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We study the collisionless dynamics of two classes of nonintegrable pairing models. One is a Bardeen-Cooper-
Schrieffer model with separable energy-dependent interactions, and the other is a two-dimensional topological
superconductor with spin-orbit coupling and a band-splitting external field. The long-time quantum quench
dynamics at integrable points of these models are well understood. Namely the squared magnitude of the
time-dependent order parameter �(t ) can vanish (Phase I), reach a nonzero constant (Phase II), or periodically
oscillate as an elliptic function (Phase III). We demonstrate that nonintegrable models, too, exhibit some or all of
these nonequilibrium phases. Remarkably, elliptic periodic oscillations persist, even though both their amplitude
and functional form change drastically with integrability breaking. Striking new phenomena accompany loss
of integrability. First, an extremely long timescale emerges in the relaxation to Phase III, such that short-time
numerical simulations risk erroneously classifying the asymptotic state. This timescale diverges near integrable
points. Second, an entirely new Phase IV of quasiperiodic oscillations of |�| emerges in the quantum quench
phase diagrams of nonintegrable pairing models. As integrability techniques do not apply for the models we
study, we develop the concept of asymptotic self-consistency and a linear stability analysis of the asymptotic
phases. With the help of these new tools, we determine the phase boundaries, characterize the asymptotic state,
and clarify the physical meaning of the quantum quench phase diagrams of BCS superconductors. We also
propose an explanation of these diagrams in terms of bifurcation theory.
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I. INTRODUCTION

Since the early 2000s there have been impressive advances
in the ability to experimentally control many-body systems
where dissipative and decoherence effects are strongly sup-
pressed. Studies of cold atomic gases [1–10], solid-state
pump-probe experiments [11–15], and quantum information
processing [16–23] can now explore coherent many-body
dynamics for long timescales, paving the way for the charac-
terization of new phenomena. In particular, cold atomic gases
with tunable interactions [24–29] are an instrumental experi-
mental tool in the quest to understand previously inaccessible
aspects of far-from-equilibrium many-body dynamics.

A major focus of recent theory and experiment has been the
unitary time evolution of a system, initially in the ground state,
subject to a sudden perturbation [30–32]. This experimental
protocol, known as a quantum quench, can induce long-lived
states with properties strikingly different from those of equi-
librium states at similar energy scales. In this work, we focus
on the quench dynamics of various superconducting models,
which is a modern reformulation of the long-standing prob-
lem of nonequilibrium superconductivity in the collisionless
regime [33–36]. A canonical result is that the infinitesimal
perturbation of a Bardeen-Cooper-Schrieffer (BCS) s-wave
superconductor leads to power-law oscillatory relaxation of
the order parameter amplitude |�| to a constant value [35].

Decades later, it was discovered that larger deviations
could give rise to different dynamical phases identified by the
asymptotic behavior of the amplitude of the order parameter
[37–44]. Consider the dynamics of � after quenches of the
coupling g in various superconducting models. When the final

coupling g f is small enough, � vanishes rapidly in time; this
behavior characterizes what we call Phase I. For intermediate
g f , |�| exhibits oscillatory power-law decay to a nonzero
constant (Phase II). For larger g f , |�| exhibits persistent
periodic oscillations (Phase III)—a nonlinear manifestation of
what is known in the literature as the Higgs or amplitude mode
[45–52].

The exact quantum quench phase diagrams of the s-wave
superconductor were eventually constructed using a sophis-
ticated analytical method that relies on the model’s integra-
bility [53]. It turns out that the integrable p + ip topological
superconductor exhibits the same three phases, and similar
analytical tools lead to the construction of its phase diagrams
[54]. Thus, there may appear to be some profound connection
between integrability and these three dynamical phases, but
nonintegrable models also have Phases I and II [40,45,55–57]
and Phase III-like behavior is thought to persist in some
nonintegrable models as well. On the other hand, the exis-
tence of Phase III in such models has not been convincingly
established beyond the linear regime and aspects of quench
dynamics unique to the nonintegrable case have not been
explored.

Overall, the description of these nonequilibrium dynam-
ical phases lacks a unifying mechanism applicable to finite
quenches of nonintegrable pairing models. Here we present
an in-depth study of the nonequilibrium phases of various
nonintegrable superconducting models with and without spin-
orbit coupling. A common feature of models we consider is
that the order parameter takes the form of a single complex
number. We establish that Phase III persists when integrability
is broken [58] and give strong numerical evidence that the
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persistent oscillations are always elliptic, which generalizes
the known behavior of integrable models [37,53,54].

Although the integrable and nonintegrable phenomenology
are similar, we find that integrability breaking has profound
consequences. Unique to nonintegrable models is an ex-
tremely long relaxation timescale τ which diverges as one ap-
proaches integrable points and is most prominent in quenches
to Phase III. One must analyze dynamics beyond τ to truly
observe Phase III, which has not been done in other studies.
As illustrated in Fig. 1, for t < τ , |�| may oscillate with
several frequencies and a slowly evolving amplitude, both
of which undermine naive analyses restricted to t < τ . One
may incorrectly conclude from the transient dynamics that
the asymptotic nonequilibrium phase has several undamped
frequencies or that |�| is oscillating periodically while in
fact the amplitude is still changing. Nonintegrable Phase
III oscillations further require comparatively more elaborate
elliptic functions to describe the oscillations.

To complicate the picture even further, certain quantum
quenches of nonintegrable pairing models genuinely do not
fit into any of the Phases I, II, and III. Here the asymptotic |�|
is truly quasiperiodic, leading us to conclude that there are
regions of quasiperiodicity—a new Phase IV—in the quantum
quench phase diagrams of these models.

Another consequence of integrability breaking arises in
the analytical description of the three nonequilibrium phases.
In the integrable case, there is a dynamical reduction in the
number of degrees of freedom of the system [53,54] such that
Phases I, II, and III correspond to an effective classical spin
Hamiltonian with 0, 1, and 2 spins, respectively. Phase III
in the general case, however, does not admit such a 2-spin
representation. As a surrogate to this analytical method, we
propose a stability analysis of Phases I and II that applies
generally to finite quenches. The stability analysis is based on
linearizing around the asymptotic solutions to the equations of
motion in each of the phases. We can then nonperturbatively
determine the phase I-II boundary as well as the phase II-III
boundary in nonintegrable pairing models. Finally, we return
to Phase III and argue that the self-consistency condition
(gap equation) is responsible not only for the existence of
persistent periodic oscillations of |�| but also for selecting
elliptic functions among all possible periodic functions.

II. MODELS AND PSEUDOSPIN REPRESENTATION

In this paper, we consider quantum quenches in two types
of nonintegrable pairing models,

Ĥf =
∑

jλ

ε j ĉ
†
jλĉ jλ − 1

g
�̂†�̂, �̂ ≡ g

∑
j

f j ĉ j↓ĉ j↑,

Ĥso =
∑
kab

[(
εkδab − hσ z

ab

) + α
(
kyσ

x
ab − kxσ

y
ab

)]
ĉ†

kaĉkb

− 1

g
�̂†�̂, �̂ ≡ g

∑
k

ĉ−k↓ĉk↑. (2.1)

The Hamiltonian Ĥf is a separable BCS Hamiltonian where
the ε j are N single-particle energy levels, ĉ†

jλ (ĉ jλ) is a fermion
creation (annihilation) operator for an electron with energy ε j

and spin index λ, g > 0 is the pairing interaction strength, and

f j ≡ f (ε j ) is a generic function of ε j . The Hamiltonian Ĥso

describes a two-dimensional (2D) topological spin-orbit cou-
pled superconductor with s-wave interactions [59,60]. Here
k = (kx, ky) is a two-dimensional momentum vector, σ j are
Pauli matrices, h is a Zeeman field, and α is the Rashba
spin-orbit coupling. We will take the density of states to
be constant for both models, which is the case in 2D or at
weak coupling, so that the single-particle energy levels are
distributed uniformly on an interval of length W , called the
bandwidth.

Apart from certain choices of f (x), the separable BCS
Hamiltonian Ĥf is a toy model for breaking integrability. The
choice of f 2(x) = C1 + C2x produces a quantum integrable
Hamiltonian [61,62]; for example, f (x) = 1 and f (x) = √

x
correspond to the s-wave [39] and p + ip [63,64] BCS mod-
els, respectively. A notable nonintegrable case is the d + id
model [65], where f (x) = x. The spin-orbit Hamiltonian Ĥso,
on the other hand, can be realized with cold Fermi gases
[66–75].

As both Hamiltonians in Eq. (2.1) have infinite-range
interactions, the mean-field approximation is expected to be
exact in the thermodynamic (N → ∞) limit. We therefore
replace two-body operators in the equations of motion as
follows: ĉ†ĉ†ĉĉ ≈ 〈ĉ†ĉ†〉ĉĉ + ĉ†ĉ†〈ĉĉ〉 − 〈ĉ†ĉ†〉〈ĉĉ〉. We also
diagonalize the noninteracting part of Ĥso through a unitary
transformation Uk which is detailed in Appendix A. Up to
additive constants, the effective mean-field Hamiltonians of
Eq. (2.1) are

Ĥf =
∑

jλ=↑↓
ε j ĉ

†
jλĉ jλ −

∑
j

f j[�
∗ĉ j↓ĉ j↑ + H.c.],

Ĥso =
∑

kλ=±
εkλâ†

kλâkλ −
[

�

2

∑
kλ

e−iθk (λ sin φkâ†
kλâ†

−kλ

+ cos φkâ†
−kλâ†

kλ̄
) + H.c.

]
. (2.2)

The new parameters in Ĥso are

cos φk = h

Rk
, sin φk = αk

Rk
,

Rk =
√

h2 + α2k2,

εkλ = εk − λRk, λ = ±, λ̄ = −λ,

k = kx + i ky = kei θk . (2.3)

Note that both α = 0 and h = 0 correspond to integrable
points of the spin-orbit model; in both cases, Ĥso becomes
a Hamiltonian for two bands of independent s-wave BCS
models. Most importantly, the mean-field order parameters
� ≡ �(t ) are defined in terms of expectation values

� = g
∑

j

f j〈ĉ j↓ĉ j↑〉,

� = g

2

∑
kλ=±

ei θk [λ sin φk〈â−kλâkλ〉 + cos φk〈âkλâ−kλ̄〉],

(2.4)

for their respective models.
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FIG. 1. Illustration of the large timescale τ that emerges in Phase III quenches gi → gf of nonintegrable pairing models. In all plots, the
equilibrium gap corresponding to the initial coupling gi is �0i = 1.33 × 10−3W while that for the final coupling gf is �0 f = 0.4W, and we took
N = 2 × 105 equally spaced single-particle energy levels on the interval [−W/2,W/2]. The lines in the plots on the right are the local minima
and maxima of the oscillations. In terms of the single-particle level spacing δ, the evolution in the right column goes out to tmax = 0.94δ−1. In
(a) and (b), we see that the persistent elliptic oscillations in the integrable s-wave case stabilize after a small number of oscillations. In (c) and
(d), the amplitude of the oscillations takes roughly 1000 times longer to stop changing. In (e) and (f), integrability is strongly broken and it
is not even clear whether the oscillations stabilize to a constant amplitude. The nonintegrable model used was the separable BCS model (2.9)
with f (ε) from Eq. (5.1). The nearly integrable version uses γ = W, while the far from integrable one has γ = 1.33 × 10−2W.

We will discuss the mean-field dynamics generated by
Hamiltonians (2.2) in terms of Anderson pseudospins ŝ j =
(ŝx

j, ŝy
j, ŝz

j ) which will allow for intuitive visualizations of the
dynamics of different nonequilibrium phases. The transforma-

tion from fermions to pseudospins is given by

ŝ−
j = ŝx

j − i ŝy
j = ĉ j↓ĉ j↑, ŝz

j = 1
2 (ĉ†

j↑ĉ j↑ + ĉ†
j↓ĉ j↓ − 1).

(2.5)
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In the spin-orbit case the pseudospin representation requires
an additional set of auxiliary variables. For the sake of brevity,
we relegate the derivations of the pseudospin equations of
motion to Appendix A and simply state them here.

In the mean-field equations of motion that follow, s = 〈ŝ〉
are to be understood as classical variables satisfying the
angular momentum Poisson brackets {sa

j , sb
k} = −δ jkεabcsc

j . In
the separable BCS model, we have

ṡ j = b j × s j, b j = (−2 f j�x,−2 f j�y, 2ε j ), (2.6)

where self-consistency requires

� = g
∑

j

f js
−
j = �x − i�y. (2.7)

The spin-length s j = 1/2 is conserved by Eqs. (2.6), which
together with Eq. (2.7) are the equations of motion of the
following classical spin Hamiltonian:

Hf =
∑

j

2ε j s
z
j − g

∑
j,k

f j fks+
j s−

k =
∑

j

2ε j s
z
j − |�|2/g.

(2.8)

Note that without loss of generality, we can choose f j to be
real and non-negative as we have done above. Indeed, let f j =
| f j |e−iθ j be general complex numbers and

Hf =
∑

j

2ε j s
z
j − g

∑
j,k

f j f ∗
k s+

j s−
k . (2.9)

We redefine the spins by making local rotations around the z
axis, s−

j → s−
j e−iθ j . In terms of the new spins the Hamiltonian

becomes

Hf =
∑

j

2ε j s
z
j − g

∑
j,k

| f j || fk|s+
j s−

k , (2.10)

and the order parameter is � = ∑
j | f j |s−

j . This transfor-
mation does not affect spin (angular momentum) Poisson
brackets and therefore the equations of motion retain their
form. We thus arrive at the same problem only with f j → | f j |.

We use capital letters Skλ to denote the classical pseu-
dospins in the spin-orbit model and must introduce (see
Appendix A) a set of auxiliary variables: the scalars Tk and
vectors Lk±, where Lk+ and Lk− differ only in sign of the z
component. The equations of motion are

Ṡkλ = Bkλ × Skλ + mk × Lkλ − mkTk,

L̇x
kλ = − 2εkLy

kλ + my
k

2

[
Sz

k+ + Sz
k−

] + Bx
kλTk,

L̇y
kλ

= 2εkLx
kλ − mx

k

2

[
Sz

k+ + Sz
k−

] + By
kλ

Tk,

L̇z
kλ = − 2RkλTk + mx

k

2

[
Sy

kλ
− Sy

kλ̄

] − my
k

2

[
Sx

kλ − Sx
kλ̄

]
,

Ṫk = 2RkLz
k+ − Bx

k+Lx
k+ − By

k+Ly
k+

+ 1

2
mk · [Sk+ + Sk−], (2.11)

where the momentum-dependent fields Bkλ and mk are de-
fined in terms of the order parameter �,

� = g

2

∑
kλ

[sin φkS−
kλ + cos φkL−

kλ] = �x − i�y,

Bkλ = (−2 sin φk�x,−2 sin φk�y, 2εkλ), (2.12)

mk = (−2 cos φk�x,−2 cos φk�y, 0).

The first of these equations is the self-consistency relationship
for the spin-orbit model. The equation for Ṡkλ in Eq. (2.11)
corrects an error in a previous paper [56], which is missing the
last term. For each k, there is a conserved quantity analogous
to pseudospin length,

N2
k = 2T 2

k +
∑

λ

[
S2

kλ + L2
kλ

] = 1

4
. (2.13)

Similarly to Eq. (2.8), the classical spin-orbit Hamiltonian in
pseudospin notation has a simple and compact expression,

Hso =
∑
kλ

2εkλSz
kλ − 2|�|2/g. (2.14)

Because of the simple relationship connecting Lk+ to Lk−,
each momentum vector k corresponds to 10 dynamical vari-
ables (Sk+, Sk−, Lk+, Tk ) constrained by Eq. (2.13). Note that
Tk and Lz

kλ
do not appear in (2.14), but, as discussed in Ap-

pendix A, they are necessary for the closure of the equations of
motion. From now on we simplify notation to Lk ≡ Lk+ and
define the 10-dimensional vector �k ≡ (Sk+, Sk−, Lk, Tk ).

Finally, the conservation of the total number of fermions
Nf in each model corresponds to the conservation of total z
component in the pseudospin language,

Nf =
∑

j

(
2sz

j + 1
)

(2.15)

for the separable BCS model, and

Nf =
∑
kλ

(
Sz

kλ + 1

2

)
(2.16)

for the spin-orbit model.

III. MAIN RESULTS

The main purpose of this work is to compare the nonequi-
librium phases of quenches from the ground state of non-
integrable pairing Hamiltonians, such as those in Eq. (2.1),
to those of the integrable s-wave [53] and p-wave [54]
models. Some qualitative aspects of the primary phases are
independent of integrability insofar as the squared modulus
of the order parameter � may exhibit any of three distinct
asymptotic behaviors in the continuum limit: It can relax to
zero (Phase I), relax to a nonzero constant value (Phase II), or
display persistent periodic elliptic oscillations (Phase III).

We first show the existence of these three phases in
Secs. V A–V C through direct numerical simulation of the
dynamics. In Sec. V B we present a stability analysis of the
phases of the separable BCS models which leads to conditions
for nonequilibrium phase transitions. The stability analysis
applied to integrable cases reduces to the known results that
relied on exact solvability [53,54]. Our analysis provides a
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physical explanation for the transitions in terms of the fre-
quencies of linearized perturbations δ�(t ) of the asymptotic
�. The transition from Phase I to Phase II occurs through an
exponential instability characterized by a pair of conjugate
imaginary frequencies in the linearization spectrum, while
that of Phase II to Phase III occurs either when small harmonic
oscillations fail to dephase or when an exponential instability
occurs.

The appearance of some or all of Phases I–III in noninte-
grable models suggests an underlying universality to quench
dynamics, but we show that the story is less straightforward.
One the one hand, these phases are understood in the in-
tegrable cases [53,54]. There is a dynamical reduction of
the number of effective degrees of freedom, so that at large
times the dynamics are governed by a Hamiltonian of the
same form, but which has just a few collective degrees of
freedom. The three phases correspond to 0, 1, or 2 effective
spins for each phase, respectively. On the other hand, the
nonintegrable dynamics admit no known analogous reduction
because the 2-spin solutions to the equations of motion do not
reproduce the observed asymptotic behavior of � in Phase III.
If such a reducing “flow” in time of the Hamiltonian occurs
in the nonintegrable case, then the form of the Hamiltonian
itself must change. For specifics on this latter point, see
Appendix C.

Importantly, nonintegrable pairing models also display
dynamics markedly different from those in the main three
phases. We illustrate this behavior with two examples in
Sec. VII—one for the spin-orbit Hamiltonian and one for a
particle-hole symmetric separable BCS Hamiltonian—where
the magnitude of the order parameter oscillates quasiperiodi-
cally. We interpret this observation as an indication of a new
quasiperiodic phase (Phase IV) unique to quantum quench
phase diagrams of these models.

More subtle details of the dynamics in the main three
phases change drastically once integrability is broken. We
show in Sec. V C 2 that nonintegrable models take an ex-
tremely long time to relax to Phase III. This timescale is
absent in the integrable case, yet it diverges when one ap-
proaches the integrable limit. One must take this timescale
into account when studying Phase III on the basis of numerical
simulation alone. For example, in the weak-coupling regime,
the nonintegrable d + id model may appear to quickly enter
Phase III [76] while in fact the minima of |�| oscillations
have not converged to a fixed value. The further into the weak-
coupling regime one explores, the longer the relaxation time.
Quenches outside of weak coupling have faster dynamics but
exhibit behavior that markedly contrasts with Phase III, and
above a certain energy threshold the asymptotic state collapses
rapidly to Phase II. This long relaxation time is typical in the
nonintegrable case.

Despite these consequences of breaking integrability, our
mixed strategy of simulation and stability analysis applies
to the two rather different classes of nonintegrable pairing
models found in Eq. (2.1). The separable BCS permits a
standard Anderson pseudospin representation and is a single-
band model, while the spin-orbit model requires an expanded
pseudospin representation and has multiple bands and a
topological quantum phase transition. Yet both models
have a single complex order parameter, which we be-

lieve is the essential characteristic that leads to the three
phases.

The self-consistency relationship (2.7) for the order pa-
rameter is central to both our stability analysis of Phases I
and II in Sec. V B and our investigations of Phase III in
Sec. VI. In the former case, the frequencies of harmonic
perturbations of a given nonequilibrium phase are constrained
by the self-consistency requirement. As for Phase III, we show
in Sec. VI that there is always a periodic solution to the spin
equations of motion when �(t ) is periodic and that the general
spin solution precesses around the periodic one. We then
argue through numerical examples that further imposing the
self-consistency requirement on �(t ) selects elliptic functions
among all possible periodic �(t ).

IV. GROUND STATE AND QUENCH PROTOCOL

In a quantum quench, we prepare the system in the ground
state with an initial order parameter � = �0e−2iμt , which
corresponds to system parameters such as the interaction
strength g, the equilibrium chemical potential μ, the magnetic
field h, and the spin-orbit strength α. The amplitude �0 is
constant in the ground state. At time t = 0, we suddenly
change one of these parameters, which throws the system out
of equilibrium. In the separable BCS model we will consider
quenches gi → g f , but we will label the initial and final states
by the coordinates �0i ≡ �0(gi ) and �0 f ≡ �0(g f ). In the
spin-orbit model, we will consider quenches of the magnetic
field hi → h f . The fermion number Nf is fixed across the
quench in both cases, which implies that the equilibrium
chemical potential μ changes with h.

For a given �0 and μ, we express the ground-state config-
uration of the separable BCS model in a frame that rotates
around the z axis with frequency 2μ. We then orient each
s j against the field b j , the z component of which is shifted
by 2μ,

s−
j0 = f j�0

2Ej
, sz

j0 = −ε j − μ

2Ej
,

Ej (�) ≡
√

(ε j − μ)2 + f 2(ε j )|�|2. (4.1)

The relationship among �0, g, Nf and μ obtains from the
application of the definition of � in (2.7) and of (2.15) to the
configuration in (4.1),

1

g
=

∑
j

f 2
j

2Ej
, Nf =

∑
j

(
1 − ε j − μ

Ej

)
. (4.2)

We will assert without loss of generality that �0i is real in both
models, which can always be achieved by a time-independent
rotation in the xy plane in pseudospin space.

Unless otherwise stated, we will simplify the analysis of
the separable BCS model by restricting ourselves to cases
where the order parameter � remains real for all time, i.e.,
�y(t ) = 0. To achieve this, we will consider the particle-
hole symmetric case where the energies ε j are symmetri-
cally distributed around the chemical potential μ, which is
set to zero without loss of generality. We will also only
consider even functions f (x) = f (−x). Under these condi-
tions, any initial spin configuration that satisfies the symmetry
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conditions sz(ε j ) = −sz(−ε j ), s+(ε j ) = s−(−ε j ), as does the
ground state (4.1), will do so for all time. This fact can be
verified with the equations of motion (2.6) by considering
time derivatives of quantities such as sz(ε j ) + sz(−ε j ), which
vanish under the aforementioned assumptions. We will not use
particle-hole symmetry in the d + id model, where f (x) = x
and ε j will be distributed on a positive interval. Further,
Eqs. (2.6) and (2.7) are invariant under the time-reversal
transformation,

sz
j (t ) → sz

j (−t ), s±
j (t ) → s∓

j (−t ), �(t ) → �∗(−t ).

(4.3)

Since the initial conditions (4.1) at t = 0 also have this
property, it holds at all times.

The ground state of the spin-orbit model is less obvious
[56]

Sx
kλ0 = �0 sin φk

Dk

(
�2

0 + ξ 2
kλ̄

+ Ek+Ek−
)
,

Sz
kλ0 = − 1

Dk

[
ξkλ

(
Ek+Ek− + ξ 2

kλ̄
+ �2

0 sin2 φk
)

+ �2
0 cos2 φkξkλ̄

]
,

Lx
k0 = �0 cos φk

Dk

(
�2

0 + ξk+ξk− + Ek+Ek−
)
,

Lz
k0 = 1

Dk

(
2Rk�

2
0 cos φk sin φk

)
,

ξk(λ) ≡ εk(λ) − μ,

Ekλ(�) ≡ (
ξ 2

k + �2 + R2
k − 2Rkλ

√
ξ 2

k + cos2 φk�2
)1/2

,

Dk ≡ 2Ek+Ek−(Ek+ + Ek−), (4.4)

while Sy
kλ0 = Ly

k0 = Tk0 = 0. The corresponding self-
consistent equation relating �0 to g is

2

g
=

∑
kλ

Ek+Ek− + �2
0 + sin2 φkξ

2
kλ + cos2 φkξkλξkλ̄

2Ek+Ek−(Ek+ + Ek−)
. (4.5)

The quantities 2Ej (�) and 2Ekλ(�) in (4.1) and (4.4) are
the excitation energies obtained by diagonalization of the
quadratic mean-field Hamiltonians in Eqs. (2.2) at a given �.

For given values of g, Nf , α, and h, one can simultaneously
solve Eq. (2.16) and Eq. (4.5) using the ground-state con-
figurations to obtain the corresponding equilibrium chemical
potential μ and ground-state gap �0. As the ground state
is rotationally symmetric in k, and the equations of motion
preserve this symmetry, in our numerics we always replace
sums over momenta with sums over energies with a flat
density of states

∑
k → ∑

ε. The level spacing δ is related
to the number of spins N and the bandwidth W through

δ = W

N − 1
. (4.6)

Formally, in 2D this means N − 1 = W
2π

A, where A is the
physical area of the system. Figure 2 shows an example of the
relationship between different parameters for the spin-orbit
model.

FIG. 2. Ground-state order parameter �0, chemical potential μ,
and Egap = Ek=0,+ = (

√
�2

0 + μ2 − h)2 as functions of the external
field h in the spin-orbit model. One simultaneously solves the
fermion number equation (2.16) and the self-consistency relationship
Eq. (4.5) with the ground-state configuration (4.4). The vanishing
of Egap corresponds to a topological quantum phase transition. The
number of fermions is Nf = 0.65N , where N is the number of spins.
We express energies in units of the bandwidth W , including the
spin-orbit coupling α2 = 0.1W , the level spacing δ = W/(N − 1),
and the BCS coupling g = 0.9δ. The Fermi energy in these units
is εF = W

2N Nf = 0.325W . These spin-orbit model parameters remain
the same for the remainder of this work, up to adjusting the value of
N . We do not consider a similar plot for the separable BCS model
because in the particle-hole symmetric case considered, the fermion
number Nf = N and thus μ = 0.

V. SIMULATIONS OF NONEQUILIBRIUM PHASES
AND STABILITY ANALYSIS

Now we numerically simulate the equations of motion
(2.6) and (2.11) and plot the behavior of �(t ) for each of
the three phases in Secs. V A and V C. In Sec. V C, we
also characterize the long timescale of nonintegrable models
in Phase III. In Sec. V B, we introduce a stability analysis
for Phases I and II that gives the conditions under which a
nonequilibrium phase transition occurs.

We will consider several integrability-breaking functions
for f (ε), which appears in the separable BCS equations of
motion Eq. (2.6). All f (ε) considered here will be even
functions, and, as we discuss in Sec. V B, the particular form
of f (ε) affects which phases occur. With this in mind, we
consider the “Lorentzian” coupling [45],

flor(ε, γ ) = γ√
γ 2 + ε2

, (5.1)

the “sine” coupling,

fsin(ε, γ ) = 1 + sin2(ε/γ ), (5.2)

and the “cube root” coupling,

fcub(ε, γ ) = (γ 3 + |ε|3)1/3

γ
. (5.3)

The parameter γ is fixed for any particular Hamiltonian,
and it characterizes how strongly integrability is broken. For
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FIG. 3. Examples of Phase I quenches for separable BCS mod-
els. The equilibrium gaps �0i, �0 f and integrability breaking pa-
rameter γ are given in units of the bandwidth W , and there are
N = 5 × 104 (a) and N = 2 × 105 (b) spins. The initial rapid decay
of � is shown, but out of caution one must simulate to longer times
(still smaller than the inverse level spacing) in order to verify that the
phase is indeed stable.

γ � W , we have f (ε, γ ) ∼ 1 in all three cases, which we
consider to be “nearly integrable.” For γ � W , integrability
is strongly broken.

We control for finite-size effects in our simulations by
increasing N until �(t ) in the time window of interest no
longer changes when N is doubled. In practice, we find that
finite-size effects become significant at times t > tfs, where

tfs ≈ 1

δ
= N − 1

W
(5.4)

is the inverse single-particle level spacing, see also Ref. [53].
To observe the asymptotic dynamics, N has to be sufficiently
large, so that the relaxation time τ < tfs.

A. Phases I and II

Figures 3–5 contain examples of Phase I and Phase II
quenches in both the separable BCS and spin-orbit mod-
els. To heuristically understand the emergence of these two
phases, one can insert the prescribed behavior of � into

FIG. 4. Quenches in the spin-orbit model that lead to (a) Phase I
and (b) Phase II. Here the number of single-particle energies is
N = 104, and all other parameters are the same as given in the
caption of Fig. 2.

the equations of motion (2.6) and (2.11). This examination
of the asymptotic solutions to the equations of motion in
each phase will be important for the stability analyses of
Sec. V B.

The following applies to the separable BCS models in the
particle-hole symmetric limit, but the analysis is analogous
when this symmetry is broken and in the spin-orbit case. In
Phase I, we set � to zero

ṡz
j = 0, ṡx

j = −2ε j s
y
j, ṡy

j = 2ε j s
x
j . (5.5)

The most general solution that conserves both s2
j = 1/4 and

the time-reversal symmetry (4.3) is

sz
j = z j, sx

j = x j cos(2ε jt ),

sy
j = x j sin(2ε jt ), z2

j = 1/4 − x2
j . (5.6)

where z j is the Phase I steady-state spin profile. In order
for (5.6) to make sense as a solution to the actual equations
of motion, Eq. (2.7) must hold, i.e., we must have that
� = g f

∑
j f js

−
j equals zero, which is the self-consistency

condition. Strictly speaking, the solution (5.6) violates the
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FIG. 5. Examples of Phase II quenches for separable BCS mod-
els. In (a) N = 2 × 105 spins, and the quench from �0i = 0.15W is
close to the Phase I-II boundary. In (b), N = 5 × 104. The oscillatory
power-law decay to a constant value takes a rather long time, and
we have verified out to tδ = 2 in (a) and tδ = 0.5 in (b) that the
amplitude of the oscillations is indeed decreasing to zero with power-
law decay. In both plots, �0 and γ are expressed in units of the
bandwidth.

self-consistency condition,

� = g f

∑
j

f jx j cos(2ε jt ) �= 0, (5.7)

but as the number of single-particle energies N goes to infinity,
i.e., in the continuum limit when the sum in Eq. (5.7) turns
into an integral, � from Eq. (5.7) vanishes through dephasing
for 1 � t � 1/δ = (N − 1)/W . This description is invalid
for t ∼ N/W . In this sense, we refer to the solution (5.6)
as asymptotically self-consistent, which is a concept we will
often use in the remainder of this paper.

Let us now replace � with �∞ �= 0 in Eq. (2.6) to examine
the asymptotic solutions corresponding to Phase II,

ṡz
j = −2 f js

y
j�∞, ṡx

j = −2ε j s
y
j, ṡy

j = 2ε j s
x
j + 2 f js

z
j�∞.

(5.8)

The solution which preserves spin length and the time-reversal
symmetry is then

sz
j = Zj + ζ j cos(b jt ),

sx
j = − f j�∞

ε j
Z j + ε j

f j�∞
ζ j cos(b jt ), (5.9)

sy
j = b j

2 f j�∞
ζ j sin(b jt ),

where Zj is the Phase II steady-state spin profile, which, along
with �∞, determines the other constants

b j = 2
√

ε2
j + f 2

j �
2∞, ζ 2

j = f 2
j �

2
∞

b2
j

− f 2
j �

2
∞

ε2
j

Z2
j . (5.10)

The solution (5.9) must be asymptotically self-consistent, i.e.,
for N → ∞, limt→∞ � = �∞, which implies

1 = −g f

∑
j

f 2
j Z j

ε j
, (5.11)

which is the nonequilibrium analog of the ground-state self-
consistency requirement (4.2).

B. Stability analysis

Now we consider the stability of Phases I and II for the
separable BCS model by linearizing the equations of motion
(5.5) and (5.8) about the asymptotic states given in (5.6) and
(5.9), respectively. The main result is Eq. (5.20), which is
the equation for frequencies of linearized perturbations to
the asymptotic �(t ) of either Phase I or Phase II. For Phase
I, the appearance of a complex conjugate pair of imaginary
frequencies signals an exponential instability. For Phase II, a
solution ω0 to Eq. (5.20) may enter the band gap, or a complex
conjugate pair of frequencies may appear. The former case,
which occurs in the integrable s-wave and p + ip models, sig-
nifies a transition to Phase III because the linearized gap δ�(t )
oscillates persistently, i.e., it does not dephase. In Appendix D,
we show that the nonequilibrium phase transitions predicted
by this stability analysis both match and give a physical
interpretation to the results obtained in integrable models
[53,54] using tools inextricably linked to exact solvability.

Although the final result (5.20) applies generally, we limit
the discussion to the particle-hole symmetric case to simplify
the presentation. Let s j = s j0 + δs j , where s j0 is the Phase
I asymptotic solution from Eq. (5.6). Neglecting second-
and higher-order terms, the linearized equations for the spin
components are

δṡz
j = −2 f js

y
j0δ� δṡx

j = −2ε jδsy
j,

δṡy
j = 2ε jδsx

j + 2 f jz jδ�, δ� ≡ g f

∑
j

f jδsx
j . (5.12)

Expanding s j (t ) in Fourier components

δs j (t ) =
∑

ω

δ̃s j (ω)e−iωt , δ� =
∑

ω

δ�̃(ω)e−iωt , (5.13)

and using the Fourier space version of the self-consistency
relation in Eq. (5.12), we find the following equation for the
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allowable frequencies ω,

1 = 4g f

∑
j

f 2
j ε j z j

ω2 − 4ε2
j

. (5.14)

The following discussion uses particle-hole symmetry along
with the empirical fact that for quenches from the ground
state, z jε j < 0 in Phase I. On inspecting Eq. (5.14), one
determines that there are N/2 unique ω2

j , of which all but one
lie between consecutive 4ε2

j . The remaining ω2
0 is less than

the smallest 4ε2
j and can therefore be negative. A negative ω2

0
corresponds to a pair of conjugate imaginary frequencies, and
therefore an exponential instability in δs j . We thus determine
the Phase I boundary in (�0i,�0 f ) space to be those values
for which ω2

0 passes through zero.
The stability analysis for Phase II follows a similar logic.

Consider the linearized equations of motion

δṡz
j = −2 f js

y
j0δ� − 2 f j�∞δsy

j, δṡx
j = −2ε jδsy

j,

δṡy
j = 2ε jδsx

j + 2 f js
z
j0δ� + 2 f j�∞δsz

j, (5.15)

where now s j0 is the Phase II asymptotic solution from
Eq. (5.9). Again changing to the Fourier basis, we solve for
δ̃sx

j (ω) and apply the self-consistency condition for δ�̃(ω),
which reads

δ�̃(ω)

(
1 − 4g f

∑
j

ε j f 2
j Z j

ω2 − b2
j

)

= 2g f

ω

∑
j

ε j f 2
j ζ j

[
δ�̃(ω + b j )

ω + b j
+ δ�̃(ω − b j )

ω − b j

]
. (5.16)

Although in principle Eq. (5.16) can be solved numerically
with Zj and �∞ as input, such an approach is needlessly
complex and obscures the mechanism by which Phase II
gives way to Phase III. The difficulty presented by Eq. (5.16)
stems from the fact that we required exact self-consistency.
It turns out that relaxing this requirement to asymptotic self-
consistency, defined in Sec. V A, suffices to understand the
Phase II-III transition.

We return to Eq. (5.15) and solve it in the time domain
under the assumption δ�(t ) = δ+e−iω0t + δ−eiω0t . We neglect
higher-order harmonics because the Phase III oscillations near
the II-III boundary are small. Under this ansatz, δsx

j (t ) has
six frequencies: ±ω0 and ±ω0 ± b j . If ω0 is a real frequency
isolated from the continuum of b j defined in Eq. (5.10), then
the constant �∞ of Phase II is “unstable” in the sense that
oscillatory perturbations do not dephase. The self-consistent
equation for this harmonic δ�(t ) is

1 = 4g f

∑
j

f 2
j ε jZ j

ω2
0 − b2

j

+ 2g f

ω0

∑
j

[
eib jt f 2

j ε jζ j

ω0 − b j
+ (b j → −b j )

]
. (5.17)

This relation cannot hold for arbitrary t , but it will in the con-
tinuum limit if we require ω2

0 < b2
min and t → ∞, which al-

lows the harmonic ansatz to be asymptotically self-consistent
due to dephasing. Thus the equation for ω0, the frequency of

a harmonic perturbation to �∞ in Phase II, is

1 = 4g f

∑
j

f 2
j ε jZ j

ω2
0 − b2

j

. (5.18)

Equation (5.18) generalizes the small quench linearization
method developed in Ref. [45], which we recover by replacing
Zj of Eq. (5.18) with the z-component spin profile of the gi

ground state. For the Lorentzian coupling, ω0 lies in the band
gap for infinitesimal quenches, so that linearized Phase III
oscillations do not decay [45].

In order to understand whether the finite-quench dynamics
admit such an isolated ω0, consider the implications of (5.18)
combined with (5.11) for the �∞ of Phase II. We find

ω2
0

4�2∞
= I1

(
ω2

0

)
I2

(
ω2

0

) ,

I1
(
ω2

0

) ≡ g f

∑
j

f 4
j Z j

ε j
(
ω2

0 − b2
j

) , (5.19)

I2
(
ω2

0

) ≡ g f

∑
j

f 2
j Z j

ε j
(
ω2

0 − b2
j

) .

It helps to analyze (5.19) under the simplifying assumption
that Zj/ε j < 0, which holds exactly for the integrable s-wave
model and is therefore applicable in the weak-coupling regime
(�0i,�0 f � W ) of the general separable case [53]. With this
restriction, Eq. (5.18) implies ω2

0 is real, while Eq. (5.19) re-
quires ω2

0 > 0, i.e., the allowed frequencies ω0 are purely real.
We now examine the effect of the function f j in determining
whether solutions ω2

0 to Eq. (5.19) are isolated from the b2
j

continuum.
If f j < f (0) for all j and b2

min = 4�2
∞, then Eq. (5.19)

has a solution 0 < ω2
0 < b2

min, and oscillations of δ�(t ) do
not dephase. In this scenario, Phase III is the asymptotic state
due the presence of persistent periodic oscillations about the
Phase II solution. If f j < f (0) for all j and b2

min < 4�2
∞, then

the relationship between ω2
0 and b2

min is not immediately ob-
vious from Eq. (5.19). The Lorentzian coupling, where f j =
γ (γ 2 + ε2

j )−1/2, allows for both possibilities: If �∞ � γ ,
then b2

min = 4�2
∞ and Phase II is not the asymptotic state. If

�∞ > γ , then b2
min = 4γ (2�∞ − γ ), and we cannot charac-

terize solutions to Eq. (5.19) without detailed knowledge of
Zj and �∞.

If f j � f (0) for all j, then b2
min = 4�2

∞ and we find
that solutions ω2

0 to Eq. (5.19) are not isolated from the b2
j

continuum. In this case, the harmonic ansatz for δ�(t ) is
not asymptotically self-consistent, and there are no persistent
small oscillations about Phase II. The integrable s-wave model
is defined by f j = f (0) = 1, in which case ω2

0 = 4�2
∞ is the

only solution to Eq. (5.19), which is not isolated. On the other
hand, Phase III exists in the s-wave case [53]. Therefore, f j �
f (0) does not imply that such models will always reach Phase
II. Indeed, the relaxation to Phase II is always accompanied
by nonperturbative oscillations which persist in the case of
Phase III.

Thus, even under the simplifying assumptions of particle-
hole symmetry and Zj/ε j < 0, the stability analysis of Phase
II reveals a variety of possible behaviors in the separable BCS
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models. The nature of f (ε) near ε = 0 (the Fermi surface)
is especially crucial to determining whether oscillations fully
dephase to Phase II—a statement which extends to the non-
particle-hole symmetric case in the weak-coupling regime.

On relaxing the restriction Zj/ε j < 0, isolated solutions to
Eq. (5.19) can have nonzero imaginary part, thereby allowing
for the possibility of exponential instabilities to Phase II
solutions (see Fig. 10). In the non-particle-hole symmetric
case, �(t ) = �∞e−2iμ∞t in Phase II, and the equation for the
frequencies of harmonic δ�(t ) can be expressed in the form

S2
2 (ω0) = [S1(ω0) − 1]2 + [S1(ω0) − 1]S3(ω0),

S1(ω0) ≡ 4g f

∑
j

ε̃ j f 2
j Z j

ω2
0 − b̃2

j

, S2(ω0) ≡ 2g f ω0

∑
j

f 2
j Z j

ω2
0 − b̃2

j

,

S3(ω0) ≡ 4g f �
2
∞

∑
j

f 4
j Z j

ε̃ j
(
ω2

0 − b̃2
j

) , (5.20)

where

ε̃ j ≡ ε j − μ∞, b̃ j ≡ 2
√̃

ε2
j + f 2

j �
2∞. (5.21)

The self-consistency equation for �(t ) in Phase II has the
same form as Eq. (5.11), with the substitution ε j → ε̃ j . In
the particle-hole symmetric limit, S2(ω0) = 0 and the correct
solution to Eq. (5.20) solves Eq. (5.18). In the limit �∞ → 0,
(5.20) is also the stability equation for Phase I. In Appendix D,
we show that the Phase I-II and Phase II-III transitions given
by (5.20) are identical to those obtained using exact solvability
in the integrable s-wave and p + ip models.

C. Phase III

1. Universality of elliptic oscillations

The asymptotic Phase III solution is significantly more
complicated than its Phase I and Phase II counterparts (5.6)
and (5.9). We derive this solution in Sec. VI. Presently, we
provide evidence that the asymptotic behavior of �(t ) can
always be described by Jacobi elliptic functions. Consider first
the particle-hole symmetric limit, for which we find

�̇2(t ) = P4[�(t )], as t → ∞, (5.22)

where P4[�(t )] is a generic fourth-order polynomial in �(t ).
Now parametrize P4[�(t )] as

P4[�(t )] = −a2(�(t ) − �+)(�(t ) − �−)

×(�(t ) + �̃+)(�(t ) + �̃−), (5.23)

where the real coefficients �± are the maximum and mini-
mum values of �(t ), while �̃± are either complex conjugate
or independent real numbers. This parametrization leads to the
following solution for �(t )

�(t ) = �̃+(�+ + �̃−)dn2[ab(t − t0), m] − �̃−(�+ + �̃+)

�+ + �̃+ − (�+ + �̃−)dn2[ab(t − t0), m]
,

m ≡ (�+ − �−)(�̃+ − �̃−)

(�+ + �̃−)(�− + �̃+)
, (5.24)

b ≡ 1

2

√
(�+ + �̃−)(�− + �̃+),

FIG. 6. The quench in the Lorentzian separable BCS model
(blue dots) from Figs. 1(c) and 1(d) [γ = W ] and the cor-
responding elliptic function fit (solid red) from Eq. (5.24)
with a ≈ 0.868205, �+ ≈ 0.941415, �− ≈ 0.501511, �̃+ = �̃∗

− ≈
0.915740 + 0.002407i, and t0 = 2.801929. To obtain these parame-
ters, we fit �̇ to Eq. (5.22) and then shift by the appropriate t0. If
a fifth-order polynomial is used instead of P4[�(t )], the coefficient
of the �5 term is −6.08 × 10−5, providing further evidence that this
asymptotic �(t ) is indeed an elliptic function. Although only a short
time frame is shown, this fit works well for the entire time interval
from t�0 f = 104, which is the timescale after which the oscillation
amplitude stabilizes, to the times shown. In this fitting procedure, �

is given in units of �0 f = 0.4W and time is measured in units of
�−1

0 f as pictured. In terms of the level spacing δ = 5 × 10−6W , the
time domain pictured is 0.73125 < tδ < 0.731688.

where dn[t, m] is the Jacobi-dn function. When particle-hole
symmetry does not hold, then one replaces �(t ) with |�(t )|2
in Eqs. (5.22)–(5.24). In Figs. 6 and 7 we show that Phase III
oscillations in separable BCS models satisfy Eq. (5.22) and
Eq. (5.24), while Fig. 8 shows the same for the spin-orbit
model.

As a general rule of thumb, most spin-orbit quenches that
superficially appear to relax to Phase III really have not.
Figure 8 is the result of a thorough search of the parameter
space in order to find a true Phase III quench within a com-
putationally achievable time. On the one hand, the final field
h f has to be large enough so as to nonperturbatively break
integrability, for small perturbations lead to long relaxation
times. On the other hand, the fields cannot be so large as
to suppress the equilibrium gap �0 scale, which is the scale
of the oscillation frequency. The value of α must also break
integrability nonperturbatively, but a larger α also requires
a larger number of spins to reach the thermodynamic limit.
Finally, it turns out that a smaller Fermi energy relative to the
bandwidth promotes a faster relaxation time. We discuss this
Phase III relaxation time further in Sec. V C 2 in the context
of the separable BCS models.

For the integrable s-wave case it can be shown analyti-
cally [53] that �̃± = �± and a = 1, which greatly simplifies

P4[�(t )] and �(t ) → �+dn[�+(t − t0), 1 − �2
−

�2+
]. The mech-

anism behind the emergence of the three phases in the s-wave
Hamiltonian is a dynamical reduction in the number of de-
grees of freedom. The Phase III asymptotic solution for �(t )
is identical with that of a 2-spin s-wave Hamiltonian, while
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FIG. 7. A Phase III quench in a f (ε) = exp[−|ε|/γ ] separable
BCS model (blue dots), where γ = 0.5W , N = 2 × 105, �0i =
0.04W , �0 f = 0.8W . The corresponding elliptic function fit (solid
red) from Eq. (5.24) has a ≈ 0.821896, �+ ≈ 1.075648, �− ≈
0.566069, �̃+ = �̃∗

− ≈ 0.010686 + 1.327633i, and t0 = 2.131916.
To obtain these parameters, we fit �̇ to Eq. (5.22) and then shift
by the appropriate t0. If a fifth-order polynomial is used instead of
P4[�], the coefficient of the �5 term is 4.22 × 10−9. In this fitting
procedure, � is given in units of �0 f and time is measured in units
of �−1

0 f as pictured. In terms of the level spacing δ, the time domain
pictured is 0.405 < tδ < 0.40525.

Phases II and I correspond to 1-spin and 0-spin solutions,
respectively. In Phase III, this technique does not work for
the separable BCS models. In Appendix C, we show that the
2-spin solution for these nonintegrable models is identical to
that of the integrable case, up to a rescaling of time, while
the general asymptotic solution that we observe is Eq. (5.24).
Thus, if a reduction mechanism exists in the nonintegrable
cases, the form of the m-spin Hamiltonian must also change.

2. Relaxation time

In Sec. V B we saw that there are examples of noninte-
grable separable BCS models where the constant �∞ of Phase
II is unstable to harmonic perturbations, and in Sec. V C 1 we
gave evidence that the Phase III oscillations of these models
are elliptic functions. This behavior is typical of integrable
models as well, although the form of the elliptic functions
changes once integrability is broken. A more important differ-
ence, however, is that a long relaxation timescale τ emerges
before the system truly reaches Phase III.

Figure 9 gives an example of the long relaxation time in
the d + id model, which is the separable BCS model with
f (ε) = ε. The initial dynamics at weak coupling seem to
indicate [76] that |�(t )| oscillates with a single frequency
reminiscent of Phase III. On closer inspection, however, the
amplitude of the oscillations slowly changes with no indica-
tion of stabilizing. In Fig. 10, quenches at higher energies
provide further evidence that the long-time asymptotic state
is difficult to determine based on the short-time dynamics.

Let us now explore the dependence of the relaxation time
τ on �0i, �0 f , and γ in the Lorentzian separable BCS model
defined in Eq. (5.1). We define τ as the minimum time after
which the minimum of |�(t )| oscillations stays within η =
10−4 of its asymptotic value. This definition of τ and the

FIG. 8. A Phase III quench in the spin-orbit model (blue
dots), where in units of the bandwidth W : εF = 0.1, α2 = 0.9,
gN = 2.315999, hi = 1.998980, hf = 0.801020. These parameters
uniquely determine the initial and final equilibrium gaps and chem-
ical potentials through the use of Eq. (2.16) and Eq. (4.5). The
energies ε j are uniformly distributed in the interval [0,W ], and the
number of pseudospins is N = 8 × 104. As particle-hole symmetry
does not hold, we fit � ≡ |�|2 to the elliptic function definition
in Eq. (5.24). The fit is a ≈ 0.776633, �+ ≈ 0.096608, �− ≈
0.080316, �̃+ = �̃∗

− ≈ 0.873604 + 0.883872i, and t0 = 3.033272.
The fit (solid red) is good for all t > τ , where τ is the relaxation time
defined in Sec. V C 2. Here τ�0 f ≈ 3050. In the fitting procedure, �
is given in units of �0 f and time is measured in units of �−1

0 f as
pictured. In terms of the level spacing δ, the time domain pictured is
1.472 < tδ < 1.473, shortly after which finite-size effects take over.

precise value of η are somewhat arbitrary, but empirically we
find that the minima of |�(t )| take longer to relax to the sta-
tionary value than the maxima. Typically, the minimum will
increase for a time until it begins to oscillate with decreasing
amplitude about a final value. Most importantly, this definition
of τ delineates clearly the difference between integrable and
nonintegrable behavior. Figure 11 shows the dependence of τ

on the values of �0i and �0 f , with one or the other fixed.
Generally speaking, we find that quenches at lower energy
scales increase τ .

More interesting is the dependence of τ on γ , the
integrability-breaking parameter, at fixed (�0i,�0 f ). First,
let us examine quenches that lead to Phase III in both the
Lorentzian and integrable s-wave models. Figure 12 shows
that τ has single minimum for γ ∼ 0.4W and increases away
from this point both as γ → 0 and as γ → ∞. In all cases,
the relaxation time of quenches in the integrable s-wave
model, which is the γ → ∞ limit of our separable BCS
Hamiltonians, is far smaller. We believe that the increase of
τ as γ → ∞ is indicative of nonperturbative behavior of the
dynamics in the vicinity of the integrable limit, see Sec. VIII.

The behavior of f (ε) as γ → 0 is model dependent; in
the case of the Lorentzian model, the stability analysis of
Sec. V B indicates that Phase II is unstable to harmonic
perturbations if γ > �∞; otherwise, Phase II could be stable.
We observe in Fig. 12 large oscillations in the evolution
of the minimum of �(t ) at γ = 0.2W , behavior which oc-
curs in the range 0.13W � γ � 0.26W . For γ � 0.13W , the
minima oscillations disappear and τ begins to dramatically
increase. Despite this qualitative change in the evolution of
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FIG. 9. Example of a deceitful quench in the f (ε) = ε (d + id) separable BCS model, which at short times seems to enter Phase III on a
similar timescale as the corresponding integrable s-wave quench with the same parameters. Part (b) shows that minimum of the d + id |�(t )|
is actually evolving over the entire timescale considered, and it is not clear what the asymptotic phase is. For both models, we used 4 × 104

single-particle energies ε j uniformly distributed on the interval [0,W ], �0 f = 0.00625W , �0i = 0.05�0 f , εF = 0.25W [77]. In Fig. 10, we
explore similar quenches in the d + id model at larger energy scales, where the dynamics are faster.

|�(t )|, down to at least γ = 0.11W we still find that the
system eventually enters Phase III with a reduced amplitude of
oscillation.

Figure 13 is similar to Fig. 12, except we now choose
�0i and �0 f such that the (integrable) s-wave model enters
Phase II. The behavior of τ with respect to γ is qualitatively
similar, except there is no regime where the minimum of �(t )
undergoes large oscillations.

The spin-orbit model also has a very long relaxation time
to Phase III. In order to observe this asymptotic state, as is
shown in Fig. 8, one must carefully choose model and quench
parameters; otherwise, τ is simply too large for our present
numerical study.

VI. PHASE III ASYMPTOTIC SOLUTION

We now explore the structure of the Phase III asymptotic
state. First, we treat �(t ) as a periodic external driving and
show that there is always a periodic solution for the classical
pseudospins (and auxiliary functions in the spin-orbit model),
and then we provide evidence that the class of periodic �(t )
that are also self-consistent are elliptic functions.

A. External driving

In the separable BCS model, the mean-field dynamics can
be described alternatively by a Gaussian wave function with

FIG. 10. Study of the long time dynamics of d + id model quenches, continued from Fig. 9. We keep the same parameters and the same
ratio �0i/�0 f = 0.05 while varying �0 f . Pictured are the maxima and minima of oscillations of |�|. Part (a) shows that below a certain critical
�0 f ∼ 0.0845W , the amplitude of |�| oscillations evolves over an extremely long timescale. When �0 f = 0.05W , there are also multiple
incommensurate frequencies, and it is unclear whether the asymptotic state is Phase II, III, or something else entirely. When �0 f = 0.075W ,
the decay in amplitude of |�| resembles typical decays to Phase II seen in other models (see Fig. 5). At �0 f = 0.1W , the system rapidly enters
Phase II at a smaller �∞ than would be inferred from the other two cases, indicating that we have crossed a transition point. Part (b) shows
a quench at this transition point, where the Phase II state seen for �0 f = 0.1W exhibits an exponential instability and moves to an oscillatory
state with unknown asymptotic behavior. The integrable s-wave BCS model, f (ε) = 1, is deep in Phase III for all these values of �0 f and �0i.
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FIG. 11. Nonintegrable pairing models exhibit an extremely long relaxation time τ when the asymptotic state is Phase III, which is most
prominent in the evolution of the minima of the oscillations of �(t ). Pictured is a study of τ as a function of �0 f , at fixed �0i = 10−3W [(a)
and (b)], and τ as a function of �0i at fixed �0 f = 0.4W [(c) and (d)] in the Lorentzian model at γ = 0.8W in the particle-hole symmetric
case. The time τ is not monotonic in either case, but it is generally a decreasing function of the initial and final coupling strengths gi and gf .
In all plots, �0i and �0 f are given in units of the bandwidth W. In (a) and (b) 2.4 × 104 > N > 1.2 × 104 and in (c) and (d) N = 8400.

complex Bogoliubov amplitudes u j (t ) and v j (t ),

|ψ〉 =
∏

j

[u∗
j (t ) + v∗

j (t )ĉ†
j↑ĉ†

j↓]|0〉, (6.1)

where normalization requires |v j |2 + |u j |2 = 1. The equations
of motion for u(t ) and v(t ) follow from the time-dependent
Schrödinger equation i ∂

∂t |ψ〉 = Ĥ |ψ〉 applied to (6.1) with the
mean-field Hamiltonian from (2.2),

i
d

dt

[
u j (t )
v j (t )

]
=

(
ε j f j�

f j�
∗ −ε j

)[
u j (t )
v j (t )

]
, (6.2)

where we shifted the Hamiltonian by a constant Ĥ = Ĥf −∑
j ε j in order to make it traceless. The mapping to the

classical pseudospins is

s−
j = u jv

∗
j , sz

j = |v j |2 − |u j |2
2

. (6.3)

We shall discuss the nature of the asymptotic Phase III �(t )
in terms of v(t ) and u(t ). To do so, consider first Eq. (6.2)
with a periodic �(t ) = �(t + T ) that is not necessarily self-
consistent, which decouples each pair of (uj, v j ) from all the

others. The abstract form of Eq. (6.2) is

i
d

dt

(
u
v

)
= h(t )

(
u
v

)
(6.4)

with

h(t ) =
[

A B(t )
B†(t ) −A

]
, (6.5)

where u and v are m-dimensional vectors, A is a constant
real symmetric m × m matrix, and B(t ) is a complex m × m
matrix periodic in t with period T , and we dropped the index
j for simplicity. The forthcoming discussion is valid for all
systems of this form, see also Ref. [53]. For example, the spin-
orbit dynamics admit such a representation with m = 4, while
m = 1 in the separable BCS model.

As h(t ) is periodic by assumption, the Floquet theorem
applies. There are thus 2m independent solutions ψi(t ) to
Eq. (6.4) of the form

ψi(t ) = eδit

[
Ui(t )
Vi(t )

]
, i = 1 . . . 2m, (6.6)
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FIG. 12. Study of the relaxation time τ , see Fig. 11, in the Lorentzian model as a function of the integrability breaking parameter γ

at fixed �0i = .005W and �0 f = 0.6W , where γ = ∞ is the integrable s-wave model. For these quench parameters, both the Lorentzian
and s-wave models enter Phase III. Parts (a)–(c) show how the minimum of �(t ) slowly evolves and reaches an asymptote, while part (d)
gives τ near γ = 0.4W , where the minimum satisfies τmin�0 f ≈ 89. This minimum is still greater than the relaxation time of the s-wave
case, where τ�0 f ≈ 65. The relaxation time increases sharply away from γ = 0.4W , especially in the direction of decreasing gamma, where
τ�0 f ≈ 64500 at γ = 0.11W . In all plots, γ is given in units of the bandwidth W and N = 5500.

where the Ui(t ) and Vi(t ) are periodic with the same pe-
riod as h(t ) and the δi are complex numbers known as
Floquet exponents. The solutions ψi(t ) therefore have the
property

ψi(t + T ) = ρiψi(t ), ρi ≡ eδiT , (6.7)

where the ρi are known as Floquet multipliers. Because h(t ) is
Hermitian, Eq. (6.4) conserves the norm of the solutions ψi(t ),
which implies |ρi| = 1 and δi = iνi for νi real. Furthermore,
the particular form of h(t ) implies that if ψ = (u, v)T is a
solution, then so is ψ̃ = (v∗,−u∗)T . This pairing of solutions
implies that if δi is a Floquet exponent, then so is −δi. In
Sec. VI B, we will use this latter fact to prove that there is
always a periodic spin solution to Eq. (2.6) for a given periodic
�(t ).

Before continuing, we note that the Phase III asymptotic
�(t ) is only periodic in the particle-hole limit of the sepa-
rable BCS model. In the general case, �(t ) = F (t )e−2iμ∞t ,
where F (t ) is periodic. Nonetheless, we can still reduce this
problem, where h(t ) is not periodic, to the periodic case by

absorbing the phase 2μ∞t in the following manner:

v′ = v e−iμ∞t , u′ = u eiμ∞t , A′ = A − μ∞1, (6.8)

so that the time evolution of (u′, v′)T is described by Eq. (6.4)
with periodic h(t ) of the form given in Eq. (6.5) where A is
replaced by A′. In terms of the pseudospin representation of
the dynamics, this transformation amounts to an overall time-
dependent rotation about the z axis with frequency 2μ∞.

B. Phase III spin solution in the separable BCS model

Now we draw our attention to the behavior of the spin
solutions to the separable BCS model for the periodic external
�(t ) considered in the previous section. The dimension of the
matrix h(t ) is now 2m = 2, and there are two independent
solutions to the Floquet problem,

ψ1 j (t ) = eiν j t

[
Uj (t )
Vj (t )

]
, ψ2 j (t ) = e−iν j t

[
V ∗

j (t )
−U ∗

j (t )

]
,

where Uj (t ) and Vj (t ) are periodic and we restored the index
j. Using ψ1 j (t ) and Eq. (6.3), we can construct a periodic
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FIG. 13. Study of the relaxation time τ in the Lorentzian model
as a function of the integrability breaking parameter γ at fixed
�0i = 0.2W and �0 f = 0.6W . For these quench parameters, the
s-wave model enters Phase II, while the Lorentzian enters Phase
III. Panel (a) shows how the minimum of �(t ) slowly evolves and
reaches an asymptote, while part (b) gives τmin near γ = 0.6W ,
where τmin�0 f ≈ 175. The relaxation time increases away from
γ = 0.6W in both directions. In all plots, γ is given in units of the
bandwidth W and N = 2800.

spin solution σ j (t ) [i.e., a periodic solution of Eq. (2.6) for the
given external �(t ) that does not necessarily satisfy Eq. (2.7)],

σ−
j (t ) = Uj (t )V ∗

j (t ), σ z
j (t ) = |Vj (t )|2 − |Uj (t )|2

2
. (6.9)

We will now show that the most general spin solution s j (t )
precesses about the periodic solution σ j (t ) with a variable
angular velocity. First, we write the general solution � j (t ) as
a linear combination of ψ1 j (t ) and ψ2 j (t ),

� j (t ) = cos
θ j

2
ψ1 j (t ) + sin

θ j

2
ψ2 j (t ). (6.10)

Although the coefficients of linear combination are in princi-
ple complex, we can drop the constant overall phase of � j (t )
as well as absorb 1

2× the remaining constant relative phase
into the definitions of Uj (t ) and Vj (t ). Once again using (6.3),
we now write � j (t ) in terms of spin variables. It is helpful to
first parametrize Uj (t ) and Vj (t ) as

Uj (t ) = |Uj (t )|e i
2 [α j (t )−2ν j t−β j (t )],

Vj (t ) = |Vj (t )|e i
2 [α j (t )−2ν j t+β j (t )], (6.11)

whence

s−
j = cos θ j σ

−
j + sin θ j

σ−
j

|σ−
j |

(
σ z

j cos α j − i

2
sin α j

)
,

sz
j = cos θ j σ

z
j − sin θ j |σ−

j | cos α j . (6.12)

Note that θ j is the only time-independent quantity in
Eq. (6.12). A geometric interpretation of the motion of the
general solution s j (t ) with respect to the periodic solution
σ j (t ) becomes clear once we use Eq. (6.12) to express s j (t ) in
the body coordinate system of σ j (t ). Let ẑ′

j = σ̂ j , while x̂′
j lies

along the line defined by the intersection of the plane spanned
by {ẑ′

j, ẑ j} and that perpendicular to ẑ′
j . Finally, ŷ′

j satisfies
ŷ′

j · x̂′
j = ŷ′

j · ẑ′
j = 0 and x̂′

j × ŷ′
j = ẑ′

j . These definitions lead
to

x̂′
j = 2

|σ−
j |

(
σ z

j σ
x
j x̂ j + σ z

j σ
y
j ŷ j − |σ−

j |2ẑ j
)
,

ŷ′
j = − σ

y
j

|σ−
j | x̂ j + σ x

j

|σ−
j | ŷ j . (6.13)

The general spin solution s j (t ) in this new coordinate system
is then

s j (t ) = cos θ jσ j (t ) + sin θ jσ j⊥(t ),

σ j⊥(t ) ≡ cos α j (t )

2
x̂′

j + sin α j (t )

2
ŷ′

j, (6.14)

where σ j · σ j⊥ = 0 and σ j⊥ is not periodic. We see from
Eq. (6.14) that s j (t ) makes a constant angle θ j with the
periodic solution and rotates about it with a variable angular
frequency α̇ j (t ). From Eq. (6.11) and the periodicity of Uj (t )
and Vj (t ), we conclude that α j (t ) − 2ν jt is also periodic with
the same period as the external �(t ) driving the system.

C. Asymptotic self-consistency

Thus far, we have considered �(t ) to be an external
periodic driving that is not necessarily self-consistent. We
showed, for any such external driving, that there is a corre-
sponding periodic spin solution σ j (t ) with the same period as
�(t ). Furthermore, we derived in Eq. (6.14) that the general
spin solution s j (t ) precesses in a simple manner about σ j (t ).
In the true quench dynamics, however, �(t ) must be self-
consistent, and we now show that this requirement implies
that there always exists a set of constants θ j , such that the
following integral equation holds for the asymptotic periodic
�(t ):

�(t ) = g f

∑
j

f jσ
−
j [�(t )] cos θ j, (6.15)

The notation σ j = σ j[�] emphasizes that the periodic spin
solution is some complicated nonlocal function of �(t ). An
analogous expression to Eq. (6.15) exists for the spin-orbit
model.

Equation (6.15) is simply asymptotic self-consistency, as
introduced in Sec. V, applied to the Floquet problem studied
in Secs. VI A and VI B. To see this, suppose that we observe
some Phase III asymptotic periodic �(t ) after a quench from
the ground state of the separable BCS model, as discussed in
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Sec. V C. This �(t ) is self-consistent by definition, i.e.,

�(t ) = g f

∑
j

f js
−
j (t ), (6.16)

which we write in terms of the underlying periodic spin
solution σ j by using Eq. (6.12)

� = g f

∑
j

f j (σ
−
j [�] cos θ j + σ−

j⊥[�] sin θ j ),

σ j⊥ ≡ σ−
j

|σ−
j |

(
σ z

j cos α j − i

2
sin α j

)
, (6.17)

α j (t ) = Aj (t ) + 2ν jt, Aj (t + T ) = Aj (t ),

where ν j is the imaginary part of the Floquet exponent as
introduced in Eq. (6.6). As in our analysis of self-consistency
in Phases I and II, Eq. (6.17) cannot hold exactly, this time
because the sum over σ−

j⊥[�] is the only nonperiodic term.
Nonetheless, under the reasonable assumption that ν j+1 −
ν j ∼ δ, where δ is the level spacing, the sum over σ−

j⊥[�]

FIG. 14. (a) Examples of exactly self-consistent, periodic �(t )’s
for the Lorentzian separable BCS equations of motion for different
values of γ at fixed �0 f = 0.5W , period T = 225/W , and N = 500.
For these fixed parameters, below γmin ∼ 0.172W the only exactly
self-consistent, periodic �(t ) is a constant in time equal to the
equilibrium value. (b) Convergence of γmin as a function N . In both
plots, �0 f and γ are given in units of W and T in units of W −1.

dephases in N → ∞ limit as t → ∞ (the N → ∞ limit
comes first), leading to Eq. (6.15).

D. Self-consistent solutions in the separable BCS model

We have seen that an asymptotically self-consistent peri-
odic �(t ) satisfies the functional equation (6.15) in the sep-
arable BCS model. We now will give evidence that solutions
to Eq. (6.15) are elliptic functions. In order to generate such
solutions, fix a period T and write �(t ) as a Fourier series

�(t ) =
∞∑

n=−∞
cne2π in t

T , (6.18)

which we truncate to some nmax, such that cn = 0 if |n| >

nmax. In the particle-hole symmetric limit, �(t ) is a real
quantity that satisfies �(t ) = �(−t ) [see Eq. (4.3)], so that
cn is real and equals c−n.

For a fixed set of coefficients cn, we determine σ x
j [�(t )]

by solving the equations of motion (2.6) from t = 0 to t = T
with �(t ) given by (6.18). If the choice of cn produces a self-
consistent �(t ), then it will be equal to the quantity �comp(t )
defined as

�comp(t ) = g f

∑
j

f jσ
x
j [�(t )] cos θ j, (6.19)

for some set of θ j . For most choices of cn, however, Eq. (6.19)
will not hold. As both �(t ) and �comp(t ) are periodic func-
tions of time with the same period, we define a distance
r({cn}) as

r2({cn}) =
∫ T

0
[�comp(t ) − �(t )]2dt . (6.20)

FIG. 15. Evidence that the self-consistent periodic �(t ) from
Fig. 14 are elliptic functions. Squared time derivatives �̇(t ) as a
function of �(t ) are given by solid blue lines. These lines overlap
strongly with the dashed lines, which are the fits to the defining
differential equation for elliptic functions Eq. (5.22). If a �5 coef-
ficient is included in the fits, then it is several orders of magnitude
smaller than those for the fourth-order fit shown here, providing
strong evidence that �̇2(t ) is indeed a fourth-order polynomial in
�(t ). In this plot, γ is given in units of W and � in units of �0 f .
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A given �(t ) is asymptotically self-consistent if and only if
r({cn}) = 0.

We now explore the results of this procedure for the
Lorentzian coupling of the separable BCS model for various
values of the integrability breaking parameter γ . It turns
out that this procedure works when we fix cos θ j = 1, i.e.,
we find exactly (and not just asymptotically) self-consistent
solutions. In order to find such solutions, we start from
the known values of the Fourier coefficients of the s-wave
(γ = ∞) solution, which are close to the Fourier coefficients
of the γ � 1 solutions. We then progressively lower γ while
finding Fourier coefficients that minimize r({cn}). Typically,
we obtain values of r ∼ 10−12−10−11 before declaring the
solution self-consistent.

Figure 14 gives of examples of such solutions at fixed �0 f

and period T . Notably, there is a minimum γ = γmin below
which the amplitude of oscillation vanishes. As γ is increased
from this minimum, the amplitude of oscillations increases to

FIG. 16. Quenches of nonintegrable separable BCS and spin-
orbit models that do not conform to Phases I, II, or III. This quasiperi-
odic dynamics of the order parameter emerge early and persist for
the entire time of the simulation, see also Fig. 17. Panel (a) is the
particle-hole symmetric separable BCS model with sine coupling
from Eq. (5.2) and N = 4 × 105 spins. In units of the bandwidth,
the integrability breaking parameter is γ = 0.075, while �0i = 0.05
and �0 f = 0.5. Panel (b) is the spin-orbit model with N = 2 × 105

spins. In units of the bandwidth: εF = 0.4, α2 = 0.4, gN = 2, hi = 2,
and hf = 0.514256.

a maximum and then decreases to a nonzero limiting value as
γ → ∞. Figure 14 also shows the fast convergence of γmin as
a function of N for two examples of this procedure.

In Sec. V C, we argued through example quenches that the
�(t ) of Phase III are always elliptic functions, i.e., they satisfy
Eq. (5.22). We show in Fig. 15 that the exactly self-consistent
�(t ) from Fig. 14 also satisfy Eq. (5.22) to a high degree
of accuracy. The Floquet analysis of the equations of motion
from Sec. VI A applies to any periodic �(t ). From Fig. 15,
we conclude that the self-consistency requirement (6.15) is
essential to selecting elliptic functions among all possible
periodic functions.

VII. QUASIPERIODIC PHASE IV

Quenches that do not conform to Phases I–III are another
intriguing consequence of integrability breaking. We present
two such examples in Figs. 16 and 17. Figures 16(a) and 17(a)
show a particle-hole symmetric quench of the separable BCS
Hamiltonian with sine coupling from Eq. (5.2). Figures 16(b)

FIG. 17. Darker blue points are local minima and maxima of
the oscillations for the quenches from Fig. 16 for the entire time
of the simulations. These plots suggest that there are regions of
quasiperiodicity (Phase IV) in the quantum quench phase diagrams
of nonintegrable pairing models. Panel (a) is the same quench as in
Fig. 16(a), and panel (b) corresponds to Fig. 16(b). In terms of the
inverse level spacing, the time evolution goes out to tmax = 0.625δ−1

in (a) and to tmax = δ−1 in (b).
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and 17(b) depict a quench of the Zeeman field in the spin-orbit
model (2.14). The quasiperiodic behavior of �(t ) in Fig. 16(a)
sets in very early, as corroborated by Fig. 17(a), and persists
with no appreciable changes at least until the times shown
in the figure. Similarly, Fig. 16(b) is representative of the
long-time spin-orbit |�(t )|2 as evidenced by Fig. 17(b). Based
on our preliminary analysis of the Fourier spectrum of |�(t )|2
for this quench and of the maximal Lyapunov exponent with
the method of local divergence rates [78], we believe that
it, too, is quasiperiodic. However, a more careful study is
needed to unambigously distinguish between quasiperiodicity
and chaos in this case. Such a study is beyond the scope of
the present paper, where we mainly focus on the properties of
Phases I–III.

Note that the simulation times in Figs. 16 and 17 are
enormous compared to the characteristic time of a single
oscillation and even to typical Phase III relaxation times
τ�0 f ∼ 103 we observed in Sec. V C 2, cf. Fig. 12 and the
caption to Fig. 8. Thus, both of these examples do not belong
to Phase I, II, or III. We therefore conclude that there are
regions of quasiperiodicity in the quantum quench phase
diagrams of nonintegrable pairing models, which we call
Phase IV.

VIII. CONCLUSION

The far-from-equilibrium steady states reached by non-
integrable pairing models after a quantum quench admit a
similar taxonomy as do the integrable cases. We have shown
that some or all of Phases I–III may occur in the separable
BCS models and spin-orbit model defined in Eq. (2.1). The
persistent periodic oscillations characterizing Phase III are
always elliptic functions, regardless of whether the model is
integrable. Moreover, we have developed a stability analysis
of the three phases, summarized in Eq. (5.20), which gen-
eralizes known results in the integrable cases and elucidates
the mechanism of nonequilibrium phase transitions using the
language of linear analysis.

Despite these striking similarities, important consequences
accompany integrability breaking. As argued in Sec. V B,
some nonintegrable models may not exhibit all three phases.
At the same time, an entirely new quasiperiodic Phase IV
emerges in certain models. Another key by-product of inte-
grability breaking is the emergence of a new, extremely long
relaxation timescale τ when the asymptotic state either is
or appears to be Phase III. For t < τ , � can oscillate with
more than one fundamental frequency and a slowly varying
amplitude. This timescale is a generic feature of nonintegrable
models, and its existence renders short-time analyses inade-
quate for determining the long-time dynamics. Moreover, τ

diverges as we approach integrable points (e.g., as γ −1 → 0
in the separable pairing models of Sec. V), and it is often too
large for the practical determination of the true asymptotic
state.

While the squared modulus of �(t ) [and �(t ) itself in
the particle-hole symmetric case] is always an elliptic func-
tion in Phase III, its parametrization is more complicated in
nonintegrable models. As a result, the reduction mechanism
discussed in Appendix C, which explains how Phase III
manifests itself in the integrable models, does not apply

to nonintegrable models. Nonetheless, we demonstrated in
Sec. VI that the common structure of the nonintegrable mod-
els implies the existence of a periodic solution to the classical
pseudospin equations of motion if �(t ) is taken to be a
generic periodic external driving. Using numerical examples,
we argued that further requiring �(t ) to be self-consistent
selects elliptic functions among all possible periodic
functions.

It is instructive to discuss the BCS quench dynamics
in terms of bifurcation theory [79–81]. For example, con-
sider the particle-hole symmetric separable BCS models with
real �. For fixed initial conditions (4.1) and any func-
tion �(t ) with fixed �(0), the equations of motion (2.6)
have a unique solution s j[�(t )] ≡ s[ε j,�(t )]. Equation (2.7)
then provides a closed nonlinear integral equation for �(t )
[cf. Eq. (6.15)],

�(t ) = g f

∫
dε sx[ε,�(t )]. (8.1)

Phase I is a fixed point, � = 0, of this equation [82], while
Phase II corresponds to two fixed points �∞ and eiπ�∞ =
−�∞. In Phase III we end up on one of two limit cycles
related to each other by a rotation by π around the z axis
[change of sign of �(t )]. The Phase I to II and II to III
transitions correspond to supercritical pitchfork and Hopf
bifurcations, respectively, in this language [83]. The same
results apply to the spin-orbit model (2.14). We also note that
this quantum quench phase diagram is surprisingly similar
to the nonequilibrium phase diagram of two atomic conden-
sates coupled to a heavily damped cavity mode [84,85]. The
mean-field dynamics of the latter system are described by the
driven-dissipative variant of the Bloch equations (2.6) for two
classical spins representing individual condensates. Moreover,
there are islands of quasiperiodicity in the phase diagram of
the two coupled condensates, where the dynamics are very
similar to that shown in Figs. 16 and 17.

Bifurcation theory also offers a plausible explanation for
the divergence of the relaxation time τ near integrable points.
Consider Phase III for an integrable pairing Hamiltonian, such
as the particle-hole symmetric s-wave BCS model. Suppose
the corresponding limit cycle loses stability as soon as integra-
bility is broken and another limit cycle emerges as an attractor.
An example of such behavior is the transcritical bifurcation
[79–81]. Because the instability is weak for weak integrability
breaking and because the evolution starts near the unstable
limit cycle, the system takes a very long time τ to reach the
attractor. The weaker the integrability breaking, the closer we
are to the bifurcation and the longer the time τ .

An interesting open problem is to explore the newly dis-
covered quasiperiodic Phase IV. In particular, one needs to in-
vestigate the possibility that asymptotic oscillations of |�(t )|
for certain quenches may be chaotic rather than quasiperiodic,
i.e., the potential existence of a chaotic phase in addition to
the quasiperiodic one. Let us also mention that quasiperiodic
|�(t )| also occurs in integrable models but only when the
initial (prequench) state is a highly excited state instead of the
ground state [86].

In this paper, we employed reduced BCS Hamiltonians
(2.1) to model pairing dynamics. This description is valid
only at times t � �−1, where � is the highest among the
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rates of processes such Hamiltonians neglect. These processes
include pair-breaking collisions [35–37,53], three-body losses
in ultracold gases [87], thermal fluctuations [88], etc. Thus,
to reach the asymptotic state before these effects influence
the dynamics, we need �−1 � τ . In Phases II and III, this
requirement is much more stringent than �−1 � T� typically
quoted in the literature on collisionless pairing dynamics.
Here T� is the characteristic period of �(t ) oscillations (T�

is of the order of the inverse equilibrium gap �0 f in our
separable BCS models). Another limitation is the parametric
instability of Phase III with respect to spontaneous eruptions
of spatial inhomogeneities [89–92]. To avoid this instability,
the system size has to be smaller than the superconducting
coherence length, but not too small, so that the dephasing
effect of quantum fluctuations on the mean-field Phase III
oscillations [88,93,94] is still negligible.
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APPENDIX A: MEAN-FIELD EQUATIONS OF MOTION

The pseudospin equations of motion for the separable BCS
model (2.6) obtain simply from the Heisenberg equations
of motion d

dt Â = i [Ĥ , Â] applied to the mean-field Ĥf in
Eq. (2.2) and the pseudospin operators ŝ defined in Eq. (2.5).
The classical spin variables s are the expectation values of
the pseudospin operators s = 〈ŝ〉, and the time-dependent
order parameter � is determined self-consistently according
to Eq. (2.7).

The generalized pseudospin representation of the spin-
orbit Hamiltonian Ĥso from Eq. (2.1) requires more work
[56]. First, we diagonalize the kinetic part of Ĥso through the
following unitary transformation to new fermionic operators
âk±,

Uk

(
ĉk↑
ĉk↓

)
=

(
âk+
âk−

)

Uk =
(

cos φk

2 −i e−iθk sin φk

2

sin φk

2 i e−iθk cos φk

2

)
, (A1)

where k = keiθk and φk is defined in terms of the model pa-
rameters in Eq. (2.3). One can check that the new elementary
excitation energies are εk± ≡ εk ∓ Rk. Equation (A1) implies

ĉ−k↓ĉk↑ = −i eiθk

2
(sin φk(â−k+âk+ − â−k−âk−)

+ cos φk(âk−â−k+ + âk+â−k−)

+ âk+â−k− + â−k+âk−). (A2)

On summing over k, the last two terms in parentheses cancel
with momenta of opposite sign. Therefore, the interaction

term of (2.1) in this new basis becomes

g
∑
kk′

ĉ†
k↑ĉ†

−k↓ĉ−k′↓ĉk′↑ = 1

g
�̂†�̂,

�̂ ≡ g

2

∑
kλ

eiθk (λ sin φkâ−kλâkλ + cos φkâkλâ−kλ̄), (A3)

and on taking the mean-field approximation ĉ†ĉ†ĉĉ ≈
〈ĉ†ĉ†〉ĉĉ + ĉ†ĉ†〈ĉĉ〉 − 〈ĉ†ĉ†〉〈ĉĉ〉, the interaction term be-
comes

�̂†�̂ ≈ �∗�̂ + ��̂† − �∗�, � ≡ 〈�̂〉. (A4)

Neglecting the constant term �∗�/g, we arrive at the mean-
field spin-orbit Hamiltonian Ĥso in the â basis found in (2.2).
Similarly to the separable BCS model, we now search for a set
of quadratic fermionic operators whose equations of motion
are closed. Define the following operators:

Ŝz
kλ = 1

2
(â†

kλ
âkλ + â†

−kλ
â−kλ − 1), Ŝ−

kλ = ληkâ−kλâkλ,

L̂z
kλ = −λ

4
(â†

k+âk− + â†
−k+â−k− + â†

k−âk+ + â†
−k−â−k+),

L̂−
kλ = ηk

2
(âk+â−k− + âk−â−k+),

T̂k = i

4
(−â†

k+âk− − â†
−k+â−k− + â†

k−âk+ + â†
−k−â−k+),

(A5)

where ηk = ei θk = −η−k and, as usual, Ŝ− = Ŝx − i Ŝy and
L̂− = L̂x − i L̂y.

One can check that Ŝkλ, L̂kλ, and T̂k are Hermitian oper-
ators. There is reflection symmetry in k-space: Â−kλ = Âkλ

for all operators Âkλ in (A5), as well as the following band
symmetry for L̂kλ: L̂−

k+ = L̂−
k− and L̂z

k+ = −L̂z
k−.

We apply the Heisenberg equations of motion to (A5) and
Ĥso from (2.2) and then take expectation values to arrive at the
generalized pseudospin equations of motion (2.11). The time-
dependent order parameter � = 〈�̂〉 as a function of the new
variables can be found in Eq. (2.12). The factor ηk does not
appear in Eq. (2.11), implying that the dynamics preserve any
radial symmetry found in the initial state. As all initial states
considered in this work are radially symmetric, one can opt
to label the generalized pseudospin variables by their single-
particle energies rather than their momentum vector.

APPENDIX B: INTEGRABLE LIMIT
OF SPIN-ORBIT QUENCHES

The authors of Ref. [55] created a full nonequilibrium
phase diagram of the spin-orbit model for quenches of the
magnetic field hi → h f as a function of hi and h f . However,
this phase diagram needs to be revised by running simulations
to much longer times t > τ , which, in particular, may modify
the Phase II-III boundary [95]. The phase diagram of Ref. [55]
is also missing the quasiperiodic Phase IV discovered in the
present work.

In Ref. [56], an attempt was made to analyze interaction
and external field quenches to the integrable limit h f = 0, but
mistakes led to an incorrect phase diagram for the interaction
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quenches. Here we correct those mistakes and generate a
correct phase diagram.

When the external field h is set to zero, Hso from (2.14)
becomes equivalent to the integrable s-wave model with a
dispersion relation εkλ = k2

2 − λαk. This becomes clear in the
equations of motion (2.11) with cos φk = 0 and sin φk = 1,
where the spin degrees of freedom Skλ decouple from the
others and � depends only on Skλ. In what follows, the initial
state of the system will be the ground state for some hi � 0
given by (4.4), and the Hamiltonian for t � 0 is

H =
∑
kλ

2εkλSz
kλ − 2|�|2/g f ,

� = g f

2

∑
kλ

S−
kλ, εkλ = k2

2
− λαk. (B1)

We use the integrability of H to construct the exact phase
diagram using a technique imported from Refs. [53] which
we now summarize briefly. The analysis centers around a
quantity L(u) called the Lax vector (not to be confused with
the variables Lkλ),

L(u) = − 2

g f
ẑ +

∑
kλ

Skλ

u − εkλ

. (B2)

The integrability of H follows from the fact that L2(u) is
conserved by the time evolution for arbitrary u, which implies
conservation of the 2N roots of L2(u), which we call u j . As
demonstrated in Ref. [53], each of the asymptotic nonequilib-
rium phases corresponds a unique number of isolated complex
pairs of u j in the continuum limit. Phase I corresponds to
zero isolated u j , Phase II corresponds to one pair, and Phase
III corresponds to two pairs. As the u j are constants of
the motion, we can evaluate L2(u) at t = 0 to determine the
number of isolated pairs of u j and thus generate the phase
diagram for a given hi.

Let us first start with the case when hi = 0 and we quench
the interaction gi → g f . In this case the ground-state self-
consistency relationship is

2

gi, f
=

∑
kλ

1

2Ekλ

, Ekλ =
√

(εkλ − μi, f )2 + �2
0i, f . (B3)

Using Eq. (B3) along with the initial state given by Eq. (4.1),
we find that the initial Lax vector has the form

L(u) = [�0iLx(u), 0, (μi − u)Lx(u) − β̃],

Lx(u) =
∑
kλ

1

2(u − εkλ)Ekλ

, β̃ ≡ 2

g f
− 2

gi
. (B4)

If g f = gi, i.e., the zero quench, then β̃ = 0 and the only com-
plex pair of roots is u± = ±i �0i + μ. This is the degenerate
Phase II case, where �(t ) = �0i identically. When g f �= gi,
L2(u) = 0 implies∑

kλ

1

(u − εkλ)
√

(εkλ − μi )2 + �2
0i

= − 2β̃

u − μi ± i �0i
.

(B5)

We now construct the phase diagram shown in Fig. 18 for
the hi = h f = 0, gi → g f quenches in the spin-orbit model.

FIG. 18. Phase diagram for interaction quenches gi → gf in the
integrable limit hf = hi = 0 of the spin-orbit model. Apart from the
varying coupling constant g, the model parameters are the same as
found in Fig. 2. The black dotted lines �0i = e±π/2�0 f indicate the
weak-coupling limit (� � W ) phase boundaries [53]. The thick blue
lines mark the true phase boundaries, which are characterized by the
appearance of a new pair of complex roots of Eq. (B9) when passing
from Phase I to Phase II or Phase II to Phase III.

As we will not utilize particle-hole symmetry, the chemical
potential μ must be calculated from the fermion number
Eq. (2.16), which in the present case reads

Nf =
∑
kλ

[
− εkλ − μ

2
√

(εkλ − μ)2 + �2
0i

+ 1

2

]
. (B6)

In the continuum limit, we have the following translation from
sums over kλ to integrals over the continuum for arbitrary
functions F (εkλ):∑

kλ

F (εkλ) = N

W

∫ W−

−εb

F (x)να (x)dx,

να (x) =
⎧⎨⎩

2√
1+x/εb

, −εb � x � 0
2, 0 � x � W+
1 − 1√

1+x/εb
, W+ � x � W−

,

εb ≡ α2/2, Wλ ≡ W − 2λ
√

εbW .

(B7)

Thus, the spin-orbit coupling α at h = 0 has the simple effect
of introducing a peculiar density of states να (x) to the s-wave
problem. Let B̃ = limN→∞ β̃/N and n = limN→∞ Nf /N , the
latter of which is fixed for the entire phase diagram. For a
given pair (�0 f ,�0i ), we first solve for (μ f , μi ) and then for
B̃ through the following integral equations:

2n =
∫

X

⎡⎣1 − x − μi, f√
(x − μi, f )2 + �2

0i, f

⎤⎦,

2B̃ =
∫

X

⎡⎣ 1√
(x − μ f )2 + �2

0 f

− 1√
(x − μi )2 + �2

0i

⎤⎦,

∫
X

(·) ≡ 1

W

∫ W−

−εb

(·)ν(x)dx. (B8)
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FIG. 19. Behavior of the roots of L2(u) for quenches from the
ground state of hi �= 0 to hf = 0 in the continuum limit with spin-
orbit parameters as given in Fig. 2. Each solid line is the absolute
value of the imaginary part of a pair of complex conjugate roots.
Regions of hi with one such line indicate that the asymptotic state is
Phase II, while the region where there are two separate lines indicate
Phase III. The vertical dashed lines indicate various critical values of
hi where the system undergoes a phase transition or crossover. From
left to right, h1 = 0.7813εF is the topological transition of the ground
state, h2 = 0.9938εF is a Phase II-III transition, h3 = 1.6625εF is the
BCS-BEC crossover, and h4 = 2.2938εF is a Phase III-II transition
which also appears to correspond to �0i = 0 being the only self-
consistent initial equilibrium gap. These critical values of hi depend
in general on the various spin-orbit model parameters.

We then use B̃ and μi as input for the following integral
equation:∫

X

1

(u − x)
√

(x − μi )2 + �2
0i

= − 2B̃

u − μi ± i �0i
, (B9)

which we solve for u. The number of complex pairs of roots to
Eq. (B9) determines which nonequilibrium phase the system
enters.

Quenches from hi �= 0 to h f = 0 still undergo integrable
dynamics, except now the initial state is no longer the s-wave
ground state. We consider the behavior of the zeros of L2(u)
with respect to hi in the continuum limit with the spin-orbit
parameters given in Fig. 2. The Lax vector is still as defined
in Eq. (B2), but we now enter the spin-orbit ground-state
(4.4) into the equation L2(u j ) = 0, which implies Lx(u j ) =
±i Lz(u j ). The spin components of the hi �= 0 ground state are
functions of the form Fλ(εk ) instead of F (εkλ); we therefore
do not use (B7) for the continuum limit but rather∑

kλ

Fλ(εk ) = N

W

∫ W

0
[F+(x) + F−(x)]dx. (B10)

The result of the root calculation is given in Fig. 19, where
we plot the absolute value of the imaginary part of each root
pair. For small hi, there is only one pair of complex roots,
i.e., the asymptotic phase is Phase II. At a certain critical hi,
a second pair of complex roots appears, and the system enters
Phase III. For larger hi, the two pairs of roots merge into one
and the system reenters Phase II. Phase I does not occur in
h f = 0 quenches for the parameters we used.

APPENDIX C: INTEGRABILITY BREAKING FORBIDS
ASYMPTOTIC REDUCTION

An important property of the quench dynamics of inte-
grable s and (p + ip)-wave Hamiltonians is the dynamical
reduction in the number of degrees of freedom at t → +∞
in the thermodynamic limit [53,54]. In particular, Phase III
in these models corresponds to the motion of two collective
classical spins S1 and S2 governed by a Hamiltonian of the
same form. The asymptotic order parameter �(t ) in Phase
III coincides with that of the 2-spin problem. Further, there
are special reduced solutions of equations of motion with the
same �(t ) that are of the form

s j = α jS1 + β jS2 + η j ẑ, (C1)

where α j , β j , and η j are time independent and ẑ is a unit
vector along the z axis. These observations lead to an analyt-
ical expression for �(t ) and, moreover, help to construct the
full asymptotic spin configuration in Phase III. We note also
that, as we will see below, for the s-wave BCS model in the
particle-hole symmetric case, (C1) is equivalent to the ansatz
of Ref. [37].

We will now show that the above reduction mechanism
relies on integrability and breaks down for nonintegrable sepa-
rable BCS models. We will prove two independent statements:
(i) Reduced solutions exist only when f 2(x) = C1 + C2x, i.e.,
only when the Hamiltonian is integrable [61,62] and (ii) �(t )
for a 2-spin separable BCS Hamiltonian with an arbitrary
choice of new ε1,2, f1,2 and g does not match the asymptotic
�(t ) we obtained in Sec. V C.

1. Existence of reduced solutions implies
integrability and vice versa

We will follow the same steps as in the derivation of the
2-spin solutions in Ref. [53] and show that it only works
for special choices of f (x). First, we treat the general non-
particle-hole symmetric case.

Let

� = �e−i�. (C2)

The 2-spin (reduced) Hamiltonian is

Hred =
2∑

j=1

2̃ε jS
z
j − g̃

∑
j,k

f̃ j f̃kS−
j S+

k

=
2∑

j=1

2̃ε jS
z
j − |�|2

g̃
, (C3)

where � = g̃(̃ f1S−
1 + f̃2S−

2 ). We take both f̃k to be nonzero,
because otherwise the two spins simply decouple and rotate
uniformly around the z axis.

Energy and Sz
1 + Sz

2 are conserved. Since there are two
conservation laws and two degrees of freedom, Hred is inte-
grable. For more than two spins, integrability persists only for
special choices of f̃k . This fact alone already distinguishes the
2-spin problem from that of a generic N-spin separable BCS
Hamiltonian.
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Conservation of energy and Sz
1 + Sz

2 read

2̃ε1Sz
1 + 2̃ε2Sz

2 = Ẽ + �2

g̃
, Sz

1 + Sz
2 = const. (C4)

We need ε̃1 �= ε̃2 or |�| will be constant. We use Eq. (C4) to
express Sz

k in terms of �2,

Sz
k = ãk�

2 + b̃k, k = 1, 2, (C5)

where ãk and b̃k are time independent and ã1 = −̃a2 �= 0.
Furthermore, Eq. (C1) implies a similar expression for sz

j in
terms of the order parameter amplitude,

sz
j = a j�

2 + b j . (C6)

Conservation of the energy

E =
∑

j

2ε j s
z
j − |�|2

g
, (C7)

and of Jz = ∑
j sz

j require∑
j

a j = 0,
∑

j

2ε ja j = 1

g
. (C8)

We write the Bloch equations for the separable BCS
Hamiltonian as

ṡz
j = −i f j (s

−
j �∗ − s+

j �), (C9)

ṡ−
j = −2i f js

z
j� − 2iε j s

−
j . (C10)

Since the equations of motion and Eqs. (C5) and (C6) for the
reduced solution and the 2-spin problem have the same form,
we can treat both of them simultaneously.

Substituting Eq. (C6) into Eq. (C9), we find

s−
j ei� − s+

j e−i� = 2i
a j

f j
�̇. (C11)

Next we multiply Eq. (C10) by ei� and add the resulting
equation to its complex conjugate,

d

dt

(
s−

j ei� + s+
j e−i�

) = 4a jε j

f j
�̇ − 2

a j

f j
�̇�̇, (C12)

where we made use of Eq. (C11). Integrating and adding the
resulting equation and Eq. (C11), we obtain

s−
j ei� = 2a jε j

f j
� − a j

f j
A + i

a j

f j
�̇ + a jc j

f j
, (C13)

where a j c j

f j
is the integration constant and A = ∫

dt�̇�̇. The

self-consistency condition � = g
∑

j f js
−
j , combined with

Eq. (C8), implies
∑

j a jc j = 0.
The analogous expressions for the 2-spin problem are

S−
k ei� = 2̃ak̃εk

f̃k

� − ãk

f̃k

A + i
ãk

f̃k

�̇ + ãk̃ck

f̃k

, (C14)

and ã1̃c1 + ã2̃c2 = ã1(̃c1 − c̃2) = 0. Therefore, c̃1 = c̃2 and
the last term in Eq. (C14) can be absorbed into A, which is
defined up to a constant anyway, i.e.,

S−
k ei� = 2̃ak̃εk

f̃k

� − ãk

f̃k

A + i
ãk

f̃k

�̇. (C15)

Since s−
j is related to S−

1 and S−
2 via Eq. (C1), this also

eliminates the last term in Eq. (C13), i.e.,

s−
j ei� = 2a jε j

f j
� − a j

f j
A + i

a j

f j
�̇. (C16)

Combining the conservation of the spin norm, s2
j = (sz

j )
2 +

|s−
j |2, with Eqs. (C6) and (C16), we derive the following

differential equation for �:

(a j�
2 + b j )

2 + (2a jε j� − a jA)2 + a2
j�̇

2

f 2
j

= s2
j , (C17)

or, equivalently,

�̇2 + f 2
j �

4 + �2

(
2

f jb j

a j
+ 4ε2

j

)
− 4ε jA�

+ A2 + f 2
j

(
b2

j − s2
j

)
a2

j

= 0. (C18)

This equation implies, among other things, that A is a function
of �. Indeed, consider a set of numbers x j , such that

∑
j x j =

0. Multiplying Eq. (C18) by x j and summing over j, we find

A� = λ�4 + 2μ�2 + κ, (C19)

where λ, μ, and κ are real constants. Substituting this back
into Eq. (C18), we obtain

ẇ2

4
+ λ2w4 + (

f 2
j − 4λξ j

)
w3 +

(
2 f jb j

a j
+ 2λκ + 4ξ 2

j

)
w2

+
[

f 2
j

(
b2

j − s2
j

)
a2

j

− 4κξ j

]
w + κ2 = 0, (C20)

where w = �2 and ξ j = ε j − μ. These equations are con-
sistent only when the coefficients of powers of w are j
independent. In particular, we must have f 2

j = 4λξ j + const,
i.e.,

f 2
j = C1 + C2ε j, (C21)

where C1 and C2 are real constants. This is the most gen-
eral form of f j for which the separable BCS Hamiltonian
(2.8) is known to be integrable [61,62]. In particular, C2 = 0
corresponds to the s-wave and C1 = 0 to the (p + ip)-wave
models. Conversely, when Eq. (C21) holds and the separable
Hamiltonian is therefore integrable, the j independence of
coefficients at w2 and w determines a j and b j , and Eq. (C20)
means that w = |�|2 is a certain elliptic function of time.

2. Asymptotic �(t ) does not match the 2-spin solution
in nonintegrable cases

In Sec. V C we numerically determined �(t ) in two non-
integrable separable BCS Hamiltonians, see Eq. (5.24). Here
we show that �(t ) for the most general separable 2-spin
Hamiltonian (C3) cannot match Eq. (5.24).

Since �(t ) in Eq. (5.24) is real, we take � in the 2-spin
problem to be real as well, though we do not a priori assume
particle-hole symmetry in the 2-spin problem. All we need is
to specialize the derivation of the previous subsection to the
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case of real �. Then, the Bloch equations become

Ṡz
j = −2 f̃ jS

y
j�, Ṡx

j = −2̃ε jS
y
j , Ṡy

j = 2̃ε jS
x
j + 2 f̃ jS

z
j�.

(C22)

Substituting Eq. (C5) into the first two equations of motion,
we obtain

Sy
k = − ãk

f̃k

�̇ (C23)

and

Sx
k = 2̃εkãk

f̃k

� + ãk̃ck

f̃k

, (C24)

where ãk c̃k

f̃k
is the integration constant. As before, the self-

consistency condition g̃(̃ f1S−
1 + f̃2S−

2 ) = � together with
ã1 = −̃a2 imply c̃1 = c̃2 ≡ c̃, and the conservation of spin
length (Sx

k )2 + (Sy
k )2 + (Sz

k )2 = S2
k yields

�̇2 + (2̃εk� + c̃)2 +
(

f̃k�
2 + b̃k f̃k

ãk

)2

= S2
k f̃ 2

k

ã2
k

. (C25)

Equating the coefficients at different powers of � for k = 1
and 2, we find c̃(̃ε1 − ε̃2) = 0 ⇒ c̃ = 0,

f̃1 = f̃2 ≡ f̃ , (C26)

and two more relationships that constrain ãk and b̃k . The
constraint (C26) is a consequence of the requirement that �

be real. Now Eq. (C25) is of the form

�̇2 = − f̃ 2(�2 − �2
+)(�2 − �2

−). (C27)

This is the same as the equation for the asymptotic �(t )
for the integrable s-wave BCS Hamiltonian in the particle-
hole symmetric case up to rescaling �new = f̃ �. This is
not surprising because f̃1 = f̃2 = f̃ and the factor of f̃ 2 in
Eq. (C3) can be absorbed into the coupling constant, g̃new =
f̃ 2̃g, resulting in an integrable s-wave BCS Hamiltonian for
two spins with �new = g̃new(S−

1 + S−
2 ) = f̃ �. The solution of

Eq. (C27) is �(t ) = �+dn[̃ f �+(t − t0), 1 − �2
+

�2−
]. As we saw

in Sec. V C, in the nonintegrable case we find instead a more
general differential equation Eq. (5.22) with the solution given
by Eq. (5.24).

APPENDIX D: THE LINK BETWEEN LAX
CONSTRUCTIONS AND THE STABILITY ANALYSIS

As mentioned above, the separable BCS model is inte-
grable when f 2

j = C1ε j + C2. Two important cases are the
s-wave model where f j = 1 and the p + ip model, where f j =√

ε j . In past work [53,54], integrability has been exploited
to determine the nonequilibrium asymptotic phases through
the use of Lax constructions. These techniques are useful for
constructing phase diagrams, but the physical interpretation of
the phase transitions is obscured by the use of exact solvabil-
ity. We demonstrate here that the stability equation Eq. (5.20),
which applies to the nonintegrable cases as well, both predicts
the same transition points and clarifies the physical meaning
of the Lax construction.

In the following, we will assume the quantities Zj , �∞, and
μ∞ are given. They are functions of the quench parameters
�0i, �0 f , the particle number Nf , and the Fermi energy εF .

1. Lax norms

In the s-wave model, the Lax vector is [53]

Ls(u) = − ẑ
g f

+
∑

j

s j

u − ε j
, (D1)

while in the p + ip model its components are [54]

L+
p (u) =

∑
j

√
ε j s

+
j

u − ε j
, L−

p (u) =
∑

j

√
ε j s

−
j

u − ε j
,

Lz
p(u) =

∑
j

ε j s
−
j

u − ε j
− 1

g f
, (D2)

where u is a complex (spectral) parameter.
We focus on the norms of these quantities, defined

as L2(u) = L2
x (u) + L2

y (u) + L2
y (u) in the s-wave case and

L2(u) = uL+(u)L−(u) + [Lz(u)]2 for p + ip. Integrability fol-
lows from the fact that the L2(u) and L2(u) are conserved by
the time evolution for arbitrary u, which implies conservation
of their roots u j . As demonstrated in Refs. [53,54] and dis-
cussed in Appendix B, each of the asymptotic nonequilibrium
phases corresponds a unique number of isolated complex pairs
of u j in the continuum limit. Phase I corresponds to zero
isolated u j , Phase II corresponds to one pair, and Phase III
corresponds to two pairs.

The main result of this Appendix is that the roots of the
Lax norm u and the frequencies ω of δ�(t ) are related by

u − ur = ± 1
2

√
ω2 − b2

min, where ur is the real part of the root
(cf. Refs. [42,53]) and bmin is the band edge in the frequency
spectrum (bmin = 0 in Phase I). Thus, the new pair of complex
conjugate Lax roots appears at the same time that ω emerges
into the band gap (i.e., ω2 < b2

min in Phase II and ω2 < 0 in
Phase I). Here and below in this Appendix, we use the same
notation u for the roots and for generic values of the spectral
parameter.

One may plug into the Lax norms the asymptotic spin
solution (5.9) for Phase II, but we shall use solutions that
do not impose particle-hole symmetry. Letting ε̃ j = ε j − μ∞,
and noting that sums over the time-dependent terms dephase
in the t → ∞ limit, we find

L2(u) =
(

− 1

g f
+ σ1

)2

+ �2
∞σ 2

2 ,

σ1 ≡
∑

j

Z j

u − ε j
, σ2 ≡

∑
j

Z j

ε̃ j (u − ε j )
,

L2(u) =
(

− 1

g f
+ p1

)2

+ u�2
∞ p2

2

p1 ≡
∑

j

ε jZ j

u − ε j
, p2 ≡

∑
j

ε jZ j

ε̃ j (u − ε j )
. (D3)

Equation (D3) reduces to the Phase I Lax norms when
�∞ = 0 and by convention Zj → z j . In Phase II, Eq. (D3) is
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supplemented by the self-consistency relationship

1 = −g f

∑
j

f 2
j Z j

ε̃ j
. (D4)

2. Phase I-II transition

In the s-wave case, and in Phase I, we compare the stability
equation Eq. (5.20) to the vanishing of the Lax norm L2(u) =
0. After some algebra, Eqs. (5.20) and L2(u) = 0 become

1

g f
=

∑
j

z j

± 1
2ω0 + μ∞ − ε j

, (D5a)

1

g f
=

∑
j

z j

u − ε j
, (D5b)

respectively. We argued in Sec. V B that the Phase I-II
transition occurs when a purely imaginary pair of complex
conjugate ω0 emerges as solutions to Eq. (D5a), implying
an exponential instability to Phase I. The Lax construction
stipulates that the same transition occurs when an isolated
pair of complex conjugate u solve Eq. (D5b). In order for
these two methods to match, we must make the identification
u − μ∞ = ± 1

2ω0, i.e., the real part of the emergent Lax norm
pair of roots must be μ∞. We prove this is the case in Sec. D 4.

The corresponding equations for Phase I in the p + ip
model are

1

g f
=

∑
j

ε j z j

± 1
2ω0 + μ∞ − ε j

, (D6a)

1

g f
=

∑
j

ε j z j

u − ε j
, (D6b)

and the same identification reconciles the two approaches.

3. Phase II-III transition

In Phase II, one applies the self-consistency relationship
(D4) to the Lax norms (D3). In the s-wave case, L2(u) = 0
becomes

0 = [
(u − μ∞)2 + �2

∞
][ ∑

j

Z j

ε̃ j (u − ε j )

]2

, (D7)

and we see the single pair of isolated conjugate roots are u± =
μ∞ ± i�∞. The equation for the second pair of isolated roots
that would signal a transition to Phase III is therefore

0 =
∑

j

Z j

ε̃ j (u − ε j )
. (D8)

After applying Eq. (D4) to the quantities S j (ω0) in the stability
equation (5.20), we find for the s-wave model

S1(ω) − 1 =
(

ω2

4�2∞
− 1

)
S3(ω). (D9)

This simplifies Eq. (5.20) to

0 =
∑

j

Z j

ε̃ j (±y + μ∞ − ε j )
, y = 1

2

√
ω2 − 4�2∞. (D10)

Matching (D10) to (D8), we make the correspondence

u − μ∞ = ± 1
2

√
ω2

0 − 4�2∞. As we discussed in Sec. V B, an
ω0 emerging out of the continuum and into the band gap
signals the transition to Phase III. The band edge in the s-wave
model is precisely 2�∞. We show in Sec. D 4 that the new
pair of conjugate Lax roots has real part μ∞. Therefore, the
two approaches predict the same phase transition.

In the p + ip case, L2(u) = 0 couples with (D4) to give

0 = [
u�2

∞ + (u − μ∞)2
][ ∑

j

ε jZ j

ε̃ j (u − ε j )

]2

. (D11)

The single pair of isolated roots of Phase II is then

u± = uc ± i�∞

√
μ∞ − �2∞

4
; uc ≡ μ∞ − �2

∞
2

, (D12)

and the emergent pair of conjugate roots solves

0 =
∑

j

ε jZ j

ε̃ j (u − ε j )
. (D13)

To show that the stability analysis reproduces Eq. (D13), we
will need two relations. The first holds in general by applying
the self-consistency relation (D4) to the sums in (5.20)

S1(ω) − 1 = ω2S4(ω) − S3(ω),

S4(ω) ≡ g f

∑
j

f 2
j Z j

ε̃ j
(
ω2 − b̃2

j

) , (D14)

while the second is specific to the p + ip model

S2(ω) = −2ωμ∞S4(ω) + ω

2�2∞
S3(ω). (D15)

We substitute Eqs. (D14) and (D15) into Eq. (5.20), which
becomes a quadratic function of S3 and S4. The solution is

0 =
∑

j

Z j

ε̃ j (±y + uc − ε j )
, y = 1

2

√
ω2 − B2

1, (D16)

where B1 = √
4μ∞�2∞ − �4∞ is the band edge when uc � 0.

In this parameter range, we identity u − uc = ± 1
2

√
ω2 − B2

1.
We show in Sec. D 4 that the real part of the emergent Lax
roots is uc, and therefore the stability analysis and Lax con-
structions give the same Phase II-III transition. When uc < 0,
the band edge is no longer B1, and we believe there to be no
Phase II-III transition in that case.

4. Real parts of Lax roots at the transitions

The equivalence between the Lax construction and the
stability analysis relies on the fact that the real parts of the
emerging Lax roots are equal to μ∞ at the Phase I-II transition
in both integrable models, μ∞ at the Phase II-III transition in

the s-wave model, and μ∞ − �2
∞

2 at the Phase II-III transition
in the p + ip model. In other words, the emergent second pair
of isolated roots has the same real part as the first pair of
isolated roots.

The Phase I-II transition real parts can be understood
by a continuity argument. In the s-wave model, Eq. (D7)
implies that the single pair of roots can be written as
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u± = μ∞ ± i�∞. As we approach the I-II boundary, �∞
decreases continuously to zero, which implies the real part of
both roots at the boundary is μ∞. In the p + ip case, a similar
argument follows from Eq. (D12).

a. s-wave, II-III

We use results from the spin reduction mechanism, dis-
cussed in Appendix C, of the s-wave model to obtain the
real parts of the Lax roots at the Phase II-III transition. This
discussion quotes several results directly from Sec. II B 3 of
Ref. [53]. The isolated roots in Phase III of L2(u) are given by
the roots of the 2-spin spectral polynomial [53] Q4(u)

Q4(u) = [(u − μ)2 − ρ]2 − κ (u − μ) − χ. (D17)

We determine the real parameters μ, ρ, κ , and χ at the
transition, which will then give the roots of Q4(u). To do so,
we use the differential equation and solution for the 2-spin
�, which is identical to that of the Phase III asymptotic � of
the many-body problem, which we write as � = |�|e−i�. Let
w = |�|2 = �2 + h1, where h1 is a constant. The differential
equation for w is

0 = ẇ2 + 4w3 + 16ρw2 + 16χw + 4κ2, (D18)

while the equation for the phase � is

�̇ = 2μ − κ

�2 + h1
. (D19)

On rewriting (D18) as an equation for �, we find

�̇2 = −(�2
+ − �2)(�2

− − �2), (D20)

where the constants �± are the maximum and minimum of
the � oscillations which are functions of the constants ρ, χ ,
and κ . The solution of interest to Eq. (D20) is

� = �+dn

[
�+(t − t0), 1 − �2

−
�2+

]
. (D21)

Near the II-III transition, the oscillations of � are small and it
sufficient to keep only the first harmonic of Eq. (D21)

� ≈ �0 + δ cos[ω0(t − t0)], δ � �0, ω0 ≈ 2�0.

(D22)

As we approach the II-III transition, � → �∞e−2iμ∞t . Be-
cause |�|2 = �2 + h1 has the same frequency as �2, and the
frequency of small oscillations of |�|2 at the II-III transition
is 2�∞, we conclude �0 = �∞ and h1 = 0. Using Eq. (D19),
we also find κ = 0 and μ = μ∞.

It remains to determine the constants ρ and χ , which we do
by plugging (D22) into (D18) and considering the O(δ0) and

O(δ) terms separately. The result is ρ = −�2
∞

2 and χ = �4
∞

4 .
The roots of the spectral polynomial Q4(u) from Eq. (D17) at
the Phase II-III transition therefore solve

0 =
[

(u − μ∞)2 + �2
∞

2

]2

− �4
∞

4
. (D23)

One solution to (D23) is u± = μ∞ ± i�∞, which is the single
isolated pair characteristic of Phase II. The other solution is a
double root at u = μ∞, i.e., the new pair of roots that emerges
in Phase III has real part μ∞.

b. p + ip, II-III

In order to prove that the Lax construction and stability
analysis predict the same p + ip Phase II-III transition, we
needed to assume that the real part of the emerging second
pair of roots equals that of the first pair of roots u± from (D12).
Using results from Ref. [54], we now show that this is indeed
the case.

For brevity, our derivation will use the conventions of
Ref. [54], where the definitions of some quantities differ by
numerical factors. One redefines ε → 2ε, 2G → g,

√
2� →

� and u → 2u in order to translate quantities from Ref. [54]
to those in this work. While some details of the derivation
depend on such conventions, the conclusion does not. We
also assume uc ≡ Re[u±] � 0, which is the parameter regime
where we show the equivalence of the Lax construction and
stability analysis for the p + ip model.

Equation (4.3) of Ref. [54] gives the isolated pair of
roots in Phase II to be u± = uc ± 2iEmin, where Emin is the
minimum of the asymptotic dispersion relation (see text below
Eq. (5.29) in Ref. [54]). According to Eq. (4.39) in Ref. [54],
the frequency of small oscillations in Phase III close to the
Phase II-III boundary is

�c =
√

(ur − uc)2 + 4E2
min, (D24)

where ur is the real part of the pair of roots absent in Phase II.
The frequency �c should match the frequency of dephasing
oscillations in Phase II close to the boundary. The text below
Eq. (3.53) in Ref. [54] says that the latter frequency is

� = 2Emin. (D25)

Setting �c = � implies that on the Phase II-III boundary,

ur = uc. (D26)
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