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In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due
to the contact hyperfine interaction. We compare mean-field �classical� evolution of an electron spin
in the presence of a nuclear field with the exact quantum evolution for the special case of uniform
hyperfine coupling constants. We find that �in this special case� the zero-magnetic-field dynamics
due to the mean-field approximation and quantum evolution are similar. However, in a finite
magnetic field, the quantum and classical solutions agree only up to a certain time scale t��c, after
which they differ markedly. © 2007 American Institute of Physics. �DOI: 10.1063/1.2722783�

I. INTRODUCTION

Prospects for future quantum information processing
with quantum-dot-confined electron spins1 have encouraged
a series of recent experimental efforts. These efforts have
resulted in several very significant achievements, including
single-electron confinement in vertical2 and lateral single3

and double4,5 gated quantum dots, the demonstration of spin-
dependent transport in double dots,6–8 and exciting effects
arising from the contact hyperfine interaction with nuclear
spins in the host material, including coherent undriven oscil-
lations in spin-dependent transport,7 lifting of the spin
blockade,8 enhancement of the nuclear spin decay rate near
sequential-tunneling peaks,9,10 and notably, decay of coher-
ent oscillations between singlet and triplet states as well as
the demonstration of two-qubit gates in double quantum
dots.11,12 Very recently, the hyperfine interaction has also
been identified as the source of decay for driven single-spin
Rabi oscillations in quantum dots.13,76

In spite of rapid progress, there are still many obstacles
to quantum computing with quantum dots. In particular, the
inevitable loss of qubit coherence due to fluctuations in the
environment is acceptable in a quantum computer only if the
error rates due to this loss are kept below 10−3–10−4 errors
per operation.14 This requirement is particularly difficult to
achieve since it means that interactions must be strong while
switching so that operations can be performed rapidly, but
still very weak in the idle state, to preserve coherence.

For an electron spin confined to a quantum dot, decoher-

ence can proceed through fluctuations in the electromagnetic
environment and spin-orbit interaction,15–19 or through the
hyperfine interaction with nuclei in the surrounding host ma-
terial, which has been shown extensively in theory20–42 and
experiment.11,12,43–47 Due to the primarily p-type nature of
the valence band in GaAs, hole spins �unlike electron spins�
do not couple to the nuclear spin environment via the contact
hyperfine interaction, although they can still undergo decay
due to spin-orbit coupling. The decay may still occur on an
even longer time scale than for electrons,48 which suggests
the dot-confined hole spin may be another good candidate for
quantum computing. Alternatively, quantum dots fabricated
in isotopically purified 28Si �Ref. 49� or 12C nanotubes50–52

would be free of nuclei with spin, and therefore free of
hyperfine-induced decoherence.

While the field of quantum-dot spin decoherence has
been very active in the past few years, there still remain
significant misconceptions regarding the nature of the most
relevant �hyperfine� coupling; particularly, the range of va-
lidity of semiclassical spin models and traditional decoher-
ence methods involving ensemble averaging have been
called into question for a single isolated quantum dot with a
potentially controllable environment. We address these issues
in Sec. II.

II. HYPERFINE INTERACTION: QUANTUM
AND CLASSICAL DYNAMICS

Exponential decay of the longitudinal and transverse
components of spin is typically measured by the decay time
scales T1 and T2, respectively.53 The longitudinal spin relax-
ation rate 1 /T1 due to spin-orbit interaction and phonon
emission is significantly reduced in quantum dots relative to
the bulk in the presence of a weak Zeeman splitting B= �B�
and large orbital level spacing ��0 �1/T1�B5 / ���0�4� �Refs.
16 and 17�. This decay time has been shown to be on the
order of T1�1 ms in gated GaAs quantum dots at B�8 T
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�Ref. 54� and to reach a value as large as T1=170 ms at low
magnetic fields �B=1.75 T� �Ref. 55�. Furthermore, since
dephasing is absent at leading order for fluctuations that
couple through the spin-orbit interaction, the T2 time due to
this mechanism is limited by the T1 time �T2=2T1� �Ref. 17;
we note that corrections at higher order in the spin-orbit in-
teraction can lead to pure dephasing, although these correc-
tions are only relevant at very low magnetic fields56,57�. Un-
like the spin-orbit interaction, the hyperfine interaction can
lead to pure dephasing of electron spin states at leading or-
der, resulting in a relatively very short decoherence time �c

�1–10 ns due to nonexponential �Gaussian� decay.22,25 To
perform quantum-dot computations, this and any additional
decay must be fully understood and reduced, if possible.

The Hamiltonian for an electron spin S in the lowest
orbital level of a quantum dot containing nuclear spins is

Hhf = S · �B + h�; h = �
i

AiIi, �1�

where Ai=Av0��0�ri��2 is the contact hyperfine coupling con-
stant to the nuclear spin at site i, v0 is the volume of a crystal
unit cell containing one nuclear spin, and A�90 �eV is the
weighted average hyperfine coupling constant in GaAs, av-
eraged over the coupling constants for the three naturally
occurring radioisotopes 69Ga, 71Ga, and 75As �weighted by
their natural abundances�,58 all with total nuclear spin I
=3/2. The nuclear field in Hhf is given by the quantum
“Overhauser operator” h. Although an exact Bethe ansatz
solution exists for Hhf �Ref. 59�, using this solution to per-
form calculations for the full coupled quantum system of N
�104–106 nuclei and one electron in a quantum dot can be
prohibitively difficult.27 Since the Overhauser operator h is a
sum of a large number N of spin-I operators, one expects that
under certain conditions its quantum fluctuations can be ne-
glected and the operator h can be replaced with a classical
Overhauser field h→BN �Refs. 8, 11, 22, 25, 32, 36, 37, 43,
44, 60–64, and 66–68�. However, this approximation can
accurately describe the electron spin dynamics only at times
t��c, where �c=N� /A and �	0 �Refs. 64 and 65� after
which effects of quantum fluctuations of the Overhauser op-
erator set in. The nuclei in GaAs are indeed quantum objects,
which could be verified, in principle, by demonstrating that
they can be entangled, as is done in spin-state squeezing
experiments that have been performed on atomic
ensembles.69 The replacement h→BN is therefore not exact
and there are several cases in which the electron spin dynam-
ics at times t	�c differ markedly for quantum and classical
nuclear fields. In particular, without performing an ensemble
average over initial Overhauser fields, the classical-field pic-
ture predicts no decay of the electron spin. This is in direct
contradiction to analytical30,40,41,70 and exact numerical26,34

studies that show the quantum nature of the nuclei can lead
to complete decay of the transverse electron spin, even in the
presence of a static environment �fixed initial conditions�.
Additionally, quantum “flip-flop” processes can lead to dy-
namics and decay of the electron spin in the quantum prob-
lem, even for initial conditions �e.g., a fully polarized nuclear
spin system� that correspond to a fixed point of the classical
equations of motion.22,30,35 In fact, it can be shown that any

decay of the electron spin for pure-state initial conditions
will result in quantum entanglement between the electron
and nuclear spin systems.26,27 This entanglement has recently
been highlighted as a source of spin-echo envelope decay in
the presence of the hyperfine interaction.42 Finally, even the
ensemble-averaged standard classical �mean-field� electron
spin dynamics shows large quantitative differences relative
to the exact quantum dynamics at times t	�c and in a very
weak magnetic field, although an alternative mean-field
theory involving the P representation for the density matrix
shows promise.71

While the classical and quantum dynamics diverge in
many cases, the classical-field replacement h→BN will be
valid up to some time scale, providing a range of validity for
the classical dynamics. In this article, we aim to shed light on
this range of validity of the classical solution. As a test of the
classical-dynamics picture, we can compare quantum and
classical dynamics of an electron spin in the simple case of
uniform coupling constants Ai=
. When the coupling con-
stants are uniform, an exact solution to the quantum dynam-
ics �see Refs. 23 and 72 for the �B�=0 case� can be evaluated
and used to compare with an integration of the equivalent
classical equations of motion. For uniform coupling con-
stants, the nuclear Overhauser operator from Eq. �1� becomes
h =
K, where Ai=
=A /N and K =�iIi is the collective total
spin operator for N�1 nuclear spins.

The initial state of the system is taken to be an arbitrary
product state of the electron and nuclear system,

���0�	 = ��S�0�	 � ��K�0�	 , �2�

= �
m=−K

K

��m
↑ �↑ ;K,m	 + �m

↓ �↓ ;K,m	� , �3�

where �� ;K ,m	 is a simultaneous eigenstate of Sz, Kz �we
take the direction of the external field B to define the z axis�,
and K ·K �with eigenvalues ±1/2 for �= ↑ ,↓, m, and K�K
+1�, respectively�. For comparison with the classical spin
dynamics, we choose the collective nuclear spin to be ini-
tially described by a spin coherent state, given by ��K�0�	
=e−iKy
K�K ,K	=�mdmK

�K��
K��K ,m	, where dmK
�K��
K� is the

Wigner rotation matrix73 and the electron spin is in an arbi-
trary initial state ��S�0�	=cos�
S /2��↑ 	+ei�S sin�
S /2��↓ 	.
The initial conditions are then completely determined by the
three angles 
S, �S, and 
K. These initial conditions allow for
an arbitrary relative orientation of the spin and magnetic-
field vectors, since the azimuthal angle for K ��K� can be set
to zero with an appropriate shift in �S: �K� =0, �S�=�S−�K.
At any later time t, the wave function is given by

���t�	 = �
m=−K

K

��m
↑ �t��↑ ;K,m	 + �m

↓ �t��↓ ;K,m	� . �4�

From the time-dependent Schrödinger equation i�t���t�	
=Hhf���t�	 �setting �=1�, we find the set of coupled differ-
ential equations determining the coefficients 
�m

↑ �t� ,�m
↓ �t��.

For m=−K , . . . ,K−1,

�̇m
↑ = −

i

2
�B + 
m��m

↑ − i



2
CKm+1

− �m+1
↓ , �5�
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�̇m+1
↓ =

i

2
�B + 
�m + 1���m+1

↓ − i



2
CKm

+ �m
↑ , �6�

where CKm
± = �Km±1�K±�Km	=
K�K+1�−m�m±1�. These

equations are supplemented by two equations for the station-
ary states �↑ ;K ,K	 and �↓ ;K ,−K	 with dynamics,

�K
↑ �t� = exp�−

i

2
�B + 
K�t��K

↑ �0� , �7�

�−K
↓ �t� = exp� i

2
�B − 
K�t��−K

↓ �0� . �8�

The solutions to Eqs. �5� and �6� and the expressions in Eqs.
�7� and �8� for the coefficients 
�m

↑ �t� ,�m
↓ �t� :m=−K , . . . ,K�

constitute a complete exact solution for the dynamics of the
wave function ���t�	 at any later time t	0. We solve Eqs. �5�
and �6� by Laplace transformation to obtain

�m
↑ �t� = ei



4

t��m
↑ �0� cos��Kmt� − i��m

↑ �0��B + 
�m +
1

2
��

+ �m+1
↓ �0�
CKm+1

− � sin��Kmt�
2�Km

� , �9�

�m+1
↓ �t� = ei



4

t��m+1
↓ �0� cos��Kmt�

+ i��m+1
↓ �0��B + 
�m +

1

2
��

− �m
↑ �0�
CKm

+ � sin��Kmt�
2�Km

� , �10�

�Km =
1

2
��B + 
m��B + 
�m + 1�� + 
2�CKm+1

− CKm
+ +

1

4
��1/2

.

�11�

With the coefficients 
�m
↑ �t� ,�m

↓ �t� :m=−K , . . . ,K� in hand,
we can evaluate the expectation values of all spin compo-
nents exactly: �S	t= ���t��S���t�	, �K	t= ���t��K���t�	.

To evaluate the classical spin dynamics, we perform a
mean-field decomposition of the Hamiltonian given in Eq.
�1� by rewriting the spin operators as S = �S	t+�S and K
= �K	t+�K. We then neglect the term that is bilinear in the
spin fluctuations ���S ·�K� and approximate the spin expec-
tation values by their self-consistent mean-field dynamics
�S	t�s�t�, �K	t�k�t�, where s and k are classical time-
dependent vectors of fixed length.64 Up to a c-number shift,
this gives the �time-dependent� mean-field Hamiltonian,

Hmf�t� = �B + 
k�t�� · S + 
s�t� · K . �12�

The mean-field dynamics are now given by the Heisenberg

equations of motion for the spin operators: Ṡ = i�Hmf�t� ,S�,
K̇ = i�Hmf�t� ,K�, with the replacements �S	t�s�t�, �K	t

�k�t�,

ṡ�t� = �B + 
k�t�� � s�t� , �13�

k̇�t� = − 
k�t� � s�t� . �14�

An exact analytical solution to Eqs. �13� and �14� is known.64

However, instead of repeating this solution here, we solve
Eqs. �13� and �14� by numerical integration for direct com-
parison with the exact results given above. The mean-field
and quantum dynamics are shown in Fig. 1 for four values of
the Zeeman splitting B= �B�. We compare the two solutions
using the correlation function

C�t� =
1

T
�

t

t+T

dt�
2�Sx	t�sx�t��

�Sx	t�
2 + sx�t��2

, �15�

where we average over the time interval T=0.1� /
 to re-
move rapid oscillations. C�t�=1 if the exact solution and
mean-field approximation are identical �sx�t�= �Sx	t� over the
time interval �t , t+T�. C�t��1 indicates that the two solu-
tions differ. While the zero-magnetic-field dynamics appear
to be well reproduced by the mean-field approximation, at
least at short time scales, the high-field solution decays rap-
idly, which cannot appear in the classical dynamics unless
averaging is performed over the initial conditions.30 There is
a partial recurrence of the correlator at a time scale given by
the inverse level spacing for the quantum problem �p

=2�� /
, but the recurrence is only partial since at this time
the quantum and classical solutions have already gone out of
phase.

It is relatively straightforward to understand the differ-
ence in the high-field and low-field behavior shown in Fig. 1.
At zero magnetic field, the total spin J ·J �J =K +S� com-
mutes with the Hamiltonian, so if the nuclear spin system
begins in an eigenstate of K ·K, only a single frequency
exists in the quantum dynamics, corresponding to the differ-
ence in energies with J=K±1/2 �Refs. 23 and 27�. Thus, in
this case the quantum dynamics corresponds to simple peri-
odic precession and mimics the classical dynamics for K�1
�see Fig. 1�b��. However, the states of fixed J are manifold
degenerate. If a term is added to the Hamiltonian which does
not commute with J ·J �in this case, the electron Zeeman
term BSz�, many more frequencies are involved in the quan-
tum dynamics, which can lead to decay in the quantum so-

FIG. 1. �Color online� �a� Correlation between the mean-field solution and
exact quantum solution C�t� �defined in Eq. �15�; C�t�=1 indicates perfect
agreement between the mean-field and quantum solutions� for evolution of
an electron spin in the presence of a total bath spin K=50 and magnetic field
B=0 �black dash-dotted line, showing the weakest decay�, B=5
 �blue dot-
ted line�, B=10
 �green dashed line�, and large magnetic field B=500
 �red
solid line, showing rapid decay�. The initial conditions were 
S=� /2, �S

=0, 
K=0.3� �see the discussion following Eq. �3��. We also show the exact
quantum evolution �Sx	t �solid line� and mean-field approximation sx�t�
�dashed line� for �b� B=0 and �c� B=10
.
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lution, while the classical solution continues to describe
simple electron spin precession �see Fig. 1�c��. In a large
magnetic field �B�
�K���, it is straightforward to evaluate
the decay in the quantum mechanical solution,30,74

�S+	t � �S+	0 exp�−
t2

2�c
2 + i�B + cos�
K�
K�t� , �16�

�c =
1




 2

K�1 − cos2�
K��
. �17�

The x component of spin is then given by the real part
�Sx	t=Re��S+	t�. We consider the hyperfine problem with I
=1/2. When the initial nuclear spin coherent state is gener-
ated by rotating the spins from a fully polarized state such
that K is maximal �as in Ref. 30�, we then have K=N /2. In
addition, 
=A /N and for nuclear spin polarization p
=cos�
K��1 this gives the decay time

�c = 2

N

A
. �18�

Since the classical dynamics at times t��c describes simple
precession for fixed initial conditions, any decay in the quan-
tum solution signifies a disagreement between the quantum
and classical problems. Thus, the mean-field solution will
give an accurate description of the full quantum dynamics
only for times t��c, with �c given by Eq. �18�.

The crossover from precession to decay of the quantum
solution with the addition of a magnetic field suggests that
the uniform coupling-constants picture should only be used
with caution, since the Hamiltonian in Eq. �1� also does not
commute with J ·J when the coupling constants vary from
one nuclear spin site to the next �as is true in a quantum dot�.
Indeed, in the presence of randomly varying coupling con-
stants, the straightforward mean-field electron spin dynamics
at times t	�c is quantitatively very different from the exact
quantum dynamics at weak magnetic fields B→0 �Ref. 71�.

III. CONCLUSIONS

We have presented an exact solution for the problem of
an electron spin interacting with a large bath of spins with
uniform Heisenberg coupling. This exact solution has been
compared to the corresponding mean-field �classical spin�
model. We have seen that the mean-field and quantum solu-
tions show striking agreement at times shorter than the
transverse-spin correlation time �c, which diverges at zero
magnetic field. This divergence, however, may only be due
to the assumption of uniform coupling constants, which is
unphysical for a quantum dot with strong confinement.

In this work we have focused on a comparison of dy-
namics for fixed initial conditions of the quantum and clas-
sical problems. Some of the quantum behavior, including
Gaussian decay, can be recovered with an average over clas-
sical solutions.22,25 An intriguing question therefore remains:
How much of the quantum dynamics can be obtained by
averaging over classical solutions with different initial con-
ditions?

Note added. Recently, a related preprint75 has appeared
in which the authors use the exact solution for uniform cou-

pling constants to evaluate the z component of electron spin,
complementing earlier predictions for the bath-polarization
dependence of decoherence in single30 and double dots.40
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