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Migdal-Eliashberg theory as a classical spin chain

Emil A. Yuzbashyan
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

Boris L. Altshuler
Physics Department, Columbia University, 538 West 120th Street, New York, New York 10027, USA

(Received 28 May 2022; accepted 24 June 2022; published 18 July 2022)

We formulate the Migdal-Eliashberg theory of electron-phonon interactions in terms of classical spins by
mapping the free energy to a Heisenberg spin chain in a Zeeman magnetic field. Spin components are energy-
integrated normal and anomalous Green’s functions and sites of the chain are fermionic Matsubara frequencies.
The Zeeman field grows linearly with the spin coordinate and competes with ferromagnetic spin-spin interaction
that falls off as the square of the inverse distance. The spin-chain representation makes a range of previously
unknown properties plain to see. In particular, infinitely many new solutions of the Eliashberg equations both
in the normal and superconducting states emerge at strong coupling. These saddle points of the free-energy
functional correspond to spin flips. We argue that they are also fixed points of kinetic equations and play an
essential role in far from equilibrium dynamics of strongly coupled superconductors. Up to an overall phase,
the frequency-dependent gap function that minimizes the free energy must be non-negative. There are strong
parallels between our Eliashberg spins and Anderson pseudospins, though the two sets of spins never coincide.
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I. INTRODUCTION

Electron-phonon interactions determine many properties
of quantum metals, such as the charge and heat transport,
thermodynamics, and superconductivity. A well-established
approach to these phenomena is the Migdal-Eliashberg theory
[1,2]. This theory operates with two functions of Matsub-
ara frequency, �n ≡ �(ωn) and �n ≡ �(ωn), which have
the meaning of the normal and anomalous self-energies. The
functions �n and �n must satisfy two nonlinear algebraic
equations known as the Eliashberg equations, whose ker-
nel is the phonon-mediated electron-electron interaction λl ≡
λ(ωl ). The order parameter is the frequency-dependent gap
function �n = �n/Zn, where Zn = 1 + �n/ωn.

The main dimensionless parameter in the Migdal-
Eliashberg theory is the electron-phonon coupling defined as
the electron-electron interaction evaluated at zero Matsubara
frequency, λ = λ(ωl = 0). The coupling constant λ is in-
versely proportional to the square of the characteristic phonon
frequency ωch. In conventional electron-phonon models, such
as the Holstein or Frölich Hamiltonian, interactions with elec-
trons strongly renormalize phonon frequencies [1–3]. Because
of this it is crucial to distinguish bare (λ0) and renormalized
(λ) coupling constants [4].

The Migdal-Eliashberg theory enjoyed a great deal of
success over many decades as a quantitative theory of con-
ventional superconductivity. With phonon spectrum extracted
from experiment, the theory makes accurate predictions
for the superconducting transition temperature Tc, zero-
temperature energy gap, jump in the specific heat at Tc, density
of states, etc., for a broad range of superconductors, such as

Al, V, Ta, Sn, Tl, In, Nb, Pb, their various alloys, Hg, and
MgB2 [5–10]. The coupling constant in these materials ranges
between λ ≈ 0.4 for Al and λ ≈ 1.6 for Hg in simple elements
and up to λ ≈ 3.0 (Pb0.5Bi0.5) in alloys.

Despite the success and maturity of the Migdal-Eliashberg
theory, there is also a great deal of controversy surround-
ing it. A number of publications [11–16] rediscover Migdal
and Eliashberg’s observation [1,2] that the theory is inap-
plicable to λ0 � 0.5, Migdal theorem notwithstanding [17].
Others see no upper limit on λ [4] and even hypothesize that
the strong coupling, λ → ∞, limit of the Migdal-Eliashberg
theory is attainable [18]. A recent study claims Eliashberg
equations acquire a one-parameter family of solutions in the
strong coupling limit and as a consequence the supercon-
ducting transition temperature vanishes [19]. Even the λ → 0
limit is not free from controversy. While it is generally ac-
cepted that the weak coupling limit of the Migdal-Eliashberg
theory is the more famous Bardeen-Cooper-Schrieffer
(BCS) theory [20], some argue that this is in fact untrue
[21,22].

Our goal is to resolve these issues in a series of papers
[23–25]. Here we establish several important properties of the
free energy of the electron-phonon system. We show that the
gap function �n must be non-negative at the global minimum
point and argue that the minimum is unique by symmetry
at all temperatures and coupling strengths, up to an overall
phase eiφ . Aside from the global minimum, we find an in-
finite set of new saddle points at strong coupling. As usual,
stationary points other than the global minimum do not affect
equilibrium properties in the thermodynamic limit. However,
we reason that these saddle points play a major role in the
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far from equilibrium dynamics of the electronic subsystem.
Besides, their emergence and proliferation seem to be tied to
the subsequent breakdown of the Migdal-Eliashberg theory
discussed in the next paragraph. For the sake of completeness,
we also provide an educational Appendix where we explain
within the path-integral framework that the BCS theory un-
doubtedly is the weak coupling limit of the Migdal-Eliashberg
theory when this limit is properly taken.

In the next paper [23], we will show that the Migdal-
Eliashberg theory loses its validity at a finite value of the
renormalized electron-phonon coupling λc due to a phase
transition which breaks the lattice translational symmetry.
We will then construct an extended theory (theory of lattice-
fermionic superfluidity) that works past λc. Prior to the
transition it reduces to the Migdal-Eliashberg theory. After-
wards, it describes the new state of the system.

Our main tool to achieve these goals is a representation of
the Migdal-Eliashberg theory as a classical Heisenberg spin
chain, which we describe below. Positions of the Eliashberg
spins are the fermionic Matsubara frequencies ωn = πT (2n +
1). Spin components are momentum-integrated normal and
anomalous Green’s functions. The interaction between them
is ferromagnetic and falls off as (ωn − ωm)−2 at large separa-
tion. In addition, the spins are subject to a position-dependent
Zeeman field 2πωn along the z axis. The energy of the spin
chain is proportional to the free-energy density of the electron-
phonon system. Classical spins provide a simple and intuitive
picture of the normal and superconducting states and of the
transition between them. In the normal state, the spins are
parallel to the z axis, Sn = sgn(ωn)ẑ, where ẑ is a unit vector
along the z axis. Below the superconducting transition temper-
ature, they acquire xy components softening the sharp domain
wall between ω−1 and ω0 in the normal state as shown in
Fig. 1.

Not surprisingly, Eliashberg equations emerge as stationary
point equations for the free-energy functional. Their solutions
therefore correspond to either minima or maxima or saddle
points of the free energy. The spin-chain formulation makes it
straightforward to demonstrate several fundamental properties
of these stationary points. In particular, we use it to prove that
the Eliashberg gap function at the global minimum is of the
form �n = eiφ|�n|, where |�n| is even in ωn. Furthermore, an
infinite discrete set of saddle points emerges as we increase
λ. In terms of the spin chain, they are equilibria with a cer-
tain number of spins flipped against effective magnetic fields
acting on them. The minimum is the stable, lowest-energy
spin configuration. The saddle points begin to proliferate just
before the Migdal-Eliashberg theory breaks down. We argue
that these saddle points play a special role in the far from
equilibrium collisionless dynamics of strongly coupled con-
ventional superconductors. Namely, they are the fixed points
of the corresponding kinetic equations, which are Hamilton’s
equations of motion for Eliashberg spins. When sufficiently
many spins are flipped, these stationary points are unstable
and give rise to rich solitonlike dynamics.

The content of this paper is as follows. In Sec. II we map
the Migdal-Eliashberg theory to a classical spin chain building
on the path-integral formulation we develop in Appendixes A
and B. We interpret the superconducting transition in terms
of spins in Sec. III, construct a divergence-free form of

ω0 ω1 ω2

ω−1ω−2ω−3
x

zS0 S1 S2

S−1S−2S−3

x
z

(a)
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FIG. 1. Superconducting transition in terms of classical spins.
As shown in the text, Migdal-Eliashberg theory maps to a classical
Heisenberg spin chain. The positions of the spins are fermionic
Matsubara frequencies ωn. The spin-spin interactions are purely fer-
romagnetic and the spins are subject to a Zeeman magnetic field
2πωn along the z axis. The figure shows (a) the normal state and (b) a
superconducting state. In the superconducting state, spins acquire
x components, which implies nonzero anomalous Green’s function.
The sharp domain wall in the normal state is smeared in the su-
perconducting state. The normal-superconductor transition therefore
translates into softening of the domain wall in the spin language.

Eliashberg equations as well as new (spin-flip) solutions for
them in Sec. IV, and relate spins and the Eliashberg gap func-
tion �n in Sec. V. These three sections lay the groundwork for
the analysis of stationary points of the free energy in Sec. VI.
Section VII focuses on the strong coupling limit λ = ∞ and
in Sec. VIII we compare the two notions of spins in the the-
ory of superconductivity (Eliashberg spins introduced in this
paper and Anderson pseudospins [26]) and discuss the role
of the spin-flip solutions of the Eliashberg equations in the
collisionless dynamics of strongly coupled superconductors.

II. MAPPING TO A HEISENBERG SPIN CHAIN

We work with two models in this paper. One is the Holstein
model (dispersionless phonons) with arbitrary hopping matrix
and onsite potential. The other is a rather general electron-
phonon Hamiltonian with arbitrary phonon dispersion
and momentum-dependent electron-phonon coupling. The
Holstein Hamiltonian reads as

H =
∑
i jσ

hi jc
†
iσ c jσ +

∑
i

[
p2

i

2M
+ K0x2

i

2

]
+ α

∑
i

nixi, (1)

where i and j label lattice sites, hi j are the matrix elements
of an arbitrary single-electron Hamiltonian ĥ [27], ciσ an-
nihilates an electron on site i with spin projection σ , ni =∑

σ c†
iσ ciσ is the fermion occupation operator, and pi and xi

are ion momentum and position operators. The bare phonon
frequency is �0 = √

K0/M. The lattice and its dimensionality
are at this point arbitrary.
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The Hamiltonian for electrons interacting with dispersing
phonons is

H =
∑
pσ

ξpc†
pσ cpσ +

∑
q

ω0(q)b†
qbq

+ 1√
N

∑
pqσ

αq√
2Mω0(q)

c†
p+qσ cpσ [b†

−q + bq], (2)

where M is the ion mass and N is the number of lattice sites.
We proceed with a path-integral formulation of the Migdal-

Eliashberg theory. The first step is to integrate out phonons,
which leaves us with an effective fermion-fermion interaction
quartic in fermionic fields. The second step is to decouple
the quartic term with three Hubbard-Stratonovich fields �,
�↑, and �↓ that are functions of two imaginary times and,
in general, two space points. In the next step, we integrate out
the fermions to obtain an effective action solely in terms of
the Eliashberg fields �, �↑, and �↓. The fourth and final step
is to obtain the stationary point of this effective action, where
the Eliashberg fields depend on the time difference only. We
detailed the above procedure in Appendix A for the Holstein
model and in Appendix B for dispersing phonons (2). The end
result is an expression for the free-energy functional [28] of
the system per site,

f = ν0T 2
∑

nl

[�∗
n+l�l�n + �n+l�l�n]

− 2πν0T
∑

n

√
(ωn + �n)2 + |�n|2, (3)

where ν0 is the density of states at the Fermi energy per site
per spin projection. The field �n ≡ �(ωn) is complex and
�n ≡ �(ωn) is real. Both fields are functions of the fermionic
Matsubara frequency ωn. At the stationary point, these fields
equal the anomalous and normal self-energies.

The quantity �l in Eq. (3) is the Fourier transform of
1/λ(τ ) at bosonic Matsubara frequency ωl = 2πT l . Here
λ(τ ) is the effective fermion-fermion interaction in the
imaginary-time domain. In the Matsubara frequency domain
this interaction reads as, for the Holstein model,

λ(ωl ) = g2

ω2
l + �2

, g2 = ν0α
2M−1. (4)

We also define the dimensionless electron-phonon coupling
constant as

λ = λ(ωl = 0) = g2

�2
= ν0α

2

K
, (5)

where � and K are the renormalized phonon frequency and
spring constant. See Appendix B for λ(ωl ) and λ = λ(ωl = 0)
for dispersing phonons. At times we will consider the strong
coupling limit λ → ∞, which is equivalent to � → 0 or K →
0 for the Holstein model.

The stationary point equations for the free energy (3) are
the Eliashberg equations [2]

�n = πT
∑

m

λnm
�m√

(ωm + �m)2 + |�m|2
, (6a)

�n = πT
∑

m

λnm
ωm + �m√

(ωm + �m)2 + |�m|2
, (6b)

where

λnm = λ(ωn − ωm). (7)

Note also that

λnn = λ (8)

diverges in the strong coupling limit.
It is convenient to introduce new variables, complex F (τ )

and real G(τ ), such that

�(τ ) = πλ(τ )F (τ ), �(τ ) = πλ(τ )G(τ ). (9)

In frequency representation we have

�n = πT
∑

m

λnmFm,

�n = πT
∑

m

λnmGm, (10)

and Eq. (6) becomes

Fn = �n√
(ωn + �n)2 + |�n|2

,

Gn = ωn + �n√
(ωn + �n)2 + |�n|2

. (11)

On the stationary point, the fields Fn and Gn correspond to
the anomalous and normal Green’s functions integrated over
the single-particle energy (see Appendix A 4). We also show
in Appendix A 4 that assuming time-reversal symmetry, �n is
real and odd in ωn and |�n| is even. Therefore, Gn is real and
odd and |Fn| is even.

Observe that Eq. (11) implies a constraint on the variables
Gn and Fn:

G2
n + |Fn|2 = 1. (12)

This means that we can trade these variables for three compo-
nents of a classical spin Sn of unit length S2

n = 1:

Sz
n = Gn, Sx

n = Re(Fn), Sy
n = Im(Fn). (13)

It follows from Eq. (11) that

Fn�
∗
n + Gn(ωn + �n) =

√
(ωn + �n)2 + |�n|2. (14)

This allows us to rewrite the free energy (3) as

Hs ≡ f

ν0T
= −2π

∑
n

ωnSz
n − π2T

∑
nm

λnmSn · Sm. (15)

We interpret the free energy (15) as a Hamiltonian Hs

of an open classical Heisenberg spin chain in an inhomoge-
neous Zeeman magnetic field. The positions of the spins are
fermionic Matsubara frequencies ωn. Spin-spin interactions
are ferromagnetic and fall off at large “distance” as λnm ∝
(ωn − ωm)−2. The “magnetic field” is linear in the position
of the spin and goes to ±∞ as ωn → ±∞. Note that the
Boltzmann weight is e− f N/T = e−ν0NHs = e−Hs/δ , where δ =
(ν0N )−1 is the single-particle (electron) level spacing in the
original electron-phonon problem. Therefore, the spin chain
is at an effective temperature

Ts = δ. (16)
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Let us also write the classical spin Hamiltonian for the Hol-
stein model as a visual [substitute Eq. (4) into Eq. (15)]:

Hs = −2π
∑

n

ωnSz
n − π2T g2

∑
nm

Sn · Sm

(ωn − ωm)2 + �2
. (17)

See the list below Eq. (45) for more properties of the spin-
chain representation of the free energy.

Sometimes an onsite Hubbard repulsion is added [6] to the
Eliashberg equations by replacing λnm in Eq. (6a) with λnm −
u. This adds a long-range xy term to the spin Hamiltonian (15),

HC = π2Tu
∑
nm

(
Sx

nSx
m + Sy

nSy
m

)
, (18)

and the classical spin Hamiltonian becomes Hs + HC .

III. SUPERCONDUCTIVITY IN TERMS OF SPINS

In the spin language, the superconducting transition trans-
lates into softening of the domain wall as shown in Fig. 1. This
is similar to the Anderson pseudospin description of the BCS
superconductivity [26] even though Eliashberg and Anderson
spins are not the same (see Sec. VIII).

To understand what happens as we lower the temperature,
let us analyze the spin texture minimizing the energy Hs as a
function of T . The Zeeman magnetic field and ferromagnetic
interaction compete in Hs. The spin configuration minimizing
the Zeeman term is Sn = sgn(ωn)ẑ, and the Zeeman field
inevitably prevails far from the origin, so that Sn → ±ẑ for
ωn → ±∞. These fixed values at infinity serve as boundary
conditions for the interaction term.

Above the superconducting Tc, the anomalous averages
vanish, Fn = 0. According to the definition (13) of the clas-
sical spin, this means that all spins are parallel to the z axis.
From the behavior of Sn at large ωn and by symmetry, it is then
clear that the minimum energy spin texture is Sn = sgn(ωn)ẑ.
This is the normal state in the spin language. The characteris-
tic feature of the normal state is a sharp domain wall between
ω−1 and ω0 with an abrupt maximal jump of the z component
of spin from Sz

−1 = −1 to Sz
0 = +1 (see Fig. 1).

Below Tc the anomalous averages are nonzero, i.e., the
spins acquire x components (Fn can be made real in the
spin-chain ground state). This means softening of the domain
wall. Now the change in Sz

n from −1 at ωn → −∞ to +1 at
ωn → +∞ is gradual and the jump Sz

0 − Sz
−1 < 2. Spin con-

figurations with nonzero xy components are superconducting
states.

IV. NEW SOLUTIONS OF ELIASHBERG EQUATIONS

We begin this section by verifying that solutions of the
Eliashberg equations are equilibrium points of the spin chain.
This correspondence allows us to identify new solutions of the
Eliashberg equations both with zero and nonzero anomalous
self-energy �n, i.e., both normal and superconducting. These
solutions correspond to equilibria of the spin chain with a
number of spins flipped against their effective magnetic fields,
as opposed to all spins being along their fields as in the ground
state.

A. Eliashberg equations as equilibrium condition for spins

Consider our spin Hamiltonian in its most general form

Hs = −2π
∑

n

ωnSz
n − π2T

∑
nm

λnmSn · Sm. (19)

Terms in the Hamiltonian that contain spin Sn are

hn = −bn · Sn, bn = 2πωnẑ + 2π2T
∑
m �=n

λnmSm, (20)

where bn is the effective magnetic spin acting on spin Sn,
which is the Zeeman field plus the field from other spins.

Equilibrium is when each spin is collinear with its field
(parallel or antiparallel), i.e.,

Sn = en
bn

|bn| , en = ±1, (21)

where en = +1 indicates that the spin Sn is parallel to its
effective field bn, while en = −1, that the spin is flipped
(antiparallel to the field). However, not all spin equilibria
correspond to stationary points of the Eliashberg free energy
(3). The reason is that we extracted the square root in Eq. (14)
to obtain the spin chain. Only such spin equilibria are station-
ary points of the free energy for which the left-hand side of
Eq. (14) is non-negative.

To interpret this condition in terms of spins, let us introduce
an additional magnetic field, which includes the action of the
spin on itself,

Bn = bn + 2π2T λSn. (22)

Recall that λ = λ(ωl = 0) = λnn. The definition of bn in
Eq. (20), the definition of spins (13), and Eq. (10) imply

B+
n = 2π�n, Bz

n = 2π (ωn + �n). (23)

Here and below we use the notation V + ≡ V x + iV y, where
V x and V y are the x and y components of a vector V .
Since in equilibrium bn is collinear with Sn, so is Bn. Then,
the requirement that the expression Fn�

∗
n + Gn(ωn + �n) on

the right-hand side of Eq. (3) be non-negative is equivalent to

Bn · Sn = bn · Sn + 2π2λT � 0. (24)

This condition always holds when en = +1 for all n (no spin
flips).

We saw that in equilibrium Sn is either parallel or antipar-
allel to Bn. Equilibria of the spin chain with each Sn parallel
to Bn correspond to solutions of the Eliashberg equations and
vice versa. We consider only this type of equilibria in this
paper. However, it is important to keep in mind that spin
flips are nevertheless allowed as Sn can be parallel to Bn, but
antiparallel to bn. Later in this section we will point out equi-
librium spin configurations of this type. To derive Eliashberg
equations from Sn ‖ Bn, note that this condition is equivalent
to

Sz
n = Bz

n

|Bn| , S+
n = B+

n

|Bn| . (25)

Equation (22) now implies the following two self-consistency
conditions:

Bz
n =

∑
m

λnm
Bz

m

|Bm| , B+
n =

∑
m

λnm
B+

m

|Bm| . (26)
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Using Eq. (23), we see that these are precisely the Eliashberg
equations (6).

The spin-chain approach naturally leads to an alternative
set of Eliashberg equations that are free of divergences in the
strong coupling limit λ → ∞ both in the superconducting and
normal states [18]. Indeed, we see from Eqs. (6) and (8) that
this limit presents a problem for the Eliashberg equations as
they contain a diverging λnn = λ term. As a result, both self-
energies, �n and �n, are proportional to λ and diverge in this
limit. Equation (10) shows that the divergent parts of �n and
�n are the m = n terms, πλT Gn and πλT Fn, respectively.
Since Gn and |Fn| are both of order 1 [see Eq. (12)], these
terms diverge in the strong coupling limit.

All we have to do to avoid these divergences is to use
Eq. (21) instead of Eq. (25). Let us introduce reduced self-
energies [cf. Eq. (10)]

ωn + �′
n = (ωn + �n) − πT λGn = bz

n

2π
,

�′
n = �n − πT λFn = b+

n

2π
. (27)

�′
n and �′

n are the same as �n and �n in Eq. (10) but without
the n = m terms. It follows from Eqs. (21) and the definition
(20) of bn that

�′
n = πT

∑
m �=n

λnm
�′

m√
(ωm + �′

m)2 + |�′
m|2 ,

�′
n = πT

∑
m �=n

λnm
ωm + �′

m√
(ωm + �′

m)2 + |�′
m|2 , (28)

where for simplicity we took en = +1 (no spin flips). As
we discuss below, this is always the case at not too strong
coupling and only these en = +1 solutions have been consid-
ered in the literature until now. Then, Eqs. (28) are equivalent
to the original Eliashberg equations (6), but do not contain
n = m terms. Note also that Eqs. (21) and (25) imply Sz

n/S+
n =

bz
n/b+

n = Bz
n/B+

n and, therefore,

�n

ωn + �n
= �′

n

ωn + �′
n

. (29)

The z component of spin Sz(ωn) ≡ Sz
n = Gn is odd in ωn

because Gn is odd. Now consider an equilibrium configuration
such that sgn(Sz

n) = sgn(ωn). Taking into account that Sz
n is

odd, the expression (20) for bn and Eq. (22) imply sgn(bz
n) =

sgn(Bz
n) = sgn(ωn). Since bz

n and Sz
n have the same sign, this

must be a spin configuration with no spin flips. Although less
obvious, the converse is also true, i.e., sgn(bz

n) = sgn(Bz
n) =

sgn(ωn) holds in any configuration with no spin flips.
It is also not difficult to show that sgn(bz

n) = sgn(ωn) con-
tinues to hold when only a small number of spins are flipped
out of this configuration (which we will assume). On the other
hand, we saw above that Sn must be parallel to Bn in any
spin equilibrium that corresponds to a solution of Eliashberg
equations. Therefore, for such equilibria with few spin flips
we have

sgn
(
Bz

n

) = sgn
(
Sz

n

) = ensgn(ωn). (30)

B. Spin-flip solutions

Let us determine when spin-flip solutions of Eliashberg
equations exist. The spin chain has equilibria with any num-
ber of spins at arbitrary positions being antiparallel to their
fields. However, to be also solutions of the Eliashberg equa-
tions these configurations must satisfy the inequality (24).
With the help of Eq. (21) we rewrite this inequality as

en|bn| + 2π2λT � 0. (31)

First, it is clear that en = +1 always works, i.e., stationary
configurations of spins (equilibria) with no spin flips are al-
ways solutions of the Eliashberg equations.

Now suppose Sn is antiparallel to its effective field bn.
Then, en = −1 and Eq. (31) becomes

2π2λT � |bn|. (32)

We see that no spin flips are allowed at weak coupling, λ → 0,
and at T = 0 for any finite λ because 2π2λT in this inequal-
ity is either negligible or zero, while the right-hand side is
positive. Conversely, arbitrary spin flips are permitted in the
strong coupling limit λ → ∞ at any finite T because this
term is infinite and positive. Therefore, we expect that at finite
temperature, spin-flip solutions first appear at λ ∼ 1.

The existence of spin-flip solutions in the double limit λ →
∞ and T → 0 depends on whether the product λT goes to
zero (spin-flip solutions do not exist), infinity (solutions with
any set of Sn antiparallel to bn exist), or a finite value (spin-flip
solutions may or may not exist). Recall that λ = g2/�2 and
that we are increasing λ by decreasing �. Then, arbitrary spin
flips are allowed as long as T g/�2 → ∞ in the double limit
T → 0 and � → 0 and there are numerous such solutions in
the regime T � �2/g = g/λ = �/

√
λ.

We mentioned in the previous subsection that m = n con-
tributions to the self-energies �n and �n in Eqs. (10) diverge
in the strong coupling limit. It is precisely these diver-
gent terms that make spin-flip solutions possible. Indeed,
Eqs. (22)–(24) and the definition of bn in Eq. (20) show that
the second term in the inequality (31), without which the
spin-flip solutions would not exist, arises from just these two
terms.

Spin-flip solutions occur already in the normal state where
Sn = sgn(ωn)ẑ. Suppose we flip the spin at Matsubara fre-
quency ωk > 0. Since Sz

n is odd in ωn, we also have to
symmetrically flip the spin at −ωk . The new spin configura-
tion is Sn = sgn(ωn)ẑ for |ωn| �= ωk and Sn = −sgn(ωn)ẑ for
|ωn| = ωk . Let us use the Holstein model (17) for simplicity.
The inequality (31) becomes

λ � 2k + 1 +
k+1∑
m=1

2g2

4π2T 2m2 + �2
. (33)

We see that the first spin-flip solution of the Eliashberg equa-
tions appears at λ � 1 for k = 0 and T → ∞, the next one at
λ � 3, etc. A similar analysis in the normal and superconduct-
ing states at lower T again shows that these solutions appear
at λ � 1 and proliferate at larger λ.

Let us also determine the lowest temperature at which nor-
mal (�n ≡ 0) solutions with spins antiparallel to their fields
exist. It costs least to flip the spins at the first two Matsubara
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frequencies ω−1 and ω0. Setting k = 0 in Eq. (33) and keeping
in mind that λ = g2/�2, we find

T � �

2π

√
λ + 1

λ − 1
. (34)

At strong coupling, this becomes T � �/(2π ), which implies
the condition T � �/

√
λ discussed above. Note also that in

the strong coupling limit � → 0, the quantity λT diverges as
g2/� or stronger when T satisfies the inequality (34).

We argue in Sec. VIII B that spin-flip solutions are impor-
tant for understanding the short-time nonlinear dynamics of
strongly coupled superconductors: most of them are unsta-
ble fixed points of kinetic equations, similar to an inverted
pendulum, that generate solitonlike waves with a rich struc-
ture. As mentioned in the Introduction, the Migdal-Eliashberg
theory breaks down at a certain finite λc. Interestingly, both
the emergence of the spin-flip saddle points at λ < λc and
the breakdown of the theory originate from the same source.
We saw in this section that it is the divergent n = m terms in
the self-energies that bring about the spin-flip solutions. In a
subsequent paper [23] we will see that these terms are also
among the main culprits responsible for the breakdown of the
Migdal-Eliashberg theory. In this connection, let us mention
the mountain pass theorem [29] according to which there must
be a saddle point between two minima. Therefore, it may be
that the emergence of these saddle points indicates that the
free energy develops an additional minimum aside from the
one described by the Eliashberg equations.

V. SPINS AND SUPERCONDUCTING GAP FUNCTION

In this section, we introduce the superconducting gap func-
tion �n, write a generalized gap equation that accounts for
spin flips, and relate spin components to the gap function.

We introduce the Eliashberg gap function �(ωn) ≡ �n

through equations

ωn + �n = ωnZn, �n = �nZn. (35)

Equations (23) and (30) imply

sgn(Zn) = en. (36)

In other words, Zn is negative if spin Sn is flipped and positive
otherwise. As far as we are aware, only solutions with pos-
itive Zn, i.e., with no spin flips, have been considered in the
literature until now.

Since �n is odd and |�n| is even in frequency, Zn and
|�n| are both even. With the substitution (35), the Eliashberg
equation for �n in (6) determines Zn for a given �n,

Zn = 1 + πT

ωn

∑
m

λnm
emωm√

ω2
m + |�m|2 , (37)

while the equation for �n becomes the gap equation

ωn�n = πT
∑

m

λnm
ωnem�m − �nemωm√

ω2
m + |�m|2 , (38)

where we used Eq. (37) to eliminate Zn. As soon as the
sign of Zn is fixed, the gap equation decouples from Zn and
the Eliashberg equations reduce to a single equation: the
gap equation (38). The gap equation and the gap function

determine various thermodynamic properties of the system,
for example, the specific heat, superconducting Tc, and the
condensation energy. Continued to real frequencies, the gap
function determines the density of states and various response
functions, such as the optical conductivity.

The m = n term vanishes in the gap equation (38). This
equation is therefore divergence free in the limit λnn = λ →
∞. The same is not true for Zn which diverges in this limit
because the m = n term does not cancel from Eq. (37). To get
rid of this divergence, we use the reduced self-energies defined
in Sec. IV and introduce Z ′

n and �n through

ωn + �′
n = ωnZ ′

n, �′
n = �nZ ′

n. (39)

Equation (29) guarantees that �n here is the same as in
Eq. (35). Therefore, the gap equation remains the same, while
the expression for Z ′

n is

Z ′
n = 1 + πT

ωn

∑
m �=n

λnm
emωm√

ω2
m + |�m|2 . (40)

The only difference between Z ′
n and Zn is that the m = n term

is absent in Z ′
n.

Spin components in terms of the gap function are

Sz
n = enωn√

ω2
n + |�n|2

, S+
n = en�n√

ω2
n + |�n|2

, (41)

as follows from Eqs. (11) and (13). Since the interaction is
purely ferromagnetic, it is clear that for fixed Sz

n the free
energy is minimal when the xy projections of all spins S⊥

n
point in the same direction. Without loss of generality we
take this direction to be the x axis. The spin Hamiltonian (15)
becomes

Hs = −2π
∑

n

ωn cos θn − π2T
∑
nm

λnm cos(θn − θm), (42)

where θn is the angle the spin Sn makes with the z axis, Sz
n =

cos θn, and Sx
n = sin θn. The stationary point of Hs with respect

to θn is

ωn sin θn = πT
∑

m

λnm sin(θm − θn). (43)

With the help of Eq. (41), we see that this is nothing but the
gap equation (38) written in terms of the angular variable θn

and that �n = ωn tan θn. Since | sin(θm − θn)| � 1 and λnm �
g2/(ωn − ωm)2 [see Eq. (B15)], the right hand side of Eq. (43)
is bounded in absolute value. It follows that sin θn → 0 when
ωn → ±∞. Feeding this information into the right hand side,
we see that moreover ωn sin θn → 0 and therefore �n → 0 as
ωn → ±∞.

Let us also mention here various expressions for the free
energy of boson-mediated superconductors that have been
proposed over the years. Eliashberg derived one such expres-
sion in 1962 [30] (see also Ref. [31]). Notably, Bardeen and
Stephen used Eliashberg’s result to evaluate the corrections to
the BCS condensation energy due to finite ratio of the BCS
gap to the Debye energy [32]. We discovered the spin-chain
representation of the free energy (17) in 2002 announcing
it afterwards at various venues [33,34]. To reconcile our re-
sult with Eliashberg’s, Haslinger and Chubukov obtained a
somewhat less general (with all en = +1) answer for the free
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energy of the Holstein model in terms of �n by integrating
Eliashberg’s expression over the electron momentum [35].
This answer follows from Eq. (17) if we substitute Eq. (41)
with en = +1 into it. Subsequently, this answer has been used
in a number of publications.

It is important to emphasize that our expression (3) for
the free energy is more general than Eq. (17) and therefore
Eliashberg’s expression. Equation (3) takes into account cer-
tain fluctuations of the fields � and � in imaginary time which
Eq. (17) does not. The two expressions are equivalent only at
λ = ∞, while away from this limit they coincide only at the
stationary points. We will discuss this in more detail below.

VI. STATIONARY POINTS OF THE FREE ENERGY

This section contains several results regarding stationary
points of the free energy. One is that at the minimum of the
free energy �(ωn) = eiφ|�n|, where |�n| is even in ωn and
eiφ is an overall phase. In other words, up to an overall phase
�(ωn) is non-negative and even. Another is that any spin
configuration where �(ωn) is real, but changes sign, cannot
be a local or global minimum and is higher in energy than the
global minimum by an amount proportional to the system size.
In particular, spin flips correspond to saddle points. Fixing the
overall phase, we also show that there cannot be a continuous
family of stationary points connected to the global minimum
and argue based on symmetry that the global minimum is
unique.

We have seen in Sec. IV that stationary points of the free
energy are the equilibria of the spin chain. At weak coupling
only equilibria where each spin is parallel to its magnetic field
(en = +1) are stationary points. As λ increases, equilibrium
configurations with arbitrary number of spins antiparallel to
their fields (en = −1) become stationary points as well. These
spin-flip solutions of the Eliashberg equations are necessarily
saddle points. Indeed, suppose Sn is antiparallel to bn. Then,
its contribution hn = −bn · Sn to the spin Hamiltonian is pos-
itive and decreases when we rotate Sn keeping all other spins
fixed. Given that there are also spins parallel to their fields, the
contribution of any of them increases when it deviates from
its equilibrium position. Therefore, such solutions cannot be
local minima or maxima, but are saddle points.

We see that at a minimum all spins must be parallel to
their fields. This condition is only necessary, but not sufficient,
as there can be a collective mode involving many spins that
lowers the free energy. This happens, for example, when the
normal state loses stability at T = Tc. In the normal state all
spins are parallel to their fields and yet it is a saddle point and
not a minimum below Tc. Hence, for the minimum we take
en = +1 for all n in Eq. (41):

Sz
n = ωn√

ω2
n + |�n|2

, S+
n = �n√

ω2
n + |�n|2

, (44)

and

ωn�n = πT
∑

m

λnm
ωn�m − �nωm√

ω2
m + |�m|2 (45)

is the corresponding gap equation.

Before we proceed to analyze the global minimum, it is
helpful to summarize the main features of the spin-chain rep-
resentation of the free energy f :

(a) The spin-chain formula f = ν0T Hs for the free energy
holds at stationary points of f . It does not necessarily hold
away from such points because we used the Eliashberg equa-
tions (6) in deriving it. However, the strong coupling limit
λ → ∞ is an exception. As we show in Sec. VII, in this limit
f = ν0T Hs holds at every point (Gn, Fn) of the configuration
space of the system, not only at the stationary points.

(b) Every stationary point of f is also a stationary point
of Hs and every stationary point of Hs with en = +1 is a
stationary point of f . Most importantly, the global minimum
of f is the global minimum of Hs. We also saw in Sec. IV that
in the λ → ∞ limit en are unconstrained and, therefore, the
correspondence between stationary points of f and Hs is one
to one.

For easier reference, let us write the spin-chain Hamilto-
nian (19) here in a slightly different form,

Hs = −2π
∑

n

ωnSz
n − π2T

∑
nm

λnm(Sn · Sm − 1), (46)

and remind that λnm > 0 for all n and m. In Eq. (46) we regu-
larized the otherwise divergent interaction term by subtracting
a constant from it [36]. This does not affect the stationary
point (gap) equation in any way.

A. Global minimum of the free energy

Here we establish the following properties of the free en-
ergy of the electron-phonon system:

(1) At the global minimum �(ωn) is a non-negative and
even function of ωn up to an overall phase. Moreover, either
�(ωn) = 0 for all n (normal state) or �(ωn) > 0 for all n
(superconducting).

(2) For a fixed overall phase, there are no curves of sta-
tionary points that contain the global minimum.

(3) The only symmetry of the spin chain is the symmetry
with respect to rotations around the z axis.

(4) Any �(ωn) that is real, but changes sign with ωn,
cannot be a minimum (local or global) of Hs.

These statements remain true at arbitrary temperature, in-
cluding T = 0 [38]. Let us begin with the proof of property 1.
Suppose Sz

n are fixed. Then, we have to minimize the xy part
of the spin Hamiltonian. Clearly, since λnm > 0 for all n and
m, this requires all S⊥

n being aligned in the same direction.
Any deviation from this alignment means a finite-energy cost
in Hs and because the total free energy is N f = ν0NT Hs, the
total-energy cost is proportional to the total number of sites N .
As before we designate the direction in which S⊥

n align to be
the positive x direction [39]. Equation (44) then implies that
�n is real and, most importantly, it must be non-negative for
all n at the global minimum. Since |�n| is even, �n = |�n|
must also be an even function of frequency. Therefore, �(ωn)
is a non-negative and even function. Given that �n is non-
negative, the gap equation (45) further shows that either all
�n are zero or none.

Clearly, if �n is the global minimum, so is eiφ�n. Note that
eiφ�n defines a closed curve (circle) with no end points in the
configuration space. Let us show that there can be no other
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one-parameter families of solutions of the Eliashberg equa-
tions that contain the global minimum [property 2]. Suppose
such a family exists. It then similarly defines a curve in the
configuration space and both f and Hs must be constant along
this curve. It follows that all their derivatives vanish on this
curve as well. We saw above that at the global minimum we
can always fix the global phase so that Sy

n = 0 and Sx
n � 0.

Equation (44) shows that Sz
n � 0 for ωn � 0. Therefore, the

angle θn that spin Sn makes with the z axis is in the range
[0, π/2]. Then, the one-parameter family in question must
have end points. As all derivatives of Hs vanish along the curve
of solutions before the end point and at least some of the first
derivatives must be nonzero after the end point, f cannot be
an analytic function of all θn. This contradicts Eq. (42), which
shows that Hs is analytic in all θn [40].

The model (46) is an inhomogeneous Heisenberg spin
chain. Conditions under which this type of models are inte-
grable for both quantum and classical spins have been studied
in the literature [41–46]. In particular, there is a class of
integrable models that describe BCS-like pairing between
fermions, which become spin chains when written in terms
of Anderson spins [44–46]. These models, integrable for both
quantum and classical spins, are similar to the Hamiltonian
(46) in that there is an inhomogeneous Zeeman field linear
in the spin coordinate and interactions between spins are
ferromagnetic. Models of this type are integrable only for
special choices of coupling constants λnm. Integrable cases are
a subset of measure zero among all Hamiltonians of this form
because we need only of order Ns parameters to specify λnm in
integrable cases as opposed to N2

s in the generic case, where
Ns is the number of spins. It is straightforward to verify that
our λnm do not correspond to any known integrable model. It is
safe to conjecture that the Hamiltonian (46) is not integrable in
the sense of Ref. [47], i.e., that it does not possess parameter-
dependent integrals of motion (parameters here are ωn and
λnm). Then, any symmetry must Poisson-commute with each
term in the Hamiltonian individually, i.e., with each Sz

n and
Sn · Sm. The only such symmetry is the z component of the
total spin Jz = ∑

n Sz
n. Thus, we arrive at property 3 assuming

nonintegrability of the spin chain (46).
Note that conservation of Jz is responsible for the degen-

eracy of the global minimum with respect to rotations around
the z axis, i.e., with respect to the overall phase of �n. Since
there are no other symmetries, we expect the global minimum
to be generally unique (barring accidental degeneracy) apart
from the arbitrary overall phase of �n.

Now consider a spin configuration with real sign alternat-
ing �(ωn). We already know from property 1 that such a
configuration cannot be a global minimum and is associated
with a macroscopic energy cost. Let us investigate if it can
at least be a local minimum. Equation (44) implies that the
projection of spin Sn onto the xy plane is S⊥

n = sgn(�n)|S⊥
n |x̂,

where x̂ is the unit vector along the x axis. Let us uniformly
rotate all spins with sgn(�n) < 0 around the z axis towards
the positive x axis by a small angle δφ, i.e., for these spins
S+

n → S+
n eiδφ . This does not change the Zeeman energy and

the interaction energies of spins with sgn(�n) < 0 among
themselves and of spins with sgn(�n) � 0 among themselves,
while the ferromagnetic interaction energy of sgn(�n) < 0
spins with sgn(�n) > 0 ones decreases as they become more

aligned with each other. Since the energy decreases for an
infinitesimal deviation from this configuration, it cannot be
a local minimum of Hs. At λ = ∞, when f = ν0T Hs holds in
the entire configuration space, spin configurations with sign
alternating �(ωn) cannot be local minima of f as well. This
proves property (4).

In connection with the above, let us mention papers by
Wu et al. that claim that at T = 0 and λ = ∞ there is
a one-parameter family of sign-alternating solutions of the
Eliashberg equations [19,48,49]. One end point of this pur-
ported family of solutions is said to be the global minimum
and the other, the normal state, i.e., the free energy must
increase along this continuous family of stationary points
(see, e.g., Fig. 4 of Ref. [19] and Fig. 1 of Ref. [48]). This
is impossible because any curve of stationary points must also
be a curve of constant free energy, such as, e.g., the curve
traced out by changing the global phase φ. It also contradicts
property (2) above.

Moreover, we saw above that the energy cost of configu-
rations with sign alternating �n is proportional to the system
volume. Their Boltzmann weight relative to the global mini-
mum is e−N� f /T , where N is the number of sites and � f is
the free-energy density difference (which is finite in N → ∞
limit). Naturally, such states cannot contribute to thermal equi-
librium properties of a bulk system. In the present case not
only N → ∞, but also T → 0, so the global minimum be-
comes the ground state and entirely determines all equilibrium
physics.

VII. STRONG COUPLING LIMIT

There are two universal limits of the Migdal-Eliashberg
theory: the weak and strong coupling limits λ → 0 and λ →
∞. “Universal” here means that the theory becomes indepen-
dent of the phonon dispersion and momentum dependence
of the electron-phonon coupling. In both limits there is only
one low-energy scale. The weak coupling limit of the Migdal-
Eliashberg theory is the BCS theory (see Appendix B 2).

We review the strong coupling limit [6,8,50–53] in this
section for two related reasons. First, the derivation of the
spin-chain representation of the free energy does not rely on
Eliashberg equations in this limit and therefore holds every-
where in the configuration space. Second, we will need it
in a later study. However, it is important to emphasize that
the strong coupling limit of the Migdal-Eliashberg theory is
unphysical because the theory breaks down at finite λ before
reaching λ = ∞ as discussed in the Introduction. We will
use the strong coupling limit as a technical tool only, e.g., to
show that the breakdown occurs universally, irrespective of
the model electron-phonon Hamiltonian.

Consider the Holstein model first. By definition,

λ = g2

�2
= ν0α

2M−1

�2
, (47)

where α is the dimensionful electron-phonon coupling con-
stant. Note that α does not have units of energy, while g does.
We define the strong coupling limit as α → ∞. This implies
λ → ∞ and α, g ∝ λ1/2. As � is negligible compared to g, the
latter remains the only intrinsic low-energy scale in the prob-
lem [54]. Other energies characterizing the superconductor
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are proportional to g, for example, Tc ≈ 0.18g and the spectral
gap is 1.16g [6,53]. Measured in units of g these quantities are
finite, while the phonon frequency goes to zero, � ∝ λ−1/2.
Therefore, an equivalent, but more convenient, way to obtain
the strong coupling limit is to keep g fixed and send � to zero.

We already saw that Zn and therefore �n and �n diverge
when λ → ∞, while Fn and Gn stay finite. Separating the di-
vergent part in the variable change (10), �n = λπT Gn + · · · ,
�n = λπT Fn + · · · and expanding the square root in Eq. (3)
in �2, we directly obtain the spin Hamiltonian (15) up to terms
of order �2 that vanish in the strong coupling limit. Moreover,
it turns out that the mass of fluctuations violating the con-
straint (12) is infinite [25] and hence S2

n = 1. Note that here
we cast the free energy into the spin-chain form without ever
using the stationary point (Eliashberg) equations. Therefore,
in the strong coupling limit the spin-chain representation is
guaranteed at any point (Gn, Fn) in the configuration space
with no stationary point constraints on Gn and Fn. The spin-
chain Hamiltonian (17) in the strong coupling limit � → 0
becomes

Hs = −2π
∑

n

ωnSz
n − π2T g2

∑
nm

Sn · Sm − 1

(ωn − ωm)2
, (48)

where we subtracted a constant from the Hamiltonian as dis-
cussed below Eq. (19).

The procedure for dispersing phonons is the same. Now,

λ(ωl ) = 1

2p2
F

∫ 2pF

0

g2
qq dq

ω2
l + ω2

q

,

λ = λ(ωl = 0) = 1

2p2
F

∫ 2pF

0

g2
qq dq

ω2
q

(49)

(see Appendix B). Suppose gq → ∞ for some range of q.
Then, the energy g defined as

g2 ≡ 1

2p2
F

∫ 2pF

0
g2

qq dq (50)

diverges and all other low energies are either negligible or
proportional to it. This is equivalent to keeping g fixed and
sending the phonon frequencies ωq to zero. In this limit, the
spin-chain Hamiltonian (15) for dispersing phonons turns into
the Hamiltonian (48), same as for the Holstein model. We
see that the spin chain (48) provides a complete and universal
description of the the thermodynamics of the strong coupling
limit: it determines the Boltzmann weight of any field config-
uration and is independent of the underlying electron-phonon
model except for a single energy g.

VIII. COMPARISON TO ANDERSON PSEUDOSPINS

We already mentioned in Sec. III that the description of
the normal and superconducting states and of the transition
between them in terms of spins introduced in this paper is
very similar to the Anderson pseudospin description of the
BCS theory of superconductivity [26]. In particular, our Fig. 1
is identical to Fig. 1 of Ref. [26], except that in the latter fig-
ure the cites of the chain are single-fermion energies ξp instead
of fermionic Matsubara frequencies ωn. Indeed, we will see in
this section that equilibrium configurations of Eliashberg and

Anderson spins map into each other under the interchange
of ξp with ωn and of BCS gap � with the Eliashberg gap
function �n.

An overall principle common to both spin formulations
of superconductivity is that there are three real functions of
energy or frequency (the normal average and real and imag-
inary parts of the anomalous average) that admit an interpre-
tation as three components of a classical spin. Nevertheless,
Eliashberg and Anderson spins are distinct. Eliashberg spins
are energy-integrated normal and anomalous thermal Green’s
functions. They exist at any temperature and coupling λ. An-
derson spins are frequency-integrated normal and anomalous
Keldysh Green’s functions (see below). They are well defined
both in and out of equilibrium, but only at T = 0. The two
sets of spins do not coincide even where their domains of
definition overlap, i.e., at T = 0 in the weak coupling (BCS)
limit of the Migdal-Eliashberg theory.

A. In and out of equilibrium BCS superconductivity in terms
of classical Anderson pseudospins: Brief review

Soon after the publication of the BCS theory, Anderson
realized [26] that the BCS Hamiltonian

H =
∑
pσ

ξpc†
pσ cpσ − λδ

∑
pp′

c†
−p↑c†

p↓cp′↓c−p′↑, (51)

where δ = (ν0N )−1, maps to a spin- 1
2 model. We will need

quantum averages of pseudospin- 1
2 operators defined by

Anderson [55]

sz
p = 〈c†

p↑cp↑ + c†
−p↓c−p↓〉 − 1

2
, s−

p = 〈cp↓c−p↑〉, (52)

where s±
p = sx

p ± isy
p. Note that sp depend on time out of

equilibrium, when the state of the system in which we evaluate
the averages (52) is itself time-dependent.

In the mean field treatment, which is exact for the BCS
model in the thermodynamic limit [56–58], the Hamiltonian
(51) becomes [59]

H =
∑

p

2ξpsz
p − λδ

∑
pp′

s+
p s−

p′ . (53)

The eigenstates of the BCS Hamiltonian are product states of
the form

∏
p(up + vpc†

p↑c†
−p↓)|0〉. For any state of this form,

sz
p = |vp|2 − |up|2

2
, s−

p = u∗
pvp. (54)

Therefore, the normalization condition |up|2 + |vp|2 = 1 im-
plies that sp = (sx

p, sy
p, sz

p) is a vector of length 1
2 . Given the

spin configuration, we determine the state of the system using
Eq. (54).

Equilibria of the spin Hamiltonian (53) correspond to the
eigenstates of the BCS Hamiltonian [26,60–62]. Spin sp expe-
riences an effective magnetic field Bp = (−2�x,−2�y, 2ξp),
where �x and −�y are the real and imaginary parts of the
BCS order parameter defined by

� = λδ
∑

p

s−
p . (55)

014512-9



EMIL A. YUZBASHYAN AND BORIS L. ALTSHULER PHYSICAL REVIEW B 106, 014512 (2022)

In equilibrium the spin is either antiparallel (ep = +1) or par-
allel (ep = −1) to its effective field. It follows that equilibrium
spin configurations are

2sz
p = − epξp√

ξ 2
p + |�|2

, 2s−
p = ep�√

ξ 2
p + |�|2

. (56)

The self-consistency condition (55) becomes

2� = λδ
∑

p

ep�√
ξ 2

p + |�|2
. (57)

The BCS ground state is obtained by aligning all spins antipar-
allel to their fields, i.e., ep = +1 for all p. States where one
of the spins is flipped opposite to its ground-state orientation
correspond to excited or “real” pairs in the terminology of
Bardeen, Cooper, and Schrieffer [20,26]. Note that Eqs. (56)
and (57) describe two types of equilibrium configurations:
configurations with � = 0 [which is always a solution of
Eq. (57)] and configurations where � �= 0. In the terminol-
ogy of Ref. [62], these are the normal and anomalous states,
respectively.

Classical Anderson pseudospins play a central role in un-
derstanding collisionless dynamics of BCS condensates in
response to fast perturbations [59,61–67] when the sample
size is of the order of the superconducting coherence length
or smaller [64]. Hamilton’s equations of motion for the classi-
cal spin Hamiltonian (53) with the usual angular momentum
Poisson brackets for components of sp are equivalent to the
time-dependent Bogoliubov–de Gennes equations [61]. These
classical spin equations of motion have been used by Ander-
son to analyze the collective modes of a BCS superconductor
and more recently to study its time evolution after a quantum
quench [59,62,63,65–67]. Normal and anomalous states men-
tioned in the preceding paragraph play a special role in the
dynamics [61]. Normal states are dynamically unstable and
anomalous states are unstable when sufficiently many spins
are flipped. These unstable equilibria give rise to normal and
anomalous multisolitons that start in an unstable equilibrium
at t = −∞ and return into it at t = +∞, similar to an inverted
pendulum. Moreover, dynamics for many physical initial con-
ditions (e.g., for an interaction quench) can be described in
terms of multisolitons.

Let us also mention the relationship between Ander-
son pseudospins and equal time, zero-temperature Keldysh
Green’s functions defined by [68–70]

Gp(t, t ′) = −i〈[cpσ (t ), c†
pσ (t ′)]〉,

Fp(t, t ′) = −i〈[cp↑(t ), c−p↓(t ′)]〉, (58)

where the square brackets denote the commutator and we
assumed time-reversal symmetry, so that Gp(t, t ′) does not
depend on σ . We see that Gp(t, t ) = 2isz

p and Fp(t, t ) = 2is−
p .

Fourier transforming the Green’s functions with respect to
t ′ − t , we find

2isz
p =

∫ ∞

−∞
dω Gp(ω), 2is−

p =
∫ ∞

−∞
dω Fp(ω). (59)

We suppressed the dependence on t in spin components
Gp(ω) and Fp(ω). Thus, we see that Anderson spins are
frequency-integrated normal and anomalous Keldysh Green’s
functions (divided by 2i).

B. Strongly coupled superconductors in and out
of equilibrium in terms of Eliashberg spins

Let us first compare equilibrium configurations of Eliash-
berg and Anderson spins. In equilibrium, Eliashberg spins are
[Eq. (41)]

Sz
n = enωn√

ω2
n + |�n|2

, S+
n = en�n√

ω2
n + |�n|2

. (60)

We see that they turn into Anderson spins (56), up to a factor
of 2 and opposite sign of y and z components, if we replace
the Matsubara frequency ωn with the single-particle energy
ξp and the Eliashberg gap function �n with the BCS gap
�. The factor of 2 difference comes from normalization, the
arbitrary choice of spin length 1

2 for Anderson spins and 1
for Eliashberg spins. Opposite signs of y and z components
of spins are a similar “gauge” degree of freedom that does
not affect the Poisson brackets between spin components. It
is straightforward to redefine Anderson or Eliashberg spins to
eliminate these differences. However, the gap equations (57)
and (38) are rather different due to the retarded nature of
interactions and the presence of zz interactions in the spin
formulation of the Migdal-Eliashberg theory.

There are also similarities between the two approaches
in the overall physical picture they provide. For example, in
both cases the normal state is a state where all spins are
down (up) below a certain energy and up (down) above it
as shown in Fig. 1 and spins acquire xy components in the
superconducting state thus softening the domain wall at zero
frequency (energy).

Nevertheless, the two sets of spins never coincide. An-
derson spins are ill defined away from λ → 0, T = 0 limit,
i.e., in the Migdal-Eliashberg theory at finite λ or finite T ,
in the sense that the model cannot be formulated entirely in
terms of them and the length of the vector sp depends on p
and is not conserved by the dynamics. In contrast, Eliashberg
spins remain well defined in the BCS (λ → 0) limit and, in
particular, the classical spin Hamiltonian (46) minus its value
in the normal state gives the BCS condensation energy as a
function of T . Even in the BCS limit the two sets of spins
are distinct and provide alternative descriptions of the system:
Eliashberg spins determine the free energy as a function of
T , while Anderson spins work at T = 0 and determine the
ground state and excited states of the Hamiltonian.

While Anderson spins are frequency-integrated Keldysh
Green’s functions [see Eq. (59)], Eliashberg spins corre-
spond to energy-integrated normal and anomalous Matsubara
Green’s functions

Gσ p(τ − τ ′) = −〈Tτ cpσ (τ )c†
pσ (τ ′)〉,

Fp(τ − τ ′) = 〈Tτ c−p↓(τ )cp↑(τ ′)〉. (61)

We have evaluated these Green’s functions in the Matsubara
frequency domain in Appendix A 4:

Gpn = − i(ωn + �n) + ξp + χn

(ωn + �n)2 + |�n|2 + (χn + ξp)2
,

Fpn = − �n

(ωn + �n)2 + |�n|2 + (χn + ξp)2
. (62)
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Integrating Gpn and Fpn and comparing with the expressions
(11) for Eliashberg spins on the stationary point, we see that

Sz
n = −i

∫ ∞

−∞
dξpGpn, S+

n = −
∫ ∞

−∞
dξpFpn. (63)

Note that the single-particle energy ξp plays the same role for
Eliashberg spins as the frequency ω does for Anderson spins.

We explained in the previous subsection how Ander-
son spins describe the far from equilibrium dynamics of a
BCS condensate. Likewise, we expect the time evolution
of Eliashberg spins with the Hamiltonian (46) to describe
the dynamics of electronic degrees of freedom of a strongly
coupled (Eliashberg) superconductor in a similar regime.
Hamiltonian (Bloch) equations of motion for Eliashberg spins
read as

dSn

dt
= −bn × Sn,

bn = 2πωnẑ + 2π2T
∑
m �=n

λnmSm. (64)

These equations or a certain version of them should be valid
for the short time far from equilibrium dynamics, at least
when the sample size is of the order of the coherence length
or smaller. In this case, dynamics are spatially uniform [64],
phonons are in thermal equilibrium with the outside environ-
ment [71], and collision integrals are negligible [72]. Indeed,
kinetic equations very similar to Eq. (64) have already been
derived by Eliashberg [71] (see also Ref. [72]). In the weak
coupling limit λnm → λ at relevant frequencies and, with the
replacement of ωn with ξp, Eq. (64) is equivalent to the Bloch
equation for Anderson spins sp defined by Eq. (52).

The spin-flip solutions we identified in Sec. IV B play
a special role in the dynamics. These saddle points of free
energy are by construction stationary solutions of the Bloch
equation (64). Just as with flipped Anderson spins discussed
below Eq. (57), these equilibria are dynamically unstable
when sufficiently many spins are flipped and there are two
types of them, normal and anomalous, depending on whether
or not the xy components of spins are zero. Therefore, we
anticipate that these saddle points should give rise to dynamics
analogous to normal and anomalous solitons in the far from
equilibrium BCS superconductivity.

IX. CONCLUSION

In this paper, we mapped the Migdal-Eliashberg theory
of superconductivity to a classical Heisenberg spin chain in
Zeeman magnetic field. Lattice sites are fermionic Matsubara
frequencies ωn. The interaction between spins is purely ferro-
magnetic. It depends on the phonon spectrum and falls off as
(ωn − ωm)−2 at large separation between spins. The Zeeman
field is proportional to ωn, the spin coordinate along the chain.
As an example, the spin Hamiltonian for the Holstein model
is

Hs = −2π
∑

n

ωnSz
n − π2T g2

∑
nm

Sn · Sm − 1

(ωn − ωm)2 + �2
, (65)

where T is the temperature, g is the electron-phonon coupling,
� is the renormalized Einstein phonon frequency, and S2

n = 1.

The free-energy density of the system of fermions interacting
through phonons is f = ν0T Hs.

The spin-chain formulation made the analysis of the free-
energy functional simple. In particular, we saw that, up to an
overall phase eiφ , the Eliashberg order parameter �(ωn) is
non-negative and even at the global minimum and there can
be no continuous families of stationary points that include
the global minimum. We also discussed symmetry and non-
integrability arguments that further support our claim that the
global minimum is unique.

It became apparent that the free energy acquires infinitely
many new saddle points (which are additional solutions of the
Eliashberg equations) at strong coupling, which correspond
to spin flips. We saw that these saddle points most likely
play a significant role in the collisionless far from equilibrium
dynamics of strongly coupled superconductors. Apparently,
they are the fixed points of the corresponding kinetic equa-
tions and give rise to rich multisoliton dynamics. These saddle
points emerge and proliferate just before the breakdown of
the Migdal-Eliashberg theory and, moreover, these two phe-
nomena have similar origin as we discussed in Sec. IV B. It
is evident that the spin chain has unstable equilibria where
a number of spins are flipped against their magnetic fields.
However, without the spin-chain representation these solu-
tions are hard to notice and indeed they have not been seen
before.

Our spin-flip solutions of Eliashberg equations are unre-
lated to the continuous family of sign-alternating solutions
for �n conjectured by Wu et al. [19] at λ = ∞. We be-
lieve that this conjecture is internally inconsistent in several
ways. Therefore, the claims by the aforementioned reference
of vanishing of the superconducting Tc, destruction of the
superconducting phase coherence, etc., are unsubstantiated.
Thinking in terms of the spin chain also made it clear that any
sign alternating �n costs a macroscopic amount of energy to
create at all λ and therefore cannot contribute to thermal equi-
librium properties of a macroscopic system. Most importantly,
because as we discussed above the Migdal-Eliashberg theory
breaks down at finite λ, its strong coupling limit is unphysical
altogether.

Classical spins in the Migdal-Eliashberg theory (Eliash-
berg spins) are in many ways similar to Anderson spins in
the BCS theory of superconductivity, though the two sets of
spins never coincide. Common to both spin notions is that
three real numbers, the normal Green’s function and real and
imaginary parts of the anomalous Green’s function integrated
over single-fermion energy (Eliashberg) or frequency (Ander-
son), become the three components of a classical spin vector.
Eliashberg spins exist at any temperature and any λ, while
Anderson spins are well defined in and out of equilibrium,
but only at T = 0 and in the BCS limit of the Migdal-
Eliashberg theory. Equilibrium configurations of Anderson
and Eliashberg spins map into each other under the inter-
change of single-fermion energy ξp with fermionic Matsubara
frequency ωn and of the BCS gap � with Eliashberg gap
function �n. An interesting open question is to study the
short-time far from equilibrium dynamics of strongly coupled
conventional superconductors with the help of Eliashberg
spins.

014512-11



EMIL A. YUZBASHYAN AND BORIS L. ALTSHULER PHYSICAL REVIEW B 106, 014512 (2022)

ACKNOWLEDGMENT

We thank A. Abanov, A. V. Chubukov, and M. Kiessling
for discussions and comments.

APPENDIX A: ELIASHBERG FREE ENERGY FOR
THE HOLSTEIN MODEL WITH ARBITRARY

SINGLE-PARTICLE POTENTIAL

In this Appendix, we derive the Eliashberg free energy
from the path integral for the Holstein model (see also
Refs. [73,74]). For the most part the derivation follows a
standard sequence of steps. One notable difference is that
we keep the single-electron potential arbitrary throughout the
entire calculation and rewrite the action in its eigenbasis. This
will be especially useful later, in our study of the breakdown
of the Eliashberg theory at finite λ [23].

1. Effective action

The Lagrangian corresponding to the Holstein Hamiltonian
(1) is

L =
∑
i j,σ

ψ∗
iσ G−1

0i jψ jσ +
∑

i

[
M�2

0ϕ
2
i

2
+ M(∂τϕi )2

2

]

+ α
∑

iσ

ψ∗
iσψiσ ϕi +

∑
iσ

(J∗
iσψiσ + ψ∗

iσ Jiσ ), (A1)

where G−1
0i j = ∂τ δi j + hi j − μδi j , ψiσ and ψ∗

iσ are Grassmann
variables, and ϕi is a real field that corresponds to the ion
displacement operator xi. We also introduced a chemical po-
tential μ and Grassmann source fields J∗

iσ and Jiσ , which
we will use to evaluate Green’s functions. All fields in the
Lagrangian depend on the imaginary time τ .

Integrating out phonons, we obtain the following effective
action:

Seff =
∑
i jτσ

ψ∗
iτσ G−1

0i jψ jτσ − 1

2

∑
iττ ′σσ ′

ψ∗
iτ ′σ ′ψiτ ′σ ′Dτ ′τψ

∗
iτσψiτσ

+
∑
iτσ

(J∗
iτσψiτσ + ψ∗

iτσ Jiτσ ). (A2)

Summations indicate summation over i and integration over τ

and τ ′,

Dτ ′τ = T
∑

l

α2M−1

ω2
l + �2

eiωl (τ ′−τ ), (A3)

is the effective electron-electron interaction, and ωl = 2πT l
are bosonic Matsubara frequencies. The interaction is propor-
tional to the phonon propagator as usual [3].

We replaced the bare phonon frequency �0 with the renor-
malized frequency �. To obtain an equation for � within the
path-integral framework, one needs to introduce an additional
Hubbard-Stratonovich field �i(τ ′, τ ) for phonons [73]. On
the stationary point this leads to the usual phonon renormal-
ization procedure (see Ref. [3], p. 181). We reject it here
because Holstein and other standard electron-phonon Hamil-
tonians do not renormalize phonons correctly [75,76]. Instead,
we treat � as a parameter of the model. Renormalized phonon
frequencies are generally momentum dependent even when
the bare spectrum is dispersionless. Then, the effective action
is that for dispersing phonons, which we treat in Appendix B.
Here we disregard the momentum dependence of � for sim-
plicity: Eq. (A2) is a legitimate model of the electron-phonon
system in its own right, no less legitimate than the Holstein
model itself.

We decouple the four-fermion term in Eq. (A2) with a
Hubbard-Stratonovich transformation in the particle-particle
and particle-hole channels with three fields �i(τ ′, τ ),
�i↑(τ ′, τ ), and �i↓(τ ′, τ ):

Seff =
∑

i

∫∫
dτ ′dτ

[
�∗

i (τ ′, τ )�i(τ ′, τ )

D(τ ′ − τ )

+
∑

σ

�iσ (τ ′, τ )�iσ (τ, τ ′)
2D(τ ′ − τ )

]

+
∑
x′x

�
†
x′Mx′x�x +

∑
x

(K†
x �x + �†

x Kx ), (A4)

where �x and Kx are two-component Nambu fields, Mx′x is a
2×2 matrix in the Nambu space,

�x =
[
ψ↑x

ψ∗
↓x

]
, Kx =

[
Ji↑(τ )

−J∗
i↓(τ )

]
, Mx′x =

[
G−1

0i jδ(τ ′ − τ ) − i�i↑(τ ′, τ )δi j �i(τ ′, τ )δi j

�∗
i (τ, τ ′)δi j G

−1
0i jδ(τ ′ − τ ) + i�i↓(τ, τ ′)δi j

]
, (A5)

and G
−1
0i j=∂τ δi j−h ji +μδi j . By definition the fields �iσ (τ ′, τ )

are Hermitian

�iσ (τ ′, τ ) = �∗
iσ (τ, τ ′). (A6)

The statement here is that integrating e−Seff with Seff

from Eq. (A4) over the fields �i(τ ′, τ ) and �iσ (τ ′, τ ),
we obtain Eq. (A2). On the stationary point, the fields
�i(τ ′, τ ) and �iσ (τ ′, τ ) depend only on the difference τ ′ − τ

and represent the anomalous and normal self-energies (see
below).

The action (A4) is quadratic in fermion fields. Performing
the Gaussian integral over these fields, we obtain the effective

action for the fields �i(τ ′, τ ) and �iσ (τ ′, τ ):

Seff =
∑

i

∫∫
dτ ′dτ

[
�∗

i (τ ′, τ )�i(τ ′, τ )

D(τ ′ − τ )

+
∑

σ

�iσ (τ ′, τ )�iσ (τ, τ ′)
2D(τ ′ − τ )

]

− Tr ln M −
∑
x′x

K†
x′M−1

x′x Kx. (A7)

The action is a scalar matrix trace. It is convenient to trans-
form the matrices and vectors in Seff to fermionic Matsubara
frequencies ωn and the eigenbasis of the single-electron
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Hamiltonian ĥ with a unitary matrix

Uτn,iα =
√

T

[
πiαe−iτωn 0

0 πiαe−iτωn

]
, (A8)

which leaves Seff invariant. Here πα are the eigenstates of ĥ,∑
j

hi jπ jα = εαπiα. (A9)

For example, the matrix M transforms into (U †MU )nm,αβ = ∑
i j

∫ ∫
dτ ′dτ U †

nτ,αiMiτ,i′τ ′Uτ ′m,i′β and similarly K → U †K and
� → U †�. Carrying out this transformation in Eq. (A7), we find

Seff = T
∑

nmlαβ

[(
�

αβ

n+l,m+l

)∗
D−1

l �αβ
nm + 1

2

∑
σ

�
αβ

σ,m+l,n+l D
−1
l �βα

σnm

]
− Tr ln M − T K†M−1K. (A10)

Here D−1
l is the bosonic Matsubara frequency ωl component of 1/D(τ ),

�αβ
nm = T

∑
i

∫∫
dτ ′dτ eiωnτ

′
π∗

iα�i(τ
′, τ )πiβe−iωmτ , (A11)

and similarly for �σnm. Hermiticity of �iσ (τ ′, τ ) implies Hermiticity of �αβ
σnm since the transformation is unitary. The matrix M

in this basis reads as

M =
[

(−iωn + ξα )δnm − i�αβ

↑nm �αβ
nm(

�βα
mn

)∗
(−iωn − ξα )δnm + i�αβ

↓,−m,−n

]
, (A12)

and the source fields are

Kαm =
[

J↑αm

−J∗
↓,α′,−m

]
, J↑αm =

∑
i

∫
dτ eiωmτπ∗

iαJi↑(τ ),

J↓α′m =
∑

i

∫
dτ eiωmτ (π∗

iα )∗Ji↓(τ ). (A13)

Note that α′ labels the state π∗
α , which is related to πα

by time-reversal operation and A−m,−n stands for
A(−ωm,−ωn).

2. Stationary point

The Eliashberg equations are a stationary point of the ef-
fective action, such that the fields �i(τ ′, τ ) and �iσ (τ ′, τ ) are
spatially uniform and depend only on the time difference,

�i(τ
′, τ ) = �(τ ′ − τ ), �iσ (τ ′ − τ ) = �σ (τ ′ − τ ).

(A14)
Equation (A11) then implies

�αβ
nm = �nδnmδαβ, �αβ

σnm = �σnδnmδαβ. (A15)

In words, off-diagonal matrix elements are zero and diagonal
ones depend only on the Matsubara frequency.

The derivative of the action (A10) with respect to any
off-diagonal matrix element is a sum of terms each of which is
proportional to one of the other off-diagonal matrix elements.
This means that setting these matrix elements to zero auto-
matically solves all stationary point equations for them. To
determine stationary point equations for the diagonal matrix
elements, we substitute Eq. (A15) into Eq. (A10). Setting also

the sources to zero, we obtain

Seff = T N
∑

nl

[
�∗

n+l D
−1
l �n + �n+lD

−1
l �n − χn+lD

−1
l χn

]

−
∑
nα

ln[(ωn + �n)2 + |�n|2 + (χn + ξα )2], (A16)

where N is the number of sites (which is equal to the number
of the single-electron states πα) and

�n = �↑n − �↓,−n

2
, iχn = �↑n + �↓,−n

2
, (A17)

where A−n means A(−ωn). Minimizing the effective action
with respect to �∗

n, �n, and χn, we derive three Eliashberg
equations

�n = T

N

∑
mα

Dn−m
�m

(ωm + �m)2 + |�m|2 + (χm + ξα )2
,

�n = T

N

∑
mα

Dn−m
ωm + �m

(ωm + �m)2 + |�m|2 + (χm + ξα )2
,

χn = −T

N

∑
mα

Dn−m
ξα + χm

(ωm + �m)2 + |�m|2 + (χm + ξα )2
,

(A18)

where

Dn−m = α2M−1

(ωn − ωm)2 + �2
. (A19)

When ξα are symmetric with respect to zero, χn ≡ 0 solves
the last equation in (A18).

As is normally done in the Migdal-Eliashberg theory, we
now send the Fermi energy to infinity and take the density of
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states per site per spin orientation ν0 to be constant. We imple-
ment this limit in Eq. (A16) by integrating the logarithm over
ξα from −Λ to Λ, discarding the constant term that depends
only on Λ, and then taking the limit Λ → ∞. The result is

Seff = T N
∑

nl

[
�∗

n+l D
−1
l �n + �n+lD

−1
l �n

]

− 2πν0N
∑

n

√
(ωn + �n)2 + |�n|2. (A20)

Eliashberg equations become

�n = πT
∑

m

λ(ωn − ωm)
�m√

(ωm + �m)2 + |�m|2
,

�n = πT
∑

m

λ(ωn − ωm)
ωm + �m√

(ωm + �m)2 + |�m|2
. (A21)

with

λ(ωn − ωm) = g2

(ωn − ωm)2 + �2
, g2 = ν0α

2M−1. (A22)

The fermionic part of the free-energy functional per site is
f = T Seff/N ,

f = ν0T 2
∑

nl

[�∗
n+l�l�n + �n+l�l�n]

− 2πν0T
∑

n

√
(ωn + �n)2 + |�n|2, (A23)

where �l is the discrete Fourier transform of 1/λ(τ ) at
bosonic Matsubara frequency ωl .

3. Spatially nonuniform stationary point

For future reference let us also consider spatially nonuni-
form solutions

�i(τ
′, τ ) = �i(τ

′ − τ ), �iσ (τ ′ − τ ) = �iσ (τ ′ − τ ).
(A24)

Let �in be the Fourier transform of �i(τ ′ − τ ) with re-
spect to τ ′ − τ . Its matrix elements in the eigenbasis of the
single-particle Hamiltonian hi j are �αβ

n = ∑
i π

∗
iα�inπiβ . If

the eigenstates πiα are localized or delocalized but highly
oscillatory, the off-diagonal, α �= β, matrix elements are neg-
ligible. In this case, a suitable ansatz for the stationary point
is

�αβ
nm = �α

n δnmδαβ, �αβ
σnm = �α

σnδnmδαβ. (A25)

The derivation of the stationary point equations is similar to
the uniform case. The effective action now reads as

Seff = T
∑
nlα

[(
�α

n+l

)∗
D−1

l �α
n + �α

n+lD
−1
l �α

n − χα
n+l D

−1
l χα

n

]

−
∑
nα

ln
[(

ωn + �α
n

)2+|�α
n |2+(

χα
n + ξα

)2]
, (A26)

where

�α
n = �α

↑n − �α
↓,−n

2
, iχα

n = �α
↑n + �α

↓,−n

2
. (A27)

It is incorrect to minimize Seff with respect to �α
n because

�α
n = ∑

i |πiα|2�in are not independent. The original inde-
pendent variables are �in and the matrix Riα = |πiα|2 that
relates �α

n to �in is degenerate. For example, the complete-
ness relation

∑
α πiαπ jα = δi j implies

∑
α Riα = 1 meaning

that the columns of the matrix R are linearly dependent. Sim-
ilarly, the normalization condition

∑
i |πiα|2 = 1 says that the

rows of R are linearly dependent too. The same applies to �α
n

and χα
n .

We should instead minimize Eq. (A26) with respect to �in,
�in, and χin using

∂�α
n

∂�in
= |πiα|2, etc. (A28)

We obtain

∑
α

�α
n |πiα|2 = T

∑
mα

Dn−m
�α

m|πiα|2(
ωm + �α

m

)2 + ∣∣�α
m

∣∣2 + (
χα

m + ξα

)2 ,

∑
α

�α
n |πiα|2 = T

∑
mα

Dn−m

(
ωm + �α

m

)|πiα|2(
ωm + �α

m

)2 + ∣∣�α
m

∣∣2 + (
χα

m + ξα

)2 ,

∑
α

χα
n |πiα|2 = −T

∑
mα

Dn−m

(
ξα + χα

m

)|πiα|2(
ωm + �α

m

)2 + ∣∣�α
m

∣∣2 + (
χα

m + ξα

)2 . (A29)

If the single-particle Hamiltonian hi j has the periodicity of
the lattice, πiα are plane waves and |πiα|2 = N−1. Then, �α

n =
�n, �α

n = �n, χα
n = χn, and we recover the usual Eliashberg

equations (A18).

4. Green’s functions

Let us evaluate the Fourier transforms Gσαn and Fαn of
the normal and anomalous thermal Green’s functions at the

stationary point. The latter are defined as

Gσα (τ − τ ′) = −〈Tτ cσα (τ )c†
σα (τ ′)〉,

Fα (τ − τ ′) = 〈Tτ c↓α′ (τ )c↑α (τ ′)〉. (A30)

We obtain Gσαn and Fαn by differentiating the partition func-
tion Z with respect to the source fields

TGσαn = 1

Z
∂2Z

∂Jσαn∂J∗
σαn

, TFαn = 1

Z
∂2Z

∂J∗
↓α′n∂J∗

↑α,−n

. (A31)
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The source fields enter through the K†M−1K term in the effec-
tive action (A10). At the stationary point this term becomes

K†M−1K =
∑
αn

K†
nαM−1

αn Knα =
∑
αn

1

�αn
[a+

αnJ∗
AJA − �nJ∗

AJ∗
A′

− (�n)∗JA′JA + a−
αnJA′J∗

A′ ], (A32)

where a±
αn = i(ωn + �n) ± (ξα + χn), the labels A and A′

stand for ↑ αn and ↓ α′,−n, respectively, and �αn = (ωn +
�α

n )2 + |�α
n |2 + (χα

n + ξα )2 = − det Mαn.
The source-dependent part of the partition function at the

stationary point is Zs = e−T K†M−1K . Using Eq. (A31), we find

G↑αn = − i(ωn + �n) + ξα + χn

(ωn + �n)2 + |�n|2 + (χn + ξα )2
,

G↓αn = − i(ωn − �−n) + ξα + χ−n

(ωn − �−n)2 + |�−n|2 + (χ−n + ξα )2
,

Fαn = − �−n

(ωn − �−n)2 + |�−n|2 + (χ−n + ξα )2
. (A33)

Suppose there is a time-reversal symmetry so that �↑n = �↓n

and G↑αn = G↓αn. Equation (A17) then implies that �n is odd
in frequency and χn is even. It further follows from the above
formulas for G↑αn and G↓αn that |�n| is even and we arrive at
the usual expressions for the thermal Green’s functions in the
Migdal-Eliashberg theory:

G↑αn = G↓αn ≡ Gαn = − i(ωn + �n) + ξα + χn

(ωn + �n)2 + |�n|2 + (χn + ξα )2
,

Fαn = − �n

(ωn + �n)2 + |�n|2 + (χn + ξα )2
.

(A34)

APPENDIX B: PATH-INTEGRAL FORMULATION
OF THE MIGDAL-ELIASHBERG THEORY

FOR DISPERSING PHONONS

Here we derive Eliashberg equations and free energy
for arbitrary phonon spectrum and momentum-dependent
electron-phonon coupling. We will see that these quantities

have the same form as for the Holstein model, but with a more
general kernel which now involves an integral over the phonon
spectrum. Our starting point is the standard electron-phonon
Hamiltonian

H =
∑
pσ

ξpc†
pσ cpσ +

∑
q

ω0(q)b†
qbq

+ 1√
N

∑
pqσ

αq√
2Mω0(q)

c†
p+qσ cpσ [b†

−q + bq]. (B1)

The Hermitian property requires αq = α∗
−q. For simplicity, we

take αq and ω0(q) to depend only on the magnitude of the
momentum q. Integrating out phonons, we obtain an effective
action for the fermionic fields

Seff = T
∑
pσ

ψ∗
pσ G−1

0p ψpσ − 1

2

T 3

N

∑
pp′qσσ ′

|αq|2M−1

ω2
m + ω2

q

× ψ∗
p+qσψpσψ∗

p′−qσ ′ψp′σ ′ , (B2)

where G−1
0p = −iωn + ξp, and p = (ωn, p); q = (ωm, q) are

the frequency-momentum 4-vectors. As in Eq. (A3) we
replace the bare phonon frequencies ω0(q) with the renor-
malized frequencies ωq in the denominator of the effective
electron-electron interaction.

It is helpful to rewrite the interaction as

1

2

∑
σσ ′

T 2

N

|αq|2M−1

ω2
n + ω2

q

ψ∗
p+qσψpσψ∗

p′−qσ ′ψp′σ ′

= ψ∗
p′

1↑ψ∗
−p′

2↓D
p′

1p′
2

p1p2
ψ−p2↓ψp1↑ − 1

2
ψ∗

p′
1↑ψp′

2↑D
p′

1p′
2

p1p2
ψ∗

p2↑ψp1↑

− 1

2
ψ∗

p′
1↓ψp′

2↓D
p′

1p′
2

p1p2
ψ∗

p2↓ψp1↓, (B3)

where we treat D as a matrix with matrix elements

D
p′

1p′
2

p1p2
= Dqδp′

1,p1+qδp′
2,p2+q, Dq = T 2

N

|αq|2M−1

ω2
n + ω2

q

. (B4)

As before, we decouple the interaction with fields � and �σ ,

Seff = T
∑

p′
1p′

2p1p2

{
�∗

p′
1p′

2
[D−1]p′

1p′
2

p1p2
�p1p2 + 1

2

∑
σ

�∗
σp′

1p′
2
[D−1]p′

1p′
2

p1p2
�σ p1 p2

}
+ T

∑
p1p2

�†
p1

Mp1p2�p2 , (B5)

where

Mp1p2 =
(

[−iωn + ξp1
]δp1p2 − i�↑p1p2 �p1p2

�∗
p2p1

[−iωn − ξp1
]δp1p2 + i�↓,−p2,−p1

)
, �p =

(
ψp↑
ψ∗

−p↓

)
. (B6)

Integrating out the fermions, we find

Seff = T
∑

p′
1p′

2p1p2

{
�∗

p′
1p′

2
[D−1]p′

1p′
2

p1p2
�p1p2 + 1

2

∑
σ

�∗
σp′

1p′
2
[D−1]p′

1p′
2

p1p2
�σ p1 p2

}
− Tr ln M. (B7)

1. Stationary point

It is reasonable to expect that in a translationally invariant
system, the stationary point is also translationally invariant.
Translational invariance means that matrices �p1p2 and �σp1p2

are diagonal,
�p1p2 = �p1δp1p2 , �σp1p2 = �σp1δp1p2 , (B8)

since p1 = p2 ensures that eip1x1−ip2x2 = eip1(x1−x2 ) depends
only on r1 − r2 and τ1 − τ2.
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Setting the off-diagonal matrix elements to zero in the
effective action (B7), we obtain

Seff = T
∑
p′p

{
�∗

p′[D−1]p′
p �p + �p′[D−1]p′

p �p

− χp′[D−1]p′
p χp

} −
∑

p

ln[(ωn + �p)2

+ |�p|2 + (χp + ξp)2], (B9)

where

�p = �↑p − �↓,−p

2
, iχp = �↑p + �↓,−p

2
. (B10)

Now we evaluate the stationary point of this effective action
with respect to �∗

p, �p, and χp and multiply the resulting
expression by matrix D on both sides. The result is

�np = T

N

∑
mq

|αq|2M−1

(ωn − ωm)2 + ω2
q

�mp′

(ωm + �mp′ )2 + |�mp′ |2 + (χmp′ + ξp′ )2
,

�np = T

N

∑
mq

|αq|2M−1

(ωn − ωm)2 + ω2
q

ωm + �mp′

(ωm + �mp′ )2 + |�mp′ |2 + (χmp′ + ξp′ )2
, (B11)

χnp = −T

N

∑
mq

|αq|2M−1

(ωn − ωm)2 + ω2
q

χmp′ + ξp′

(ωm + �mp′ )2 + |�mp′ |2 + (χmp′ + ξp′ )2
,

where p′ = p + q. These are the momentum-dependent
Eliashberg equations for the Hamiltonian (B1) [cf. Eq. (A18)
for the Holstein model].

We look for an isotropic solution of Eq. (B11), so that �np,
�np, and χnp are independent of the direction of p. Then, it
is useful to convert the summation over q in Eq. (B11) into
an integral over q and p′, where q and p′ are the magni-
tudes of vectors q and p′. Using p′2 = p2 + q2 + 2pq cos θ ,
we evaluate the Jacobian for the change of variables
(q, cos θ ) → (q, p′) and find

∑
q

= V

4π2

∫∫
q2dq d cos θ = V

4π2

1

p

∫
q dq

∫
p′d p′.

(B12)
Since the right-hand side of Eq. (B11) is a product of a
function of q only and a function of p′ only, the integration
over q factorizes into a product of an integral over q and an
integral over p′.

In the Migdal-Eliashberg theory, the fluctuations around
the stationary point are negligible only when the Fermi energy
is much larger than any other characteristic energy [1,2]. This
means that the integration is confined to the vicinity of the
Fermi surface, which we take to be spherical, and p ≈ p′ ≈
pF , where pF is the Fermi momentum. Since q connects p
and p′, which are both on the Fermi surface, its magnitude
varies between 0 and 2pF . This allows as to rewrite Eq. (B12)
as

∑
q

= V

4π2

1

p2
F

∫ 2pF

0
q dq

∫
p′2d p′ = 1

2p2
F

∫ 2pF

0
q dq

∑
p′

.

(B13)

Using this in Eq. (B11), we observe �np, �np, and
χnp are independent of the momentum p and performing
the summation over p′ we arrive at the following two

equations:

�n = πT
∑

m

λ(ωn − ωm)
�m√

(ωm + �m)2 + |�m|2
,

�n = πT
∑

m

λ(ωn − ωm)
ωm + �m√

(ωm + �m)2 + |�m|2
, (B14)

where

λ(ωl ) = 1

2p2
F

∫ 2pF

0

g2
qq dq

ω2
l + ω2

q

, g2
q = |αq|2M−1. (B15)

This expression is for a spherical Fermi surface in d = 3
dimensions, but it is straightforward to extend it to any d � 2.
Equations (B14) are of the same form as Eqs. (A21), but with a
more general kernel λ(ωn − ωm). For dispersionless phonons,
ωq = � and gq = g, this kernel too coincides with that in
Eq. (A21). By definition the dimensionless coupling constant
for dispersing phonons is

λ = λ(ωl = 0) = 1

2p2
F

∫ 2pF

0

g2
qq dq

ω2
q

. (B16)

The effective action evaluated at the stationary point is
[cf. Eq. (A20)]

Seff = T ν0V
∑

nl

[�∗
n+l�l�n + �n+l�l�n]

− 2πν0V
∑

n

√
(ωn + �n)2 + |�n|2. (B17)

Here �l is the Fourier transform of 1/λ(τ ) at frequency ωl .
The corresponding free energy f = T Seff/N per lattice site is

f = ν0T 2
∑

nl

[
�∗

n+lλ
−1
l �n + �n+lλ

−1
l �n

]

− 2πν0T
∑

n

√
(ωn + �n)2 + |�n|2. (B18)
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2. BCS theory as the weak coupling limit
of the Migdal-Eliashberg theory

Confusion exists in the literature to this day regarding
whether or not the BCS theory is the weak coupling limit of
the Migdal-Eliashberg theory [21,22]. This confusion arises
from attempts to compare cutoff-dependent quantities which
are illegitimate within the BCS theory. The BCS theory is
only valid in the limit �BCS/� → 0, where �BCS is the BCS
ground-state gap and � is the cutoff of the order of the Debye
energy for acoustic phonons and �0 for Einstein phonons
(Holstein model).

In other words, one should take the limit � → ∞ and
the coupling constant λ → 0 while keeping �BCS ∝ �e−1/λ

fixed. Only quantities that survive this limit are legitimate
within the BCS theory. In particular, it is meaningless to
compare �BCS/� or Tc/�, but, for example, �BCS/Tc, the
condensation energy, the normalized jump in the specific heat
are meaningful and their BCS values should agree with those
in the weak coupling limit of the Migdal-Eliashberg theory,
which they indeed do [8,32,77,78].

It is well-understood how the BCS theory emerges from the
Migdal-Eliashberg theory in the weak coupling limit. Here we
reproduce known arguments within our path-integral frame-
work. Our aim in doing so is to be able to compare later
the weak and strong coupling limits of the Migdal-Eliashberg
theory as well as Anderson and Eliashberg spins. We define
the weak coupling limit as the limit where the ratio of the
energy gap to the characteristic phonon frequency ωch goes to
zero. This is equivalent to ωch → ∞ (cf. ωch = � → 0) in the
strong coupling limit of the Holstein model [see Eq. (5)].

Since relevant energies and frequencies are of the order of
the gap, ωn in the denominator is negligible in the effective
action (B2). Then, the interaction is instantaneous and the
effective action corresponds to the Hamiltonian

H =
∑
pσ

ξpc†
pσ cpσ − 1

2N

∑
pp′qσσ ′

α2
qM−1

ω2
q

c†
p+qσ cpσ c†

p′−qσ ′cp′σ ′ .

(B19)
The hierarchy of scales εF � ωch � �BCS implies that the
pairing interaction is confined to the vicinity of the Fermi sur-
face and that momenta of phonons mediating the interaction
are of the order of the Fermi momentum. Therefore, the range
of the electron-electron interaction is of order of the Fermi
wavelength λF . The characteristic length scale (coherence
length) in a weakly coupled superconductor is of the order
of vF /�BCS, which is orders of magnitude larger than λF . We
see that the dimensionless range of interactions goes to zero in

the weak coupling limit. This means the interaction potential
is a delta function in the position space and a constant in
the momentum space. Since the pairing occurs at the Fermi
surface in this limit, we determine the constant by averaging
the interaction over this surface,

const = 1

2p2
F

∫ 2pF

0

α2
qM−1q dq

ω2
q

= λ

ν0
, (B20)

where we used Eq. (5). This is very similar to how we obtained
Eq. (B15) in the Migdal-Eliashberg theory. The interaction in
the position basis takes the form c†

σ (r)cσ (r)c†
σ ′ (r)cσ ′ (r). For

σ = σ ′ this is equal to c†
σ (r)cσ (r), which we absorb into the

chemical potential term. We are left with σ �= σ ′ terms, i.e.,
with the BCS Hamiltonian

H =
∑
pσ

ξpc†
pσ cpσ − λδ

∑
pp′q

c†
p+q↑c†

p′−q↓cp′↓cp↑, (B21)

where δ = (ν0N )−1 is the single-particle level spacing at the
Fermi energy.

Both BCS and Eliashberg theories are mean-field theories.
In mean-field approach, only Cooper pairs with zero total
momentum determine the ground state and low-lying excita-
tion spectrum. Keeping only such pairs, we end up with the
reduced BCS Hamiltonian [20]

H =
∑
pσ

ξpc†
pσ cpσ − λδ

∑
pp′

c†
−p↑c†

p↓cp′↓c−p′↑. (B22)

We expect the above sequence of steps leading to Eq. (B22)
to be exact when we take both the weak coupling and ther-
modynamic limits. The neglect of frequency and momentum
dependencies of the electron-electron interaction is valid at
energies much smaller than ωch. It resulted in infinite-range
interaction in momentum space between Cooper pairs in
Eq. (B22) [or, equivalently, spins in Eq. (53)]. Therefore, this
infinite-range interaction has to be cut off at � ∼ ωch. Any
quantity to which energies of order ωch contribute is beyond
the BCS theory.

The weak coupling limit of the Migdal-Eliashberg theory,
the BCS theory, is universal in the sense that it is independent
of the phonon dispersion and momentum dependence of the
electron-phonon coupling. There is only one low-energy scale
in this limit: the BCS gap �BCS. The gap itself cannot be
determined accurately from within the BCS theory. However,
the ratio of any other energy to the gap, e.g., Tc/�BCS is well
defined. The strong coupling limit of the Migdal-Eliashberg
theory is similarly universal [53].
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