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Singularities in the Loschmidt echo of quenched topological superconductors
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We study the Loschmidt echo in the quenched two-dimensional p-wave topological superconductor. We find
that if this superconductor is quenched out of the critical point separating its topological and nontopological
phases into either of the two gapful phases, its Loschmidt echo features singularities occurring periodically in
time where the second derivative of the Loschmidt echo over time diverges logarithmically. Conversely, we give
arguments towards s-wave superconductors not having singularities in their Loschmidt echo regardless of the
quench. We also demonstrate that the conventional mean-field theory calculates classical echo instead of its
quantum counterpart, and show how it should be modified to capture the full quantum Loschmidt echo.
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About a decade ago, the Loschmidt echo was proposed as
yet another way of characterizing the dynamics of quenched
quantum systems [1–3]. Consider a quantum system residing
in a state |�i〉, e.g., in the ground state. Suppose the system
Hamiltonian suddenly changes triggering time evolution. Af-
ter some time t the time-evolved state is projected back onto
|�i〉. The Loschmidt echo is defined as [4]

Z (t ) = 〈�i|e−iĤt |�i〉. (1)

Of particular interest is the question of whether Z (t ) may be
nonanalytic as a function of t , in a way reminiscent of the ther-
mal partition function of quantum systems being nonanalytic
when they undergo phase transitions.

This question was explored in the literature for a wide va-
riety of quantum systems. Here, we would like to demonstrate
that a two-dimensional (2D) p-wave superconductor when
quenched out of a critical point separating its two phases [5]
(BEC, or strongly paired, or nontopological phase and BCS,
or weakly paired, or topological phase) into either of its two
phases features the Loschmidt echo with periodically occur-
ring singularities. Specifically, Z (t ) varies as (t − tn)2 ln |t −
tn| near tn = (n + 1/2)π/|ξ0|, where |ξ0| is the energy of
the zero momentum excitation in the superconductor, and
∂2Z/∂t2 diverges logarithmically at t = tn as a result.

We also argue that an s-wave superconductor, in any num-
ber of dimensions, is unlikely to have any singularities in its
Loschmidt echo. To arrive at these results, we show that the
conventional mean-field theory used to describe time evolu-
tion of out of equilibrium superconductors is not applicable
for the purpose of calculating their Loschmidt echo. We give a
prescription how this problem can be corrected and show that
the time evolution in this problem is equivalent to the Hamil-
tonian evolution of complex classical spins satisfying certain
boundary conditions. This construction generalizes classical
Anderson pseudospins (which are real vectors) used in previ-
ous work to describe the time evolution of superconductors.

In the previous work of some of us [6] we claimed that
s-wave superconductors did have singularities in their echo.
We demonstrate here that the quantity evaluated in that work
was in fact the classical echo, as opposed to the true quantum
echo we calculate below. We also note that Loschmidt echo
for topological insulators/superconductors was explored in
the literature for quite some time [7]. However, that anal-
ysis involved imposing a gap function on a superconductor
externally as opposed to determining it self-consistently, and
therefore cannot be realized by interacting fermions.

We begin our analysis with writing down the Hamiltonian
for the 2D chiral p-wave superconductor [8–10]

Ĥ =
∑

p

ξp â†
pâp − g

V

∑
p,q

p q ei(φp−φq )â†
pâ†

−pâ−qâq, (2)

where p and φp are the polar coordinates describing the vector
p, âp and â†

p are fermionic creation and annihilation operators,
ξp = p2/(2m) − μ with μ being the chemical potential and m
the mass of the fermions, g is the coupling constant, and V is
the volume of the system. It is customary to absorb the angles
φp, φq into the fermionic creation and annihilation operators.
Equation (2) becomes

Ĥ =
∑

p

ξp â†
pâp − g

V

∑
p,q

p q â†
pâ†

−pâ−qâq. (3)

It is also customary to use mean-field theory to study this
problem, which results in the simplified

Ĥ =
∑

p

ξp â†
pâp − �

∑
p

p â†
pâ†

−p − �̄
∑

p

p â−pâp. (4)

Here, � and �̄ are generally time-dependent gap functions.
These can be related back to the fermions via the so-called
gap equation. We will find that the gap equation that we need
here is surprisingly subtle. Because of that, we will postpone
its discussion until later and for now treat � and �̄ as some
given time-dependent functions.
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It is well known in the theory of superconductivity that the
eigenstates of Eq. (4) can be written in the following form,

|�〉 =
∏

p

(up + vp â†
pâ†

−p)|0〉, (5)

where |0〉 is a vacuum. Normalization of this wave function
requires that

|up|2 + |vp|2 = 1. (6)

In this Letter we consider the standard quench problem. We
initiate the system in the ground state |�i〉 of the form (5)
parametrized by uip and vip. The coupling constant g of the
Hamiltonian is suddenly changed to a new value so that |�i〉
is no longer its eigenstate. The state now evolves forward
with the new Hamiltonian. Knowing the time-dependent state
|�(τ )〉, we can calculate the Loschmidt echo according to
Eq. (1), or with Z (t ) = 〈�i|�(t )〉. We would like to under-
stand if there are values of “Loschmidt time” t at which Z (t )
is singular.

We note that evolving the state |�〉 forward in time is
equivalent to having time dependent up(τ ) and vp(τ ), sat-
isfying the initial conditions up(0) = uip, vp(0) = vip. By
applying the Hamiltonian (4) to the state (5) we derive their
equations of motion,

iu̇p = −ξpup − �̄ pvp, iv̇p = ξpvp − � p up. (7)

To calculate the Loschmidt echo, we evolve |�〉 to the
Loschmidt time t and project it back onto itself, with the result

Z =
∏

p

2Sp, lnZ = V
∫

d2 p ln(2Sp), (8)

where

2Sp = u∗
ipup(t ) + v∗

ipvp(t ). (9)

A typical mechanism for Z to become singular is for Sp to
vanish at some critical value t = tc, at some value pc. Let
us show that the S0 ≡ limp→0 Sp can vanish in a particularly
simple way. Indeed, the equations of motion of u0, v0 (also
understood as limits when p is taken to zero) can be solved
directly, as they decouple from the functions �(τ ), �̄(τ ), with
the result

u0 = ui0 eiξ0τ , v0 = vi0 e−iξ0τ . (10)

Substituting into Eq. (9) and taking into account Eq. (6) we
find

2S0 = cos(ξ0t ) + i(u∗
i0ui0 − v∗

i0vi0) sin(ξ0t ). (11)

S0 vanishes as a function of t only if

|ui0|2 = |vi0|2. (12)

Therefore let us restrict our attention to this case. It is well
known that the p-wave superconductor we study here can
be in the weakly coupled phase or strongly coupled phase
depending on the sign of ξ0 = −μ. The condition (12) holds
true in the ground state at the critical point between the phases
only. Therefore, from now on we consider |�i〉 to be the
ground state of a critical p-wave superconductor, while the
Hamiltonian after the quench will describe the strongly cou-
pled ξ0 < 0 or weakly coupled ξ0 > 0 phase. In other words,

the chemical potential effectively changes from μi = 0 to a
nonzero μ as a result of the quench. It is necessary to keep μ

in the mean-field Hamiltonian (4) to make sure we have the
correct average fermion number (see below and also Ref. [6]).

With S0 turning to zero at times tn = π (n + 1/2)/|ξ0| with
integer n, Z can now be singular at t = tn. However, S0

becoming zero at these times is not by itself a sufficient condi-
tion for Z to be singular. To understand if it becomes singular
at these times, we need to examine not just the point p = 0 in
the momentum space but also its vicinity. Fortunately in this
region we can solve the equations of motion (7) perturbatively,
using p as a small parameter. The solution reads

up(τ ) =
(

uip + ivip p
∫ τ

0
dτ ′ �̄(τ ′)e−2iξpτ

′
)

eiξpτ ,

vp(τ ) =
(

vip + iuip p
∫ τ

0
dτ ′ �(τ ′)e2iξpτ

′
)

e−iξpτ . (13)

This allows us to calculate, from Eq. (9),

2Sp ≈ u∗
ipuip eiξpt + v∗

ipvip e−iξpt

+iv∗
ipuip p fpe−iξpt + iu∗

ipvip p f̄peiξpt , (14)

where

fp =
∫ t

0
dτ�(τ )e2iξpτ , f̄p =

∫ t

0
dτ�̄(τ )e−2iξpτ . (15)

Equation (14) is an expansion in powers of p, therefore uip,
vip, and ξp themselves need to be expanded in powers of p.
Generally, taking into account Eq. (12), this expansion has the
form

2|uip|2 = 1 + αp + · · · , 2|vip|2 = 1 − αp + · · · , (16)

where α is some (real) constant. This leads to

2Sp ≈ cos(ξ0t ) + 1
2 (i f̄0 + α)peiξ0t + 1

2 (i f0 − α)pe−iξ0t .

(17)
Let us examine the vicinity of the point in time where S0

vanishes. Expanding in powers of t − tn and p we find

2Sp ≈ (−1)n[|ξ0|(tn − t ) + sgn(ξ0)βp],

β = iα + ( f0 − f̄0)/2. (18)

We now know, quite generally, the behavior of Sp in the
vicinity of the point p = 0 and time tn where a singularity of
Z can occur. We can estimate the contribution of small p to
the Loschmidt echo (8) by writing

1

Z
∂Z
∂t

= 2πV
∫ p0

0

p d p

t − tn − βp/ξ0
, (19)

where p0 is some momentum beyond which the expan-
sion (18) no longer holds. The integral is easy to evaluate and
produces

1

VZ
∂Z
∂t

= 2πξ 2
0 (t − tn)

β2
ln

[
ξ0(t − tn)

βp0

]
(20)

as the singular contribution to the Loschmidt echo (with the
second derivative of lnZ over time t and therefore also with
∂2Z/∂t2 having a logarithmic singularity).

Equation (20) constitutes the main result of this Letter. A
2D p-wave superconductor when quenched out of its critical
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point into either its weak (topological) or strong (nontopolog-
ical) phase has periodic singularities in its Loschmidt echo
where its second derivative over time diverges logarithmically.
The singularity is driven by the behavior of small momentum
fermions. The parameter α which appears in the calculations
above is controlled by the initial amplitudes uip, vip. Those can
be found as the ground state of the Hamiltonian before quench
is known. Being at the critical point where ξ0 = −μi = 0, it
must have the form

Ĥi =
∑

p

p2

2m
â†

pâp − �i

∑
p

p â†
pâ†

−p − �̄i

∑
p

p â−pâp, (21)

where �i and �̄i are the equilibrium gap functions. Calculat-
ing its ground state is a standard exercise. Evaluating uip and

vip leads to α = 1/(4m
√

�̄i�i ).
We would like to point out that the ratio of the amplitudes

vip/uip goes either to infinity or to zero in the two phases of the
2D chiral p-wave superconductors as p → 0, determining the
topological properties [5] of these phases. The only exception
is the critical point between the phases where this ratio is
1. Therefore, the criticality in the Loschmidt echo directly
reflects the fact that before the quench the system is at the
critical point between the two phases with different topology.

The question still remains whether Sp can also vanish at
other values of momenta, perhaps leading to other singular-
ities in Z which we also need to explore. We would like
to argue that this does not happen. To do this, we need to
understand further how � and �̄ are related to the fermions.
Usually in the problem of quantum quench where the goal is
to calculate |�(τ )〉 after the quench, the following equation is
used for �,

�(τ ) = g

V

∑
p

p〈�(τ )|â−pâp|�(τ )〉 = g

V

∑
p

p u∗
p(τ )vp(τ ),

(22)
and its complex conjugate for �̄(τ ). Substituting this into
Eq. (7) produces the equations of motion for up and vp. They
are nonlinear but known to be integrable. Their solution can be
found for a variety of initial conditions and allows to calculate
|�(t )〉 in many interesting cases [10].

However, we would like to argue that these equations are
not suitable for calculating the Loschmidt echo (1). The result-
ing wave function |�(t )〉, while well suited for calculating the
expectations of local observables in the problem and finding
their time dependence, produces wrong results if used to eval-
uate overlaps of |�i〉 and |�(t )〉 occurring in the calculation
of Z .

While leaving the detailed construction for the Supplemen-
tal Material [11], we note that the Loschmidt echo is simply
a matrix element of the evolution operator. These can be
calculated using a conventional Feynman functional integral,
avoiding the intricacies involved in the Schwinger-Keldysh
functional integral construction. The saddle point approxima-
tion with respect to � and �̄ calculated in the framework
of the conventional Feynman functional integral produces
(see also Ref. [12]),

�(τ ) = g

VZ
∑

p

p〈�i|e−iĤ (t−τ )â−pâpe−iĤτ |�i〉, (23)

and similarly for �̄(τ ). This equation replaces Eq. (22) for the
purpose of determining � and �̄.

To elucidate the meaning of Eq. (23) we introduce a new
wave function defined by

|�̃(τ )〉 = eiĤ (t−τ )|�i〉. (24)

Just as |�(τ )〉, it is described by the amplitudes ũp(τ ), ṽp(τ ).
They satisfy the same equations of motion (7) as up(τ ), vp(τ ),
but with different boundary conditions. Whereas up(0) = uip,
vp(0) = vip, the boundary conditions on these new amplitudes
are imposed at t = τ , ũp(t ) = uip, ṽp(t ) = vip. In terms of
these we find

1

Z 〈�i|e−iĤ (t−τ )â−pâpe−iĤτ |�i〉 = ũ∗
p(τ )vp(τ )

2Sp
, (25)

where Sp can also be expressed in terms of these amplitudes
by

2Sp(t ) = ũ∗
p(τ )up(τ ) + ṽ∗

p(τ )vp(τ ). (26)

Note that Sp do not depend on τ , thus they can be calculated
at arbitrary τ . In particular, substituting τ = t we see that
the definitions (26) and (9) coincide. With the help of these
relations we find

�(τ )= g

V

∑
p

p ũ∗
p(τ )vp(τ )

2Sp
, �̄(τ )= g

V

∑
p

p ṽ∗
p(τ )up(τ )

2Sp
.

(27)

These new gap equations replace the old Eq, (22). Thus we
now need to solve equations of motion (7) supplemented by
Eq. (27). These equations constitute the second main result of
this Letter. Note that unlike in Eq. (22), here �̄ is not equal to
the complex conjugate of �.

Solving these new equations of motion is an interesting
problem by itself, which will be left as a subject for future
work. Here, we would just like to see whether they are com-
patible with the singularities in Z that we found earlier. In
the quench scenario considered earlier, we had Sp vanish for
small p according to Eq. (18). Substituting this into Eqs. (27)
we find

� ∼
∫ ũ∗

p(τ )vp(τ ) p2d p

t − tn + βp
. (28)

This shows that as a function of t , � will have a divergent
second derivative. This by itself does not affect the earlier
established fact of the divergent second derivative of Z .

However, up until now we only analyzed vanishing of S0.
What if Sp vanishes for some nonzero pc? If this were to
happen, then the gap equation should be expected to read

� ∼
∫ ũ∗

p(τ )vp(τ ) p2d p

t − tc + β(p − pc)
, (29)

where the expression to be integrated is an approximation
valid in the vicinity of p ∼ pc. Taking into account that
β is generally complex and recalling the standard formula
Im 1/(x ± iε) = ∓iπδ(x), we see that � will then generally
be a discontinuous function of t . If � is discontinuous, so
will be Z [13]. On the other hand, Z is closely related to
the partition functions of quantum systems. Partition func-
tions of thermal systems cannot be discontinuous functions of
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temperature. Likewise we expect that the Loschmidt echo
cannot be a discontinuous function of time t , thus we conclude
that the scenario where Sp vanishes for some nonzero p cannot
be realized.

Note that the s-wave superconductors are described by the
Hamiltonians very similar to the ones studied here, but with-
out the extra factors of momenta in the interactions. Let us test
if they could have a vanishing Sp at some critical pc. Putting
this superconductor in d-dimensional space for generality, the
gap equation and the expression for the Loschmidt echo now
read

� ∼
∫ ũ∗

p(τ )vp(τ )pd−1d p

t − tc + β(p − pc)
,

∂Z
∂t

∼
∫

pd−1d p

t − tc + β(p − pc)
.

Again, unless pc = 0, the equations above lead to the discon-
tinuity of � as a function of t and therefore the discontinuity
in Z , which we expect cannot happen. The only exception
would be pc = 0. However, here p = 0 is not special in the
same way as in p-wave superconductors as the spin at p = 0 is
coupled to the rest of the spins and we were unable to identify
any initial conditions for which S0 can vanish. We are also not
aware of any alternative calculation showing vanishing of S0

in s-wave superconductors. Overall, this leads to our conclu-
sion that the Loschmidt echo in s-wave superconductors lacks
any singularities.

On the contrary, we expect that the criticality in Loschmidt
echo due to the p = 0 mode also manifests itself in
higher-order superconductors, such as a 2D dx2−y2 + idxy su-
perconductor. Exploring this could be the subject of further
research.

Given the wave function |�(t )〉 calculated using the stan-
dard approach of Eqs. (7) together with (22), one can ask
whether its overlap with the initial wave function |�i〉 is still
meaningful. Let us argue that

L = |〈�i|�(t )〉|2 (30)

coincides with the classical echo defined as [14]

L =
∫

dx ρ(x, 0)ρ(x, t ). (31)

Here, x are the coordinates parametrizing the phase space
of a classical system and ρ(x, t ) is the classical distribution
function, which is in general time dependent.

Indeed, equations of evolution of |�(t )〉 (7) together
with (22) are quasiclassical and should be equivalent to

evolving the classical distribution function ρ. Therefore, it
should not be surprising that Eqs. (30) and (31) coincide. For-
mal proof of that consists of identifying ρ for the interacting
fermions system that we study here with the Wigner function
computed from the quantum state of our system and showing
formally that Eq. (30) reduces to (31); see the Supplemental
Material [11] and Ref. [15] to see how this calculation can be
carried out. The quantity L was calculated for s- and p-wave
superconductors in Ref. [6] and found to have many singulari-
ties as a function of t . Thus we arrive at a striking conclusion:
The classical echo (31) can be singular, even when the full
quantum echo calculated here is not.

If the echo is measured experimentally, we need to ac-
count for the possibility that the initial state might be at a
finite temperature T . This implies that a certain number of
Bogoliubov excitations might be present in the initial state.
The Bogoliubov excitations do not contribute to the echo;
however, they reduce the number of Cooper pairs resulting in
the same singularity as given in Eq. (20) but now suppressed
by a weight factor 0 < w < 1 multiplying Eq. (20). This is
consistent with other studies of Loschmidt echo in systems
kept initially at a finite temperature [16].

An interesting remaining question is the role of the
chemical potential μ we introduced into the postquench
Hamiltonian. Normally in dynamical problems with con-
served total particle number μ is arbitrary as changing μ

simply changes the phase of the time-dependent wave func-
tion. However, our initial wave function is not an eigenstate
of the total particle number operator N̂ = ∑

p â†
pâp. Note that

〈�(τ )|N̂ |�(τ )〉 can be expressed entirely in terms of uip, vip
characterizing the initial wave function which contains μi but
is independent of μ. A more relevant expectation value which
arises in the process of evaluating the Loschmidt echo and de-
pends on μ is 〈�i|e−iĤ (t−τ )N̂e−iĤτ |�i〉/Z . Therefore, μ must
be chosen in such a way as to make this expectation equal
to the desired fermion number, i.e., we need to introduce μ

to ensure that we describe the time evolution with the correct
number of fermions. More details of this formalism are given
in the Supplemental Material [11].
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