberg, reduced BCS models etc. These systems are
long known to display an abundance of level crossings [6–9], see figure 1, in violation of the
famous Wigner–von Neumann non-crossing rule [10–16] and with no convincing symmetry
explanation.

In this paper we derive the existence of level crossings and an exact solution for a general
parameter-dependent quantum Hamiltonian from its integrability. Our work has been inspired
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Figure 1. Energies of 1d Hubbard model on six cites characterized by a complete set of quantum
numbers, i.e. all levels have the same u-independent symmetry, see [6, 18]. The energies are in
units of U − 4T plotted as functions of u = U/(U − 4T ), where U is the strength of the Coulomb
repulsion and T < 0 is the hopping matrix element. The parameter u varies from 0 to 1 as U
goes from 0 to ∞. Note that, in violation of the Wigner-von Neumann non-crossing rule, we see a
profusion of level crossings for states of the same symmetry.

in part by Gaudin and Yuzbashyan et al [17, 18] and especially by Shastry’s paper [19], which
opened up a new, purely algebraic perspective on quantum integrable models independent
of Bethe’s ansatz. In Hamiltonian mechanics the integrability of a system with n degrees
of freedom is usually understood as the existence of a maximum number (n) of Poisson
commuting independent invariants. Then, a well-known theorem due to Liouville and Arnold
guarantees that the equations of motion can be solved by quadratures [20]. There is no
similarly accepted notion of quantum integrability, especially in finite-dimensional systems,
e.g. discrete lattice models in condensed matter physics where the state space is generally
finite. In particular, it is often unclear what constitutes an independent integral and what is
the natural notion of the number of degrees of freedom. Nevertheless, it turns out that these
difficulties can be circumvented if one restricts the manner in which the integrals of motion
depend on the coupling.

For concreteness, let us consider Hamiltonians linear in the coupling u. As we are
interested in discrete energy spectra, we assume that the Hamiltonian can be represented by
an N × N matrix. Following the classical notion of integrability, we require the existence
of the maximum possible number of independent (see below) mutually commuting integrals,
[Hi(u),Hj (u)] = 0, where Hi(u) = T i + uV i are Hermitian operators. One of them is the
Hamiltonian itself, e.g. H 1(u) ≡ H(u). Using this commutation requirement alone, we derive
an exact solution for the spectrum of each Hi(u), which can be viewed as an extension of the
Liouville–Arnold theorem to quantum Hamiltonians. Moreover, we are able to demonstrate
that the eigenvalues of Hi(u) are necessarily degenerate at a discrete set of values of u.

First, we solve the nonlinear commutation relations [Hi(u),Hj (u)] = 0 to obtain each
Hi(u) explicitly, see below. Interestingly, it turns out that these maximally commuting (or
simply maximal) operators Hi(u) can be mapped to exactly solvable Gaudin magnets [17, 21]
(central spin Hamiltonians). The latter describes a localized spin in a magnetic field B = u

interacting with N − 1 ‘environmental’ spins and have a variety of physical applications
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[22–27]. The mapping to Gaudin magnets allows us to obtain the exact solution for the
eigenvalues and eigenfunctions of Hi(u) and analyze its level crossings. The total number
of pairwise crossings varies as Mc = (N − 1)(N − 2)/2 − 2K > 0, where K is a positive
integer such that Mc ! 1. For instance, N = 5 maximal operators display 2, 4 and 6 instances
of level crossings. On the other hand, we demonstrate that Hamiltonians having less than the
maximum number of u-dependent integrals can have no level crossings. Further, we show
that the coupling-dependent commuting matrices obtained within the approach developed by
Shastry in [19] (where it was also conjectured that these matrices always have crossings, see
also [18]) are maximal, even though our constructions are quite different.

Pairwise crossings of energy levels are usually understood in the context of the Wigner–
von Neumann non-crossing rule. This rule initially suggested by Hund [10] and justified
by Wigner and von Neumann [11] has thereafter seen restatements and refinements by a
number of authors [12–16]. It states that eigenstates of the same symmetry do not cross as a
function of a single coupling parameter. This can be seen, for example, from the following
argument. Suppose two energy levels E1(u) and E2(u) of H(u) come close at a certain
u = u0. Expanding in a vicinity of u0: H(u) ≈ H(u0) + (u − u0)V (u0) and using ordinary
perturbation theory, we obtain [28]

d2!

du2
0

= 4V 2
12(u0)

!(u0)
+ F(u0) (1)

where !(u0) = E1(u0) − E2(u0), V12(u0) is the matrix element of the perturbation V (u0)

between states |1〉 and |2〉, and F(u0) represents the contribution of the remaining states. We
see from equation (1) that as the two levels approach, !(u0) → 0, infinite repulsion sets in,
preventing them from crossing. This is indeed what takes place in the absence of symmetry—
energy levels repel (see figure 2). The situation changes if the Hamiltonian H(u) possesses
a u-independent symmetry S, i.e. [H(u), S] = 0. This can be a spatial rotation, translational
invariance, internal space reconfiguration, etc. Because S does not depend on the coupling u,
it commutes with H(u0) and V (u0) individually. Evaluating the matrix element of [V (u0), S]
between states |1〉 and |2〉, we obtain V12(u0) = 0 for any u0 as long as |1〉 and |2〉 have
different symmetry, s1 (= s2, where S|1〉 = s1|1〉 and S|2〉 = s2|2〉. Thus, while levels of
different symmetry can cross, crossings of levels of the same symmetry are prohibited.

Unfortunately, this basic argument does not extend to quantum integrable Hamiltonians
H(u), which typically violate the non-crossing rule. Indeed, these systems show crossings
of energy levels that have the same quantum numbers for all u-independent symmetry [6–9],
see e.g. figure 1. Integrable Hamiltonians are known to have special coupling dependent
conserved currents, ‘dynamical symmetries’, in addition to u-independent symmetries. It is
tempting to attribute these crossings to such symmetries. On the other hand, it is crucial for
the validity of the non-crossing rule that the symmetry S be u-independent. Indeed, consider
an integrable Hamiltonian acting on a finite-dimensional space, e.g. a lattice model with a
finite number of sites. Let H(u) be one of its blocks characterized by the same quantum
numbers for a complete set of mutually commuting u-independent symmetries and let H̃ (u)

be the corresponding block of one of the conserved currents

[H(u), H̃ (u)] = 0 for all u. (2)

Due to the u-dependence, H̃ (u0) no longer commutes with V (u0) separately and, therefore,
the above argument lifting the level repulsion does not hold. At the same time, given a
crossing one can always artificially engineer a ‘conserved current’ that commutes with H(u).
Therefore, restrictions on the form of H̃ (u) are necessary to make meaningful contact between
symmetries and degeneracies.
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Figure 2. Energy levels of a 14 × 14 Hamiltonian H(u) = A + uB, where independent matrix
elements of A and B are uniformly distributed random numbers. Note that though levels do
approach one another closely, they never cross. A typical Hamiltonian with no u-independent
symmetry exhibits such level repulsion, see equation (1), in contradistinction to what takes place
in integrable systems, see figure 1. Here and throughout this paper we use Mathematica program
to perform numerical tests and plot the results.

To be specific, let H(u) = T + uV and H̃ (u) = T̃ + uṼ be Hermitian operators acting on
an N-dimensional space, i.e. they can be represented by N ×N matrices. Equation (2) implies

[T , T̃ ] = [V, Ṽ ] = 0, [T , Ṽ ] = [T̃ , V ]. (3)

For any linear H(u) there are always trivially related commuting partners H̃ (u) = aH(u)+(b+
cu)I , where I is an identity matrix. However, the requirement that equation (3) has nontrivial
solutions leads to a set of nonlinear constraints that severely restricts the matrix elements
of both H(u) and H̃ (u). For example, for N = 3 eliminating T̃ and Ṽ from equation (3),
one obtains a single nonlinear constraint on the matrix elements of H(u) [18]. In view of the
preceding discussion regarding the prevalence of level crossings in integrable models, a natural
question is whether these constraints, i.e. the existence of a nontrivial H̃ (u), imply crossings in
the spectrum of H(u) and vice versa. This is indeed the case for N = 3. Specifically, one can
show that 3 × 3 matrices H(u) = T + uV that have nontrivial commuting partners also have
a level crossing and vice versa [18]. However, this is no longer true for N ! 4—equation (3)
does not necessarily lead to level crossings. Moreover, crossings occur even in the absence of
nontrivial partners and u-independent symmetries, see below. We see that a single dynamical
symmetry is insufficient to explain level crossings. On the other hand, quantum integrable
Hamiltonians typically have more than one coupling dependent commuting operator. In fact,
as we show below, the maximum possible number—which turns out to be N—of integrals is
necessary to ensure level crossings.

We define the set of maximally commuting Hamiltonians as a vector space, M, formed
by N ! 3 Hermitian, mutually commuting N × N matrices Hi(u) = T i + uV i together with
the N × N identity matrix I,

[Hi(u),Hj (u)] = 0, for all u and i, j = 1, . . . , N, (4)

where u is a real parameter. Operators Hi(u) are assumed to be independent in that matrices V i

are linearly independent, i.e.
∑N

i=1 ciV
i = 0 iff ci = 0 for all i (equivalently one can require

that T i be linearly independent). In addition, Hi(u) are taken to have no u-independent
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symmetry common to all Hi(u)1,

!" (= aI such that [",H i(u)] = 0 for all u and i. (5)

Therefore, an arbitrary element H(u) = T + uV of the vector space M has the form

H(u) =
N∑

i=1

diH
i(u) + aI, (6)

where di and a are real numbers. The addition of multiples of the identity affects neither
commutation relations nor level crossings of H(u) and we will often omit the term aI in
equation (6). Note also that equation (6) implies that operators Hi(u) together with I provide
a basis in the vector space M of maximal Hamiltonians.

The set M is maximal in the sense that any Hermitian H(u) = T + uV that commutes
with all Hi(u) can be written in the form (6). Indeed, since V and all V i mutually commute,
see equation (3), we can go to their common eigenbasis. In this basis, the N diagonal matrices
V i are N linearly independent N-dimensional vectors and, therefore, there exist real numbers
di such that V =

∑N
i=1 diV

i . The matrix H(u)−
∑N

i=1 diH
i(u) is u-independent and, since it

also commutes with all Hi(u), it must be of the form aI according to equation (5). Thus, H(u)

is of the form (6). By a similar argument one can show that one of the basic matrices Hi(u)

can be chosen as Hi(u) = (a +ub)I with real coefficients a and b. We see that there are N −1
nontrivial independent commuting operators. Therefore, the first nontrivial dimensionality is
N = 3.

In what follows we begin with the explicit construction of a general, maximally commuting
Hamiltonian H(u). This is done in section 2 by choosing a convenient basis in the vector space
M and solving equation (4). In section 3 we establish some useful algebraic properties of H(u).
Interestingly, it turns out that the product of any two maximally commuting Hamiltonians can
be written as a linear superposition of such Hamiltonians, i.e. the setM has a certain quasi-ring
structure.

Our parametrization of the maximally commuting Hamiltonians makes it transparent that
they are related to the Gaudin magnets [17, 21], see section 4. The latter are N quantum spin
Hamiltonians

ĥi(B) = −Bŝz
i +

N∑

k=1

′ *̂si · *̂sk

εi − εk

, i = 1, . . . , N, (7)

where the prime indicates that the summation is over k (= i, B is the z-aligned magnetic field,
*̂si is an operator of spin of magnitude si , and 1/(εi − εk) is the coupling between spins *̂si and
*̂sk . The Hamiltonians ĥi form a mutually commuting family

[ĥi(B), ĥj (B)] = 0 for any B. (8)

Note also that each ĥi(B) is invariant under rotations around the z-axis, which means the z

component of the total spin Ĵ z =
∑N

i=1 ŝz
i is conserved

[ĥi , Ĵ z] = 0, i = 1, . . . , N. (9)

As we will see in section 4, the maximally commuting Hamiltonians (6) correspond to the
sector of Gaudin magnets with J z = J z

max − 1, where J z
max =

∑N
i=1 si is the maximum

eigenvalue of Ĵ z.
In section 5 we employ the mapping to the Gaudin magnets to obtain the exact solution

for the spectra of maximally commuting Hamiltonians. Using this solution, we analyze the
asymptotic behavior of the eigenstates in the limits u → ±∞ in section 6. Matching the

1 Any u-independent symmetry common to all Hi(u) can always be removed by going to smaller blocks.
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two limits allows us to establish the presence of level crossings and to count them. Next,
we consider Hamiltonians having less than the maximum number of commuting partners. In
section 7, we construct a family of 4×4 Hermitian operators linear in the coupling u that have
a single nontrivial partner as opposed to two partners for the N = 4 maximal set. It turns out
that these submaximal Hamiltonians often display no degeneracies at all. Finally, in appendix
we review Shastry’s approach to constructing commuting real symmetric operators and show
that the resulting operators are always maximal.

2. The Parametrization of maximally commuting Hamiltonians

We begin our analysis by choosing a convenient basis in the vector space of maximally
commuting Hamiltonians, which allows us to solve equation (4) explicitly. The solution
yields a convenient parametrization for a general maximal Hamiltonian (6) and elucidates the
algebraic structure of these operators. It also makes transparent the relationship between these
operators and Gaudin magnets (7).

Consider the maximal operators Hi(u) = T i + uV i defined in equations (4) and (5). It
follows from equation (4) that all V i commute with each other, see equations (3) and (2). By
a u-independent unitary transformation we go to a basis where all V i are diagonal. Since V i

are also linearly independent, we can bring them to the following ‘canonical’ form by a linear
transformation:

Dk =
∑

i

vk
i V

i, (10)

where vk
i are real numbers, Dk are diagonal with a single nonzero matrix element [Dk]jj ≡

Dk
j = δjk . Next, we introduce a ‘canonical’ basis in the space of maximally commuting

operators

hi(u) = Ei + uDi =
N∑

j=1

vi
jH

j (u), i = 1, . . . , N. (11)

The operators hi(u) have all the properties of maximally commuting Hamiltonians defined in
equations (4) and (5) as long as Hi(u) do. In particular,

[hi(u), hj (u)] = 0, for all u and i, j = 1, . . . , N. (12)

It follows from equation (6) that a general maximally commuting operator can be written as

H(u) ≡ T + uV =
N∑

k=1

dkh
k(u) + aI, (13)

where dk and a are real numbers. Note that with our choice of Dk, dk are the eigenvalues of
V .

To determine H(u) explicitly, we need to solve equation (12). In terms of Di and Ei

these equations read

[Di,Dj ] = 0, [Di,Ej ] = [Dj,Ei], [Ei,Ej ] = 0. (14)

The first equation holds since Di are diagonal. The second equation in terms of matrix
elements is

(
Di

m − Di
n

)
Ej

mn =
(
Dj

m − Dj
n

)
Ei

mn (15)

where E
j
mn is the mnth matrix element of Ej . By construction, the only nonzero matrix

element of Di is Di
i = 1. We see that E

j
mn = 0 as long as m (= n and m and n do not equal

j . Thus, matrix Ej only has nonzero elements of the form E
j
jm =

(
E

j
mj

)∗ and E
j
mm, where z∗

6



J. Phys. A: Math. Theor. 42 (2009) 035206 H K Owusu et al

denotes the complex conjugate of z. Note also by setting m = i and n = j in equation (15)
that Ei

ij = −E
j
ij for i (= j .

It remains to solve the last equation in (14). Using the above properties of matrix elements
of Ei , we rewrite this equation as

En
ii − En

mm = Em
nmEm

mn

Em
nn − Em

ii

, i (= m, n,

En
ni = Em

nmEm
mi

Em
nn − Em

ii

, i (= m, n,

En
nn − En

mm = Em
mm − Em

nn +
∑

j (=m,n

Em
mjE

m
jm

Em
nn − Em

jj

.

(16)

By direct computation, one can show that the following ansatz satisfies equations (16):

Em
mj = eı(θm−θj ) γmγj

εm − εj

,

Em
jj = − γ 2

m

εm − εj

+ ψm, i (= m,

Em
mm = −

∑

i (=m

γ 2
i

εm − εi

+ ψm

(17)

where γj (= 0, εj , θm and ψm are real parameters. A nonzero value of ψm corresponds to an
overall shift of the diagonal of Em, which yields a (nonessential) contribution ψmI to hm(u).
Note that γj = 0 also satisfies equations (16) but generates matrices with block diagonal
structure and, therefore, u-independent symmetry.

Furthermore, any solution of equations (16) admits parametrization (17). To establish
this, it is sufficient to show that any choice of the 3N − 2 matrix elements Em

mn =
(
Em

nm

)∗

and Em
nn for a certain m compatible with equations (16) corresponds to a set of 3N + 1 real

parameters, θj , γj , εj and ψm. Then, equations (16) ensure that all Ej are of the form (17).
The extra three parameters are an overall scale for εj and γj , a shift εi → εi + const, and a
shift θj → θj + const, which do not affect equations (17). To see the correspondence between
Em

mn =
(
Em

nm

)∗ and Em
nn and θj , γj , εj , and ψm, note that equations (17) yield

∑

n(=m

Em
mnE

m
nm

Em
nn − ψm

= Em
mm − ψm,

which, for given Em
mn =

(
Em

nm

)∗ and Em
nn, can be solved for ψm. In seeking a common

denominator, we see that it constitutes an N th order polynomial
∏

j

(
Em

jj − ψm
)
−

∑

n(=m

∏

j (=m,n

Em
mnE

m
nm

(
Em

jj − ψm
)

= 0, (18)

yielding N solutions ψm. By considering the form of matrix Em, i.e. that all matrix elements
are zero save for a row, the corresponding column, and the diagonal, we find that the left-hand
side of equation (18) is the characteristic polynomial given by det (Em − ψmI). Consequently,
all N solutions of equation (18) are guaranteed to be real as they are the eigenvalues of an
explicitly Hermitian matrix. Once ψm is determined, we can calculate ratios

γj = − eı(θj −θm)
Em

mj

Em
jj − ψm

j (= m,

where e2ı(θj −θm) ≡ Em
jm

/
Em

mj , θm is arbitrary and by a choice of an overall scale we set γm = 1.
Lastly, letting εm = 0 (by shifting εi), we have
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εj = 1
Em

jj − ψm
.

Each of the N solutionsψm to equation (18) will yield a distinct set {γj , εj }, but by construction
(see equation (18)) corresponds to the same set

{
Em

mn,E
m
nm,Em

jj

}
.

Now, consider Em as defined in equation (17). The matrix Em with complex matrix
elements Em

mj =
(
Em

jm

)∗
, Em

jj , and Em
mm is conjugate to a matrix Ẽm, i.e.

Em = )Ẽm)−1,

where ) is a diagonal matrix with entries )jj ≡ eıθj = eıθm

√
Em

jm

Em
mj

,
(
Ẽm

mj

)2 = Em
mjE

m
jm, Ẽm

jj =

Em
jj , and θm is an arbitrary real number. Given a Hermitian Em, we find that Ẽm is necessarily

real symmetric matrix and ) is a conjugating diagonal matrix whose matrix elements are
complex phases. Thus, all Hermitian maximally commuting operators are matrix conjugate
to some real symmetric such. Operator spectra are invariant under matrix conjugation and,
therefore, it is convenient to henceforth limit our discussion to maximally commuting real
symmetric matrices, and we do so without loss of generality.

Moreover, as noted below equation (17), nonzero ψ i contributes only a multiple of the
identity, ψ iI to each hi(u), which affects neither the commutation relations nor the level
crossings of hi(u) and their linear combinations. Henceforth, we adopt a convenient ‘gauge
choice’ ψ i = 0 for all i = 1, . . . , N and θm = 0 for all m = 1, . . . , N . With this choice of
ψ i and θm, we derive from equations (11),(17) and the definition of Di the nonzero matrix
elements of basic operators hi(u)

[hi(u)]ij = γiγj

εi − εj

, i (= j,

[hi(u)]jj = − γ 2
i

εi − εj

, i (= j,

[hi(u)]ii = u −
∑

j (=i

γ 2
j

εi − εj

.

(19)

Note that
N∑

i=1

hi(u) = uI. (20)

Expressions (19) for matrix elements constitute a complete, explicit solution of commutation
relations (12) or equivalently (4) for maximally commuting Hamiltonians. Different choices
of parameters γj and εj (factoring out overall scale of γj and εj , a total shift of all εj , and the
‘gauge freedom’ discussed above) yield distinct families of such Hamiltonians. Equation (19)
also determines matrix elements2 of a general maximally commuting operator (6)

[H(u)]mn = γmγn

(
dm − dn

εm − εn

)
, m (= n,

[H(u)]mm = udm −
∑

j (=m

γ 2
j

(
dm − dj

εm − εj

)
.

(21)

2 We note that the restriction to Hermitian operators in the definition of the maximal set is not essential for this
construction. Specifically, following the above arguments, one can show that an arbitrary maximally commuting
and not necessarily Hermitian operator can be written in the form )H(u))−1, where ) is diagonal and H(u) is a
symmetric matrix parametrized as in equation (19) but with arbitrary complex parameters )jj , dj , γj , and εj .

8
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Let us also note that a convenient approach to producing nontrivial solutions of equation
(2) was developed by Shastry in [19]. Interestingly, these solutions turn out to be essentially
equivalent to the maximally commuting set constructed in this section, see appendix for details.

3. Algebraic properties of maximal Hamiltonians and an upper bound on the number
of level crossings

The above parametrization makes transparent a beautiful property of maximal Hamiltonians—
the product of two maximal operators is itself the u-dependent sum of maximal operators.
This property, as we demonstrate in this section, allows one to express a general maximal
Hamiltonian H̃ (u) as a polynomial in another such Hamiltonian H(u). We employ this
polynomial expansion to determine the maximum number of level crossings in the eigenvalue
spectrum of H(u).

First, we express the product of two basic maximally commuting operators hi(u) and
hj (u) in terms of u-dependent linear combinations of hk(u). Using equation (19), one can
show that

hi(u) · hj (u) =
γ 2

j

εi − εj

hi(u) +
γ 2

i

εj − εi

hj (u), i (= j,

hi(u) · hi(u) =
N∑

k=1



u −
∑

m(=k

γ 2
m

εk − εm



 hk(u).

(22)

Now consider two general maximally commuting Hamiltonians (6)

H(u) =
N∑

k=1

dkh
k(u), H̃ (u) =

N∑

k=1

d̃kh
k(u), (23)

where without loss of generality we dropped multiples of identity in equation (6). From
equation (22) we derive

H(u) · H̃ (u) =
N∑

k=1



udkd̃k −
∑

m(=k

γ 2
m(dk − dm)(d̃k − d̃m)

εk − εm



hk(u). (24)

This quasi-ring structure—so called because, while the sum of maximal Hamiltonians is
maximal, the product is a u-dependent sum of such and, therefore, not generally linear in u and
not strictly a maximal operator—suggests a means of representing an element of a commuting
maximal family by any other, see equation (25) below.

A typical maximal Hamiltonian H(u) can be degenerate only at discrete values of u. Note
that the only alternative to the discrete (possibly empty) set is a permanent degeneracy—when
two eigenvalues of H(u) coincide at all u [29]. Permanent degeneracies do not occur for a
generic choice of dk in equation (23). Indeed, recall that dk are the eigenvalues of V (see
below equation (6)). Since the eigenvalues of H(u) = T + uV tend to those of uV for large u,
the spectrum of H(u) is not degenerate as long as dk are distinct and V is itself nondegenerate.

Consider H(u) at any u where it is nondegenerate. Any element of its commutant—the set
of all real symmetric operators that commute with H(u)—can be expressed as a polynomial
in H(u) of the order N − 1, i.e.

H̃ (u) =
N−1∑

α=0

Pα(u)H α(u), (25)

9
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where H α(u) ≡ [H(u)]α and, as we will see shortly, Pα(u) are rational functions of u. To
see that H̃ (u) can be indeed written in terms of powers of H(u), consider equation (25)
in the common eigenbasis of commuting operators H(u) and H̃ (u) at a given u. Since
eigenvalues ωm of H(u) are N distinct real numbers, one can always find a polynomial
RN−1(ω) =

∑N−1
α=0 Pαω

α of order N − 1 with N real coefficients Pα so that RN−1(ωm) = ω̃m,
where ω̃m are the eigenvalues of H̃ (u). Indeed, the equations RN−1(ωm) = ω̃m are linear in
Pα with a nonzero determinant.

Next, we observe from equations (23) and (24) that

H α(u) =
N∑

k=1

Qα
k (u)hk(u), (26)

where for α ! 1Qα
k (u) is an α − 1 order polynomial in u determined by recursively applying

equation (24) and Q0
k = 1/u as follows from equation (20). Plugging equation (26) into

equation (25) and using the second equation in (23), we obtain

N∑

k=1

N−1∑

α=0

Pα(u)Qα
k (u)hk(u) =

N∑

k=1

d̃kh
k(u). (27)

Since hk(u) are linearly independent at any u (= 0, i.e.
∑N

k=1 fk(u)hk(u) = 0 if and only if
fk(u) ≡ 0 for all u (= 0,3 equation (27) becomes

N−1∑

α=0

Pα(u)Qα
k (u) = d̃k, k = 1, . . . , N. (28)

Note that because Qα
k (u) are rational functions in u, Pα(u) are also rational functions.

Because H̃ (u) is arbitrary, equation (28) should have solutions for Pα(u) for any d̃k as
long as H(u) is nondegenerate. On the other hand, solutions cease to exist if and only if
det

[
Qα

k (u)
]

= 0, where Qα
k (u) is regarded as the αkth matrix element of an N × N matrix.

Using the fact that Qα
k (u) is a polynomial in u of degree α − 1 for α ! 1 and Q0

k = 1/u, one
can show that det

[
Qα

k (u)
]

= P(u)/u, where P(u) is a polynomial in u of order
∑N−2

m=0 m. The
real roots of the equation P(uγ ) = 0 are the values of u = {uγ } where H(u) is degenerate.
Thus, the maximum possible number of level crossings in the eigenvalue spectrum of an N ×N

maximally commuting Hamiltonian is

Mmax
c = (N − 1)(N − 2)

2
. (29)

The polynomial P(u) is of real coefficients and, therefore, its complex roots come in conjugate
pairs. Consequently, the number of real roots of P(u) falls from the maximum Mmax

c in
decrements of two. This enforces a parity such that the number of real roots is odd for integers
of the form 4m, 4m + 1 and even for integers 4m + 2, 4m + 3,m ∈ N. Ostensibly, when
real roots of P(u) are degenerate their number need not correspond to the number of distinct
crossings. In principle, a multiple real root of P(u) could correspond to a single pairwise
crossing. Numerically, however, we have observed that such multiplicities occur only when
more than two levels cross simultaneously, i.e. at the same value of u.

3 This can be seen by evaluating mnth matrix elements of
∑N

k=1 fk(u)hk(u) = 0 for m (= n and using equations (19)
and (20).

10



J. Phys. A: Math. Theor. 42 (2009) 035206 H K Owusu et al

4. Mapping to the Gaudin magnets

In this section, we show that maximally commuting Hamiltonians hi(u) are equivalent to the
Gaudin magnets,

ĥi(B) = −Bŝz
i +

N∑

k=1

′ *̂si · *̂sk

εi − εk

, i = 1, . . . , N, (30)

in the next to highest weight sector, J z = J z
max − 1, where J z is the z projection of the total

spin, *̂si =
{
ŝx
i , ŝ

y
i , ŝz

i

}
is the ith spin 3-vector of magnitude si and

[
ŝαi , ŝ

β
j

]
= εαβγ ŝ

γ
i δij . This

mapping is very useful as Gaudin magnets (central spin Hamiltonians) have been extensively
studied [17, 21, 30–34]. For example, an exact solution for the eigenstates and eigenvalues
is available [17, 21]. We employ it in subsequent sections to obtain the spectra of maximally
commuting Hamiltonians and to analyze their level crossings. This mapping also implies that
all our conclusions regarding maximal Hamiltonians, e.g. the presence and the number of level
crossings, quasi-ring structure (22) etc. can be immediately transferred to the corresponding
sector of Gaudin magnets and their derivative models, such as the reduced BCS model
[35–37]. At the same time, other sectors of the Gaudin model as well as more general
models [33] of which it is a particular case can provide examples of Hamiltonians with less
then the maximum number of commuting partners.

Since Gaudin magnets (30) commute with the z projection of the total spin Ĵ z, see
equation (9), they are block-diagonal in any basis where Ĵ z has a definite value. Different
blocks can be labeled by the eigenvalues of Ĵ z. Consider the sector J z = J z

max − 1, where
J z

max =
∑N

i=1 si is the maximum eigenvalue of Ĵ z. It is populated by N basic states

|k〉 = ŝ−
k |0〉

√
2sk

, k = 1, . . . , N, (31)

where |0〉 is the highest weight state J z = J z
max, i.e. ŝ+

k |0〉 = 0 for all k, and the highest weight
sk for each spin ŝk is given by ŝz

k |0〉 = sk|0〉. Therefore, Gaudin Hamiltonians (30) are N
commuting real symmetric N × N matrices in this sector. Since there is also no obvious B-
independent symmetry (Ĵ z ∝ I within a given sector), the ĥi(B) appear to be good candidates
for a maximally commuting set.

To check this, let us evaluate the nonvanishing matrix elements of ĥi(B) given by
equation (30) in the normalized basis (31). We obtain

〈i|ĥi(B)|j 〉 =
√

sisj

εi − εj

, j (= i,

〈j |ĥi(B)|j 〉 =− si

εi − εj

+



−Bsi +
∑

k (=i

sisk

εi − εk



 , j (= i,

〈i|ĥi(B)|i〉 = B −
∑

k (=i

sk

εi − εk

+



−Bsi +
∑

k (=i

sisk

εi − εk



 .

(32)

Comparing these expressions to matrix elements of hi(u) in equation (19), we observe that
with the identifications B = u and sk = γ 2

k the two matrices differ only by a multiple of an
identity matrix ψ iI , where

ψ i = −Bsi +
∑

k (=i

sisk

εi − εk

. (33)

11
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Recall that we arbitrarily selected a ‘gauge’ ψ i = 0 for maximally commuting Hamiltonians
hi(u), see equation (17) and the text above equation (19). This constant overall shift of all
eigenvalues of hi(u) affects neither its eigenstates nor the degeneracies.

Thus, we see that Gaudin Hamiltonians (30) in the next to highest weight sector
J z = J z

max − 1 are equivalent to basic maximal Hamiltonians hi(u) with

u = B, γ 2
k = sk, (34)

and vice versa. Note that the magnitudes of quantum spins, sk , take half-integer values
for finite-dimensional representations of the spin su(2) algebras, while γk are arbitrary real
numbers. We believe that this restriction can be lifted by moving to an appropriate infinite-
dimensional representations of the su(2) s, where the highest weight states are still well
defined but sk take arbitrary real values [38]. Indeed, we have verified that, at least in our
sector J z = J z

max − 1, in all expressions for the eigenvalues and eigenstates of ĥi(B) (see
below) the replacements B → u and sk → γ 2

k with arbitrary real γk produce the correct
corresponding eigenvalues and eigenstates of hi(u).

5. Exact solution for the spectra of maximal Hamiltonians

A particularly useful consequence of the mapping (34) between Gaudin magnets ĥi(B) and
maximally commuting Hamiltonians hi(u) is that one can obtain the exact solution for hi(u)

by importing the known exact solution for the spectra of ĥi(B) [17, 21]. The latter has been
derived both from the properties of the Gaudin algebra [17] and by Bethe’s ansatz [33].

The exact eigenvalues of the Gaudin Hamiltonian (30), ĥi(B), in the next to highest
weight sector J z = J z

max − 1 are
(
λi

m

)
G

= si

xG
m − εi

+ ψ i , (35)

where ψ i is the overall shift of all eigenvalues given by equation (33) and xG
m are the solutions

of the following equation:

B =
N∑

k=1

sj

xG
m − εk

. (36)

Note that if this equation is brought to the common denominator, the numerator becomes a
polynomial of order N in xG

m . Therefore, there are N solutions for xG
m and N eigenvalues (35)

as it should be since there are N states in this sector, see equation (31). The unnormalized
eigenstates (common to all ĥi(B)) corresponding to eigenvalues (35) are

|λm〉
G

=
N∑

k=1

√
sk|k〉

xG
m − εk

, (37)

where the basic states |k〉 have been introduced in equation (31). A concise derivation of
equations (35), (40) and (37) can be found in [17, 21, 34].

Using the mapping (34) between basic maximal operators hi(u) and Gaudin Hamiltonians,
we obtain from equation (35) the energies of hi(u)

λi
m = γ 2

i

xm − εi

. (38)

Note that we set the overall shift ψ i = 0 in accordance to the discussion surrounding
equation (33). The corresponding common eigenstates of all hk(u) are

|λm〉 =
N∑

k=1

γk|k〉
xm − εk

, (39)

12
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Figure 3. A plot of f (x) =
∑N

k=1 γ
2
k (x − εk)

−1 for N = 6. Solutions of the equation f (xm) = u
determine the energies (41) and eigenstates (39) of a general maximal Hamiltonian H(u). There
are N points, xm with m = 1, . . . , N , where y = f (x) intersects y = u (dashed horizontal line)
yielding N = 6 eigenstates. Note that εm < xm < εm+1 except in the case of xN for which we
have εN < xN for u > 0 and xN < εN+1 ≡ ε1 for u < 0. Furthermore, we see that xm → εm as
u → ∞ and xm → εm+1 as u → −∞. This observation allows us to determine the behavior of
the energies in the u → ±∞ limits, see equation (44).

where |k〉 now stands for a basic vector for matrices hi(u), i.e. its j th component is |k〉j = δjk .
In equations (38) and (37) xm are solutions of the following equation:

u =
N∑

k=1

γ 2
k

xm − εk

≡ f (xm), m = 1, . . . , N, (40)

which follows from equation (36). That equations (38),(39) and (40) yield the correct spectrum
of hi(u) can be verified directly using the matrix form (19) of hi(u). Finally, using equation
(23), we derive the energies of a general maximally commuting Hamiltonian, H(u) = T +uV ,

ωm =
N∑

k=1

dkγ
2
k

xm − εk

. (41)

The corresponding eigenstates are still given by equation (39).
Let us analyze the flow of eigenvalues ωm of H(u) with u and determine their behavior in

the u → ±∞ limits. Consider equation (40). Let εk be ordered as ε1 < ε2 < · · · < εN . The
right-hand side of equation (40) is plotted in figure 3. Note that f (x) → +∞ as x → ε+

k and
f (x) → −∞ as x → ε−

k+1. It follows that the equation u = f (xm) has a real root between εk

and εk+1 for any k. Let us number the roots xm so that εm < xm < εm+1. Note from figure 3
that for the last root xN we have εN < xN for u > 0 and xN < εN+1 ≡ ε1 for u < 0, where
from now on we identify indices m and m + N that differ by a multiple of N. Further, observe
from figure 3 that xm → εm as u → +∞. In this limit the k = m term dominates equations
(40) and (41) and we obtain γ 2

m

/
(xm −εm) ≈ u and ωm ≈ dmγ

2
m

/
(xm −εm) ≈ udm. Similarly,

for u → −∞ we have xm → εm+1 and ωm ≈ udm+1. Therefore,

ωm → −|u|dm+1 as u → −∞, ωm → |u|dm as u → +∞. (42)

At this point it is convenient to rescale the Hamiltonian

H ′(u) = H(u)√
u2 + 1

= T + uV√
u2 + 1

. (43)
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Note that this does not affect the level crossings, i.e. H ′(u) and H(u) have crossings (if any)
at the same values of u. Equation (42) implies

ω′
m → −dm+1 as u → −∞, ω′

m → dm as u → +∞, (44)

where ω′
m is the eigenvalue of H ′(u) corresponding to the eigenstate |λm〉. Recall that dk are

the eigenvalues of V , see the text below equation (6). We see from equation (43) that the
eigenvalues of H ′(u) indeed should tend to dk in u → ±∞ limits consistent with equation
(44). The latter equation however provides much more detailed information—it shows to
which particular dk the eigenvalue corresponding to a given eigenvector tends in each limit.
We will use equation (44) in the following section to study the crossings of energy levels of a
general maximally commuting Hamiltonian H(u).

6. Level crossings

In this section, we establish the presence of energy level crossings in the spectrum of
an arbitrary maximally commuting Hamiltonian H(u) = T + uV (6). This provides an
explanation of the level crossing phenomenon in the absence of any u-independent symmetry
based solely on the fact that H(u) has the maximum possible number of independent
commuting partners, see the text above equation (4). Further, we determine the number
of level crossings as it depends on the ordering of the eigenvalues dk of the perturbation
operator V and argue that this number takes values

Mc = (N − 1)(N − 2)

2
− 2K, K = 0, 1, . . . , Kmax, (45)

where N is the dimensionality of the state space of H(u) and Kmax is the integer part (floor) of
(N − 1)(N − 2)/4 − 1/2. For example, N = 3 maximally commuting operators have a single
level crossing, while for N = 6 we have Mc = 2, 4, 6, 8 and 10. We also develop an approach
that allows us to readily predict the minimum allowed number of crossings for a given H(u)

from the ordering of dk .
Consider a Hamiltonian (not necessarily belonging to any commuting family) that depends

on a real parameter u. Suppose |ni〉 are its eigenstates and E−
n1

< E−
n2

< · · · are the
corresponding energies at large negative u. There is only one way to avoid crossings—the
order of eigenvalues E+

ni
at u → ∞ must be exactly the same as that at u → −∞, i.e.

E+
n1

< E+
n2

< · · · . This is what happens with a typical Hamiltonian in agreement with the
Wigner–von Neumann non-crossing rule, figure 2. If, on the other hand, the relative order of
any two energies changes, at least one level crossing must occur. For example, E−

n1
< E−

n4
and

E+
n1

> E+
n4

means that the difference En1(u) − En4(u) changes sign as u evolves from −∞
to ∞. By continuity this implies a crossing of levels corresponding to eigenstates |n1〉 and
|n4〉 at a certain value of u. This is observed in blocks of quantum integrable Hamiltonians
characterized by the same u-independent symmetry, see e.g. figure 1. Numerical spectra of
maximal Hamiltonians display the same behavior, figures 5 and 8(a).

Now let us turn our attention to an arbitrary maximally commuting Hamiltonian H(u).
In the previous section we have established the behavior of its energies in u → ±∞ limits. It
follows from equation (44) that the energy level of H(u) = T +uV (with appropriate rescaling
(43)) that starts from −dk at u → −∞ ends at dk−1 at u → ∞. Symbolically, this can be
represented by

k 0−→ k − 1, (mod N). (46)

Note that we cannot fix an ordering of dk without loss of generality, as dk correspond to εk ,
see e.g. equation (41), and we have already fixed the order of εk so that ε1 < ε2 < · · · < εN .
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Figure 4. Schematic energy level diagram for general 5×5 maximal Hamiltonians H(u) = T +uV
drawn using the rules (47). The eigenvalues dk of V are ordered such that d4 > d5 > d3 > d1 > d2.
The diagram shows six level crossings for this ordering and specifies which levels cross, e.g. the
level 4 → 3 first crosses 3 → 2 and then 2 → 1. Compare to figure 5 and note that the crossings
predicted by the above diagram are exactly the same as actual numerical crossings for this ordering.
Note also that according to equation (45) six is the maximum allowed number of crossings for
this ordering of dk and multiple crossings of the same two levels are therefore forbidden for this
ordering.

First, we assume that all dk are distinct as is generally the case. Equation (46) implies that
the flow of energy levels from u = −∞ to u = ∞ can be schematically depicted using the
following rules:

(1) Create two columns in which {−dk} and {dk} are both in descending order and replace
each dk with its lower index k, i.e.

−di

−dj

...

−dl

−dm

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

dm

dl

...

dj

di

1⇒

i

j
...

l

m

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

m

l
...

j

i

. (47)

(2) Draw a line connecting j in the left column to j − 1 in the right. These lines represent
energy levels of H(u). Consequently, their crossings imply crossings of the corresponding
energy levels of H(u).

An example of an energy level diagram generated using the above prescription for N = 5
is shown in figure 4. It corresponds to the ordering d4 > d5 > d3 > d1 > d2 and predicts
six level crossings. It also specifies which levels cross, e.g. the top level connecting 2 and 1
crosses with the next in energy level connecting 1 and 5. We see that the crossing predicted by
figure 4 are exactly the same as those of actual levels of a maximally commuting operator with
that ordering shown in figure 5. The latter has been obtained by numerical diagonalization
of a 5 × 5 maximally commuting operator (19), H(u), with randomly chosen γk, εk and
random dk obeying the above ordering. More examples of level diagrams are shown in
figures 6, 7, and 9 and discussed in detail below. Next, we explore further consequences of
equation (46).

Inevitability of level crossings for maximally commuting operators. In section 3 we have
seen that the maximum allowed number of level crossings is (N − 1)(N − 2)/2, see equation
(29). Now let us show that at least one crossing must be present in the spectrum of any
maximally commuting H(u) = T + uV . Suppose the eigenvalues of V are ordered as
di < dj < · · · < dl < dm as shown in the diagram (47) and assume there are no crossings.
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Figure 5. Numerical energy levels of a 5×5 maximal Hamiltonian H(u) = T +uV with the same
ordering of eigenvalues of V as that in figure 4. Energies are scaled with a factor (u2 + 1)−1/2 to
highlight their asymptotic approach to eigenvalues of V . Matrix elements of H(u) are generated
using equation (19) with random γk, εk and random dk constrained to obey the ordering of
figure 4. Note that the number of crossings as well as the levels that cross are exactly the
same as those predicted by figure 4.

Figure 6. A schematic diagram corresponding to maximum level crossings with N = 5. As is
evident, N → N − 1 line has N − 2 crossings, N − 1 → N − 2 adds N − 3 new crossings and
so on, till the line 3 → 2 adds only 1 new crossing. Thus, the maximum number of crossings,
1 + 2 + 3 + · · · + (N − 2) = (N − 1)(N − 2)/2, can be confirmed.

Then, the top level must go from i on the left to m on the right, i.e. i → m, the next level
starting at j on the left must be connected to l on the right, j → l etc. Finally, we must have
l → j and m → i. Consider in particular levels i → m and m → i. According to equation
(46), this asymptotic behavior implies m = i − 1(mod N) and i = m − 1(mod N). We obtain
0 = 2(mod N), which does not hold for any N ! 3, i.e. the above assumption that levels do
not cross cannot be true. Thus, we have demonstrated that at least one level crossing is always
present.
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(a) (b) (c)

(d) (e) (f)

Figure 7. All distinct level diagrams of N = 4 maximal Hamiltonians, H(u) = T + uV , drawn
according to (47). There are (N − 1)! = 6 distinct diagrams each corresponding to N = 4
different orderings of eigenvalues of V (see the text). For example, diagram (b) corresponds to
d1 > d3 > d4 > d2 and three other orderings obtained with a shift of the indices by an integer
mod N, e.g. d2 > d4 > d1 > d3 etc. The diagrams predict either one or three level crossings
in agreement with equation (45) and specify which levels cross. However, when the number of
crossings is less than the maximum (three), additional multiple crossings of the same two levels
can occur. This can increase the number of crossings by 2K , see figure 8. In the present case, the
number of crossings for orderings (b) and (e) can increase from one to three.

The maximum number of crossings Mmax
c = (N − 1)(N − 2)/2 is realized e.g. for the

ordering d1 > d2 > · · · > dN , see figure 6. In this case equation (46) implies N → N − 1
yielding m = N −2 crossings, N −1 → N −2 giving rise to another m = N −3 crossings etc.,
so that altogether we have

∑N−2
m=1 m = Mmax

c level crossings. Note however that the schematic
level diagrams, such as those shown in figures 4, 6, 7 and 9, do not account for the possibility
of two levels crossing more than once. For example, the level 2 → 1 in figure 7(b) can go
below the level 1 → 4 and come back above it again generating two additional crossings, see
figure 8. Therefore, multiple crossings of two levels can increase the total number of crossings
Mc for a given ordering of dk by an even number except when Mc = Mmax

c . In the latter case,
since Mc cannot exceed Mmax

c , multiple crossings of the same two levels are prohibited. We
see that multiple crossings do not modify equation (45). Interestingly, numerically we have
found that for as low as N = 8, multiple crossings of the same two levels are very common.

Thus far, we have established that the total number of crossings Mc in the spectrum of
an arbitrary maximally commuting Hamiltonian is 1 " Mc " Mmax

c . By inspecting all level
diagrams for 3 " N " 6, we have also found that for a given N the total number of level
crossings changes in increments of 2 from Mmax

c to 1 (2) for odd (even) Mmax
c , i.e. we verified

equation (45) for these N. Moreover, this equation is also supported by the parity considerations
in the end of section 3 and is consistent with all preceding observations regarding the properties
of level diagrams. As such, we adopt it without a formal proof.

17



J. Phys. A: Math. Theor. 42 (2009) 035206 H K Owusu et al

(a) (b)

Figure 8. (a) Numerical energy levels of a 4 × 4 maximal Hamiltonian H(u) = T + uV with
the same ordering of dk as in figure 7(b). Energies are scaled with (u2 + 1)−1/2 to highlight their
asymptotic approach to dk . Matrix elements of H(u) are generated using equation (19) with random
γk, εk and random dk constrained to obey the above ordering. The multiple (twofold) crossing
of the top two levels increases the number of crossings from one as in figure 7(b) to three. This
illustrates the generic situation arising when multiple crossings increase the number of crossings
by an even integer over and above the number enforced by the diagrams (47). Nevertheless, as
discussed in the text, this does not affect equation (45). (b) The schematic of (a).

(a) (b)

Figure 9. All distinct level diagrams for N = 3 maximal Hamiltonians, H(u) = T + uV , drawn
according to (47). There are (N − 1)! = 2 distinct diagrams each corresponding to N = 3
different orderings of eigenvalues of V (see the text). For example, diagram (a) corresponds to
d1 > d2 > d3 and two other orderings obtained with a shift of the indices by an integer mod N, i.e.
d2 > d3 > d1 and d3 > d1 > d2. The diagrams predict a single level crossing in agreement with
equation (45) and specify which levels cross. Since this is also the maximum number of crossings
for N = 3, no multiple crossings of the same two levels are allowed, cf figures 7 and 8.

Let us also comment that cases when some of the eigenvalues of V, dk , are degenerate
should be regarded as crossings at u → ±∞. Equivalently, one can treat T and V on equal
footing by defining H(u, v) = vT + uV . Then, degenerate dk correspond to crossings at
v/u = 0, while the crossings considered above occur either at finite v/u or at v/u → ±∞,
or equivalently at u/v = 0. For example, levels of the BCS Hamiltonian, which is a linear
combination of Gaudin magnets [37], ĤBCS = 1

B

∑
εi ĥ

i (B) + const, cross at the value of the
BCS coupling constant g = 1/B = 1/u = ∞ or, equivalently, at u = 0, see e.g. [17, 39].

We conclude this section with a discussion of useful properties and examples of energy
level diagrams. There are N ! diagrams for a given N corresponding to permutations of
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eigenvalues d1, d2, . . . , dN . However, some of them are identical. Specifically, orderings
di < dm < · · · < dl and di+a < dm+a < · · · < dl+a that differ by a shift of indices by an integer
a yield identical diagrams, since equation (46) is invariant with respect to the replacement
k → k + a(mod N). Because N different orderings can be generated using this shift, it leaves
(N − 1)! distinct diagrams. For example, there are two distinct diagrams for N = 3, see
figure 9. Each corresponds to three different orderings of dk . Both diagrams predict a single
level crossing. Since this is also the maximum number of crossings for N = 3, repeated
crossings of the same two levels are not allowed. Therefore, a single crossing of either two
top or two bottom levels is the only option for N = 3 maximally commuting Hamiltonians.
For N = 4 there are six distinct level diagrams shown in figure 7. Four of them—diagrams
(a), (c), (d) and (f) in figure 7—exhibit the maximum number, Mmax

c = 3, of level crossings.
In a manner similar to that of the N = 3 case this is the only option for the corresponding
sixteen orderings of dk . In contrast, in diagrams (b) and (e) showing a single crossing, multiple
crossings can occur. This will increase the total number of crossings from one to three, see
figure 8.

7. Submaximal Hamiltonians

The preceding sections have focused on maximally commuting Hamiltonians, where we have
explicitly constructed these operators, solved them exactly, and used the solution to explain the
level crossings in such systems. In this section, we explore Hamiltonians linear in a parameter
u characterized by less than the maximum number of commuting partners. Most importantly,
we demonstrate that some of these submaximal Hamiltonians have no energy level crossings,
i.e. the inevitability of level crossings due to parameter-dependent commuting partners appears
to be an exclusive property of maximal Hamiltonians.

As discussed in the introduction, a given family of maximal Hamiltonians contains N − 1
nontrivial independent commuting operators (see the discussion in the paragraph following
equation (6)). It is reasonable to expect that there exist submaximal families with N −2, N −3
etc. Hamiltonians. Similar to equation (5), any common u-independent symmetry is assumed
to be factored out by going to blocks of the same symmetry. We may adopt a convenient
terminology, where families with N − L nontrivial Hamiltonians are identified as being Type
L (cf Type I and II of [19]). Then, the maximally commuting Hamiltonians are Type 1, those
with N − 2 commuting operators are Type 2 and so on. Since a nontrivial family must contain
at least two nontrivial commuting operators, the first nontrivial instance of Type 1 occurs for
N = 3, Type 2 for N = 4 etc., where N is the dimensionality of the state space.

First, let us construct 4 × 4 Type 2 Hamiltonians linear in a real parameter u. Our task
is therefore to identify two 4 × 4 commuting real symmetric matrices that do not have the
third independent commuting partner other than (a + ub)I . We will do so by employing
the construction of maximal Hamiltonians detailed in section 2. Consider 4 × 4 operators
H(x, y, u) = xT + yK + uV and H̃ (x, y, u) = xT̃ + yK̃ + uṼ , linear in parameters x, y and
u, such that

[H(x, y, u), H̃ (x, y, u)] = 0. (48)

Since this equation is to hold for all x, y, and u, the coefficients of the xy, xu, yu etc. terms
must vanish individually. We obtain

[T , T̃ ] = [V, Ṽ ] = [K, K̃] = 0, (49)

[T , Ṽ ] = [T̃ , V ], [T , K̃] = [T̃ , K], (50)

[V, K̃] = [Ṽ , K]. (51)
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Let us choose these real symmetric matrices so that (T + uV, T̃ + uṼ ) and (K + uV, K̃ + uṼ )

belong to two different families of maximally commuting Hamiltonians parameterized by
γm, εm and γ̃m = γm, ε̃m, respectively, see equation (19). Then, equations (49) and (50) are
satisfied by construction. Consequently, it remains to solve equation (51).

Thus, from equation (21) we have in the common eigenbasis of V and Ṽ

[H(x, y, u)]mn = xγmγn

dm − dn

εm − εn

+ yγmγn

dm − dn

ε̃m − ε̃n

, m (= n,

[H(x, y, u)]mm = udm − x
∑

j (=m

γ 2
j

dm − dj

εm − εj

− y
∑

j (=m

ε̃mγ
2
j

dm − dj

ε̃m − ε̃j

,
(52)

where dk are the eigenvalues of V . Matrix elements of H̃ (x, y, u) are obtained from equation
(52) by replacing dk → d̃k . Using these expressions for the matrix elements, one can rewrite
the remaining commutation relation (51) as follows:

γ 2
l =

∣∣∣∣∣∣

1 1 1
di dj dk

d̃i d̃j d̃k

∣∣∣∣∣∣

∣∣∣∣∣∣

1 1 1
εi εj εk

ε̃i ε̃j ε̃k

∣∣∣∣∣∣

2

(εi − εj )(εj − εk)(εi − εk)(̃εi − ε̃j )(̃εj − ε̃k)(̃εi − ε̃k)
, l (= i, j, k. (53)

Therefore, choosing dr, d̃r , εr , and ε̃r , we obtain γr from equation (53). This yields two
commuting matrices H(x, y, u) and H̃ (x, y, u). Fixing nonzero values of x = x0 and y = y0,
we obtain a Type 2 family of Hamiltonians linear in u,

H(u) = (x0T + y0K) + uV, H̃ (u) = (x0T̃ + y0K̃) + uṼ . (54)

There are a number of equivalent ways to verify that these operators are indeed Type 2 rather
than maximally commuting. For example, one can show that their matrix elements (52)
cannot be cast into the form (19). Alternatively, it can be demonstrated that conditions (A.3)
necessary for any maximal operator do not hold. However, a less formal, but more fruitful
verification uses the following argument. We have seen in section 6 that any N = 4 maximal
Hamiltonian must have either one or three level crossings. Let us check if this holds for the
Hamiltonians (54). To this end, we set x0 = 1, generate random y0, dk, εk , and ε̃k , and obtain
γk from equation (53) and H(u) from equation (52). Doing so repeatedly and numerically
diagonalizing the resulting Hamiltonians we observe that they always have either no or two
level crossings. An example with no crossings is shown in figure 10. Thus, operators (54) are
Type 2.

We see that level crossings are not guaranteed when the number of commuting operators
is less than the maximum—nontrivial solutions of equation (3) do not necessarily imply
crossings. The converse is also false, i.e. level crossings can occur in the absence of any
nontrivial commuting partner linear in u and any u-independent symmetry. For example, one
can show that the 4 × 4 Hamiltonian given by equation (A.4) in the appendix with a single
level crossing at u = 0 has no nontrivial commuting partners and no u-independent symmetry.
Interestingly, N = 4 is the first dimensionality where this happens as for 3 × 3 real symmetric
matrices linear in u a level crossing implies a nontrivial commuting partner linear in u and
vice versa [18].

8. Summary and open questions

In this paper, we addressed the problem of the violation of the Wigner–von Neumann non-
crossing rule in quantum integrable systems. For this purpose, we introduced and studied a

20



J. Phys. A: Math. Theor. 42 (2009) 035206 H K Owusu et al

Figure 10. Numerical energy levels of a 4 × 4 submaximal Hamiltonian H(u) obtained from
equations (52) and (54) with x0 = 1, random y0, dk, εk and ε̃k . Energies are scaled with (u2+1)−1/2

as in figure 8. Unlike N = 4 maximal Hamiltonians, which always have two nontrivial commuting
partners, this H(u) has only one such partner (see the text). Note that levels of H(u) do not
cross at any u, i.e. the mere existence of a nontrivial commuting partner does not guarantee level
crossings. This is to be contrasted with 4 × 4 maximally commuting Hamiltonians which always
exhibit either three or one crossings, see figures 7 and 8.

general class of maximal Hamiltonians—a vector space of N×N real symmetric Hamiltonians,
H(u) = T + uV , characterized by the existence of the maximum possible number (N)
of independent mutually commuting integrals similarly linear in the coupling u. We have
resolved this commutation property and explicitly constructed general maximal Hamiltonians,
see equation (19). Interestingly, these operators are equivalent to the Gaudin magnets (30) in
the next to highest weight sector, J z = J z

max − 1, where J z is the z projection of the total spin.
The mapping to Gaudin magnets allowed us to obtain a complete exact solution for

the eigenstates and eigenvalues of H(u), equations (40) and (41). Furthermore, we have
demonstrated that energy level crossings are inevitable for maximal operators, i.e. there
is always at least one crossing. The total number of crossings varies from 1 or 2 to
(N − 1)(N − 2)/2, see section 6. Thus, the mere existence of the maximum number of
commuting partners guarantees a) an exact solution and b) level crossings. This relationship
between the existence of conservation laws and exact solution is a quantum analog of the
famous Liouville–Arnold theorem in classical mechanics. The latter states that if a classical
model with n degrees of freedom has n Poisson-commuting integrals, its equations of motion
are exactly solvable [20].

At the same time, by constructing an explicit example we have demonstrated that
submaximal Hamiltonians—real symmetric operators of the form T + uV with less than
the maximum number of linear in u commuting partners—often show no instances of level
crossings at any u. Thus, the inevitability of crossings is an exclusive feature of maximally
commuting operators. Similarly, we have also shown that the presence of level crossings does
not necessarily imply the existence of a nontrivial commuting partner linear in u, i.e. crossings
can occur even in the absence of such partners as well as u-independent symmetries.

Our understanding of properties of parameter-dependent energy spectra in integrable
models is far from complete. We conclude this section with a list of open questions stemming
from the results of this work.

(i) We have shown that there are submaximal Hamiltonians with no level crossings.
Nevertheless, crossings often do occur in these systems in violation of the non-crossing
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rule, see section 7. This indicates that there is more to the link between crossings and the
presence of commuting partners. It is interesting to understand this link for submaximal
operators, what lifts level repulsion in this case, and why crossings happen only for a
fraction of submaximal Hamiltonians.

(ii) In section 7, we have also introduced a notion of Type L commuting family characterized
by N − L nontrivial integrals. In this classification maximally commuting operators are
Type 1, while submaximal operators correspond to L ! 2. A natural question is whether
there is a general explicit parametrization for Type 2, 3 etc. similar to that obtained in
this paper for maximal systems. For instance, one can show that |J z| " J z

max − 2 sectors
provide examples of submaximal commuting families.

(iii) What is the role of maximal Hamiltonians in the context of general quantum integrable
Hamiltonians? For the central spin Hamiltonians (Gaudin magnets) they represent the
next to highest weight sector. Do other integrable models have maximally commuting
sectors?

(iv) In this paper, we focused on operators linear in the coupling u. An interesting question
is how our results can be generalized to operators with a more general, e.g. polynomial,
dependence on the coupling.

(v) We have established hard bounds for the number Mc of level crossings in N×N maximally
commuting operators. Can one also determine the distribution of Mc for large N, i.e. the
relative prevalence of maximal Hamiltonians with a particular number of level crossings?
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Appendix A. Shastry’s construction of commuting matrices

In [19] Shastry developed an approach to generate commuting real symmetric N ×N matrices
linear in a parameter u. Here we show that matrices obtained with this approach belong to
maximally commuting set constructed in section 2, see equation (19).

First, we briefly review the results of [19]. Consider equation (3). In the common
eigenbasis of V and Ṽ the second relation in equation (3) becomes

Sij ≡ Tij

di − dj

= T̃ij

d̃ i − d̃j

, i (= j, (A.1)

where Tij (T̃ij ) are the matrix elements of T (T̃ ) and di and d̃ i are the eigenvalues of V and
Ṽ , respectively. It remains to consider the [T , T̃ ] = 0 commutation relation in equation (3).
This can be cast into the following form:

µijkd̃i + µjki d̃j + µkij d̃k +
∑

l (=i,j,k

νlijkd̃l = 0, distinct i, j, k, (A.2)

where µijk and νlijk depend only on matrix elements of H(u) and not on those of H̃ (u).
Specifically, they involve only dr, Trr and Srm.

A set of particular solutions to equation (3) can be obtained by setting the coefficients in
equation (A.2) at each d̃r individually to zero, i.e.

µijk = 0, νlijk = 0, distinct l, i, j, k. (A.3)
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Now commuting H(u) and H̃ (u) can be generated as follows. One first chooses 3N − 1
parameters, e.g. 2N −3 variables S1r and S2r for {2, 3} " r " N and N +2 variables {dr}, T11,
and T22. Then, equation (A.3) reduce to linear equations and can be solved for the remaining
variables. Once H(u) is determined in this way, H̃ (u) can also be constructed, see [19] for
details. This scheme is quite suitable for numerical implementation and, having examined
several examples, Shastry observed crossings in all cases. Based on this and the results of [18]
he conjectured that these matrices will always exhibit them.

To show that this construction always yields maximal Hamiltonians, we note that equation
(A.3) is a sufficient condition for equation (A.2) to have N linearly independent solutions for
(d̃1, d̃2, . . . d̃N ). Since d̃r are the eigenvalues of Ṽ , the existence of N linearly independent
solutions means that there are N Hamiltonians H̃ (u) with linearly independent Ṽ s. The
absence of u-independent symmetries can also be demonstrated (it follows from Sij (= 0
for all i (= j ). Thus, we have a maximally commuting set, see the introduction. The only
difference is that by construction dr are not allowed to be degenerate, see equation (A.1), while
the maximal set contains these matrices as well.

Finally, we write down an example (see the discussion at the end of section 7) of a 4 × 4
Hamiltonian H(u) with a level crossing but no u-independent symmetry and no commuting
partners linear in u other than trivial ones—cH(u) + (a + ub)I , where a, b, and c are real
numbers and I is the identity matrix,

H(u) =





1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0



 + u





1 −1 1 −1
−1 1 −1 1
1 −1 −2 1

−1 1 1 2



 . (A.4)
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