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Breakdown of the Migdal-Eliashberg theory and a theory of lattice-fermionic superfluidity
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We show that the Migdal-Eliashberg theory loses validity at a finite value λc of the electron-phonon coupling
λ regardless of the underlying model Hamiltonian. The value of λc is approximately between 3.0 and 3.7. The
new phase that emerges at λ > λc breaks the lattice translational symmetry. Depending on the filling fraction
and crystal symmetry, it is an insulator or a Fermi liquid. Its characteristic feature is a gap or a pronounced
depression of the fermionic density of states near the Fermi level. We establish the breakdown from within the
Migdal-Eliashberg theory by demonstrating that the normal state specific heat is negative for λ � 3.7 and the
quasiparticle lifetime vanishes in the strong coupling limit. At fixed λ > λc, the transition to the new phase
occurs at a critical temperature higher than the superconducting transition temperature. In addition, there is
a first-order phase transition between the new phase and the superconducting state as we vary λ across λc at
fixed temperature. We put forward a new theory—lattice-fermionic theory of superfluidity—that bridges the gap
between the Migdal-Eliashberg approach and the physics at stronger coupling. At small λ, our theory reduces to
the Migdal-Eliashberg theory, and past λc, it describes the new phase and a range of other phenomena.
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I. INTRODUCTION

Migdal-Eliashberg theory [1,2] is the principal theoretical
framework for understanding properties of the normal and su-
perconducting states in metals determined by boson mediated
electron-electron interactions. It is a time-dependent mean-
field theory that makes accurate quantitative predictions for a
wide range of materials of the superconducting transition tem-
perature, quasiparticle gap, and most other thermodynamic
and dynamical observables, many of which are beyond the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductiv-
ity [3]. On a technical level, the Migdal-Eliashberg theory
in its simplest formulation comes down to two coupled self-
consistency equations, known as the Eliashberg equations,
for the normal, �(iωn), and anomalous, �(iωn), self-energies
that are functions of the fermionic Matsubara frequency ωn =
πT (2n + 1).

The main open question in the Migdal-Eliashberg theory
is its status at strong renormalized (actual) electron-phonon
coupling λ. This is the question we address in the present
paper. We prove that this theory loses validity for λ > λc

irrespective of the underlying electron-phonon model, where

3.0 � λc � 3.7. (1)

The smoking gun evidence of the breakdown is negative spe-
cific heat of the Migdal-Eliashberg normal state indicating
that it is thermodynamically unstable [4]. Further evidence
is the quasiparticle decay rate � = λπT that is much larger
than the temperature T at strong coupling and diverges in the
limit λ → ∞. To address the physics beyond λc, we put for-
ward a new theory—lattice-fermionic theory of superfluidity
in which the lattice and fermions are closer intertwined. At

small λ it reduces to the Migdal-Eliashberg theory and past λc

it describes the new phase.
We find that it is the interaction of electrons near the Fermi

surface mediated by quantum fluctuations of the lattice that
makes the specific heat negative within the Migdal-Eliashberg
theory. The reason is that this theory misses an abrupt recon-
struction of the electronic band structure and formation of
new bound states of the low energy electrons and quantum
phonons that occur at λ = λc. This is assisted by static distor-
tions of the lattice—classical phonons. Such lattice distortions
are generally thought to occur at strong electron-phonon inter-
action [5–11]. We show that they are present already when λ

is finite and the Fermi energy is the largest energy scale in
the problem. We also find that vanishing of the quasiparticle
lifetime in the limit λ → ∞ is entirely due to thermal fluctu-
ations of these distortions. At the same time, we will see that
quantum rather than classical phonons are the main culprits in
the breakdown of the Migdal-Eliashberg theory.

Consider for simplicity the Holstein model of electrons
moving on a lattice and interacting with ions. The model
assumes ions are independent harmonic oscillators of mass
M and spring constant K and takes the Coulomb interaction
between electrons and ions to be

Hint =
∑

i

(αxi )ni, (2)

where xi is the displacement of the ion at site i from its
equilibrium position and ni is the number of electrons at this
site. The dimensionless electron-phonon coupling constant is
defined as

λ = ν0α
2

K
, (3)
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where ν0 is the density of electronic states at the Fermi level
per lattice site per spin projection. Note that we took K to be
the renormalized spring constant.

It is easiest to understand the physics at strong coupling in
the limit λ → ∞. Equation (3) shows that this is the free ion
limit K → 0. The oscillation frequency 
 = √

K/M vanishes
together with K . Any finite temperature is much larger than 
.
High-temperature excites lattice oscillators to states with large
quantum numbers making them essentially classical (classical
phonons). Integrals over momenta of classical oscillators in
the partition function decouple from the remaining degrees of
freedom. We are left with the kinetic energy of the electrons
plus Eq. (2), where xi are classical variables. The elastic
energy

∑
i Kx2

i /2 vanishes in the strong coupling limit. The
only role of the oscillators now is to provide a statistically
distributed on-site potential Vi = αxi for the electrons. The
spatial average of xi couples to the total electron number only
and we absorb it into the chemical potential.

In the mean-field approximation, the problem reduces to
finding a nonuniform on-site potential Vi for the electrons that
minimizes their free energy. At K = 0, the energy can be low-
ered indefinitely. At K = ∞ the only solution is xi = 0, since
having nonzero xi costs infinite elastic energy. As we lower K ,
at a certain Kc, xi become nonzero breaking lattice translation
symmetry similarly to the Peierls distortion [12,13] and gen-
erating a frozen on-site potential Vi = αxi for the fermions.
This potential modifies the fermionic band structure. Since
we take the Fermi energy to be much larger than any other
characteristic energy, the only possible relevant modification
is a pronounced depression of the fermionic density of states
near the Fermi level. We show that at least for certain system
parameters a hard gap opens triggering a metal-insulator tran-
sition.

Migdal-Eliashberg theory assumes translational invari-
ance. For example, electron and phonon Green’s functions
depend only on coordinate differences. This implies thermal
averages of classical ion displacements are zero, 〈xi〉 = 0.
However, fluctuations of xi are not. Vi = αxi is then equiva-
lent to disorder potential and thermal averaging to disorder
averaging. Using the standard expression for disorder aver-
aged quasiparticle decay rate in a random potential, we find
� = λπT , which coincides with the prediction of the Migdal-
Eliashberg theory.

We see that the divergence of the quasiparticle decay rate
in the limit λ → ∞ is entirely due to classical phonons. In
contrast, negative quasiparticle specific heat cannot be ex-
plained in this way. Moreover, we will see that these phonons
cancel out from the Migdal-Eliashberg free energy altogether.
Therefore, even though classical phonons facilitate the abrupt
change in the fermionic band structure, the breakdown of the
theory at finite λ occurs only due to strong electron-electron
interactions mediated by quantum fluctuations of the lattice,
i.e., by quantum phonons.

Above arguments imply that a new order emerges in the
electron-phonon system at strong coupling. Fix λ > λc. The
transition to the new order occurs at a critical temperature Tc1

above the superconducting transition temperature Tc2, since
the heat capacity turns negative above Tc2. We illustrate this
in Fig. 1 where we show schematically the evolution of the
free energy profile with T . At very large T , we have a clas-

FIG. 1. Free energy profile of the electron-phonon system af-
ter the Migdal-Eliashberg theory breaks down, λ > λc. New order
emerges [insulator (I) in this case] below Tc1 out of the normal
(N) state. Superconducting (S) stationary point appears at a lower
temperature Tc2. At temperatures just below Tc2, this stationary point
must be higher in energy than the insulator by continuity.

sical gas of electrons and phonons. Below Tc1 the new phase
emerges, which we take to be an insulator for concreteness. At
Tc2 the superconducting stationary point appears, because the
nontrivial solution of the Eliashberg equations exists at low
enough T for any λ and corresponds to a stationary point of
the free energy [14]. Near its inception, the superconducting
state is a local minimum or a saddle point, because the insu-
lating minimum is already much below the normal state, see
Fig. 1. This means in particular that there is a first-order tran-
sition between the superconductor and insulator as a function
of λ at temperatures just below Tc2.

To describe the entire phase diagram of the electron-
phonon system, we propose a new theory, which we dubbed
the theory of lattice-fermionic superfluidity. The main idea
is to incorporate the classical part of the phonon field
into the single-particle Hamiltonian for fermions as an
adjustable potential. This generally breaks the lattice trans-
lational symmetry. We treat the boson-mediated interaction
in particle-particle and particle-hole channels in saddle point
approximation as in the Migdal-Eliashberg theory, except now
the normal and anomalous self-energies � and � depend on
the single-particle state. The end result is a set of four coupled
equations that self-consistently determine classical displace-
ments of the oscillators from their equilibria, single-electron
states and energies, and the fields � and �. This theory
reproduces the Migdal-Eliashberg theory at λ < λc and the
polaron formation theory [15] in the adiabatic limit M → ∞.
It continues to work past λc and captures at least some of the
new physics that emerges at strong coupling.

In the above discussion, it is crucial to distinguish the
renormalized electron-phonon coupling λ and the bare cou-
pling λ0. Suppose 
0 = √

K0/M is the bare frequency of
Holstein phonons. Migdal and Eliashberg found that within
standard electron-phonon models, such as the Frölich or
Holstein Hamiltonian, electrons strongly renormalize the
phonons, so that the renormalized phonon frequency is
[1,2,16],


 ≈ 
0

√
1 − 2λ0. (4)

This formula predicts a lattice instability at λ0 ≈ 0.5 (lat-
tice vibration frequencies become imaginary) restricting the
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domain of applicability of the Migdal-Eliashberg theory to
0 � λ0 � 0.5, as Migdal and Eliashberg both note [1,2,17].
Their conclusion that the theory does not work for λ0 � 0.5
has since been verified and elaborated upon by many other
studies [5–11]. However, it is important to emphasize that this
does not necessarily violate Migdal’s theorem [1,2], which
says that quadratic fluctuations of the fermionic fields � and
� around the Eliashberg minimum of the free energy (point S
in Fig. 1) are small as long as the Fermi energy is sufficiently
large [18]. We just have to keep in mind that this theorem
applies only at the Eliashberg stationary point and not at other
points, such as the insulating minimum I in Fig. 1. Because
of the above lattice instability, one of the main assumptions
of the theory as formulated by Migdal and later Eliashberg is
that λ0 is smaller than and not too close to 0.5, see also p. 182
of Ref. [16]. This point is often overlooked in the literature
and attempts are made to study the Migdal-Eliashberg theory
outside of this interval of λ0. The finding that the theory does
not work for such λ0 is not news, but was known already to
Migdal and Eliashberg.

The true question therefore is not whether the theory stops
working beyond λ0 ≈ 0.5, but if there is an upper bound on
the renormalized electron-phonon coupling λ. In terms of the
electron-phonon interaction energy constant, g2 = ν0α

2M−1,

the renormalized coupling (3) reads λ = g2/
2. Similarly, the
bare electron-phonon coupling is λ0 = g2/
2

0. Equation (4)
then implies

λ = λ0

1 − 2λ0
. (5)

We see that λ varies from 0 to +∞ within the domain of
applicability, 0 � λ0 � 0.5, of the Migdal-Eliashberg theory.
This seems to suggest that arbitrarily large values of λ are at-
tainable [19]. Since at strong coupling Tc/
 ≈ 0.183

√
λ [20],

this would imply unbounded Tc in units of the characteristic
phonon frequency.

About a decade after Migdal’s work Brovman and Kagan
realized that the above lattice instability is in fact merely an
artifact of conventional electron-phonon models [21,22]. Such
models postulate certain lattice vibration spectra, e.g., acous-
tic or optical phonons, and a certain form of electron-phonon
interaction. These phonon spectra are already a product of
electron-lattice interactions and their further renormalization
by these interactions is unwarranted. In the proper (adiabatic)
perturbation theory in the ratio of the electron to ion mass,
we start by solving for the energy of the electrons for given
ion displacements. We then combine this energy with the
Coulomb interaction between the ions to solve the lattice
vibrational problem and determine phonon frequencies.

The zeroth-order Hamiltonian for ions has ions interacting
via unscreened Coulomb interactions—ionic plasma, where
ions oscillate with the plasma frequency. Electrons renormal-
ize these plasma oscillations converting them, for example,
into acoustic phonons with no lattice instability along the
way. Modern state of the art simulations observe this in “an
approximation free way” [23]. Conventional models on the
other hand start with an ansatz for the phonon dispersion
and electron-phonon interaction. Consider, for example, a
model of electrons interacting with acoustic phonons. It is
this interaction that renormalizes the phonon spectrum within

this model leading to the above lattice instability. However,
such a secondary renormalization is double counting as we
already renormalized lattice vibrations once to obtain acoustic
phonons. Because of this the consensus in the community has
been that one should not renormalize the phonons within the
Migdal-Eliashberg theory, but instead supplement the theory
by experimentally measured phonon frequencies [24,25].

We adopt the same approach in this paper. We keep
the phonon spectrum arbitrary and show that the Migdal-
Eliashberg theory loses validity at a certain finite λc inde-
pendently of the phonon dispersion law and the momentum
dependence of the electron-phonon matrix element, i.e., in-
dependently of the underlying electron-phonon Hamiltonian.
This is possible because the strong coupling limit of this
theory is universal. Similar to its weak coupling limit (BCS
theory), there is a single energy scale in this limit [26]. Prior
studies mix up the above lattice instability, which is outside of
the domain of applicability of the Migdal-Eliashberg theory,
with its true breakdown within its domain. Many of them
are model-dependent and do not make the necessary dis-
tinction between the bare and renormalized electron-phonon
coupling constants. Most importantly, they do not eliminate
the possibility that the theory remains valid for all λ, including
λ = ∞. It is also important to note that the mechanism of the
breakdown we discussed above, while also accompanied by a
lattice distortion, is unrelated to the lattice instability due to
the artificial phonon softening at λ0 ≈ 0.5. Indeed, no such
softening takes place in our mechanism.

The paper is organized as follows. In Secs. II and III,
we review our previous work [14] where we derived the
quasiparticle free energy within the Migdal-Eliashberg theory
and mapped it to a classical spin chain. We also introduce
models we employ in this paper and discuss alternative forms
of the Eliashberg equations and the strong coupling limit of
the theory. In Sec. IV, we establish that Migdal-Eliashberg
theory loses validity for λ > λc, where λc � 3.7. The normal
state heat capacity becomes negative for λ > 3.7 and quasi-
particle decay rate is much larger than the temperature. In
contrast, the superconducting state is free from such patholo-
gies. We further show in Sec. IV that at strong coupling the
low energy part of the quasiparticle spectrum of the super-
conductor consists of narrow bands of width of the order of
the phonon frequency 
. At high energies, the spectrum is
continuous with no gaps. The specific heat is positive at all
T in the supeconducting state and the quasiparticle decay
rate is negligible. We develop a simple qualitative picture
of the breakdown that explains the above pathologies of the
normal state in Sec. V. In Sec. VI, we discuss new order that
emerges at λc and its implications for the electron-phonon
system. In Sec. VII, we compare our and previous studies
of the Migdal-Eliashberg theory. Section VIII addresses the
role of classical phonons in the breakdown and in Sec. IX,
we consider the adiabatic limit, M → ∞, that reveals their
role especially clearly. In Sec. X, we present our theory
of lattice-fermionic superfluidity that remains valid after the
Migdal-Eliashberg theory breaks down and accommodates
new phases emerging at stronger coupling. In concluding sec-
tion, we summarize and discuss open questions and some of
the implications of our study, such as an upper bound on the
superconducting Tc.
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II. FREE ENERGY AND ELIASHBERG EQUATIONS

We begin with the description of two electron-phonon
models that we use—the Holstein model and a more general
model with arbitrary phonon spectrum and momentum depen-
dent electron-phonon interaction. We then review the results
of our earlier work where we derived the free energy density
functional for the fermionic subsystem for these models. The
stationary point equations of this free energy are standard
Eliashberg equations, which we also review.

A. Models

We employ two models in this paper. The first one is the
Holstein model (dispersionless phonons) with an arbitrary
hopping matrix and an onsite potential,

H =
∑
i jσ

hi jc
†
iσ c jσ +

∑
i

[
p2

i

2M
+ K0x2

i

2

]
+ α

∑
i

nixi, (6)

where i and j label the lattice sites, hi j are the matrix elements
of an arbitrary single-electron Hamiltonian ĥ, c†

iσ and ciσ are
creation and annihilation operators for an electron on site i
with spin projection σ , ni = ∑

σ c†
iσ ciσ is the fermion occupa-

tion operator, and pi and xi are ion momentum and position
operators. The bare phonon frequency is 
0 = √

K0/M.
The second model is a more general Hamiltonian describ-

ing electrons interacting with dispersing phonons,

H =
∑
pσ

ξpc†
pσ cpσ +

∑
q

ω0(q)b†
qbq

+ 1√
N

∑
pqσ

αq√
2Mω0(q)

c†
p+qσ cpσ [b†

−q + bq],
(7)

where M is the ion mass and N is the number of lattice
sites. The phonon spectrum ω0(q) and the electron-phonon
interaction αq are largely arbitrary, except that we will assume
for simplicity that both depend on the magnitude of the mo-
mentum only, ω0(q) = ω0(q) and αq = αq. Both hi j and ξp

contain the chemical potential μ as we include the μNf term
into the Hamiltonians, where Nf is the total fermion number.

B. Free energy functional

In the first paper [14] in our series of four papers [14,18,27]
on the Migdal-Eliashberg theory, we derived the free energy
functional (effective action) for spatially homogeneous states
of the system for both above Hamiltonians. The idea is to
integrate out phonons in the path integral and then decou-
ple resulting effective fermion-fermion interaction with three
Hubbard-Stratonovich fields �, �↑, and �↓. Next, we inte-
grate out the fermions, obtain an effective action in terms of
the Eliashberg fields �, �↑, and �↓, and look for stationary
points where these fields are spatially uniform and depend
on the time difference only. We work in the regime where
the Fermi energy is the largest energy in the problem, much
larger than characteristic interaction and phonon energies.
This implies that the single-fermion spectrum is particle-hole
symmetric at relevant energies and we also assume time re-
versal symmetry.

The above steps and setup lead to the following expression
for the free energy of the system per site [28],

f = ν0T 2
∑

nl

[�∗
n+l
l�n + �n+l
l�n]

− 2πν0T
∑

n

√
(ωn + �n)2 + |�n|2. (8)

Here ν0 is the density of states at the Fermi energy per site
per spin projection. The field �n ≡ �(iωn) is complex and
�n ≡ �(iωn) is real. Both fields are functions of the fermionic
Matsubara frequency ωn = πT (2n + 1). Particle-hole sym-
metry implies that |�n| is even and �n is odd in ωn. At the
stationary point, these fields equal the anomalous and normal
self-energies. The effective action is Seff = N f /T with N
being the number of lattice sites. At its minimum Eq. (8)
gives the grand potential of the system in the thermodynamic
limit, but we colloquially refer to it as the free energy. More
generally, e−N f /T determines the weight of a given field con-
figuration in the partition sum.

The quantity 
l in Eq. (8) is the Fourier transform of
1/λ(τ ) at bosonic Matsubara frequency ωl = 2πT l , where
λ(τ ) is the effective electron-electron interaction in the imag-
inary time domain. It is more practical to specify λ(ωl )—the
Fourier transform of λ(τ ) to the Matsubara frequency domain.
For the Holstein model, we have

λ(ωl ) = g2

ω2
l + 
2

, g2 = ν0α
2M−1. (9)

For phonons with dispersion,

λ(ωl ) = 1

2p2
F

∫ 2pF

0

g2
qqdq

ω2
l + ω2

q

, g2
q = ν0|αq|2M−1, (10)

where pF is the Fermi momentum. Here 
 and ωq are the
renormalized phonon frequencies, not to be confused with
bare frequencies 
0 and ω0(q). The last expression for λ(ωl )
is for a spherical Fermi surface in d = 3 dimensions, but it is
straightforward to extend it to any d � 2.

As usual, we define the dimensionless electron-phonon
coupling constant as λ = λ(ωl = 0). Then,

λ = g2


2
= ν0α

2

K
, Holstein model,

λ = 1

2p2
F

∫ 2pF

0

g2
qqdq

ω2
q

, dispersing phonons,

(11)

where K is the renormalized spring constant. It is also conve-
nient to introduce α, g, K and 
 for dispersing phonons as the
following averages:

α2 ≡ 1

2p2
F

∫ 2pF

0
|αq|2qdq, g2 ≡ ν0α

2M−1,


2 ≡ g2

λ
, K ≡ ν0α

2

λ
.

(12)

Often we will consider the strong coupling limit λ → ∞,
which is equivalent to 
 → 0 or K → 0.
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C. Eliashberg equations

The stationary point equations for the free energy (8) are
the well-known Eliashberg equations [2],

�n = πT
∑

m

λnm
�m√

(ωm + �m)2 + |�m|2
, (13a)

�n = πT
∑

m

λnm
ωm + �m√

(ωm + �m)2 + |�m|2
, (13b)

where

λnm = λ(ωn − ωm), λnn = λ(0) = λ. (14)

Note that λnn diverges in the strong coupling limit.
It is convenient to introduce new variables—complex F (τ )

and real G(τ ) defined as

�(τ ) = πλ(τ )F (τ ), �(τ ) = πλ(τ )G(τ ). (15)

In frequency representation, we have

�n = πT
∑

m

λnmFm, �n = πT
∑

m

λnmGm, (16)

and Eq. (13) becomes

Fn = �n√
(ωn + �n)2 + |�n|2

,

Gn = ωn + �n√
(ωn + �n)2 + |�n|2

.

(17)

On the stationary point, the fields Fn and Gn correspond to the
anomalous and normal Green’s functions integrated over the
single-particle energy [14]. Parity properties of �n and |�n|
imply that Gn is odd and |Fn| is even.

Importantly, it is possible to rewrite the Eliashberg equa-
tions (13) so as to eliminate the m = n terms that diverge in
the strong coupling limit [14,19]. The new equations have the
same form

�′
n = πT

∑
m 
=n

λnm
�′

m√
(ωm + �′

m)2 + |�′
m|2 , (18a)

�′
n = πT

∑
m 
=n

λnm
ωm + �′

m√
(ωm + �′

m)2 + |�′
m|2 , (18b)

where

�′
n = πT

∑
m 
=n

λnmFm, �′
n = πT

∑
m 
=n

λnmGm. (19)

Troublesome m = n terms are now absent both from the new
equations and from the “reduced” self-energies �′

n and �′
n.

Eliashberg equations generally have more than one solu-
tion, e.g., at T = 0, there is a solution with �n = 0 and a
solution with �n 
= 0. Moreover, we established in Ref. [14]
that new “spin flip” solutions emerge at λ � 1. However, most
important for us here is the solution with the lowest free
energy, which we dub the Eliashberg stationary point. This
stationary point is the global minimum when the Migdal-
Eliashberg theory is a valid description of the system and is
a saddle point or a local minimum otherwise.

III. MAPPING TO A SPIN CHAIN

This section concludes the summary of our previous re-
sults that we will use to demonstrate the breakdown of the
Migdal-Eliashberg theory at strong coupling from within the
theory itself. The main result reviewed here is that the free
energy functional maps to a classical Heisenberg spin chain.
Sites of the chain are fermionic Matsubara frequencies ωn and
the components of classical spin Sn are energy-integrated nor-
mal and anomalous Green’s functions, Sz

n = Gn and S+
n = Fn,

where S+
n ≡ Sx

n + iSy
n.

Indeed, observe that Eq. (17) implies a constraint on the
variables Gn and Fn,

G2
n + |Fn|2 = 1. (20)

Therefore we can treat these variables as three components of
a classical spin Sn of unit length, S2

n = 1,

Sz
n = Gn, Sx

n = Re(Fn), Sy
n = Im(Fn). (21)

It follows from Eq. (17) that

Fn�
∗
n + Gn(ωn + �n) =

√
(ωn + �n)2 + |�n|2. (22)

This allows us to rewrite the free energy density given by
Eq. (8) as

f =ν0T Hs, where (23)

Hs = − 2π
∑

n

ωnSz
n − π2T

∑
nm

λnm(Sn · Sm − 1). (24)

We interpret Hs as a Hamiltonian of an open classical Heisen-
berg spin chain in an inhomogeneous “Zeeman magnetic
field.” The positions of the spins are fermionic Matsubara fre-
quencies ωn. Spin-spin interactions are ferromagnetic and fall
off at large “distance” as λnm ∝ (ωn − ωm)−2. The magnetic
field is linear in the position of the spin and goes to ±∞
as ωn → ±∞. Eliashberg equations (13) are spin equilibria
conditions that enforce parallel alignment of each spin and
the effective magnetic field acting on it (Zeeman field plus the
field from other spins).

In particular, for the Holstein model substituting Eq. (9)
into Eq. (24), we obtain

Hs = −2π
∑

n

ωnSz
n − π2T g2

∑
nm

Sn · Sm − 1

(ωn − ωm)2 + 
2
. (25)

In general, the spin chain representations (24) and (25) of
the free energy are guaranteed to work only at its stationary
points, because we used Eqs. (20) and (22) that derive from
the stationary point equations to obtain them. It is also impor-
tant to keep in mind that f is the contribution of the fermionic
degrees of freedom (quasiparticles) to the free energy. The
total free energy is f plus the free energy (grand potential)
of noninteracting phonons. See Ref. [14] for a comprehensive
discussion of properties and consequences of the spin chain
representation of the free energy.

Now let us develop a minidictionary between the original
language of superconductivity and the spin terminology. First
of all, similar to the Anderson pseudospin description of the
BCS theory of superconductivity [29], the superconducting
transition translates into softening of the domain wall as
shown in Fig. 2. This is a result of the competition between
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FIG. 2. Classical spin representation of the transition from (a) the
normal to (b) superconducting state. As discussed in the text, the
Migdal-Eliashberg theory maps to a classical Heisenberg spin chain.
The positions of the spins are fermionic Matsubara frequencies ωn.
Spin-spin interactions are purely ferromagnetic and the spins are
subject to a Zeeman magnetic field 2πωn along the z axis. In the
superconducting state, spins acquire x components, which implies
nonzero anomalous Green’s function. The sharp domain wall in the
normal state is smeared in the superconducting state.

the Zeeman magnetic field and ferromagnetic interaction in
Hs. The spin configuration minimizing the Zeeman term is
Sn = sgn(ωn)ẑ, and the Zeeman field necessarily prevails at
large |ωn|, so that Sn → ±ẑ for ωn → ±∞.

Above the superconducting Tc, the anomalous averages
vanish, Fn = 0. According to the definition (21) of the clas-
sical spin, this implies that all spins are parallel to the z axis.
From the behavior of Sn at large ωn and by symmetry, it is
then clear that the minimum energy spin texture is

Sn = sgn(ωn)ẑ. (26)

This is the normal state in the spin language. Its characteristic
feature is a sharp domain wall between ω−1 and ω0 with an
abrupt jump of the z component of spin from Sz

−1 = −1 to
Sz

0 = +1, see Fig. 2.
Below Tc, the anomalous averages are nonzero, i.e., the

spins acquire x-components (Fn can be made real in the spin
chain ground state). In other words, the domain wall softens
in superconducting states. Now the change in Sz

n from −1 at
ωn = −∞ to +1 at ωn = +∞ occurs gradually and the jump
Sz

0 − Sz
−1 < 2.

A. Strong coupling limit

We will see in the next section that the Migdal-Eliashberg
theory stops being a valid description of any physical sys-
tem for values of the renormalized electron-phonon coupling
λ � λc, where λc � λ∗ ≈ 3.69. One may ask then, what is
the point in considering its strong coupling, λ → ∞, limit
where the theory is unphysical. The main point is that the
answers for any observable obtained with different underlying
electron-phonon models, i.e., for different phonon spectra and
electron-phonon matrix elements, converge in this limit—the
strong coupling limit of the Migdal-Eliashberg theory is uni-
versal, see, e.g., Ref. [26].

For example, suppose we evaluated the specific heat for
the Holstein model, cH (T, λ), as a function of tempera-
ture and λ. At λ = ∞ the specific heat, cg(T, λ), for a
general electron-phonon model (7) coincides with cH (T, λ),
cg(T,∞) = cH (T,∞). At large but finite λ, cg(T, λ) is close
to cH (T, λ) and we can make them arbitrarily close by in-
creasing λ. In particular, we will see that the value λ∗ ≈ 3.69
obtains from the condition min[cH (T, λ∗)] = 0 for T > Tc.
The universality of the strong coupling limit implies that there
is finite λc for the general electron-phonon model as well.
Moreover, since λ∗ ≈ 3.69 is already quite large, the values
of λ∗ obtained for different models should be close to 3.69.

The strong coupling limit is equivalent [14,26] to sending
all (renormalized) phonon frequencies to zero, ωq → 0 and

 → 0. Then the effective electron-electron interaction (10)
becomes

λ(ωl ) = g2

ω2
l

, (27)

where for the Holstein model g2 = ν0α
2M−1 as before, while

for the dispersing phonon model (7) the constant g2 is given
by Eq. (12). The free energy functional (8) becomes in this
limit [14]

Hs = −2π
∑

n

ωnSz
n − π2T g2

∑
nm

Sn · Sm − 1

(ωn − ωm)2
. (28)

We see explicitly that Hs is independent of the underlying
microscopic model except through a single constant g. More-
over, the λ → ∞ limit has another convenient property—in
this case the expression (28) for the free energy holds at all
points (Gn, Fn) of the configuration space, unlike finite λ, for
which the spin chain representation (24) applies only at the
stationary points of Eq. (8), see Ref. [14] for more detail.

IV. BREAKDOWN OF THE MIGDAL-ELIASHBERG
THEORY

We present indisputable evidence of the breakdown of
the Migdal-Eliashberg theory at strong coupling. The critical
value of the renormalized electron-phonon coupling λc above
which the theory becomes unphysical lies in the interval 3.0 �
λc � 3.7. We provide two pieces of such evidence. First, the
normal state specific heat evaluated within this theory be-
comes negative above Tc for λ � 3.7 indicating that this state
is thermodynamically unstable [4].

Second, quasiparticle lifetime vanishes in the normal state
as τ = [Im�(ω)]−1 ≈ (πλT )−1 → 0 when λ → ∞ signaling
a complete breakdown of the quasiparticle picture. It indicates
that the Migdal-Eliashberg theory no longer employs the cor-
rect zeroth-order (in electron-phonon coupling) Hamiltonian
for fermions. The true normal state cannot be a Fermi liquid
with the translational symmetry of the lattice anymore. We
will see that this short lifetime is entirely due to the thermal
fluctuations of static displacements of the ions from their
equilibrium positions, see also Ref. [19].

On the other hand, the behavior of these quantities in
the superconducting state at strong coupling is diametrically
opposite. The specific heat is positive for all T � Tc and
exhibits activated behavior at low temperatures. Quasiparticle
lifetime is exponentially large at λ = ∞ and proportional to
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√
λ at large but finite λ. However, this does not mean that the

superconducting state predicted by this theory is “out of the
woods” and indeed we will see in the next section that, at least
for a range of temperatures below Tc, it is not the true thermal
equilibrium of the electron-phonon system.

By construction solutions of the Eliashberg equations (13)
are stationary points of the free energy functional for any
coupling λ. The above findings demonstrate that for λ > λc

none of these stationary points is the true global minimum
of the free energy, at least in a certain temperature range that
includes temperatures both above and below Tc. In subsequent
sections, we will see that this happens due to a phase transition
that breaks the translational invariance of the lattice. This
transition is independent of the lattice instability discussed
in Introduction and does not rely on conventional electron-
phonon models for its existence.

A. Normal state specific heat

We start by rederiving the specific heat for the Holstein
model within the Migdal-Eliashberg theory [30] with the help
of the spin chain Hamiltonian,

Hs = −2π
∑

n

ωnSz
n − π2T g2

∑
nm

Sn · Sm − 1

(ωn − ωm)2 + 
2
. (29)

By definition (23) of the spin Hamiltonian, the free energy is
f = ν0T Hs. We saw in Sec. III that in the normal state,

Sz
n = sgn(ωn), Sx

n = Sy
n = 0. (30)

Therefore the normal state free energy is

fn = −2πν0T
∑

n

ωnsgn(ωn)

− π2ν0T 2g2
∑
nm

sgn(ωnωm) − 1

(ωn − ωm)2 + 
2
. (31)

The first term on the right is the temperature-dependent part
of the free energy of noninteracting electrons [31],

f0 = −π2ν0T 2

3
. (32)

Note that sgn(ωnωm) − 1 vanishes when ωn and ωm have the
same sign and is equal to −2 otherwise. This observation
allows us to rewrite the second term (interaction part of the
free energy) as

fint = ν0g2
∞∑

l=1

l

l2 + a2
, a ≡ 


2πT
. (33)

We also reduced the summation over n and m to a single
sum over l = n + m + 1 using ωn − (−ωm) ∝ (n + m + 1)
and taking into account that there are l ways to choose n and
m for a given value of l .

The sum in Eq. (33) is logarithmically divergent [33].
Nonetheless, let us write the summand as a sum of two sim-
ple fractions and use the following property of the digamma
function ψ (x):

∞∑
l=1

(
1

x + l
− 1

l

)
= −1

x
− ψ (x) − γ , (34)

FIG. 3. Normal state quasiparticle specific heat Cn in the Migdal-
Eliashberg theory as a function of the ratio T/
 of the temperature
to Einstein phonon frequency for three different values of electron-
phonon coupling λ. We normalize Cn by its low-temperature Fermi
liquid asymptote CFL = γ0T (1 + λ). Note that for λ = 4.5, the spe-
cific heat is negative above the superconducting Tc ≈ 0.4
 signaling
the breakdown of the Migdal-Eliashberg theory at strong coupling.
Since the λ → ∞ limit of this theory is universal, it breaks down
irrespective of the underlying electron-phonon model.

where γ is Euler’s constant. We find

∞∑
l=1

l

l2 + a2
= Re[ψ (ia)] +

l0∑
l=1

1

l
− γ , (35)

where we truncated the sum on the right-hand side at l0. For
large l0, the last two terms sum to ln l0 with an error of order
1/l0. Since 
 = 2πT l0 is a Matsubara frequency, it is safe to
replace these two terms with ln 


2πT , where 
 is the frequency
cutoff.

Note that 
 affects only the temperature-independent part
of the free energy that we are not attempting to evaluate any-
way. This part is the ground state energy per site; it diverges
because we sent the Fermi energy to infinity when deriving
the free energy. Thus the temperature-dependence of the free
energy density in the normal state is

fn = −π2ν0T 2

3
− ν0g2Re[ψ (ia)] − ν0g2 ln T . (36)

The corresponding specific heat (heat capacity per site) is

Cn = −T
d2f

dT 2
= γ0T

[
1 + λh

(



2πT

)]
, (37)

where

γ0 = 2π2ν0

3
(38)

is the specific heat coefficient of free electrons, λ = g2


2 , and

h(x) = −6x2 − 12x3Im[ψ ′(ix)] − 6x4Re[ψ ′′(ix)]. (39)

The same expression (37) obtains by a different method [30],
which provides an independent check on the spin chain repre-
sentation of the free energy.

We show three representative plots of Cn(T ) in Fig. 3. No-
tice that, for instance, for λ = 4.5 the specific heat is negative
in an interval of temperatures from T− ≈ 0.4
 to T+ ≈ 0.7
.
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The superconducting transition temperature for large λ is
Tc ≈ 0.18

√
λ
 [20], which for λ = 4.5 is Tc ≈ 0.4
. Hence

the quasiparticle heat capacity is negative above Tc.
Let us determine the value of λ at which the specific heat

becomes negative for the first time. The function h(x) in
Eq. (37) has a single minimum hmin = −0.2709 at xmin =
0.3273. The normal state specific heat Cn becomes nega-
tive for λ > −h−1

min ≡ λ∗ ≈ 3.69. The normal-superconductor
transition for λ = λ∗ occurs at Tc ≈ 0.35
. The minimum
of the function Cn (T )

CFL
, where CFL = γ0T (1 + λ) is at Tmin =

(2πxmin)−1
 ≈ 0.49
. At this temperature the specific heat
is always negative for λ > λ∗.

Therefore, for any λ > λ∗, the quasiparticle specific heat
is negative in an interval of temperatures (T−, T+), where
T+ > Tc,

Cn(T ) < 0 for λ > λ∗ ≈ 3.69 and T− < T < T+. (40)

The length of this interval starts from zero at λ = λ∗ and
grows monotonically with λ. At first, both T+ and T− are
above Tc until T− falls below it. At large λ,

T− ≈ 0.31
, T+ ≈ 0.38
√

λ
, (41)

where we took the large λ asymptote of T+ from Eq. (43)
below and for T− we obtained it from h(x0) = 0. The numeri-
cal solution is x0 ≈ 0.5100 and therefore T− = (2πx0)−1
 ≈
0.31
 for λ → ∞.

In the strong coupling limit λ → ∞ and 
 → 0, so that
g2 = λ
2 = fixed. Then, T � 
 and with the help of the se-
ries expansion for the digamma function, we find that Eq. (37)
becomes

Cn = γ0T

[
1 −

(
T+
T

)2]
, (42)

T+ = g

√
3

2π2
≈ 0.38g. (43)

This is negative for all temperatures below T+ and again
T+ > Tc.

It is also instructive to evaluate Cn in the strong coupling
limit directly from Eq. (33), where now a = 0. We have

fint

ν0g2
=

l0∑
l=1

1

l
=

∫ 


2πT

dωl

ωl
+ γ . (44)

Here we introduced a cutoff as discussed below Eq. (35).
Combining this with f0 in Eq. (32), we obtain

fn = −π2ν0T 2

3
− ν0g2 ln T . (45)

The normal state entropy Sn and specific heat Cn therefore are

Sn = − df

dT
= γ0T + ν0g2

T
, (46)

Cn = −T
d2f

dT 2
= γ0T − ν0g2

T
. (47)

This Cn coincides with Eq. (42).
Recall that f is the contribution of the fermionic quasipar-

ticles to the total free energy, which is f plus the free energy
of noninteracting thermal phonons. The combined specific
heat of quasiparticles and phonons is positive. For example,

the specific heat of Einstein phonons in 3D at T � 
 is
CE = 3ni. Assuming the number density of ions ni is the same
as that of electrons, CE = 2ν0εF . This is much larger in mag-
nitude than the minimum Cn ∼ −ν0g above Tc [see Eq. (42)],
since εF � g. However, looking back at the derivation of
the Eliashberg free energy in Ref. [14], we observe that the
partition function of the system is of the from Z = ZsZp.
Here Zs is the partition function of our classical spin chain
or, equivalently, of the fermionic degrees of freedom and
Zp is the partition function of noninteracting phonons. Thus
phonons and quasiparticles are two decoupled subsystems in
the Migdal-Eliashberg theory as true quasiparticles must be.
Both subsystems should have positive heat capacities or the
system is thermodynamically unstable [4].

We conclude that the quasiparticle picture breaks down for
large electron-phonon coupling λ together with the Migdal-
Eliashberg theory based on it. This result is independent of the
model electron-phonon Hamiltonian, since at strong coupling
the free energy functional always converges to the spin chain
Hamiltonian (29) as discussed in Sec. III A. The critical value
of λ where the Eliashberg stationary point ceases to be the
global minimum must be in any case no larger than λ∗ at
which the quasiparticle specific heat turns negative. We expect
the precise values of λc and λ∗ to dependent only weakly on
the underlying model, because λ∗ ≈ 3.69, we obtained for the
Holstein model is already quite deep in the strong coupling
regime where all models converge. There are reportedly [34]
materials (Pb0.5Bi0.5) with λ ≈ 3.0 that are well described by
the Migdal-Eliashberg theory. Therefore we expect

3.0 � λc � 3.7. (48)

B. Specific heat and entropy in the superconducting state

In stark contrast to the normal state, thermodynamics of the
superconducting state is free of pathologies. The specific heat
is positive at any coupling strength and the entropy vanishes
when T → 0 as it should. To show this, it is sufficient to
analyze the worst case scenario λ = ∞. In this limit, we are
able to determine thermodynamic properties at low tempera-
tures and temperatures just below Tc essentially analytically,
while computing them for general λ would require substan-
tial numerical work. Since the strong coupling limit of the
Migdal-Eliashberg theory is model-independent, our results
apply equally well to the Holstein Hamiltonian (6) and the
general electron-phonon model (7).

Consider temperatures near Tc. The jump in the specific
heat at Tc for λ = ∞ is [34]

�C = Csc − Cn ≈ 19.9 γ0Tc. (49)

Setting Tc ≈ 0.18g in Eq. (47), we determine the normal state
specific heat at T = Tc,

Cn(Tc) ≈ −3.7γ0Tc. (50)

Therefore the specific heat in the superconducting state at T =
Tc is

Csc(Tc) ≈ 16.2 γ0Tc. (51)

We see that the specific heat is positive just below Tc.
Now let as evaluate the entropy and specific heat at

low temperatures. At the global minimum, the spins Sn are
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coplanar [14]. Choosing the x axis so that Sy
n = 0, we have

Sz
n = cos θn, Sx

n = sin θn, (52)

where θn is the angle the spin makes with the z axis. Express-
ing the spin chain Hamiltonian (29) in terms of θn, we obtain
the free energy in the form

fsc = −2πν0T
∑

n

ωn cos θn

− π2ν0T 2g2
∑
nm

cos(θn − θm) − 1

(ωn − ωm)2 + 
2
. (53)

The stationary point equation, ∂ fsc/∂θn = 0, for fsc is

ωn sin θn = πT g2
∑

m

sin(θm − θn)

(ωn − ωm)2 + 
2
. (54)

This is nothing but the Eliashberg gap equation written in
terms of θn [14].

The relationship between the gap function �(iωn) ≡ �n

and θn is

cos θn = ωn√
ω2

n + �2
n

, sin θn = �n√
ω2

n + �2
n

. (55)

The gap equation also follows from Eq. (13a) after we substi-
tute

�n = �nZn, ωn + �n = ωnZn, (56)

and express Zn in terms of �n from Eq. (13b). Eliashberg
equations (13) become

ωn�n = πT
∑

m

λnm
ωn�m − �nωm√

ω2
m + |�m|2 , (57a)

Zn = 1 + πT

ωn

∑
m

λnm
ωm√

ω2
m + |�m|2 . (57b)

The replacement (55) turns Eq. (57a) into Eq. (54).
It is helpful to introduce the condensation energy,

δ f = fsc − fn = −2πν0T
∑

n

(ωn cos θn − |ωn|)

− ν0g2

4

∑
n 
=m

cos(θn − θm) − sgn(ωnωm)

(n − m)2
, (58)

where we took the strong coupling limit 
 → 0 and used
ωn = πT (2n + 1). A helpful property of this expression is
that all sums in it converge as long as

∑
n>0 nθ2

n < ∞ [35]
unlike in Eqs. (31) and (53). This is important because, for
example, it is due to the divergence of the double sum in
Eq. (31) that we gained the ln T term in Eq. (45). Had this
sum converged, it would contribute only a temperature inde-
pendent constant with no effect on the entropy and specific
heat. Since �n → 0 as n → ∞, Eq. (55) implies θn = o(n−1)
and therefore

∑
n>0 nθ2

n < ∞.
In the strong coupling limit, differentiation of the conden-

sation energy with respect to T simplifies considerably, since
the interaction term in Eq. (58) has no explicit temperature
dependence—its only dependence on T is through θn. We
need δ f at the stationary points and because at these points

∂[δ f ]/∂θn = 0, we have

d[δ f ]

dT
= ∂[δ f ]

∂T
+

∑
n

∂[δ f ]

∂θn

∂θn

∂T
= ∂[δ f ]

∂T
. (59)

Applying this formula to Eq. (58), we find

d[δ f ]

dT
= −8πν0

∞∑
n=0

(
ω2

n√
ω2

n + �2
n

− ωn

)
, (60)

where �n is the solution of the gap equation (54). We calculate
this Matsubara sum in Appendix A. Notably, we obtain an
interesting identity along the way,∫ ∞

0
dω

(
ω − ω2√

ω2 + �2(iω)

)
= g2

4
. (61)

Here �(iω) is the Eliashberg gap function on the Matsubara
axis at zero temperature in the strong coupling limit.

The end result for the entropy Ssc and specific heat Csc

in the superconducting state at low T and λ = ∞ is (see
Appendix A)

Ssc ≈ 17.84ν0
E1

T
e−E1/T , E1 ≈ 1.16g, (62)

Csc ≈ 17.84ν0

(E1

T

)2

e−E1/T . (63)

The specific heat is positive and the entropy vanishes when
T → 0 as it should.

Therefore there are no apparent pathologies in the thermo-
dynamics of the Migdal-Eliashberg superconducting state. Of
course, this does not prove this state is necessarily the global
minimum of the free energy below Tc and we will later see
that in fact it is not at least in some range of temperatures.

C. Quasiparticle lifetime: normal state

It is natural to confirm the breakdown of the quasiparticle
picture by analyzing quasiparticle lifetimes at large λ. Con-
sider the normal and anomalous thermal Green’s functions
defined as

Gp(τ − τ ′) = −〈Tτ cpσ (τ )c†
pσ (τ ′)〉, (64)

Fp(τ − τ ′) = 〈Tτ c−p↓(τ )cp↑(τ ′)〉. (65)

In the Migdal-Eliashberg theory, these Green’s functions are
in the Matsubara frequency domain, see, e.g., Ref. [14],

Gpn = − i(ωn + �n) + ξp

(ωn + �n)2 + |�n|2 + ξ 2
p
, (66)

Fpn = − �n

(ωn + �n)2 + |�n|2 + ξ 2
p
. (67)

In the normal state, �n = 0 and therefore,

Gp(ωn) = 1

iωn + i�n − ξp
. (68)

Further, Eqs. (16), (21), and (30) imply

�n = πT
∑

m

λnmsgn(ωn). (69)

Since in the strong coupling regime the characteristic phonon
frequency 
 → 0, we take T to be much greater than 
. Then,
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the n = m term dominates the summation and we obtain �n =
λπT sgn(ωn) and therefore,

Gp(ωn) = 1

iωn − ξp + iλπT sgn(ωn)
. (70)

It is straightforward to analytically continue this to the upper
half-plane of complex ω [36] to get the retarded Green’s
function,

GR
p (ω) = 1

ω − ξp + iλπT
. (71)

Observe that the quasiparticle decay rate in the normal state,

�n = τ−1
n = λπT, (72)

is much larger than the temperature. The lifetime τ tends to
zero as λ → ∞. This means that the fermionic quasiparticles
are ill-defined in agreement with our specific heat argument.

D. Quasiparticle spectrum in the superconducting state

Before we estimate quasiparticle lifetimes in the supercon-
ducting state at large λ, we need to know the properties of the
excitation spectrum in this regime. We will see that the low
energy part of the quasiparticle spectrum consists of narrow
bands of width gλ−1/2. The gaps between the bands decrease
with energy E as E−1 until the spectrum becomes continuous
above Ect ∼ gλ1/2, when the bandwidth is comparable to the
gaps. This is consistent with the expectation of Fermi-liquid-
like spectrum at energies of the order of εF . Indeed, Migdal’s
theorem [1] requires

xM = λ


εF
� 1. (73)

Since λ = g2/
2, this implies εF � Ect .
To determine the spectrum, we first obtain the leading large

λ asymptotic behavior of Zn from Eq. (57b),

Zn = λπT
(
ω2

n + �2
n

)−1/2
. (74)

Since �n remains finite the limit λ → ∞ [26,37], Zn diverges
at any finite ωn. Assuming ξp is also finite and performing the
variable change (56) in Eq. (66), we find

Gpn = −iωn

λπT
√

�2
n + ω2

n

, (75)

where we substituted Zn from Eq. (74). Analytic continuation
to the upper half plane [36] gives

GR
p (ω) = −ω

λπT
√

�2(ω) − ω2
. (76)

Recall the Lehmann representation for the retarded Green’s
function [38]:

GR
p (ω) =

∑
k

|〈k|cp|0〉|2
ω − Ek + i0+ +

∑
k

|〈0|cp|k〉|2
ω + Ek + i0+ . (77)

Here |k〉 are the eigenstates of the electron-phonon Hamil-
tonian, Ek are single electron excitation energies (energy
differences between eigenstates with Ne ± 1 electrons and the
ground state with Ne electrons), and we set T = 0.

Comparing Eqs. (76) and (77), we conclude that

ω√
�2(ω) − ω2

=
∑

k

(
Pk

ω − Ek
+ Pk

ω + Ek

)
, (78)

where we absorbed i0+ into ω and

Pk = π lim
T →0

lim
λ→∞

(λT |〈k|cp|0〉|2). (79)

Pk must be finite and well-defined, because �(ω) is finite and
well-defined in this limit. Residues at ω = ±Ek are equal by
particle-hole symmetry [see the discussion above Eq. (8)]. The
limits λ → ∞ and T → 0 commute for the gap function—
one obtains the same �(ω) no matter in which order these
limits are taken [26]. However, they do not commute in gen-
eral. For example, we saw in the previous paper [14] that there
are solutions of the Eliashberg equations that are present for
one order of limits and absent for the other. We always take the
limit λ → ∞ first. Note also that the density of quasiparticle
states at any λ is

ν(ω)

ν0
= Im

[
ω√

�2(ω) − ω2

]
, (80)

which we derive by integrating Eq. (66) over ξp.
Equation (78) has several remarkable consequences. Con-

sider real values of ω. First, because the right-hand side is real,
�(ω) must also be real except for a discrete set of points (ze-
ros of the right-hand side) where Im �(ω) must be infinite. In
other words, Im �(ω) is a sum of delta functions. Moreover,
|�(ω)| � |ω| for the same reason. Second, excitation energies
±Ek are solutions of the equation

�(ω) = ±ω. (81)

The roots of this equation are necessarily doubly degenerate,
since the right-hand side of Eq. (78) has poles rather than
branching points at these values of ω. This also follows from
|�(ω)| � |ω| as this inequality implies that at ω = ±Ek one
of the lines ±ω is tangent to �(ω).

Most important for our purpose is the observation that
solutions of Eq. (81) form a discrete set and therefore the low
energy quasiparticle spectrum is discrete. Indeed, two analytic
functions cannot coincide on an interval without being iden-
tically equal. Since Eq. (81) does not hold for all ω, it can
hold only at a discrete set of points ±Ek , where k = 1, 2, . . .

These corollaries of Eq. (78) reproduce and confirm the results
of a more thorough study of the quasiparticle spectrum in the
strong coupling limit by Combescot [26]. Since g is the only
energy scale left in this limit, Ek/g are numbers of order one.
In particular, Combescot finds E1 = 1.16g and E2 = 3.04g,
while for large k,

Ek = πg
√

k. (82)

Levels Ek are macroscopically degenerate with the degree of
the degeneracy controlled by the residue Pk in Eq. (78). It is
interesting to note here that the excitation spectrum of the
BCS model in the strong coupling limit is a discrete set of
macroscopically degenerate levels as well [39].

At finite λ, levels Ek split into energy bands. We show in
Appendix B that the width of these bands is approximately

 = gλ−1/2. It follows from Eq. (82) that the gaps between
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bands decrease as πg
2
√

k
with the band number k. The spectrum

becomes continuous when the bandwidth becomes equal to
the gap, i.e., for

E � Ect = π2g
√

λ

2
. (83)

And indeed we expect continuous spectrum at energies of
the order of the Fermi energy, much larger than typical en-
ergies associated with superconductivity. At such energies
the system must be a Fermi liquid. For sufficiently large ωn,
|�n| = Zn�n is much smaller than ωn + �n = Znωn in the
normal Green’s function Gpn given by Eq. (66). Neglecting
|�n|, we obtain the normal state Green’s function (71) and
recover Fermi liquid dispersion ξp. One has to be careful
here because, while �n is of order g at large λ and quickly
decreases for ωn > g, the gap function �(ω) along the real
frequency axis does not necessarily behave in the same way.
Along the real axis �(ω) should in fact decrease substantially
only at energies where the spectrum becomes continuous, i.e.,
at an energy scale Ect � g. Nevertheless, the smallness of the
Migdal’s parameter xM guarantees that the Fermi energy is
even larger as seen from Eq. (73).

E. Quasiparticle lifetime: superconducting state

As with thermodynamic properties, the situation with
quasiparticle decay predicted by the Migdal-Eliashberg theory
for the superconducting state at strong coupling is in some
sense opposite to that in the normal state. Consider λ = ∞
first. Equation (78) shows that the density of states at T = 0
is a sum of delta functions. The width of quasiparticle peaks
at Ek is zero and the lifetime is therefore infinite. At T 
= 0,
thermally activated transitions between quasiparticle energy
levels Ek occur. However, their rate is exponentially small
at low temperature. Direct transitions with an absorption or
emission of a phonon are prohibited because the phonon en-
ergy 
/g → 0, while the spacing between Ek is of order g.
Instead, phonons provide a thermal bath for electrons inducing
transitions via thermal noise. Since Tc ≈ 0.18g, at tempera-
tures well below Tc the thermal energy T is much smaller than
the typical spacing between the levels.

Consider several examples of scattering processes. A
quasiparticle on level E1 can interact with and break a Cooper
pair resulting in three E1 quasiparticles, E1 → 3E1 and 2E1/


phonons. It can also absorb Nph = (E2 − E1)/
 phonons and
make a transition to level E2, i.e., E1 → E2. An E2 particle
can emit phonons and turn into an E1 quasiparticle (E2 → E1)
or it can break a Cooper pair along the way resulting in three
E1 quasiparticles (E2 → 3E1). Since the electron-phonon in-
teraction [see, e.g., Eqs. (6) and (7)] can change the phonon
number only by one at a time, all these processes have to
go through multiple virtual states, e.g., |E2〉 → |E1, 1〉 →
|E2, 2〉 → . . . |E1, Nph〉, where we indicated the number of
phonons at the second position in the ket vector. Interme-
diate states here are virtual and there are transitions with
energy barriers of order g in any such process. Then, accord-
ing to Kramer’s rate theory [40–42] the quasiparticle decay
(tunneling) rate for T � g is

�sc = c1ge−c2g/T , (84)

where c1 and c2 are numerical coefficients of order one.
Now let λ be large but finite. We saw above that for such

λ the energy level Ek broadens into a band of width 
. It is
natural to interpret this bandwidth as the uncertainty in the
quasiparticle energy. Its inverse is then the quasiparticle life-
time and therefore the quasiparticle decay rate at low energies
is

�in
sc = 
 = gλ−1/2. (85)

Equation (84) gives the rate of thermally activated transitions
between different energy bands and Eq. (85)—the rate of
transitions within a band. The total decay rate is the sum of
the two:

�tot
sc = c1ge−c2g/T + gλ−1/2. (86)

Since g/Tc ≈ 5.5, the second term dominates for all but ex-
tremely large λ. In any case, quasiparticle lifetime is very
large at low energies. This again shows that there is a certain
robustness, rigidity to the superconducting state. This state is
not as manifestly unstable as the normal state.

V. QUALITATIVE PICTURE OF THE BREAKDOWN

Let us develop a more intuitive understanding of the break-
down of the Migdal-Eliashberg theory. We seek to explain
vanishing quasiparticle lifetime and negative specific heat in
the normal state at strong coupling and why the superconduct-
ing state is free of such pathologies. Of these two negative
specific heat is especially important as it defines a value λ∗ ≈
3.69 of the electron-phonon coupling above which the theory
becomes invalid. We will see that the diverging quasiparticle
decay rate is due to scattering of electrons from thermal fluctu-
ations of static displacements of the ions (classical phonons),
which have a natural interpretation as a disorder potential.
The superconducting state is not affected by static disorder
by Anderson’s theorem.

The mechanics behind negative quasiparticle heat capacity
is more sophisticated. We will see that this thermodynamic
instability is driven by electrons near the Fermi surface in-
teracting via quantum phonons (quantum fluctuations of the
lattice). At λ = λc the quasiparticle band structure changes
abruptly and these electrons and quantum phonons lower their
energy by forming new bound states. The Migdal-Eliashberg
treatment does not capture the emergence of these new
fermionic quasiparticles, but signals it via negative specific
heat.

A. Quasiparticle decay rate

We found above that the quasiparticle decay rate in the
normal state at strong electron-phonon coupling λ is

�n = λπT . (87)

There are two ways to interpret this result. First, it is important
to realize that it is entirely due to electrons scattering from
static displacements of the ions, which act as nonmagnetic
impurities.
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Consider the electron-phonon interaction term in the Hol-
stein Hamiltonian (6),

Hel-ph =
∑

i

(αxi )ni. (88)

At strong coupling, any finite temperature T is much larger
than the frequency 
 → 0 of lattice oscillators. The oscil-
lators are highly excited and therefore essentially classical.
Their momenta pi decouple and integrate out in the partition
function. We are left with their coordinates xi which are classi-
cal variables independent of the imaginary time τ—classical
phonons. Therefore αxi ≡ Vi in Eq. (88) is equivalent to a
single-particle potential for the electrons. The problem is that
of electrons moving in a random (due to thermal fluctuations
of xi) potential Vi. The potential comes at an elastic energy
cost

∑
i Kx2

i /2, where K is the renormalized spring constant
of the oscillators. The classical variable xi coincides with its
zeroth Matsubara component xi(0), i.e., with the imaginary
time average x̄i,

xi = x̄i ≡ xi(0) = 1

β

∫ β

0
dτ xi(τ ), β = 1

T
, (89)

since xi(τ ) = xi is τ -independent. For this reason, we also re-
fer to classical xi as static displacements or classical phonons
and use the notation x̄i for them instead of xi from now on to
avoid confusion with the general quantum case. Note also that
nonzero Matsubara components account for quantum fluctua-
tions of ionic positions.

Quasiparticle decay rate due to nonmagnetic impurities is
[16,43]

�imp = πν0V
2. (90)

The quantity V is the average strength of the disorder potential
defined through ∑

i

〈Vi( j)Vi( j′)〉 = V 2δ j j′ , (91)

where Vi( j) is the potential at site j produced by the impurity
at i. In our case, Vi( j) = αx̄iδi j and the average in Eq. (91) is
the thermal average. We obtain

�imp = πν0α
2〈x̄2

i

〉
T . (92)

By equipartition theorem for a classical harmonic oscillator,
K〈x̄2

i 〉T = T . Using this and the definition of λ in Eq. (11),
λ = ν0α

2/K , we find that �imp = λπT = �n. Therefore, to
the leading order in the electron-phonon coupling λ, the quasi-
particle decay rate in the normal state is due to electrons
scattering from static displacements of the ions, or, in other
words, from classical, zero Matsubara frequency phonons.
Recall also that we previously obtained �n = λπT from the
n = m term in Eq. (69), i.e., from the zero phonon frequency
part of the self-energy.

Within this framework it is also easy to explain why the
quasiparticle decay rate in the superconducting state remains
negligible when at the same time it diverges in the normal state
as λ → ∞. The answer is that, as we know from Anderson’s
theorem [44], nonmagnetic disorder does not affect supercon-
ducting properties in conventional superconductors. This also
explains the reason behind the cancellation of zero Matsubara

FIG. 4. Interaction contribution to the quasiparticle specific heat,
Cint predicted by the Migdal-Eliashberg theory in units of λC0, where
C0 is the specific heat of free fermions, λ is the electron-phonon
coupling, and 
 is the natural frequency of the Einstein phonons.
Note that Cint < 0 at any λ for all temperatures T > 
/3.

frequency phonon (ωn − ωm = 0 term) from the Eliashberg
gap equation (57a) and the free energy (25). Note that it is
important here that the thermal averages 〈xi〉 = 0. The case of
a regular pattern of nonzero 〈xi〉 is not covered by Anderson’s
theorem.

Another interpretation of Eq. (87) is as a rate of phonon
emission and absorption in the limit of zero phonon frequency

. By Fermi’s golden rule this rate is

�ph = 2π g̃2{nB(
)[1 − nF (
)]

+ [nB(
) + 1][1 − nF (−
)]}ν0. (93)

Here nB and nF are Bose and Fermi distributions and g̃ =
α/

√
2M
 is the electron-phonon interaction strength, which

we obtain from Eq. (7) by setting αq = α and ω0(q) = 
.
The first term in Eq. (93) corresponds to a fermion at the
Fermi level εF = 0 absorbing a phonon of energy 
 and
making a transition to the level 
 as long as that level is
empty. The second term describes spontaneous plus simu-
lated emission of a phonon by an electron at the Fermi level.
Using 1 − nF (−
) = nF (
) and the definitions of g2 and λ

in Eqs. (9) and (11), we obtain the standard expression for
inverse electron lifetime specialized to the case of Einstein
phonons [38],

�ph = πλ
{nB(
) + nF (
)}. (94)

When 
/T → 0, the distributions nB(
) → T/
 and
nF (
) → 1/2. Therefore, in this limit, �ph = λπT = �n as
claimed.

B. Negative specific heat

We derived the normal state specific heat Cn within the
Migdal-Eliashberg theory in Sec. IV A, see Eq. (37). The
contribution of the electron-electron interaction is

Cint

C0
= λh

(



2πT

)
, (95)

where C0 = γ0T is the noninteracting part and the total spe-
cific heat is Cn = C0 + Cint . A plot of Eq. (95) is shown in
Fig. 4. We see that Cint is negative as long as T > 
/3. It
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is also proportional to λ, because the electron-electron inter-
action carries an overall factor of g2 ∝ λ, which corresponds
to two electron-phonon vertices. Therefore |Cint| exceeds C0

at any T > 
/3 for large enough λ, at which point the total
specific heat becomes negative.

This instability is driven by quantum phonons, i.e., by
quantum fluctuations of the ion displacements xi. Phonons
that determine the quasiparticle heat capacity are virtual
and purely quantum because, as mentioned above, clas-
sical phonons sit at zero Matsubara frequency and their
contribution—the n = m term in Eq. (29)—cancels from the
free energy. For this reason, this effect is more subtle than the
divergence of the quasiparticle decay rate �n, which is entirely
due to classical phonons. Note also that unlike negative spe-
cific heat, the linear growth of �n does not provide a sharply
defined value of λ above which the Migdal-Eliashberg theory
loses validity.

Consider λ = ∞ for simplicity. In the spin language, neg-
ative quasiparticle heat capacity comes from the hard jump
of the z component of spin (Fig. 2) combined with 
 =
gλ−1/2 = 0. It is these two factors that produce the divergent
summation in Eq. (44) and the problematic ln T term in the
normal state free energy. This term comes from interactions
between antiparallel spins at ωn > 0 and ωm < 0 at distances
ωl = |ωn − ωm| of order 2πT from each other, since this con-
tribution determines the lower limit of integration in Eq. (44).
Therefore virtual phonons with frequencies of the order of
2πT and electrons with energies of the same order are re-
sponsible for the instability. In other words, the instability
is due to interactions between electrons in a window of or-
der 2πT � εF around the Fermi level mediated by quantum
phonons.

Recall that Sz
n is proportional to an integral of the normal

thermal Green’s function (66) over ξp. Since the Fermi energy
is by far the largest energy scale, we integrate over ξp from
−∞ to +∞ with a constant density of states. In the normal
state, �n = 0 and the integration gives Sz

n = sgn(ωn + �n) =
sgn(ωn). In the superconducting state, the same integration
obtains

Sz
n = ωn + �n√

(ωn + �n)2 + |�n|2
= ωn√

ω2
n + �2

n

, (96a)

Sx
n = �n√

ω2
n + �2

n

. (96b)

Below Tc, spins acquire x components softening the jump in
Sz

n. This deviation of spins from the z axis increases their
ferromagnetic interaction energy resulting in a discontinuity
in the specific heat, such that it becomes positive in the su-
perconducting state as we found in Sec. IV B. In this way,
opening of the superconducting gap removes the instability.

We saw in the previous section that classical ion displace-
ments x̄i provide a fluctuating single-particle potential Vi =
αx̄i for the electrons. Nonzero thermal averages of x̄i mean
a nonzero average potential Vi, which modifies the electronic
band structure. In particular, as we discuss in more detail in
Sec. IX, it can open a gap �P at the Fermi level via the
Peierls mechanism. This metal-insulator transition stabilizes
the system like the opening of the superconducting gap. In-
deed, suppose ξ 2

p = η2
p + �2

p. Now the integration of Eq. (66)

over ηp from −∞ to +∞ in the normal state (�n = 0) gives

Sz
n = ωn + �n√

(ωn + �n)2 + �2
P

. (97)

We see that the band gap �P plays a role similar to the
anomalous average |�n|. Following the same steps as before
[14] but for a gapped single-particle spectrum, we derived the
spin chain representation for the free energy for this case.
The part involving Sz

n is the same as in Eq. (29) but with Sz
n

from Eq. (97). In addition, there is an infinite range ferromag-
netic Sx

nSx
m interaction. Stronger ferromagnetism suggests that

spectral gap opening precedes the superconducting transition
in agreement with our finding that the specific heat becomes
negative above the superconducting Tc.

It is possible that a soft gap or a pseudogap may stabilize
the electron-phonon system as well. However, we show in
Sec. IX that at least for certain system parameters a hard
gap �P (metal-insulator transition) is preferred. In any case, a
substantial depression of the density of states near the Fermi
energy at λ > λc is necessary to remove the negative specific
heat pathology. Other changes of the band structure, such
as band narrowing etc., are insignificant near λc given that
the Fermi energy is still much larger than all other energies.
Even though we discussed classical phonons separately for the
sake of the argument, the effect of quantum phonons on the
quasiparticle spectrum is equally important and inseparable
from that of classical phonons.

Now we are in a position to explain the breakdown
of the Migdal-Eliashberg theory signaled by the negative
specific heat. At λc the nature of fermionic quasiparticles
changes abruptly. Electrons near the Fermi surface and quan-
tum phonons lower their energy by forming new bound
states—new quasiparticles with gapped spectrum. This tran-
sition involves both quantum and classical phonons. Quantum
phonons dress the electrons and classical phonons facilitate
the gap opening. Suppose we prepare the system in the
Migdal-Eliashberg normal state at λ > λc and “temperature”
T . Here T is a parameter rather than the true temperature as
this state is not the true thermal equilibrium. Next, we bring
the system into contact with a thermal bath at temperature
T + δT > T and allow it to equilibrate. Since there are new
quasiparticle states with lower energies available, some of
the Migdal-Eliashberg quasiparticles transition into these new
states. The total energy decreases as the system equilibrates,
i.e., the heat capacity is negative.

VI. NEW PHASE TRANSITION

We showed that the specific heat of the Migdal-Eliashberg
normal state is negative in a range of temperatures, Tc < T <

T+, at strong electron-phonon coupling, λ > λ∗ ≈ 3.7. There-
fore this state is no longer the global minimum of the free
energy. New order must emerge above certain λc, such that
3.0 � λc � 3.7, see Eq. (48). Considerations of the preceding
section suggest that ion displacements acquire site-dependent
averages 〈xi〉 breaking lattice translational invariance in the
emergent phase. We also saw that Vi = αxi plays the role
of a disorder potential. As λ increases, the strength of the
disorder α ∝ √

λ increases with it. This again suggests a
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FIG. 5. Schematic plot of the free energy of the electron-phonon
system illustrating the emergence of a new global minimum at strong
coupling, λ > λc. This minimum is either an insulator or a Fermi liq-
uid with broken translational invariance; we take it to be an insulator
for definiteness. At T > Tc1, the system is in the normal (N) state.
At Tc1, insulating (I) order develops. As we decrease the temperature
further, the superconducting (S) stationary point emerges at T = Tc2

as a local minimum or a saddle point. At temperatures just below Tc2,
this stationary point must be higher in energy than the insulator.

metal-insulator transition. Indeed, we find in Sec. IX that in
the adiabatic limit at half filling the system is an insulator for
λ > λc. By continuity we expect this to persist at least to some
extent into the nonadiabatic regime, see also Ref. [10]. An-
other candidate for the new order is a Fermi liquid with broken
lattice translational invariance. Whether the new global mini-
mum is an insulator or such a Fermi liquid depends on factors
unimportant in standard Migdal-Eliashberg treatment, such as
the filling fraction and lattice symmetry. We assume it is an
insulator in this section for definiteness.

When λ < λc, the system undergoes a metal-
superconductor transition at Tc ≡ Tc2 described by the
Migdal-Eliashberg theory. At fixed λ > λc, the new
phase transition occurs at a certain critical temperature
Tc1 > T+ > Tc2. At very high temperatures, the system is in
the normal state (a classical gas of fermions and phonons).
The superconducting stationary point develops below Tc2

as a local minimum or a saddle point, since the Eliashberg
gap equation has a nontrivial solution below Tc2 for all λ.
The superconducting state cannot be the global minimum
just below Tc2, because it is close in energy to the normal
state, while the insulating state is already far, see Fig. 5.
Nevertheless, as we continue to lower the temperature, the
superconductor can still prevail over the insulator via a
first-order phase transition.

One more consequence of the emergence of the new global
minimum is that there must be a first-order phase transition
as a function of λ for certain temperatures below Tc2. We saw
that there must be a range of temperatures below Tc2 where
the system is an insulator for λ > λc. As we decrease λ below
λc, the electron-phonon system switches from a well-formed
insulating global minimum to a well-formed superconducting
minimum. This is only possible through a first-order phase
transition.

VII. COMPARISON TO OTHER STUDIES

There are numerous publications discussing the breakdown
of the Migdal-Eliashberg theory at strong coupling, see, e.g.,
Refs. [5–11]. However, none of them demonstrate a true
breakdown, i.e., show that the theory loses validity when the

coupling λ exceeds a certain finite value. Rather than testing
the validity of the Migdal-Eliashberg theory within its domain
of applicability, most studies rediscover the lattice instability
pointed out by Migdal and Eliashberg [1,2] or explore the
post-instability physics to which the theory no longer applies,
see also the discussion in Introduction.

In conventional electron-phonon models, such as the
Frölich and Holstein Hamiltonians, electron-phonon interac-
tions renormalize the phonon frequencies approximately as
[1,2,17]

ωq ≈ ω0(q)
√

1 − 2λ0, (98)

where λ0 is the bare electron-phonon coupling constant de-
fined by the same Eq. (11) as λ, but with 
 → 
0 and
ωq → ω0(q). It follows from Eq. (11) that the renormalized
dimensionless electron-phonon coupling is

λ = λ0

1 − 2λ0
. (99)

Equations (98) and (99) are one-loop renormalization equa-
tions. They hold for both Holstein (6) and the more general
Hamiltonian (7) in 2D and 3D [16,45]. In infinite dimensional
space [46], 1 − 2λ0 is replaced with 1 − 8

3λ0 in Eqs. (98) and
(99).

More accurate renormalization equations are available, but
they do not change the fact that the lattice loses stability at a
certain λ0 = λLI and that the renormalized coupling λ grows
monotonously with λ0 and diverges at λ0 = λLI. Our analysis
does not depend on the value of λLI and for concreteness
we take λLI = 0.5. As mentioned in Introduction, this lattice
instability is merely an artifact of the conventional models. It
is nevertheless very real in studies of such models that do not
take precautions to factor it out as we did in this paper.

Main assumptions of the Migdal-Eliashberg theory are
that the electron-phonon system is metallic and translation-
ally invariant. None of these are guaranteed past the lattice
instability, which changes lattice symmetry and may, for ex-
ample, open a gap at the Fermi surface through the Peierls
mechanism, which we discuss in Sec. IX. It is for this reason
that Migdal and Eliashberg restricted [1,2,17] their theory to
λ0 � 0.5. Note also that an early textbook account of this
theory [16], which closely follows the original work, makes
it clear on p. 182 that η (our λ0) should not be “too close to
1/2.”

Equation (99) shows that the entire domain of the theory,
0 � λ � ∞, maps to the interval 0 � λ0 � 0.5. Asserting its
breakdown past the lattice instability is tautological as such
values of λ0 are already outside of its domain of applicabil-
ity. A meaningful statement would be that it breaks down
at a finite λ, which then maps to a certain λ0 < 0.5, see
also Ref. [47]. Prior work mixes up the true breakdown of
the Migdal-Eliashberg theory with the lattice instability. As
a result, it does not eliminate the possibility that the theory
remains valid for all λ, including λ = ∞. This, for example,
leaves the door open to the hypothesis [19] that the strong
coupling, λ → ∞, limit of the Migdal-Eliashberg theory is
realized in the Holstein model when λ0 → 0.5 underscoring
the luck of conclusiveness of the prior work. In contrast, our
study eliminates this hypothesis.
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The confusion stems in part from misunderstanding of
Migdal’s theorem. This theorem is often interpreted as fol-
lows: the Migdal-Eliashberg theory is valid provided the
parameter λ0
0/εF is small (for dispersing phonons, we
replace 
0 with the maximum phonon frequency). This state-
ment is incorrect. This form of the Migdal parameter assumes
T = 0 and λ0 not too close to 0.5 (no substantial renormal-
ization, i.e., λ ∼ λ0). The proper zero temperature Migdal
parameter, suitable for all λ, uses renormalized coupling and
phonon frequency,

xM = λ


εF
. (100)

Most importantly, Migdal’s theorem is a local statement
about the Eliashberg stationary point [18]. It says that
quadratic fluctuations of the Eliashberg fields �σ and
� around this point are small. This makes the station-
ary phase approximation—the Migdal-Eliashberg theory—
accurate when it is the global minimum of the free energy.
But it is meaningless to apply Migdal’s theorem as well as
the Migdal-Eliashberg theory when the global minimum is
something else, e.g., an insulator, see Fig. 5.

Moreover, it is not even clear how to evaluate xM at the
“wrong” minimum and what is its significance there. For
example, what are the renormalized coupling and phonon
frequencies past the lattice instability? The Fermi energy εF

plays a different role in an insulator compared to a metal. At
the same time, Migdal’s theorem as formulated above remains
valid when applied at the Eliashberg stationary point even
when this point is no longer the global minimum. However,
we have to keep in mind that now this stationary point is not
relevant to the equilibrium physics.

Consider, for instance, an impressive Monte Carlo study of
the square-lattice Holstein model [10]. This study reports that
the deviation of the s-wave pair susceptibility from its Eliash-
berg value grows from roughly 1% to 25% as λ0 increases
from 0.4 to 0.5. A part of this deviation must be due to the
Migdal parameter (100) being finite. Not only is xM nonzero,
but it also diverges as (1 − 2λ0)−1/2 as we approach λ0 = 0.5,
though finite T cuts off this divergence [18]. Another contri-
bution is the finite size effect, which turns the sharp transition
at λ0 = 0.5 present in the Holstein model into a crossover
over a certain interval of λ0 around 0.5. Without knowing
the magnitude of these contributions to the deviation, it is
impossible to tell whether or not it indicates true breakdown
of the theory.

Our analysis is very different from previous work. We
showed that the Migdal-Eliashberg theory breaks down at
a finite value of the electron-phonon coupling λ indepen-
dently of the underlying microscopic electron-phonon model.
We based this conclusion on an unambiguous marker of
the breakdown—negative specific heat. Our value λ∗ ≈ 3.69
where the specific heat becomes negative translates into λ0 ≈
0.44 according to Eq. (99). This appears close to λ0 ≈ 0.4
reported in Ref. [10] as the point where the determinant
Monte Carlo computation starts to deviate from the Migdal-
Eliashberg prediction. However, it is important to keep in
mind that the entire strong coupling regime of the Eliashberg
theory maps to the left vicinity of λ0 = 0.5. Because of this
and without knowing the systematic error on the number 0.4

it is difficult to draw any conclusion from its proximity to our
result.

VIII. CLASSICAL PHONONS

We saw that static deformations x̄i of the lattice (zero
Matsubara frequency phonons) facilitate the breakdown of
the Migdal-Eliashberg theory. They provide a statistically dis-
tributed single-particle potential Vi = αx̄i for the electrons,
where α ∝ √

λ. To understand this better, consider the strong
coupling limit, λ → ∞, of this theory. Recall the definition of
the electron-phonon coupling λ for the Holstein model,

λ = g2


2
= ν0α

2

K
. (101)

We see that the strong coupling limit is the free ion limit—
the limit where the spring constant K of lattice oscillators
vanishes. As K decreases, nonuniform thermal averages of
x̄i come at lower and lower elastic energy cost, while the
strength of the potential Vi keeps increasing. Inevitably, at a
certain point it becomes energetically favorable to generate a
nonuniform average potential Vi for the electrons.

Euclidian Lagrangian corresponding to the Holstein
Hamiltonian (6) is

L =
∑
i j,σ

c∗
iσ G−1

0i jc jσ +
∑

i

[
Kx2

i

2
+ M(∂τ xi )2

2

]

+ α
∑

iσ

c∗
iσ ciσ xi. (102)

The fields c∗
iσ , ciσ , and xi depend on the imaginary time

τ , G−1
0i j = ∂τ δi j + ti j − μδi j , and we replaced the arbitrary

single-particle Hamiltonian hi j with a translationally invariant
hopping matrix ti j and the bare spring constant K0 with the
renormalized constant K . The action in the Matsubara fre-
quency representation reads

S =
∑
i j,nσ

c∗
iσ (n)G−1

0i jc jσ (n) + M

2

∑
i

[

2 + ω2

l

]
x2

i (l )

+ α
∑

iσ

c∗
iσ (n + l )ciσ (n)xi(l ), (103)

where now

G−1
0i j = −iωnδi j + ti j − μδi j, (104)

and n and l stand for fermionic and bosonic Matsubara fre-
quencies ωn and ωl , respectively.

Integrating out the phonon field xi(l ), we obtain the effec-
tive electron-electron interaction (9) for the Holstein model,
namely,

λ(ωl ) = g2

ω2
l + 
2

. (105)

In the strong coupling limit, 
 = 0 and the interaction blows
up at ωl = 0, λ(ωl = 0) = λ → ∞. This divergence propa-
gates into the normal self-energy �n and gives rise to the
divergent imaginary part of the pole of the retarded Green’s
function (71). This ωl = 0 part (zero Matsubara frequency
phonons) of the interaction is responsible for the divergence
of the quasiparticle decay rate, as we already saw above.
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This divergence arises from integrating out ωl = 0
phonons, because this is illegal in the strong coupling limit.
In this limit, 
 = 0 and x2

i (0) term is absent from the action
(103). The integral over xi(0) is no longer Gaussian and this
field therefore cannot be integrated out. Instead, we incor-
porate the α

∑
iσ c∗

iσ (n)ciσ (n)xi(0) term in Eq. (103) into the
single-fermion part by replacing the hopping ti j in Eq. (104)
with

hi j = ti j + αx̄i, (106)

where

x̄i ≡ xi(0) = 1

β

∫ β

0
dτ xi(τ ), β = 1

T
. (107)

We see again that static displacements of the ions provide
an on-site potential for the electrons. We also discussed in
Sec. V A that variables x̄i are classical displacement fields
(classical phonons).

IX. ADIABATIC LIMIT

To gain further insight into post-Migdal-Eliashberg
physics, consider the adiabatic limit where the ion mass M →
∞. This limit is complimentary to the strong coupling limit
K → 0. All phonons are classical in the adiabatic limit and
their role becomes especially transparent. Studies of polarons,
bipolarons etc. frequently employ this limit as it is much sim-
pler than dealing with quantum phonons [5,7,10,15]. In this
limit, g = 0 and the electron-electron interaction (9) vanishes
for all ωl 
= 0.

The Holstein Hamiltonian (6) becomes at M = ∞,

H =
∑
i jσ

ti jc
†
iσ c jσ +

∑
i

K0x2
i

2
+ α

∑
i

nixi, (108)

where we replaced the arbitrary hi j with a translationally
invariant hopping matrix ti j . Note that the dimensionless
electron-phonon coupling (11),

λ0 = ν0α
2

K0
, (109)

remains finite in this limit [48]. We use unrenormalized ver-
sion of Eq. (11), because there is no renormalization in the
usual sense in the adiabatic limit (see below). Ion displace-
ments xi now commute with the Hamiltonian, which allows
us to treat them as classical variables. However, they do not
commute with the total momentum operator P and the com-
mutation relations,

[xi, H] = [P, H] = 0, [xi, P] 
= 0, (110)

imply that the eigenstates of the Hamiltonian are degenerate
[49].

Consider the Holstein Hamiltonian (108). We are to find
a lattice distortion xi that minimizes the energy. Suppose
we observe that initially uniform xi (independent of i) be-
come nonuniform as we increase α. This is known as Peierls
or, more generally, charge density wave (CDW) instability
[12,13]. Peierls distortion lowers the energy by opening a gap
at the Fermi surface resulting in a metal-insulator transition.

In 1D the CDW wave vector is 2pF —twice the Fermi momen-
tum. In 2D, we expect the CDW wave vectors to depend on the
geometry of the Fermi surface as well. The Fourier transform
of xi can now contain more than one Fourier mode unlike in
1D.

CDW instability in dimensions higher than one is a more
complicated matter. 1D Fermi surface is perfectly nested at
2pF . The closest 2D analog in the Holstein model (108) is a
square lattice at half filling with nearest neighbor hopping.
Then, the Fermi surface is a square nested at Q = (π, π )
and we expect this to be the dominant CDW wave vector.
Commensurate (π, π ) CDW has been found in a very similar
model at 0.4 filling [10], but it could be difficult to differen-
tiate numerically between (π, π ) and nearby wave vectors on
a small lattice. And in any case there is no reason to expect
pure commensurate (π, π ) CDW away from half filling. Even
at half filling, there is an admixture of other wave vectors in
the CDW [50].

Nevertheless, let us take the (π, π ) lattice distortion pattern

xi = Xc.m. + (−1)ix+iyδx. (111)

as our variational wave function. The center of mass displace-
ment Xc.m. couples only to the total fermion number. At the
minimum, Xc.m. = −α/K0. The Hamiltonian for the remain-
ing degrees of freedom in the momentum representation is

H =1

2

∑
kσ

[εkc†
kσ

ckσ + εk+Qc†
k+Q,σ

ck+Q,σ

(112)

+ �Pc†
kσ

ck+Q,σ + �Pc†
k+Q,σ

ckσ ] + ν0N�2
P

2λ0
,

where �P = αδx is the Peierls gap.
It is straightforward to diagonalize this Hamiltonian by a

Bogoliubov transformation:

H = 1

2

∑
kσ

Ek(a†
kσ+akσ+ − a†

kσ−akσ−) + ν0N�2
P

2λ0
, (113)

where (a†
kσ±, akσ±) are the new quasiparticles and Ek =√

ε2
k + �2

P. The Hamiltonian (113) is nearly identical to the
mean-field BCS Hamiltonian. Minimizing the total energy
with respect to �P, we obtain a version of the BCS gap
equation∫ εF

ε<

�Pdε√
ε2 + �2

P

= �P

λ0
, ε< = εF |1 − 2f|, (114)

where f is the filling fraction. For simplicity, we took the
density of states to be constant as its energy dependence is
unimportant for our discussion.

As usual, �P = 0 is always a solution of the gap equation.
A nonzero solution, when it exists, is always the minimum
of the energy. At half filling, ε< = 0 and the Peierls gap
�P = εF e−1/λ0 opens already at λ0 = 0+. Away from the half
filling, the gap opens at λc

0 = −(ln |1 − 2f|)−1 for this lattice
distortion pattern [51]. The transition is always second order,
even though numerically it is easy to mistake it for the first-
order transition [10] due to a rapid rise of �P past λc

0 for
certain choices of parameters.
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In this example, the metal-insulator transition occurs at
λc

0 = 0+, because the conditions for it are ideal: frozen lattice
vibrations and nested Fermi surface. The Migdal-Eliashberg
theory applies only at λ0 = 0 in this setup. In other circum-
stances, the transition shifts to nonzero λ0. In the adiabatic
limit, the phonon mediated electron-electron interaction is
extremely retarded, λnm = λδnm. Eq. (57a) then implies that
the gap function vanishes. The electron Green’s function is
given by Eq. (71) now for all T , because Tc = 0. Notice that it
reproduces exact energy levels of the Hamiltonian (108) for
λ0 < λc

0 when xi = const. Therefore the Migdal-Eliashberg
theory is exact at T = 0 in the metallic phase, though this
phase is confined to λ0 = 0.

Renormalization equations discussed in Introduction do
not work in the adiabatic limit, since 
0 = 0 and the phonon
propagator vanishes at all but zero frequency. Temperature-
dependent renormalization of the spring constant K0 and λ0

with it can occur, but we do not investigate it here. Most im-
portantly, this example confirms once more that the role of the
classical phonons is to modify the single-fermion spectrum.

X. LATTICE-FERMIONIC SUPERFLUIDITY

We saw that classical (zero Matsubara frequency) phonon
field xi(0) provides a statistically distributed potential Vi =
αxi(0) for the electrons. As α grows, xi(0) acquire nonzero
thermal averages. The resulting single-particle potential Vi

together with dressing of fermions by quantum phonons
lead to abrupt changes in the fermion band structure. Ex-
amples include gap opening at the Fermi level resulting
in a superconductor-insulator transition and polaronic Fermi
liquid at low densities. At even stronger electron-phonon
interaction, dramatic band narrowing and Bose-Einstein con-
densation of bipolorons [7] can occur.

In this section, we construct a theory which treats the
classical phonons properly. At not too large electron-phonon
coupling λ, it reduces to the Migdal-Eliashberg theory, and in
the adiabatic limit it reduces to the polaron formation theory,
which predicts electron localization in 2 and 3D for λ0 � 1
[15]. It also reproduces the results of the previous section for
the half-filled Holstein model on square lattice in the adiabatic
limit. It continues to work past λc where the Eliashberg theory
breaks down and describes at least some of the new phases
that emerge at λ > λc. We dub this theory lattice-fermionic
superfluidity, because it potentially encompasses several su-
perfluid phases and because the lattice (quantum and classical
phonons) and the fermions are much closer intertwined in this
theory than in the theory of conventional superconductivity.
However, we stress that our theory is meant to describe non-
superfluid phases, such as a metal or an insulator, as well.

Our starting point is the action (103) for the Holstein
model, where ti j has been replaced with hi j given by
Eq. (106). In the previous paper [14], we determined the
effective action and a spatially nonuniform version of the
Eliashberg stationary point for the Holstein model with an ar-
bitrary single-electron Hamiltonian hi j (see Appendix A 3 of
Ref. [14]) and used it to map the free energy to a classical spin
chain. The approach is similar to the one outlined in Sec. II B,
except we now do not assume translational invariance and
work in the eigenbasis of an arbitrary hi j .

The derivation of the theory of lattice-fermionic superflu-
idity goes through the same steps except (a) the effective
electron-electron interaction now excludes ωl = 0, because
we do not integrate out x̄i ≡ xi(0), and (b) we need to min-
imize with respect to the new parameters x̄i. We obtain the
following effective action [cf. Eq. (8)]:

Seff = T ν0

∑
nlα

[(
�α

n+l

)∗

l�

α
n + �α

n+l
l�
α
n

− χα
n+l
lχ

α
n

] −
∑
nα

ln
[(

ωn + �α
n

)2 + ∣∣�α
n

∣∣2
(115)

+ (
χα

n + ξα

)2] + K0

2T

∑
i

x̄2
i ,

Here �α
n , �α

n , and χα
n are the components of the three fields

�i(τ ′, τ ), �i↑(τ ′, τ ), and �i↓(τ ′, τ ) with which we decoupled
the four-fermion term after integrating out the phonons. On
the stationary point, the fields depend only on the difference
τ ′ − τ . Let �in↑ be the Fourier transform of �i↑(τ ′ − τ ) with
respect to τ ′ − τ . We define �α

↑n as

�α
↑n =

∑
i

π∗
iα�in↑πiα, (116)

and similarly for the other fields. Here πiα are the eigenstates
of hi j = ti j + αx̄iδi j , i.e.,∑

j

[ti j + αx̄iδi j]π jγ = εγ πiγ , (117)

and ξγ = εγ − μ. The fields �α
n and χα

n are defined through

�α
n = �α

↑n − �α
↓,−n

2
, iχα

n = �α
↑n + �α

↓,−n

2
. (118)

We retain unrenormalized spring constant K0 for the classical
phonons.

We need to minimize the effective action (115) with respect
to the real fields x̄i, �in, and χin and complex field �in.
Minimizing with respect to the latter three fields, we obtain
three generalized Eliashberg equations [14]:

∑
γ

�γ
n |πiγ |2 = T

∑
m 
=n,γ

λnm

ν0

�
γ
m|πiγ |2
�

γ
m

,

∑
γ

�γ
n |πiγ |2 = T

∑
m 
=n,γ

λnm

ν0

(
ωm + �

γ
m
)|πiγ |2

�
γ
m

,

∑
γ

χγ
n |πiγ |2 = −T

∑
m 
=n,γ

λnm

ν0

(
ξγ + χ

γ
m
)|πiγ |2

�
γ
m

,

(119)

where �
γ
m = (ωm + �

γ
m)2 + |�γ

m|2 + (χγ
m + ξγ )2, λnm =

λ(ωn − ωm) is given by Eq. (9) as before. The renormalized
frequency 
 in Eq. (9) is an independent parameter not fixed
by the theory.

To minimize Eq. (115) with respect to x̄i, we use

∂ξγ

∂ x̄i
= ∂εγ

∂ x̄i
= α|πiγ |2, (120)

which follows from the first order of the perturbation theory
in δx̄i. Note that the chemical potential μ in ξγ = εγ − μ

is a Lagrange multiplier that does not depend on x̄i until
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later, when we fix the average electron number. Setting the
derivative of the effective action with respect to x̄i to zero, we
find

K0x̄i = −2α
∑

γ

nγ |πiγ |2, (121)

where nγ are the occupation numbers,

nγ = 1

2
− T

∑
m

ξγ(
ωm + �

γ
m
)2 + ∣∣�γ

m

∣∣2 + ξ 2
γ

. (122)

We derived this expression with the help of the normal Green’s
function (66) generalized to the case of nonuniform self-
energies (replace p with γ and �n and �n with �

γ
n and �

γ
n ).

The average electron number Ne = ∑
γ 2nγ determines the

chemical potential.
Substituting x̄i from Eq. (121) back into Eq. (117), we

arrive at a discrete nonlinear Schrödinger equation where the
potential is a weighted sum of |πiγ |2 over all states:∑

j

ti jπ jγ − 4Ebπiγ

∑
δ

nδ|πiδ|2 = εγ πiγ . (123)

Here Eb = α2

2M
2
0

= λ0
2ν0

has the meaning of the polaron binding
energy [52]. Together with Eqs. (119) we have four coupled
equations for four unknowns: πiγ , εγ , �

γ
n , �

γ
n , and χ

γ
n .

These equations have several kinds of solutions. First, there
is always the solution where πiγ are plane waves. In this
case, αxi = μ̄ is spatially uniform and reduces to a shift of
the chemical potential, μ → μ − μ̄ in Eqs. (119). And con-
versely, if x̄i does not break the translational symmetry of the
lattice, i.e., is i-independent, πiγ are plane waves. Then, the
fields �

γ
n ≡ �n, �

γ
n ≡ �n, and χ

γ
n ≡ χn are independent of

the index γ and summing over it, we end up with the Eliash-
berg equations generalized to the non-particle-hole-symmetric
case (Eq. (A.18) in Ref. [14]), except m = n terms are absent
from the summations. But as we mentioned above, this is an
an alternative way to write the Eliashberg equations. Indeed,
we showed in Ref. [14] that Eqs. (13) and Eqs. (18) are
equivalent. The same applies to the more general Eliashberg
equations for the fields �n, �n, and χn.

Now consider the adiabatic limit. In this limit, λnm = 0 for
m 
= n and only the nonlinear Schrödinger equation (123) is
left. This equation describes polarons in 1D, 2D, and 3D, see
Ref. [15] and references therein. Setting additionally T = 0,
we see that Eq. (123) is the exact minimization condition for
the Holstein Hamiltonian (108) from which we deduced that
the system becomes a CDW insulator for λ0 > λc

0. There-
fore the lattice-fermionic theory remains valid long after the
Eliashberg theory breaks down and is exact in the adiabatic
limit for any value of λ0, at least at T = 0.

As the strength of the electron-phonon interaction α grows,
the potential in Eq. (123) becomes stronger. The electron ef-
fective mass grows and the band narrows. The band narrowing
is exponential in −Eb/
0 [53,54]. In the narrow band regime,
Eq. (123) supports self-trapping of fermions (polarons). In-
deed, consider the flat band limit for simplicity. Let πiγ = δiγ

be a state where the fermion is at site γ . We see that by
occupying certain sites, the fermions make the potential (121)
deeper at these sites thus lowering their energy. In this regime,
solutions of Eqs. (123) and (119) are well outside of the

Migdal-Eliashberg theory. The system of equations (123) and
(119) is more complex than the Eliashberg gap equation (57a).
Nevertheless, it is still solvable in a polynomial time as the
number of equations and unknowns is polynomial in the num-
ber of sites and Matsubara frequencies kept in the simulation.

The accuracy of the lattice-fermionic theory in the regime
where the quasiparticle bandwidth is no longer the largest
energy scale requires further investigation, but, at least at the
first glance, it appears to have the potential to describe many
different phases, such as the polaronic metal and polaronic
BCS condensate. It is interesting to understand how our theory
compares to the traditional approaches to these phenomena,
e.g., to those based on the Holstein-Lang-Firsov transforma-
tion [53,54].

XI. SUMMARY AND OUTLOOK

We showed in this paper that the Migdal-Eliashberg theory
breaks down when the actual electron-phonon coupling λ ex-
ceeds λc, where 3.0 � λc � 3.7. The breakdown is marked by
negative quasiparticle heat capacity of the Migdal-Eliashberg
normal state at λ > 3.69 in a range of temperatures above
the superconducting transition temperature. Another pathol-
ogy is the quasiparticle decay rate � = πλT � T at strong
coupling. These findings indicate that the electron-phonon
system cannot be in the state prescribed by this theory as it
is thermodynamically unstable. A new phase therefore must
emerge for λ > λc below a certain critical temperature Tc1.

The new phase breaks the translational invariance of the
crystal because strong electron-ion Coulomb interaction, λ >

λc, is incompatible with uniform electron charge distribution.
Instead, a lattice distortion similar to the Peierls transition
occurs at λc that brings electrons on average closer to the ions.
More precisely, this is a “many-body Peierls transition” as the
electron-electron interactions mediated by quantum phonons
play a critical role in it. This transition is marked by an abrupt
change of the quasiparticle spectrum near the Fermi level.

We saw in our previous work [14] that solutions of Eliash-
berg equations correspond to stationary points of the free
energy functional. The superconducting stationary point con-
tinues to exist for λ > λc below the critical temperature Tc2,
though it is no longer the global minimum of the free en-
ergy. We showed above that Tc2 < Tc1 and that this implies
a first-order phase transition as a function of λ between the
Migdal-Eliashberg superconducting state and the new phase.
Depending on the filling fraction, crystal symmetry and other
parameters, the new phase can be a CDW insulator or a Fermi
liquid with broken lattice translational symmetry.

We proposed a new theory—lattice-fermionic theory of
superfluidity—that bridges the gap between the Migdal-
Eliashberg theory and phases that emerge at stronger cou-
pling. The idea is to incorporate the static distortion of
the lattice into the single-particle Hamiltonian as a variable
potential for the fermions. We treat the phonon mediated
electron-electron interactions in a manner similar to the
Migdal-Eliashberg theory. However, now the self-energy
fields �α

n , �α
n , and χα

n depend on single-particle states |α〉.
The theory does not assume translational invariance. We de-
rived the effective action for these fields and lattice distortions
and determined its stationary point. The outcome is a set of
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four coupled equations. Three of them are equations for the
self-energies. The fourth equation is a nonlinear Schrödinger
equation for the single-particle spectrum. At small λ our
theory reproduces the Migdal-Eliashberg theory. Past λc it
captures the insulating phase and at least some of the polaron
physics.

An apparent open problem is to investigate the phase dia-
gram of the lattice-fermionic theory at strong coupling and to
compare it to existing studies of many-body electron-phonon
physics beyond the Migdal-Eliashberg theory. Even though
the equations we derived are significantly more complicated
than Eliashberg equations in their simplest form, we believe
our theory is nevertheless quite amenable to both computa-
tional and analytic treatments.

Note that our study implies an upper bound on the ratio
of the critical temperature Tc to the characteristic phonon fre-
quency for conventional superconductors. We use the strong
coupling asymptote Tc ≈ 0.183

√
λωln. Here ωln is the char-

acteristic bosonic frequency defined through ln ωln = 〈ln ω〉,
where 〈ln ω〉 is the spectral average of the log of the bosonic
frequency. This formula fits Tc of superconductors with λ �
2.25 quoted in Ref. [34] reasonably well. We established
above that λc � 3.69. It follows that Tc/ωln � 0.35, cf. upper
bound proposed in Ref. [55].
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APPENDIX A: LOW-TEMPERATURE ENTROPY
AND SPECIFIC HEAT IN λ → ∞ LIMIT

In this Appendix, we outline the calculation of the entropy
and specific heat in the superconducting state at low tem-
peratures for λ = ∞ (
 = 0). In the main text we derived
Eq. (60) for the free energy difference δ f = fs − fn between
superconducting and normal states

d[δ f ]

dT
= −8πν0

∞∑
n=0

(
ω2

n√
ω2

n + �2
n

− ωn

)
. (A1)

It remains to evaluate the sum over the Matsubara frequencies.
We do so with the help of the Poisson summation formula [56]

∞∑
n=0

h(ωn) = 1

T

∫ ∞

0
h(ω)

dω

2π
+ πT

12
h′(0)

−
∞∑

s=1

2(−1)sT

s2

∫ ∞

0
h′′(ω) cos

(ωs

T

)dω

2π
.

(A2)

At low T, it is sufficient to keep only the s = 1 term in the
summation over s as other terms are exponentially smaller. In
our case,

h(ω) = ω2√
ω2 + �2(iω)

− ω. (A3)

We need the following two integrals,

I1 =
∫ ∞

0
dω

(
ω − ω2√

ω2 + �2(iω)

)
,

I2 = −T 2
∫ ∞

0
dω

(
ω2√

ω2 + �2(iω)

)′′
cos

(ω

T

)
, (A4)

where �(iω) is the solution of the T = 0,
 = 0 version of
the gap equation (54),

ω sin θ = g2

2

∫ ∞

−∞
dω̃

sin(θ̃ − θ )

(ω − ω̃)2
, θ ≡ θ (ω), θ̃ ≡ θ (ω̃).

(A5)
Equations (A1) and (A2) then imply

dfs

dT
= dfn

dT
+ 4ν0I1

T
+ 2π2ν0T

3
+ 8ν0I2

T
. (A6)

Interestingly, we are able to obtain an exact answer for I1,
4I1 = g2, which can be interpreted as a sum rule that the zero
temperature gap function on the Matsubara axis must satisfy
in the strong coupling limit.

Recall that

cos θ (ω) = ω√
ω2 + �2(iω)

, sin θ (ω) = �(iω)√
ω2 + �2(iω)

.

(A7)
In terms of θ (ω), the expression for I1 reads

I1 =
∫ ∞

0
dωω(1 − cos θ ) = −1

4

∫ ∞

−∞
dω ω2θ ′ sin θ. (A8)

Here we integrated by parts taking into account that �(iω)
is even in omega and �(iω) → 0 as ω → 0 [14]. The same
integral appears if we integrate the gap equation (A5) over ω

and then perform integrations by parts with respect to ω on
the left-hand side and with respect to both ω and ω̃ on the
right-hand side. We obtain

I1 = g2

8

∫ ∞

−∞
dω

∫ ∞

−∞
dω̃

ω

ω − ω̃
cos(θ − θ̃ )θ ′θ̃ ′. (A9)

Using ω/(ω − ω̃) = 1 + ω̃/(ω − ω̃), we rewrite Eq. (A9) in
the form

I1 = g2

8

∫ ∞

−∞
dω

∫ ∞

−∞
dω̃ cos(θ − θ̃ )θ ′θ̃ ′

+ g2

8

∫ ∞

−∞
dω

∫ ∞

−∞
dω̃

ω̃

ω − ω̃
cos(θ − θ̃ )θ ′θ̃ ′. (A10)

Interchanging ω and ω̃ in the last integral and comparing to
Eq. (A9), we notice that it is equal to −I1. Therefore

2I1 = g2

8

∫ ∞

−∞
dω

∫ ∞

−∞
dω̃ cos(θ − θ̃ )θ ′θ̃ ′

= g2

8

∫ π

0
dθ

∫ π

0
d θ̃ cos(θ − θ̃ )

= g2

2
. (A11)
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Going back to the definition of I1 in Eq. (A4), we see that we
derived an identity∫ ∞

0
dω

(
ω − ω2√

ω2 + �2(iω)

)
= g2

4
, (A12)

for the Eliashberg gap function �(iω) at zero temperature and
λ = ∞.

Replacing 4I1 with g2 in Eq. (A6) and substituting fn from
Eq. (45), we obtain the following expression for the entropy
of the superconducting state:

Ss = − dfs

dT
= −8ν0I2

T
. (A13)

Note that the second and third terms on the right-hand side of
Eq. (A6) cancel the entropy of the normal state. To determine
I2, we first integrate by parts twice casting it into the form

I2 = −T 2
∫ ∞

0
dω

(
ω2√

ω2 + �2(iω)

)′′
cos

(ω

T

)

= 1

2

∫ ∞

−∞
dω

ω2√
ω2 + �2(iω)

eiω/T . (A14)

We turn the last integral into a contour integral by closing
the contour in the upper half plane of complex ω. We saw
in Sec. IV C that the function iω/

√
ω2 + �2(iω) has simple

poles at points where the square root vanishes [36], see also
Ref. [26]. These are poles rather than branching points be-
cause roots of ω2 + �2(iω) = 0 are doubly degenerate. The
poles are at a discrete set of points along the imaginary axis,

ω = ±iEn, n = 1, 2, 3, . . . , (A15)

where En are real and positive and have the meaning of single
fermion energy levels. In particular, E1 is the energy gap. This
shows that the density of state is a sum of delta functions
centered at En, i.e., the excitation spectrum is discrete in the
strong coupling limit [26] provided, of course, this limit is
physical in the first place.

It is now straightforward to evaluate I2 by the residue
theorem. The contribution from E1, the pole closest to the real
axis, is exponentially larger than that from all other En. Taking
the residue at the pole and E1 from Ref. [26], we find that the
leading low-T asymptotic behaviors of the entropy Ss and the
specific heat Cs = T dSs/dT are

Ss ≈ 17.84ν0
E1

T
e−E1/T ,

Cs ≈ 17.84ν0

(E1

T

)2

e−E1/T , E1 ≈ 1.16g. (A16)

APPENDIX B: BAND STRUCTURE IN THE STRONG
COUPLING REGIME

We saw in the main text that the quasiparticle spectrum
is discrete in the superconducting state at λ = ∞. Here, by
analyzing the gap equation on the real frequency axis, we
show that at finite λ, the discrete energy levels broaden into
narrow energy bands of width 
 = gλ−1/2.

In this Appendix only, we choose the energy units so that

g = 1, or, equivalently, λ
2 = 1. (B1)

The Eliashberg gap equation continued towards the real axis
reads [26,57,58]

ωD(ω)B(ω) − A(ω) = π

2


{
D(ω − 
) − D(ω)√

D2(ω − 
) − 1
[nB(
)

+ nF (
 − ω)] + (
 → −
)

}
,

(B2)

where nB and nF are Bose and Fermi distribution functions,
respectively, and

A(ω) = 2πT
∞∑

n=0

�n
(
ω2

n − ω2 + 
2
)

Xn(ω)
√

ω2
n + �2

n

,

B(ω) = 1 + 4πT
∞∑

n=0

ω2
n

Xn(ω)
√

ω2
n + �2

n

, (B3)

D(ω) = �(ω)

ω
,

Xn(ω) = (
ω2 + ω2

n

)2 + 2
2
(
ω2

n − ω2
) + 
4. (B4)

Taking T → 0 limit, we find

ωD(ω)B(ω) − A(ω) = π

2


D(ω − 
) − D(ω)√
D2(ω − 
) − 1

. (B5)

We are interested in the correction to the strong coupling limit

 → 0. To obtain it, we expand the right-hand side of the
above equation to the first order in 
,

2

π
[ωDB − A] = D′

√
D2 − 1

+ 

DD′2

(D2 − 1)3/2
− 


2

D′′
√

D2 − 1
,

(B6)
where D ≡ D(ω) and D′ ≡ dD/dω.

Following Combescot who used Eq. (B6) at 
 = 0 to
analyze the quasiparticle spectrum in the strong coupling
limit [26], we introduce a new variable ϕ(ω) as D = 1/ sin ϕ.
Eq. (B6) becomes

ϕ′ − 


2
(ϕ′′ + ϕ′2 tan ϕ) = 2

π
[ωB − A sin ϕ]. (B7)

The density of states (80) in terms of ϕ(ω) is

ν(ω) = ν0 Im[tan ϕ(ω)]. (B8)

Combescot showed that ϕ(ω) is real to zeroth order in 
, and
consequently the density of states is a sum of delta functions,

ν(ω) = πν0

∞∑
k=1

Pk[δ(ω − Ek ) + δ(ω + Ek )], (B9)

where Ek are solutions of cos[ϕ(Ek )] = 0, or, equivalently,
of ϕ(Ek ) = π (k − 1/2). Imaginary part of ν(ω) comes from
poles of tan ϕ(ω) at ω = ±Ek − i0+. It is straightforward to
show using Eq. (B3) that A(ω) vanishes as 1/ω2 and B(ω) →
1 as ω → ∞. At 
 = 0 and large ω, Eq. (B7) takes the form
ϕ′ = 2ω/π . Therefore ϕ(ω) ≈ ω2/π ≡ ϕ0(ω) which implies
the leading large k asymptotic behavior (82) of Ek .

Let us analyze Eq. (B7) at large ω and small but finite 
.
Corrections to the right-hand side due to finite 
 are sup-
pressed by a factor of 1/ω2. In the zeroth order in 
, ϕ′ ∼ ω
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and ϕ′′ ∼ 1. Therefore the term containing ϕ′′ is negligible
and we have

ϕ′ − 


2
ϕ′2 tan ϕ = 2ω

π
. (B10)

The tan ϕ term is important near ω = Ek where tan ϕ diverges.
Near these points Eq. (B10) becomes

y′ + 


2

y′2

y
= 2Ek

π
, (B11)

where y = ϕ(ω) − ϕ0(Ek ) = ϕ(ω) − E2
k /π . Solving for y′,

we find

y′ = − 1



(y +

√
y2 + by), b = 8
Ek

π
. (B12)

The plus sign is dictated by the requirement that for 
 → 0
we recover the zeroth-order equation y′ ≈ 2Ek/π . In zeroth
order in 
, y = 2ωEk/π is real and the density of states (B8)
is zero except at ω = Ek In the next order in 
, y and therefore

ϕ(ω) acquire an imaginary part proportional to 
. We see this
from Eq. (B12)—the square root is imaginary and of the order

 for −b < y < 0. Upon integration over ω, it gives rise to an
imaginary part of y of the order 
. The density of states (B8)
is therefore nonzero in the interval (ω1, ω2) of ω for which y
falls in between −b and 0. The length of this interval is the
bandwidth we are after.

Equation (B12) integrates by variable separation method to

b

u(y)
− 1

2
ln u2(y) = 2ω



+ const, (B13)

u(y) = b + 2y +
√

y2 + by. (B14)

To determine ω1 and ω2, we set y = −b and y = 0, respec-
tively, in the left-hand side of Eq. (B13). We find ω2 − ω1 =

. Thus the discrete level Ek splits into a narrow band of width

 similar to how atomic energy levels split into bands when
atoms form a lattice and atomic orbitals hybridize.
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