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We study the dynamics of two ensembles of atoms (or equivalently, atomic clocks) coupled to a bad cavity
and pumped incoherently by a Raman laser. Our main result is the nonequilibrium phase diagram for this
experimental setup in terms of two parameters: detuning between the clocks and the repump rate. There are
three main phases: a trivial steady state (phase I), where all atoms are maximally pumped, a nontrivial steady
state corresponding to monochromatic superradiance (phase II), and amplitude-modulated superradiance (phase
III). Phases I and II are fixed points of the mean-field dynamics, while in most of phase III stable attractors are
limit cycles. Equations of motion possess an axial symmetry and a Z2 symmetry with respect to the interchange
of the two clocks. Either one or both of these symmetries are spontaneously broken in various phases. The trivial
steady state loses stability via a supercritical Hopf bifurcation bringing about a Z2-symmetric limit cycle. The
nontrivial steady state goes through a subcritical Hopf bifurcation responsible for coexistence of monochromatic
and amplitude-modulated superradiance. Using Floquet analysis, we show that the Z2-symmetric limit cycle
eventually becomes unstable and gives rise to two Z2-asymmetric limit cycles via a supercritical pitchfork
bifurcation. Each of the above attractors has its own unique fingerprint in the power spectrum of the light
radiated from the cavity. In particular, limit cycles in phase III emit frequency combs—series of equidistant
peaks, where the symmetry of the frequency comb reflects the symmetry of the underlying limit cycle. For
typical experimental parameters, the spacing between the peaks is several orders of magnitude smaller than the
monochromatic superradiance frequency, making the lasing frequency highly tunable.
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I. INTRODUCTION AND SUMMARY
OF MAIN RESULTS

Atomic condensates trapped in optical cavities host a
range of intriguing collective behaviors, such as superradiance
[1–4], Bragg crystals [5–7], and collective atomic recoil lasers
[8–10]. Here pumping and dissipation play a key role. For
example, they facilitate superradiance—a macroscopic pop-
ulation of photons in the cavity mode [11–27]. In addition
to providing a platform for studying far-from-equilibrium
physics, atom-cavity systems have interesting technological
applications, such as an ultrastable superradiant laser [28–31].
In this setup a large number of ultracold atoms exchange
photons with an isolated mode of a “bad cavity.” This type of
cavity leaks photons to the environment very fast. The phases
of individual atoms synchronize in the process resulting in
superradiance. In the bad-cavity limit, the frequency of the
emitted light is solely determined by the atomic transitions,
thereby circumventing thermal noise plaguing lasers operat-
ing in the good-cavity limit. Moreover, if N is the number of
atoms in a superradiant laser, the intensity of the emitted light
is proportional to N2, unlike a usual laser, where atoms do not
radiate in a correlated fashion and the intensity is proportional
to N . Recent work proposed to utilize such high-intensity light
for an atomic clock [32]. Having this in mind, below we use
the terms “atomic ensemble” (coupled to a bad-cavity mode)
and “atomic clock” interchangeably.

External driving and dissipation are also major factors in
exciton-polariton condensates confined inside semiconductor

microcavities [33–39]. The condensate often fragments into
several interacting droplets due to intrinsic inhomogeneities.
Already two such droplets reveal several complicated syn-
chronized phases. Besides lasing with a fixed frequency,
which is referred to as “weak lasing” [40,41] and is similar
to the usual, monochromatic superradiance, the droplets can
synchronize to produce a frequency comb, i.e., light with
periodically modulated amplitude [42,43].

Recent research points out that two atomic clocks Rabi
coupled to the same optical-cavity mode synchronize and
radiate with a common frequency [44–47]. This is an analog
of the weak-lasing phenomenon and is reminiscent of the
original synchronization experiment performed by Huygens
in the 18th century. He studied the long-time dynamics of
the pendulums of two clocks suspended from a common
support and observed that after some time their phases and
frequencies synchronize [48]. In this paper, we map out the
nonequilibrium phase diagram of two atomic ensembles in
a bad cavity; see Fig. 1. In addition to monochromatic su-
perradiance, we discover a plethora of fascinating dynamical
behaviors—periodic, quasiperiodic, and chaotic modulations
of superradiance amplitude. Here we focus on monochromatic
and periodic regimes, leaving more complicated behaviors for
later [49,50]. An interesting feature of the periodically modu-
lated superradiance, where the power spectra are frequency
combs (see Fig. 5), is that it makes the frequency of the
ultrastable superradiant laser tunable.

In the reminder of this section we describe our setup
and summarize the main results. We model the two atomic
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FIG. 1. Nonequilibrium phase diagram of two atomic ensembles
resonantly coupled to a bad cavity, where δ and W are the detuning
between the ensembles and incoherent repump rate, respectively, in
units of the collective decay rate. In phase I (the normal phase) atoms
interfere destructively and produce no light. In phase II, we observe
monochromatic superradiance; i.e., the ensembles synchronize and
radiate light with the mean frequency. Phase III features various
types of amplitude-modulated superradiance: frequency combs (limit
cycles) in green and yellow subregions as well as quasiperiodic and
chaotic behaviors near the origin (blue and orange). Inside the green
part of region III the limit cycles possess a Z2 symmetry with respect
to the interchange of the two ensembles (see the text), which is
spontaneously broken to the left of the dashed line. We depict the
region near the boundary of II and III, where monochromatic and
amplitude-modulated superradiance coexist, in purple.

ensembles (τ = A, B) coupled to each other through a bad-
cavity mode, in the presence of dissipation and pumping (see
Fig. 2), by the following master equation for the density
matrix ρ:

ρ̇ = −ı[Ĥ , ρ] + κL[a]ρ + W
∑

τ=A,B

N∑
j=1

L
[
σ̂ τ

j+
]
ρ,

Ĥ = ω0â†â +
∑

τ=A,B

[
ωτ Ŝτ

z + �

2

(
â†Ŝτ

− + âŜτ
+
)]

,

(1.1)

where the Hamiltonian for the system without energy-
nonconserving processes is Ĥ and the creation (annihilation)
operator for the cavity mode ω0 is â† (â). Each ensemble
contains N (≈106) atoms of the same type (e.g., 87Sr or 87Rb).
We regard the atoms as two-level systems and only focus on
the two atomic energy levels most strongly coupled to the
cavity mode. As a result, it is sufficient to represent the two
ensembles with two collective spin operators

ŜA,B
z = 1

2

N∑
j=1

σ̂ A,B
jz , ŜA,B

± =
N∑

j=1

σ̂ A,B
j± , (1.2)

where the Pauli operators σ̂ j stand for individual atoms. Level
spacings ωA and ωB of the two-level atoms in ensembles A and
B, respectively, are controlled by separate Raman-dressing
lasers [46].

Besides the atom-cavity coherent coupling, we consider
two energy-nonconserving processes: (1) decay of the cavity
mode with a rate κ and (2) incoherent pumping of the atoms
with a transverse laser at an effective repump rate W . We
model these processes via Lindblad superoperators acting on
the density matrix

L[Ô]ρ = 1
2 (2ÔρÔ† − Ô†Ôρ − ρÔ†Ô). (1.3)

In the bad-cavity regime κ � 1, we neglect other sources of
dissipation, such as spontaneous emission and background
dephasing.

Our final goal is to analyze the light emitted by the cavity.
To this end, we eliminate the cavity mode using the adia-
batic approximation, which is exact in the κ → ∞ limit, and
then derive the following mean-field equations of motion in
Sec. II A that describe the dynamics of the system in terms of
two classical spins sA and sB:

ṡτ
± =

(
±ıωτ − W

2

)
sτ
± + 1

2
sτ

z l±, (1.4a)

ṡτ
z = W

(
1 − sτ

z

)− 1

4
sτ
+l− − 1

4
sτ
−l+, (1.4b)

where

sτ
± = sτ

x ± ısτ
y = 2

N
〈Ŝτ

±〉, sτ
z = 2

N

〈
Ŝτ

z

〉
(1.5)

are components of the classical spins and

l =
∑

τ

sτ = sA + sB (1.6)

is the total classical spin. In the coordinate frame rotating with
the angular frequency 1

2

∑
τ ωτ around the z axis, the level

spacings are

ωA = −ωB = δ

2
, δ = ωA − ωB, (1.7)

where δ is the “detuning” between the two level spacings.
We note that Eq. (1.4) is valid for an arbitrary number n of
spatially separated ensembles of N atoms each, identically
coupled to the cavity. In Sec. II B, we further derive the
Fokker-Planck equation governing quantum fluctuations over
the mean-field dynamics for n ensembles. In the equations of
motion and from now on we set the units of time and energy
so that

N	c = 1, (1.8)

where 	c = �2/κ is the collective decay rate. Thus, the mean-
field dynamics and nonequilibrium phase diagram for two
atomic ensembles depend on only two dimensionless param-
eters δ and W . In a typical experiment N	c is approximately
1 kHz, whereas δ and W can be varied between zero and 4π

MHz [28,30,31,46].
Equations of motion (1.4) are axially symmetric; i.e., they

are invariant with respect to sτ → R(φ) · sτ , where R(φ) is a
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FIG. 2. Schematics of the setup (a) and energy level diagram (b). Two atomic ensembles A and B couple with Rabi coupling � (double-
headed block arrows) to a heavily damped cavity mode (dashed line). Cavity intensity decays with a rate κ . The atoms (shown with solid
arrows) in the two ensembles are effective two-level systems with level splittings ωA and ωB. The dot-dashed line in (b) shows their shared
ground state. The atoms are pumped incoherently from the ground state to their excited states via a third metastable state at a rate W .

rotation by φ about the z axis,

R(φ) :
(
sτ
±, sτ

z

) −→ (
sτ
±e±ıφ, sτ

z

)
. (1.9)

Using axial symmetry and introducing a set of new variables,

sτ
± = sτ

⊥e±ıφτ , φA = � + ϕ, φB = � − ϕ, (1.10)

where ϕ is defined modulo π , we factor out the evolution of
the overall phase � from Eq. (1.4),

�̇ = 1

2
(ωA + ωB) + sin 2ϕ

4

(
sA

z sB
⊥

sA
⊥

− sB
z sA

⊥
sB
⊥

)
. (1.11)

Note that �̇ as well as the equations of motion for the
remaining five variables,

ṡA
⊥ = −W

2
sA
⊥ + sA

z

2

(
sA
⊥ + sB

⊥ cos 2ϕ
)
,

ṡB
⊥ = −W

2
sB
⊥ + sB

z

2

(
sA
⊥ cos 2ϕ + sB

⊥
)
,

ṡA
z = W

(
1 − sA

z

)− sA
⊥
2

(
sA
⊥ + sB

⊥ cos 2ϕ
)
,

ṡB
z = W

(
1 − sB

z

)− sB
⊥
2

(
sA
⊥ cos 2ϕ + sB

⊥
)
,

ϕ̇ = 1

2
(ωA − ωB) − sin 2ϕ

4

(
sA

z sB
⊥

sA
⊥

+ sB
z sA

⊥
sB
⊥

)
,

(1.12)

do not contain � as a consequence of the axial symmetry. This
ensures that the values of sτ

⊥, sτ
z , and ϕ at subsequent times do

not depend on the initial value of �.
For two ensembles, Eq. (1.4) and Eq. (1.12) also possess a

Z2 symmetry. Equation (1.4) remains unchanged upon the re-
placement sτ → Σ ◦ R(φ0) · sτ , i.e., a rotation of the spins by
a fixed angle φ0 about the z axis, followed by an interchange
of the two atomic clocks with a simultaneous change of the

sign of the y component:

Σ :
(
sA
±, sA

z , sB
±, sB

z

) −→ (
sB
∓, sB

z , sA
∓, sA

z

)
. (1.13)

Z2-symmetric asymptotic solutions (attractors) obey sτ = Σ ◦
R(φ0) · sτ , where φ0 depends on the initial condition. This
condition defines a confining 4D submanifold of the full 6D
phase space defined (independently of the initial conditions)
by the following two constraints:

sA
⊥ = sB

⊥, sA
z = sB

z . (1.14)

In a reference frame rotated by φ0 around the z axis, the Z2-
symmetric solutions satisfy

sA
x = sB

x , sA
y = −sB

y , sA
z = sB

z . (1.15)

These three constraints define an invariant 3D submanifold,
which is obtained by considering a fixed value of φ0 along
with Eq. (1.14). An initial condition on this submanifold
restricts the future dynamics on the same. The geometric
meaning of the Z2 transformation is a reflection of the spin
configuration through the plane containing the total spin l and
the z axis. In Eq. (1.12) it amounts to an interchange of sA

⊥ with
sB
⊥ and of sA

z with sB
z . In Eq. (1.11), one additionally needs to

replace � → −� and set ωA + ωB = 0.
For Z2-symmetric attractors, Eq. (1.15) implies that in

a suitable coordinate frame lx = 2sA
x , ly = 0, and Eq. (1.4)

yields closed equations of motion for sA,

ṡx = − δ

2
sy − W

2
sx + szsx, (1.16a)

ṡy = δ

2
sx − W

2
sy, (1.16b)

ṡz = W (1 − sz ) − (sx )2, (1.16c)

where we dropped the superscript. Therefore, for a Z2-
symmetric attractor it is sufficient to study Eq. (1.16). Even

033802-3



PATRA, ALTSHULER, AND YUZBASHYAN PHYSICAL REVIEW A 99, 033802 (2019)

though Eq. (1.16) describes a motion of one spin, it is much
more complex than Eq. (1.4) for a single atomic ensemble.
Indeed, as we show in Appendix A, the phase diagram for
the latter case is effectively 1D and contains only two phases
(monochromatic superradiance and the normal phase).

Mean-field dynamics of several ensembles in a bad cavity
have two types of fixed points, which we derive by equating
the time derivatives to zero in Eq. (1.4). The first one is

sτ
± = 0, sτ

z = 1. (1.17)

This is a normal state, where atomic clocks are not synchro-
nized and no light emanates from the cavity (〈â†â〉 ∝ |l−|2 =
0). In this phase (region I in Fig. 1), the atoms are maximally
pumped (sτ

z = 1) and the cavity mode is not populated. We
call this fixed point the trivial steady state (TSS). It is the only
attractor with both the axial and Z2 symmetry.

The second type (nontrivial steady state, or NTSS) corre-
sponds to monochromatic superradiance (region II of Fig. 1).
Here the damping is nontrivially balanced by the external
pumping leading to a macroscopic population of the cavity
mode. For two ensembles the NTSS reads

sA
− = e−ı(�+ϕ) l⊥

2

√
1 + δ2

W 2
,

sB
− = e−ı(�−ϕ) l⊥

2

√
1 + δ2

W 2
,

sA
z = sB

z = δ2 + W 2

2W
,

(1.18)

where

l⊥ =
√

2[1 − (W − 1)2 − δ2], ϕ = arctan
δ

W
, (1.19)

and � is an arbitrary angle. The NTSS comes to pass when
the TSS loses stability on the quarter-circular arc depicting the
boundary of phases I and II. It spontaneously breaks the axial
symmetry, while retaining the Z2 symmetry. Specifically, it
is invariant under Σ ◦ R(−�), where � is the overall phase
in Eq. (1.18). The NTSS is not a single point, but a one-
parameter (�) family of fixed points related to each other
by rotations around the z axis. Equations (1.7), (1.11), and
(1.18) imply �̇ = 0. When ωA + ωB �= 0, the axial symmetry
of the NTSS is restored, and it becomes a trivial limit cycle
with �̇ �= 0. Note also that for Eq. (1.12) the NTSS is a single
fixed point, since sA

⊥ and sB
⊥ are independent of �, while for

Eq. (1.16) it reduces to two fixed points corresponding to
� = 0 and π in Eq. (1.18).

We determine the regions of stability of the TSS and NTSS
in Sec. III A. In Sec. III B, we go beyond linear stability
analysis (introducing the Poincaré-Birkhoff normal form) to
explain the coexistence of the NTSS with other attractors.
We find that in addition to the I-II boundary, the TSS losses
stability via a supercritical Hopf bifurcation (see Fig. 3) on
the δ � 1 part of the W = 1 line separating phases I and III
in Fig. 1. After the bifurcation it gives rise to an infinitesimal
limit cycle (frequency comb) as shown in Fig. 7. The NTSS,
on the other hand, loses stability via a subcritical Hopf bi-
furcation (see Fig. 3 and Fig. 8), bringing about an unstable
limit cycle before the bifurcation [51–53]. This limit cycle is
the separatrix—the boundary separating the basin of attraction

FIG. 3. Cartoon demonstrating the similarity between Hopf bi-
furcations and phase transitions. Supercritical (subcritical) Hopf
bifurcations are analogous to second (first) order phase transitions.
The curves indicate 2D free energy plots and the direction of the
flow towards stable attractors in the case of phase transitions and
driven-dissipative dynamics, respectively. The leftmost curve depicts
a stable equilibrium point P at the minimum. In a supercritical Hopf
bifurcation (I → A1 → F) the fixed point loses stability by giving
rise to a stable limit cycle. At the bifurcation the limit cycle is
infinitesimally small just like the order parameter in a second-order
phase transition. In a subcritical Hopf bifurcation (I → B1 → B2 →
F) an unstable limit cycle comes to exist before the bifurcation. This
limit cycle acts as a separatrix between the basins of attraction of the
fixed point P and another stable attractor.

of the NTSS from that of another attractor. As one nears
criticality, the size of the separatrix shrinks, and after the bi-
furcation it disappears altogether. Therefore, any perturbation
will push the dynamics far away from the fixed points right
after the bifurcation, making it a catastrophic bifurcation. This
not only explains the absence of any infinitesimal limit cycle
after the bifurcation, but also justifies the coexistence (in the
purple region of Fig. 1) of the NTSS with other attractors
before the bifurcation. As explained in Fig. 3, the loss of
stability of the NTSS is analogous to the first (rather than
second [44]) order phase transition.

For the sake of completeness, let us mention that in
the absence of pumping (on the δ axis, sans the origin), the
system goes to a nonradiative fixed point distinct from the
TSS. For W = 0, the mean-field equations of motion (1.4)
reduce to a variant of the Landau-Lifshitz-Gilbert equation.
The asymptotic solution only retains the axial symmetry,
where both spins point along the negative z axis. Finally, at the
origin (δ = W = 0), the equations of motion are integrable.
The attractor is a nonradiative fixed point that breaks both
symmetries. We include a detailed discussion of these fixed
points in Appendix C.

In region III of Fig. 1, all stable asymptotic solutions of
Eq. (1.12) are time-dependent. In particular, there are limit
cycles that lead to periodically modulated superradiance or
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FIG. 4. Z2-symmetric limit cycles from the green parts of region
III in Fig. 1 resemble potato chips. Here (δ,W ) = (1.5, 0.5). We
only show spin sA (blue arrow) representing the dynamics of atomic
ensemble A, since spin sB is related to sA by the Z2 symmetry. In this
regime the cavity radiates a frequency comb similar to the one shown
in Fig. 5(a). Individual spin trajectories for Z2-symmetry-broken
limit cycles are similarly potato-chip-like shaped, but the two spins
are no longer tied to each other in a simple way.

frequency combs. None of them retain the axial symmetry.
The limit cycle in the green part of region III possesses Z2

symmetry, while the ones in the light yellow subregion break
it. A typical Z2-symmetric limit cycle is shown in Fig. 4.
Using Eq. (1.16), we are able to analytically determine this
limit cycle in various limits in Sec. IV A 1. For example, when
either W  δ or 1 − W  1 (but δ is not too close to 1), in a
suitably rotated frame,

sA
x = sB

x ≈
√

2W (1 − W ) cos (ωt − α), (1.20a)

sA
y = −sB

y ≈
√

2W (1 − W ) sin (ωt ), (1.20b)

sA
z = sB

z ≈ W, (1.20c)

where

ω = 1

2

√
δ2 − W 2, tan α = W

2ω
. (1.21)

Then, the potato chip in Fig. 4 is flat and normal to the z axis.
For a comparison of Eq. (1.20) with the numerical result, see
Fig. 12. We also note that the z component of the limit cycle in
the δ � W limit agrees with the result obtained with the help
of the quantum regression theorem in Ref. [44]. Especially
interesting is the case when both W and δ are close to 1, i.e.,
the vicinity of the tricritical point in Fig. 1. In this case, the
harmonic approximation (1.20) breaks down and the solution

for the limit cycle is now in terms of the Jacobi elliptic
function cn; see Sec. IV A 2.

We analyze the stability of Z2-symmetric limit cycles with
the help of the Floquet technique in Sec. IV B and find that it
becomes unstable as we cross the dotted line in Fig. 1. As a
result, two new, symmetry-broken limit cycles related to each
other by the Z2 symmetry operation emerge; see Sec. IV C.

Limit cycles in region III of the phase diagram are periodic
solutions of Eq. (1.12) for given W and δ = (ωA − ω)/2. They
are closed curves in the 5D space with coordinates sτ

⊥, sτ
z ,

and ϕ (mod π ). Equation (1.11) may introduce the second
fundamental frequency ωq depending on the reference frame
and the limit cycle. Indeed, this equation implies

�(t ) = �t + F (t ), � = 1
2 (ωA + ωB) + ωq, (1.22)

where F (t ) is periodic with the same period as the limit cycle
and ωq is the zeroth harmonic term in the Fourier series of the
second term on the right-hand side of Eq. (1.11). When � �=
0, the limit cycle precesses with constant angular frequency
� in the full 6D space of components of sA and sB; i.e., the
corresponding attractor of Eq. (1.4) is an axially symmetric 2-
torus. If � = 0, then � = constant and instead of a 2-torus we
have a one-parameter (�) family of limit cycles related to each
other via an overall rotation. Each of them breaks the axial
symmetry. Regardless of the value of �, we refer to all above
attractors as a limit cycle at a point (δ,W ) throughout this
paper, keeping in mind that it is always a single limit cycle for
Eq. (1.12). We are using a rotating frame such that ωA + ωB =
0. In addition, ωq = 0 for Z2-symmetric limit cycles, since the
second term on the right-hand side of Eq. (1.11) vanishes by
Z2 symmetry. Therefore, � = 0 in this case.

Each of the above nonequilibrium phases of two atomic
ensembles coupled to a heavily damped cavity mode has its
unique signature in the power spectrum of the light radiated by
the cavity. Experimentally, one measures the autocorrelation
function of the radiated complex electric field. The power
spectrum is the Fourier transform of this function, i.e., the
modulus squared of the Fourier transform of the electric field.
In terms of the classical spin variables, we identify the power
spectrum to be proportional to |l−( f )|2 within the mean-field
approximation, where

l−( f ) =
∫ +∞

−∞
dt l−(t ) e2π ı f t , l− =

∑
τ

sτ
−. (1.23)

We derive this relationship between l− and the power spec-
trum in Appendix D starting from the master equation.

The power spectrum of monochromatic superradiance
(NTSS) consists of a single peak at fmc = (ωA + ωB)/4π ; see
Sec. V A. For example, for 87Sr in a bad cavity, the peak
appears approximately at 4.3 × 105 GHz [54]. Subsequently,
we show all spectra in a rotating frame and set the above
superradiant frequency to be the origin.

For the Z2-symmetric limit cycle the power spectrum is
a frequency comb that contains only odd harmonics [see
Fig. 5(a)]. Moreover, because of the Z2 symmetry the spec-
trum possesses a reflection symmetry about the vertical axis.
As one moves into the yellow subregion (to the left of the
dashed line in Fig. 1), the Z2 symmetry breaks spontaneously.
The power spectra of these limit cycles display both odd
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(a)

(b)

(c)

FIG. 5. Power spectra of periodically modulated superradiance
in a rotating frame with the monochromatic superradiance frequency
set as the origin. The unit of frequency ( f ) is the collective de-
cay rate N	c. Top to bottom: Z2-symmetric limit cycle (δ = 0.50,
W = 0.0802) and two Z2-symmetry-broken limit cycles [(δ,W ) =
(0.49, 0.0802) and (δ,W ) = (0.225, 0.05)]. In both (a) and (b) the
fundamental frequency is f0 ≈ 0.044. Unlike (a), where only odd
harmonics are present, in (b) even harmonics appear (most promi-
nently at zero). In spite of both not having the Z2 symmetry, (c)
visibly breaks the reflection symmetry about the vertical axis and
features an overall frequency shift unlike (b).

and even harmonics [see Fig. 5(b)]. In particular, unlike
the spectrum of the Z2-symmetric limit cycle, they have a
pronounced peak at the origin. Despite the loss of the Z2

symmetry, the breaking of the reflection symmetry about the
vertical axis is not so pronounced here. It is however possible
to find examples of symmetry-broken limit cycles, where the
reflection symmetry is visibly broken as in Fig. 5(c). Another
interesting feature of the spectrum in Fig. 5(c) is an overall
shift of all frequencies by ωq/2π ; see the discussion around
Eq. (1.22). In Sec. V B, we show more examples of power
spectra (frequency combs) for different limit cycles.

Frequency combs arising from these limit cycles provide a
range of frequencies (harmonics) around the main peak—the
carrier frequency corresponding to the monochromatic super-
radiance. We will see that the spacing between consecutive
peaks varies continuously in region III of the phase diagram
and can take arbitrary values depending on δ and W . When δ

and W are of order 1, this spacing is many orders of magnitude
smaller (tens of hertz for 87Sr) than the carrier frequency.
For the ultrastable superradiant laser mentioned above this
implies that its frequency is in principle tunable to within this
amount.

II. SEMICLASSICAL DYNAMICS AND QUANTUM
CORRECTIONS

In this paper we primarily explore the semiclassical dy-
namics of the system depicted in Eq. (1.1); see also Fig. 2.
As mentioned above Eq. (1.4), one obtains the necessary
evolution equations after adiabatically eliminating the cavity
mode and employing the mean-field approximation 〈Ô1Ô2〉 ≈
〈Ô1〉〈Ô2〉. To derive the Fokker-Planck equation governing
quantum fluctuations, we use the system size expansion (ex-
pansion in N− 1

2 ) [56–58]. This also confirms the veracity of
the mean-field equations as we obtain the same equations from
the system size expansion.

A. Mean-field equations

We write the mean-field equations in terms of classical
spins sτ introduced in Eq. (1.5), where the average of an
operator Ô is Tr [Ôρ]. To obtain the evolution equations for
these variables, we first adiabatically eliminate the cavity
mode [55] and then apply the mean-field approximation to the
expression

ṡτ = 2

N
Tr [Ŝ

τ
ρ̇] = 2

N
Tr [Ŝ

τ
ρ̇at], (2.1)

where ρat = TrF (ρ) (traced over the cavity mode) is the
atomic density matrix.

We start by rewriting the master Eq. (1.1) in the interaction
representation,

ρ̇I = −ı[ĤI , ρI ] + κL[a]ρI + W
∑
τ, j

L
[
σ̂ τ

j+
]
ρI ,

ĤI = δ

2

(
ŜA

z − ŜB
z

)+ �

2
(â†Ĵ− + âĴ+

+ ). (2.2)

Here

ρI = eı(Ĥat+ĤF )tρe−ı(Ĥat+ĤF )t ,

Ĥat = (ωA + ωB)

2

(
ŜA

z + ŜB
z

)
, ĤF = ω0a†a,

Ĵ± = ŜA
± + ŜA

±. (2.3)
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Next, we trace out the cavity mode in the above master
equation and write the right-hand side as a power series in
�2N/κ2. In the bad-cavity regime (κ � �

√
N), retaining

only the zeroth-order term and neglecting any memory effects,
we derive

ρ̇at = −ı[ĥ, ρat] + 	cL[Ĵ−]ρat + W
N∑
τ, j

L[σ̂ τ
j+]ρat,

ĥ = δ

2

(
ŜA

z − ŜB
z

)
,

(2.4)

where we introduced the collective decay rate

	c = �2

κ
. (2.5)

This procedure is exact in the limit κ → ∞.
A heuristic explanation of the adiabatic approximation

is as follows. In the interaction representation, the classical
equation of motion for the cavity mode is

d〈â(t )〉
dt

= −1

2
[κ〈â(t )〉 + ı�〈Ĵ−(t )〉]. (2.6)

In the bad-cavity regime, the cavity mode decays very quickly.
As a result, the time derivative on the left-hand side of
Eq. (2.6) is negligible and we obtain

〈â〉 ≈ − ı�

κ
〈Ĵ−〉 = −2ı�

Nκ
l−. (2.7)

If we extend this equality to the operator level and replace â
with ı�

κ
Ĵ− in Eq. (1.1), we immediately arrive at Eq. (2.4).

From Eq. (2.7) it is also apparent why, within the mean-field
approach, the intensity of emitted light (〈â†â〉) is proportional
to |l−|2.

Finally, using Eqs. (2.1) and (2.4), and with the help of the
mean-field approximation, we derive Eq. (1.4). In terms of the
x, y, and z components Eq. (1.4) reads

ṡτ
x = −ωτ sτ

y − W

2
sτ

x + 1

2
sτ

z lx, (2.8a)

ṡτ
y = ωτ sτ

x − W

2
sτ

y + 1

2
sτ

z ly, (2.8b)

ṡτ
z = W

(
1 − sτ

z

)− 1

2
sτ

x lx − 1

2
sτ

y ly. (2.8c)

Note also that our choice of units (1.8) of time and energy
implies that 	c scales as N−1 with the number of atoms N .
This ensures that the pumping and decay terms in Eq. (2.4)
are comparable in magnitude. Moreover, in Sec. II B we show
that assuming 	c ∝ N−1 helps achieve proper scaling factors
in front of the semiclassical and the Fokker-Planck terms in
the system size expansion.

B. Fokker-Planck equation

In this subsection, we derive the Fokker-Planck equations
for quantum fluctuations for n atomic ensembles inside a bad
cavity. The master equation is Eq. (2.4), but with

ĥ =
n∑

τ=1

ωτ Ŝτ
z , (2.9)

where ωτ are arbitrary. In the process, we also rederive the
mean-field Eqs. (2.8). We summarize the main steps and
final results, referring the reader to a similar derivation in
Refs. [56,58] for further details.

Define the characteristic function χ ,

χ (ξ, ξ∗, η, t ) = Tr

[∏
τ

ρate
ıξ∗

τ Ŝτ
+eıητ Ŝτ

z eıξτ Ŝτ
−

]
. (2.10)

Taking the time derivative of χ and using Eq. (2.4), we obtain,
after some algebra, a partial differential equation for χ . Then,
we trade χ for the Glauber-Sudarshan P-distribution function
[59,60], which is the Fourier transform of χ . In other words,
we substitute

χ =
∫

d2vvv

∫
dmP (vvv, vvv∗, m, t )eıξ∗·vvv∗

eıξ·vvveıη·m, (2.11)

into the partial differential equation for χ . This allows us to
make the following replacements:

∂ξτ
→ ıvτ , ∂ξ∗

τ
→ ıv∗

τ , ∂ητ
→ ımτ ,

ξτ → −ı∂vτ
, ξ ∗

τ → −ı∂v∗
τ
, e±ıητ → e±∂mτ . (2.12)

After some additional manipulations (integration by parts
to shift the differential operators onto P), we arrive at
a partial differential equation for the distribution function
P (vvv, vvv∗, m, t ) known as the Krammers-Moyal expansion,

∂P
∂t

=
(∑

τ

Lτ

)
P, (2.13)

where

Lτ = ıωτ∂vτ
vτ + 	c

2
Aτ

∑
τ ′

vτ ′ + W

2

[
N

2

(
e∂mτ B2

τ − 1
)

+Cτ mτ + ∂vτ
(2Bτ − 1)vτ

]
+ c.c., (2.14)

Aτ = v∗
τ − e−∂mτ v∗

τ + 2∂vτ
mτ − ∂2

vτ
vτ ,

Bτ = e−∂mτ + ∂vτ
∂v∗

τ
,

Cτ = 1 − e−∂mτ + ∂2
vτ

∂2
v∗

τ
,

(2.15)

and “c.c.” stands for complex conjugate. The complex con-
jugate of ∂z is (∂z )∗ ≡ ∂z∗ . The right-hand side of Eq. (2.13)
contains derivatives of all orders.

To separate out the classical motion from the quantum
fluctuations, we partition variables (vvv, vvv∗, m) as

vτ = N

(
sτ
−
2

+ N− 1
2 ντ

)
,

v∗
τ = N

(
sτ
+
2

+ N− 1
2 ν∗

τ

)
,

mτ = N

(
sτ

z

2
+ N− 1

2 μτ

)
,

(2.16)

where sτ
±,z are the classical spins defined in Eq. (1.5), and

(ν, ν∗,μ) correspond to quantum fluctuations over the clas-
sical motion. Let P̄ (ν, ν∗,μ, t ) be the probability density
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function of these fluctuations. By definition∫
d2vvv

∫
dmP (vvv, vvv∗, m, t )

=
∫

d2ν

∫
dμP̄ (ν, ν∗,μ, t ) ≡ 1. (2.17)

Using Eqs. (2.16) and (2.17), we conclude

P̄ (ν, ν∗,μ, t ) = N3n/2P (vvv, vvv∗, m, t ). (2.18)

Substituting Eqs. (2.16) and (2.18) into Eq. (2.13) and recall-
ing that N	c = 1, we obtain an expansion in powers of N− 1

2 :

∂

∂t
P̄ (ν, ν,μ, t ) = N

1
2 (semiclassical part)

+ N0(Fokker-Planck equation) + O
(
N− 1

2
)
,

(2.19)

where the semiclassical part is∑
τ

[(#)∂ντ
+ (#)∂ν∗

τ
+ (#)∂μτ

]P̄ . (2.20)

We note that the coefficient at N
1
2 contains only the first-order

derivatives with respect to ντ , ν∗
τ , and μτ ; the one at N0, the

first- and second-order derivatives with respect to the same
variables; etc. In the N → ∞ limit, the semiclassical part
needs to vanish. Moreover, the coefficients at each partial
derivative in Eq. (2.20) must vanish separately, because other-
wise we would end up with a time-independent constraint on
the probability density function P̄ of quantum fluctuations.
The resulting three conditions are precisely the mean-field
equations of motion (1.4).

Finally, neglecting terms of the order N− 1
2 in Eq. (2.19),

we obtain the Fokker-Planck equation

∂P̄
∂t

=
(∑

τ

L(2)
τ

)
P̄, (2.21)

where

L(2)
τ = [ıωτ + 1

2

(
W − sτ

z

)]
∂ντ

ντ + 1
2∂μτ

μτ

+ 1
4 sτ

−l−∂2
ντ

+ 1
64

[
2W (1 − 2sτ

z ) + sτ
−l+
]
∂2
μτ

+ W

2
∂ντ

∂ν∗
τ
+ W

4
sτ
−∂ντ

∂μτ
+ c.c. (2.22)

This operator does not contain derivatives of orders higher
than the second.

III. STABILITY ANALYSIS OF TSS AND NTSS

In this section, we determine regions of stability for the
TSS (normal nonradiative phase) and NTSS (monochro-
matic superradiance). These fixed points are described by
Eqs. (1.17) and (1.18), respectively. We show that linear sta-
bility analysis of the reduced spin Eqs. (1.16) obtains the same
regions of stability as that of full equations of motion (1.4).
This means that perturbations that respect the Z2 symmetry
destabilize these steady states before or at the same time as
the ones that do not. Then, going beyond the linear analysis,
we establish that the TSS and NTSS undergo different types
of Hopf bifurcations.

A. Linear stability analysis of the fixed points

1. Jacobian matrix

To analyze the stability of a fixed point (sA
0 , sB

0 ) we linearize
the right-hand side of Eq. (2.8) about (sA

0 , sB
0 ). This produces

a 6 × 6 Jacobian matrix,

J =
[
DA XA

XB DB

]
, (3.1)

where

Dτ =

⎡⎢⎣
1
2

(
sτ

z0 − W
) −ωτ

1
2 lx0

ωτ
1
2

(
sτ

z0 − W
)

1
2 ly0

− 1
2

(
lx0 + sτ

x0

) − 1
2

(
ly0 + sτ

y0

) −W

⎤⎥⎦,

Xτ =

⎡⎢⎣
1
2 sτ

z0 0 0

0 1
2 sτ

z0 0

− 1
2 sτ

x0 − 1
2 sτ

y0 0

⎤⎥⎦. (3.2)

Its eigenvalues are the characteristic values of the fixed point
(sA

0 , sB
0 ), while the eigenvectors are the corresponding char-

acteristic directions. If a characteristic value has a positive
real part at a certain point (δ,W ), the fixed point is unstable.
Accordingly, we define the region of stability of a fixed point
as the region in the δ-W plane, where all characteristic values
have negative real parts.

2. Stability of TSS

We observe that the TSS exists everywhere on the δ-W
plane. Substituting (sA

0 , sB
0 ) from Eq. (1.17) into Eq. (3.1), we

determine the characteristic equation as

[Q3(λ)]2 ≡
{

(W + λ) ×
[
λ2 + (W − 1)λ

+ 1

4
(W 2 + δ2 − 2W )

]}2

= 0. (3.3)

The roots of the above equation,

λ1,2 = −W,

λ3,4 = 1
2 [(1 − W ) +

√
1 − δ2],

λ5,6 = 1
2 [(1 − W ) −

√
1 − δ2],

(3.4)

are the characteristic values of the TSS. All eigenvalues are
double degenerate. The symmetry responsible for the degen-
eracy is the Z2 transformation (1.13), i.e., JΣ − ΣJ = 0 for
the TSS, where Σ is the 6 × 6 matrix representation of the
mapping (1.13). This implies that if |λ〉 is a characteristic
direction with the characteristic value λ, so is Σ|λ〉.

For δ > 1 the characteristic values λ3,4 and λ5,6 are com-
plex and conjugate to each other. Their real part changes sign
from negative to positive as W goes from 1+ to 1−. This pair
of degenerate characteristic values simultaneously crosses the
imaginary axis at W = 1; i.e., a Hopf bifurcation takes place
across the W = 1, δ � 1 half line. In Sec. III B, we will see
that this Hopf bifurcation is supercritical giving rise to a stable
limit cycle as illustrated in Fig. 3. We will find in Sec. III B
below that the the real and imaginary parts of characteristic
values λ3,4 and λ5,6 determine the amplitude (∝ √

1 − W ) and
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the period (≈4π/
√

δ2 − 1) of the limit cycle, respectively, at
its inception. The analytical expression (1.20) for this Z2-
symmetric limit cycle in various limits further corroborates
these results.

Note also that when ωA + ωB �= 0 this limit cycle rotates
around the z axis with a constant angular frequency ωA+ωB

2
according to Eq. (1.11) (the additional term on the right-hand
side vanishes by Z2 symmetry). It thus becomes a 2D torus
and the bifurcation is fixed point → torus, rather than fixed
point → limit cycle [61]. This marks an important difference
between this bifurcation and the TSS → NTSS transition,
which is fixed point → limit cycle for any ωA + ωB �= 0.

For δ < 1 all roots are real. For these values of δ, λ3,4 < 0
only when

(W − 1)2 + δ2 > 1. (3.5)

The above condition also ensures that λ5,6 < 0. The quarter
arc arising from this condition that separates phases I and II
in Fig. 1 depicts a supercritical Hopf bifurcation. Indeed, in
a rotating frame where ωA + ωB �= 0, the NTSS is a trivial
limit cycle and the roots λ3 and λ4 acquire imaginary parts
± ı(ωA+ωB )

2 and cross the imaginary axis in unison. Outside
the quarter arc, the TSS is a node; i.e., all characteristic
values are negative. Inside it turns into a saddle point; a few
characteristic values become positive. At the same time a
stable NTSS comes into existence. On the bifurcation line the
NTSS is indistinguishable from the TSS, but deviates from it
significantly as we move deeper into phase II. Later in this
section we provide an alternative interpretation of the TSS →
NTSS transition as a supercritical pitchfork bifurcation using
the reduced spin Eqs. (1.16).

3. Stability of NTSS

From Eq. (1.18), we observe that for the NTSS to exist,
l⊥ needs to be real. So, it only exists inside the semicircle
δ2 + (W − 1)2 = 1. However, presently we show that it is not
stable everywhere inside this semicircle. As we have done for
the TSS earlier, we derive the characteristic equation for the
NTSS,

λP2(λ)P3(λ) = 0, (3.6)

where the polynomials P2 and P3 are

P2(λ) ≡ λ2 + c2λ + c1, (3.7a)

P3(λ) ≡ λ3 + c2λ
2 + c1λ + c0, (3.7b)

with the coefficients

c0 = W

(
W − W 2 + δ2

2

)
,

c1 = 2W − W 2 + 3δ2

2
,

c2 = 3W 2 − δ2

2W
. (3.8)

We observe that one characteristic value is always zero. This
corresponds to the characteristic direction along the overall
rotation around the z axis [changing � in Eq. (1.18)]. Recall
that NTSS is a collection of fixed points on a circle. Thus,

when we perturb one such point along this direction, it neither
goes to infinity nor does it come back to the original point.
Instead, it just lands onto the neighboring NTSS point.

We use the Routh-Hurwitz stability criterion [62] to
determine the boundary between phases II and III. Ac-
cording to this criterion, the NTSS is stable when (ci >

0 for all i) ∧ (c2c1 > c0). Moreover, (c2c1 > c0) ∧ (c2 > 0)
∧ (c0 > 0) guarantees (c1 > 0). Therefore, the NTSS is stable
if and only if

(W − 1)2 + δ2 < 1, (3.9a)

W >
δ√
3
, (3.9b)

3δ4 − (6W 2 + 4W )δ2 + W 3(8 − W ) > 0, (3.9c)

where the last inequality corresponds to c2c1 > c0. Its left-
hand side is a biquadratic polynomial in δ. We write it as [δ2 −
δ2
+(W )][δ2 − δ2

−(W )], where

δ2
±(W ) = 2W

3

(
3W

2
+ 1 ±

√
3W 2 − 3W + 1

)
,

δ+(W ) > δ−(W ) > 0, (for δ,W > 0). (3.10)

Taking into account δ > 0 and W > 0, we see that Eq. (3.9c)
requires

[δ > δ+(W )] ∨ [δ < δ−(W )]. (3.11)

Plotting the above two conditions along with Eqs. (3.9a) and
(3.9b) in Fig. 6, we conclude that the equation for the lower
(W < 1) part of the phase II boundary is

δ = δ−(W ). (3.12)

This means that the real part of at least one of the roots of
P3(λ) changes sign from negative to positive as we cross the
boundary. Since P3(λ) = 0 is a cubic equation with real coef-
ficients, this implies one of the following two complementary
circumstances:

(1) A real root is equal to zero at criticality.
(2) Near the boundary, the cubic polynomial has one real

and two complex conjugate roots. None of them are zero on
the boundary. The real part of the complex conjugate roots
changes sign at criticality. This second scenario entails a Hopf
bifurcation.

P3(λ) has a zero root only when c0 = 0, i.e., on the semi-
circle δ2 + (W − 1)2 = 1. We observe from Fig. 6 that the
condition c2c1 > c0 is violated first, while ci > 0 for all i still
holds. This proves that the NTSS must obey the condition 2
above. In other words, it loses stability via a Hopf bifurcation.
Moreover, in Sec. III B we prove that it, in fact, undergoes
a subcritical Hopf bifurcation to bring about a coexistence
region near the boundary between phases II and III; see also
Figs. 3 and 8.

4. Stability analysis with symmetric spin equations

Since the TSS and NTSS both have Z2 symmetry, we also
carry out linear stability analysis with the reduced spin equa-
tions (1.16) to learn more about perturbations destabilizing
these steady states. The fixed points of Eq. (1.16) are

s− = 0, sz = 1, (3.13)
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FIG. 6. The domain of stability of the NTSS (phase II) is shown
in blue. The NTSS exists inside the semicircle (dashed line) δ2 +
(W − 1)2 = 1. The dot-dashed line is δ = √

3W [Eq. (3.9b)]. Red
triangles and green squares denote the lines δ = δ+(W ) and δ =
δ−(W ), respectively, where δ±(W ) are defined in Eq. (3.10). This
picture shows that the minimal description of phase II is [δ2 +
(W − 1)2 < 1] ∧ [δ < δ−(W )]. Since the δ = δ−(W ) line is inside
the semicircle, the NTSS loses stability via a Hopf bifurcation (see
the text).

and

s− = ± l⊥e−ıϕ

2

√
1 + δ2

W 2
, sz = δ2 + W 2

2W
, (3.14)

where ϕ and l⊥ are given in Eq. (1.19). Equation (3.13) is
the TSS (1.17), where we now only need the components
of spin sA. Similarly, Eq. (3.14) is the NTSS (1.18), but
now we also need to pick a specific frame where ly = 0
[see the text above Eq. (1.16)]. Note that with this choice
of initial-condition-dependent frame, the NTSS turns from a
one-parameter family of fixed points into two fixed points.

The linearization of Eq. (1.16) about a fixed point s = s0

yields the Jacobian matrix

J =
⎡⎣sz0 − 1

2W − 1
2δ sx0

1
2δ − 1

2W 0
−2sx0 0 −W

⎤⎦. (3.15)

Substituting explicit solutions for the TSS and the NTSS, we
obtain

TSS : Q3(λ) = 0, (3.16a)

NTSS : P3(λ) = 0, (3.16b)

where Q3(λ) and P3(λ) are defined in Eqs. (3.3) and (3.7b).
We saw above that it was the behavior of the roots of Q3(λ)
and P3(λ) that determined the regions of stability of the
TSS and NTSS. Thus, linear stability analysis with both
Eqs. (1.4) and (1.16) produces the same regions, but for

different reasons. For the TSS, factoring out the Z2 symmetry
from Eq. (1.4) reduces the degree of the degeneracy for each
of the three distinct characteristic values from two to one. On
the other hand, for the NTSS the deviations destabilizing the
fixed point are Z2-symmetric. Therefore, for our problem it is
sufficient to analyze the reduced spin Eqs. (1.16) to study the
properties of the TSS and the NTSS near criticality.

From the point of view of the reduced spin equation, the
TSS → NTSS transition is what is known as a supercritical
pitchfork bifurcation [51]. This is a situation when there is a
single stable fixed point before and three fixed points—one
unstable and two stable—after the bifurcation. At criticality
all these fixed points coincide.

B. Different types of Hopf bifurcations: Beyond linear stability

To differentiate between Hopf bifurcations, we need to go
beyond the linear stability analysis [51–53]. Since only two
characteristic directions become unstable in a Hopf bifurca-
tion, one can determine its essential features by projecting the
dynamics onto a 2D manifold called the “center manifold.”
At criticality, this manifold is the vector space spanned by the
two unstable characteristic directions. The dynamics on the
center manifold near criticality in terms of polar coordinates
(s, θ ) take the form

ṡ = s

(
γ +

∞∑
j=1

a js
2 j

)
, (3.17a)

θ̇ = ω +
∞∑
j=1

b js
2 j, (3.17b)

where the origin is at the fixed point and γ ± ıω are the
complex conjugate characteristic values responsible for the
instability of the fixed point; γ = 0 at criticality. Equation
(3.17) is a perturbative expansion near the fixed point. Its
right-hand side is known as the “Poincaré-Birkhoff normal
form.” We derive Eq. (3.17) for the TSS and NTSS starting
from Eq. (1.16), including the coefficient a1 as a function of δ

and W, in Appendix B.
Suppose ṡ = 0. Since s is small near the bifurcation,

Eq. (3.17a) yields s(γ + a1s2) ≈ 0. There are two solutions,
s = 0 and s = sH = √−γ /a1. In order to have a limit cycle
we need sH to be real. Thus, if a1 < 0, the limit cycle comes to
exist only after γ (δ,W ) becomes positive, i.e., after the bifur-
cation, signaling a supercritical Hopf bifurcation. Linearizing
the right-hand side of Eq. (3.17a) near sH , we find d�s/dt =
−2γ�s, where �s = s − sH . Since after the bifurcation γ >

0, the limit cycle is stable in the supercritical scenario. Equa-
tion (3.17b) shows that near the bifurcation the polar angle
θ = ωt . Therefore, the period of the limit cycle is 2π/ω,
where ω is evaluated at the criticality. On the other hand, if
a1 > 0, the limit cycle must exist before the bifurcation has
taken place. This is because in order for sH to be real we
need γ < 0, which is the case only before the bifurcation. This
type of bifurcation is known as a subcritical Hopf bifurcation.
From the stability analysis we observe that this limit cycle is
unstable. As a consequence, it serves as the separatrix of the
basin of attraction for the fixed point; see Fig. 3.
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FIG. 7. Evolution of the limit cycle born out of the supercritical Hopf bifurcation at (δ,W ) = (1.1, 1). We fix δ = 1.1 and gradually
decrease W moving vertically from phase I (TSS) into the green part of region III (Z2-symmetric limit cycle) in Fig. 1. Top to bottom:
W = 0.999, 0.99, and 0.98 in the first, second, and third row. We plot sA

x and sA
y vs time in the first column and sA

z vs time in the second.

We plot representative examples of a1 across the Hopf
bifurcation for the TSS and NTSS in Fig. 9. For the TSS,
a1 < 0 near the half line W = 1, δ � 1 corroborating our
earlier claim that it loses stability via a supercritical Hopf
bifurcation. Figure 7 shows the (initially infinitesimal) limit
cycle emerging right after the bifurcation of the TSS. In
contrast, the NTSS undergoes a subcritical Hopf bifurcation
on the boundary of phases II and III. Indeed, there is a region
in Fig. 9(b) around δH (W )—the value of δ on the boundary at
a given W —where a1 > 0.

1. Coexistence due to subcritical Hopf bifurcation

In accordance with the above discussion, the unstable limit
cycle existing before the bifurcation separates basins of attrac-
tion of the NTSS and another attractor, which continues into
phase III after the NTSS loses stability. An example of such
an attractor is the limit cycle shown in Fig. 8. As we approach
the bifurcation from inside phase II, γ tends to zero. Since
the size of the separatrix (unstable limit cycle) is proportional

to
√|γ |, the basin of attraction of the NTSS shrinks to zero.

Thus, there is a region of coexistence of the NTSS with other
attractors inside phase II (shown in purple in Fig. 1). Its right
boundary coincides with the phase II-III boundary, while the
left boundary is somewhere inside phase II. In Sec. IV A 3 we
determine the shape of this region analytically in the vicinity
of the tricritical point δ = W = 1.

Observe that the dashed line in Fig. 1 merges with the
phase II-III boundary at a certain point. Numerically, we find
that the value of W at this point is Wc ≈ 0.575. For W > Wc,
the attractor to the right of phase II is the Z2-symmetric limit
cycle. Therefore, the NTSS coexists with this limit cycle in the
purple sliver near the boundary for Wc < W < 1. For W < Wc,
it coexists with other time-dependent asymptotic solutions of
Eq. (1.4), such as chaotic superradiance [49,50]. We have also
observed empirically that the coexistence region is an order of
magnitude thinner in the latter case.

We determine the left boundary of the coexistence region
in Fig. 1 using the following numerical method:
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FIG. 8. Limit cycle with finite amplitude right after subcritical Hopf bifurcation of the NTSS at (δ,W ) = (0.888, 0.800). Here (δ,W ) =
(0.890, 0.800). We show sA

x and sA
y vs time in (a) and sA

z vs time in (b).

(1) Determine the time-dependent asymptotic solution im-
mediately to the right of δH (W ) for a fixed W .

(2) Record ten random (sA, sB) on this solution. We use
these as initial conditions in the next step.

(3) Decrease δ and see whether any of these initial con-
ditions lead to a time-dependent asymptotic solution. If yes,
repeat steps 2 and 3. If not, record the value of δ as δEnd(W ).
Check that for 0 < δ � δEnd(W ) the time evolution for all
these initial conditions converges to the NTSS.

(4) Repeat this procedure for other values of W .
Note that a1 in Fig. 9(b) decreases to zero as we move hor-

izontally into phase II, i.e., decrease δ below δH (W ) keeping
W fixed. A way to estimate the left boundary of the coex-
istence region is to obtain the value of δ = δa1=0(W ) where
a1 becomes zero. However, we find that this estimate is rather
inaccurate. Consider, for example, four distinct values of W in
Table I. Two of them are greater than Wc and the other two are
smaller. For each W , we report the values of δH (W ), δa1=0(W ),
and δEnd(W ). In all these cases, an independent numerical
analysis using the procedure outlined above reveals that
the coexistence ends well before δa1=0(W ). This indicates
that to accurately determine its left boundary, one needs to
consider higher-order terms in the Poincaré-Birkhoff normal
form.

IV. LIMIT CYCLES

In this section, we study limit cycles in region III of the
nonequilibrium phase diagram in Fig. 1. We will see in Sec. V
that these attractors translate into periodic modulations of the
superradiance amplitude; the cavity radiates frequency combs
in this regime. The radiation power spectrum has various
features depending on the symmetry of the limit cycle, such as
the presence or absence of even harmonics of the limit cycle
frequency, symmetry with respect to the vertical axis, and a
shift of the carrier frequency.

In most of phase III, we observe Z2-symmetric limit
cycles, such as the ones in Figs. 4, 10, and 11. When δ is
large or W (1 − W ) is small, oscillations of spin components
become harmonic and we determine the approximate form
of the limit cycle analytically. A special situation arises in
the vicinity of the tricritical point (δ,W ) = (1, 1) in Fig. 1.
Now the oscillations are anharmonic, but we are still able to
derive analytic expressions for the spins in terms of the Jacobi
elliptic function cn. This also helps us determine the shape
of the coexistence region of the NTSS with Z2-symmetric
limit cycles near the tricritical point. Eventually, limit cycles
lose the Z2 symmetry across the dashed line in Fig. 1. We
determine this line and independently explain the mechanism
of the symmetry breaking with the help of Floquet stability

FIG. 9. Plots of the coefficient a1 in the Poincaré-Birkhoff normal form (3.17) near Hopf bifurcations of the TSS and NTSS. The bifurcation
is supercritical (subcritical) if a1 < 0 (a1 > 0). (a) a1 is negative for the TSS at δ = 1.5 for a substantial range of W around W = 1. It behaves
in a similar manner elsewhere near the bifurcation along the W = 1, δ � 1 boundary of phases I and III in Fig. 1. (b) Here W = 0.95. The
Hopf bifurcation of the NTSS takes place at δH (0.95) = 0.97, where a1 = 0.46. Note the finite neighborhood around δH where a1 is positive.
The qualitative variation of a1 for the NTSS remains the same elsewhere near the bifurcation along the boundary of phases II and III.
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TABLE I. Comparison of δH (W ), δa1=0(W ) and δEnd(W ). For all
four values of W , δEnd(W ) > δa1=0(W ); i.e., the coexistence of the
NTSS with other attractors ends before a naive estimate based on the
first two orders of the perturbative expansion (3.17).

W δH (W ) δa1=0(W ) δEnd(W )

0.30 0.410 0.358 0.408
0.45 0.592 0.520 0.588
0.65 0.782 0.687 0.759
0.95 0.974 0.820 0.967

analysis. We conclude this section by discussing properties of
limit cycles with broken Z2 symmetry, such as the ones in
Figs. 16, 17, and 18.

A. Solution for the Z2-symmetric limit cycle in various limits

As discussed below Eq. (1.22), a Z2-symmetric limit cycle
at a given (δ,W ) is in fact a one-parameter family of limit

cycles that differ from each other only by the constant value
of the net phase �. Equation (1.10) shows that the projection
l⊥ = (lx, ly) of the total spin onto the xy plane moves on a line
making a constant angle � with the x axis. It is convenient
to rotate the coordinate system, as we did in Eq. (1.16), so
that l⊥ is along the x axis. Equation (1.15) then relates the
components of sA and sB and we see that it is sufficient to
study reduced spin Eqs. (1.16) to describe Z2-symmetric limit
cycles.

1. Harmonic solution

Here we work out a simple solution for the Z2-symmetric
limit cycle valid in various limits. Expressing sx through
sy and ṡy in Eq. (1.16b) and substituting the result into
Eq. (1.16a), we find

s̈y + ṡy(W − sz ) + sy

(
δ2

4
+ W 2

4
− W

2
sz

)
= 0. (4.1)

FIG. 10. A Z2-symmetric limit cycle at (δ,W ) = (0.44, 0.056). Classical spins sA and sB describe the mean-field dynamics of two atomic
ensembles in a bad cavity. Spin components fulfill Z2-symmetry conditions sA

⊥ = sB
⊥ and sA

z = sB
z ; see Eq. (1.14). For these values of the

detuning δ between level spacings of the two ensembles and pumping W, the cavity radiates the frequency comb shown in Fig. 20.
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FIG. 11. sA
⊥ vs sB

⊥ and sA
z vs sB

z projections of the Z2-symmetric limit cycle at (δ,W ) = (0.44, 0.056), the same as in Fig. 10. These are
straight lines passing through the origin with 45◦ slope due to the Z2 symmetry of the attractor. Note the difference with the Z2-asymmetric
limit cycle at a nearby point (δ,W ) = (0.42, 0.056) in Fig. 17.

We interpret this as a damped harmonic oscillator with a
complicated feedback. To cancel the damping term, we as-
sume sz ≈ W . We will later check the self-consistency of this
assumption. For a constant sz, Eq. (4.1) is simple to solve and
using additionally Eq. (1.16b), we derive

sy = a sin ωt, sx = a cos (ωt − α), (4.2)

where

ω =
√

δ2 − W 2

2
, α = arctan

W

2ω
. (4.3)

Substituting this sx into Eq. (1.16c), we notice that it has
solutions of the form sz = C1 + C2 cos (2ωt + β ), where we
require C1 = W for consistency. This requirement also fixes
the constants a, C2, and β, so that (recall that 0 < W < 1 in
phase III)

sx =
√

2W (1 − W ) cos (ωt − α), (4.4a)

sy =
√

2W (1 − W ) sin ωt, (4.4b)

sz = W − W

δ
(1 − W ) sin (2ωt − α). (4.4c)

We see that the assumption sz ≈ W is reasonable when
W (1 − W )  δ. Substituting sz from Eq. (4.4c) into the
coefficient of the sy term in Eq. (4.1), we obtain (δ2 −
W 2)/4 + [W 2(1 − W )/2δ] sin (2ωt − α). Therefore, to ne-
glect the time-dependent part of sz in the frequency term in
Eq. (4.1), we additionally need

ω2 = δ2 − W 2

4
� W 2

2δ
(1 − W ). (4.5)

These conditions are fulfilled when (1) δ is large, (2) W is
small and δ is of order 1, and (3) W is close to 1 and δ

is not too close to W , namely, δ − W � 1 − W . In these
regimes, Eq. (4.4) agrees with numerical results very well; see
Fig. 12.

In particular, for small W the solution takes the form

sx ≈
√

2W cos (δt/2), (4.6a)

sy ≈
√

2W sin (δt/2), (4.6b)

sz ≈ 0, (4.6c)

while just below the Hopf bifurcation W = 1 line,

sx ≈
√

2(1 − W ) cos (ωt − α), (4.7a)

sy ≈
√

2(1 − W ) sin ωt, (4.7b)

sz ≈ 1, (4.7c)

where ω ≈ 1
2

√
δ2 − 1. Note that the amplitude and frequency

of the limit cycle in this limit match those in Sec. III A 2.
Generally, if we neglect the small sine term in Eq. (4.4c),
Eq. (4.4) describes an ellipse perpendicular to the z axis. This
is what becomes of the potato chip in Fig. 4 in the harmonic
approximation. When W  δ the ellipse turns into a circle.

2. Elliptic solution close to W = δ = 1 point

The harmonic approximation breaks down in the vicinity
of the (δ,W ) = (1, 1) point, where phases I, II, and III merge
in Fig. 1. In this case the frequency ω of the limit cycle is
small and inequality (4.5) does not hold. However, now we
can exploit the fact that oscillations are slow. As a result,
derivatives are suppressed by a factor of ω in Eq. (1.16), so
that

sx = W

δ
sy + 2

δ
ṡy ≈ W

δ
sy, (4.8a)

sz = 1 − s2
x

W
− ṡz

W
≈ 1 − s2

x

W
. (4.8b)

Let

W = 1 − ε, δ = 1 + r, (4.9)
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FIG. 12. Comparison between numerics and perturbative solutions (4.4) and (4.12) for the Z2-symmetric limit cycle. We show the y
components only; the agreement for other components is similarly good. (a) δ = 5.0,W = 10−3. (b) δ = 5.0,W = 1 − 10−3. (c) δ = 500,W =
0.5. (d) δ = 1 − (500/755) × 10−3,W = 1 − 10−3. Note the highly anharmonic nature of the oscillations in (d).

where ε > 0 and r are small. Substituting sz from Eq. (4.8b)
into Eq. (4.1), we obtain

s̈y − ṡy
(
2s2

y + ε
)+ sy

2

(
r + s2

y

) = 0, (4.10)

where we kept only the leading orders in ε and r in the coeffi-
cients. Assuming r is of the order of ε, we see from Eq. (4.7)
that in the harmonic solution sy and the frequency ω are both
of the order

√
ε. Then, the ṡy term in Eq. (4.10) is negligible.

We also verified that this as well as the approximations in
Eq. (4.8) are self-consistent regardless of the magnitude of
|r|/ε using the Jacobi elliptic solution for sy we work out
below.

Neglecting the ṡy term in Eq. (4.10), we find

s̈y + r

2
sy + 1

2
s3

y = 0. (4.11)

This reduces to the standard equation for the Jacobi elliptic
function cn [62,63] via a substitution

sy(t ) = a cn(bt, k), (4.12)

where

b2 = r

2(1 − 2k2)
, a2 = 2k2r

1 − 2k2
. (4.13)

Equation (4.13) provides two constraints for three undeter-
mined parameters a, b, and k. We derive one more constraint
by minimizing the effect of the the ṡy term that we neglected
in Eq. (4.10). Specifically, we multiply Eq. (4.10) by ṡy and
integrate over one period. Since the first and the last terms
turn into complete derivatives, we are left with

ε
〈
ṡ2

y

〉 = 2
〈
s2

y ṡ2
y

〉
. (4.14)

Evaluating the integrals on both sides of this equation, we
derive

a2 = ε

2
Y (k), (4.15)

where

Y (k) = 5k2[(2k2 − 1)E + (1 − k2)K]

2(k4 − k2 + 1)E − (2 − k2)(1 − k2)K
, (4.16)

and K ≡ K (k) and E ≡ E (k) are complete elliptic integrals of
the first and second kind, respectively. Matching Eq. (4.15) to
a2 in Eq. (4.13) yields an equation for k,

Z (k) ≡ 4k2

5(1 − 2k2)Y (k)
= ε

r
. (4.17)

This equation along with Eq. (4.13) specifies all three con-
stants of sy(t ) in Eq. (4.12). A plot of Z (k) for r < 0 appears
in Fig. 14. We see that when ε/r is between −8/5 and the
maximum of Z (k) at approximately −1.50, there are two
solutions for k. Numerically we observe that the evolution
with Eq. (1.16) picks up the solution with smaller k in this
case.

The oscillation period,

T = 4K (k)
√

2|1 − 2k2|√|r| , (4.18)

diverges when r → 0 at fixed ε/r.
For small r and ε, the condition (4.5) of validity of the

harmonic solution reads r � ε > 0. Hence, the elliptic and
harmonic solutions must agree in the limit ε/r → 0+, which
we now check. The solution of (4.17) to the first order in
ε/r is k2 ≈ ε/r. Elliptic functions become harmonic when
k → 0. In particular, sy = a cn(bt ) ≈ a cos (bt ) [64]. Further,
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FIG. 13. Linear fit to the boundaries of the coexistence region
(purple) near δ = W = 1. The right boundary is the subcritical Hopf
bifurcation line. Yellow squares is the numerical result for this line
and solid yellow line with the slope 1.95 is the best linear fit to these
points. Orange triangles depict points on the left boundary of the
coexistence region. The best linear fit to these points (solid orange
line) has a slope 1.53.

Eq. (4.13) yields a2 = 2ε and b2 = r/2, which agrees exactly
with a2 and ω2 for the harmonic solution for small ε, r, and
ε/r. We also checked that this agreement does not go beyond
the leading order in ε/r.

3. Gauging the taper of coexistence region near W = δ = 1

The coexistence region gradually tapers off to a point
(δ,W ) = (1, 1); see Fig. 13. Let us determine the angle with
which the coexistence region approaches its pinnacle. To that
end, we utilize the elliptic solution for the Z2-symmetric limit
cycle valid near the δ = W = 1 point. The right boundary
of the coexistence region is the subcritical Hopf bifurcation
line (3.12). Linearizing Eq. (3.12) in ε and r, we find ε =
−2r. Therefore, the line tangential to the right boundary at
(δ,W ) = (1, 1) has a slope

tan θR = 2. (4.19)

We also see that r < 0 in the coexistence region, because ε =
1 − W > 0.

The left boundary of the coexistence region near the δ =
W = 1 point is the line where the elliptic solution (4.12)
ceases to exist. Since r < 0, in order for b2 in Eq. (4.13) to be
positive, we need k > 1/

√
2. Thus, for the elliptic solution to

exist inside the coexistence region, the solution of Eq. (4.17)
must satisfy 1/

√
2 < k < 1. We plot Z (k) in this interval in

Fig. 14. Observe that Z (1) = −8/5 = −1.6 and the maximum
value of Z (k) is approximately −1.50. Therefore, Eq. (4.17)
has no solutions in the desired range when ε � −1.50r and
the slope of the tangent to the left boundary of the coexistence

FIG. 14. The function Z (k) defined in Eq. (4.17) in the domain
1/

√
2 < k < 1. We show Z (1) = −1.6 by the dashed line. In this

interval Z (k) reaches its maximum of −1.50 at k ≈ 0.96.

region at (δ,W ) = (1, 1) is

tan θL ≈ 1.50. (4.20)

Equations (4.19) and (4.20) agree well with the results of the
numerical analysis shown in Fig. 13. The taper angle of the
coexistence region near δ = W = 1 is θR − θL ≈ arctan (2) −
arctan (1.5) ≈ 7◦.

B. Stability of the Z2-symmetric limit cycle: Floquet analysis

In this section, we analyze the stability of Z2-symmetric
limit cycles using the Floquet theory. As before, it is conve-
nient to rotate the coordinate system by a fixed angle so that
the Z2-symmetric limit cycle obeys the constraints (1.15). We
introduce symmetric coordinates covering the Z2-symmetric
submanifold,

sx = sA
x + sB

x

2
, sy = sA

y − sB
y

2
, sz = sA

z + sB
z

2
, (4.21)

and transverse coordinates that take the dynamics away from
it,

qx = sA
x − sB

x , qy = sA
y + sB

y , qz = sA
z − sB

z . (4.22)

Recasting Eq. (2.8) in terms of the new variables, we have

ṡx = − δ

2
sy − W

2
sx + szsx, (4.23a)

ṡy = δ

2
sx − W

2
sy − 1

4
qyqz, (4.23b)

ṡz = W (1 − sz ) − s2
x − 1

4
q2

y , (4.23c)

q̇x = − δ

2
qy − W

2
qx + sxqz, (4.23d)

q̇y = δ

2
qx +

(
sz − W

2

)
qy, (4.23e)

q̇z = −W qz − sxqx − syqy. (4.23f)

For the unperturbed Z2-symmetric limit cycle
qx = qy = qz = 0 and s obeys the reduced spin Eqs.
(1.16). To analyze the linear stability with respect to
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symmetry-breaking perturbations, we linearize Eq. (4.23)
in m,

q̇x = − δ

2
qy − W

2
qx + sx(t )qz, (4.24a)

q̇y = δ

2
qx +

[
sz(t ) − W

2

]
qy, (4.24b)

q̇z = −W qz − sx(t )qx − sy(t )qy, (4.24c)

where sx(t ), sy(t ), and sz(t ) are the spin components for the
Z2-symmetric limit cycle, which we obtain separately by
simulating Eq. (1.16). They play the role of periodic-in-time
coefficients for the linear system (4.24).

By the Floquet theorem the general solution of Eq. (4.24)
is

q(t ) =
3∑

i=1

die
κit pi(t ), (4.25)

where pi(t ) are linearly independent vectors periodic with the
same period T as the limit cycle, di are arbitrary constants,
and κi are the Floquet exponents.. To evaluate κi, we first
compute the monodromy matrix M = [S(0)]−1S(T ), where
S(t ) is a 3 × 3 matrix whose columns are any three linearly
independent solutions qi(t ) of Eq. (4.24). We determine qi(t )
by simulating Eq. (4.24) for one period for three randomly
chosen initial conditions. The eigenvalues of the monodromy
matrix ρi = eκiT are known as characteristic multipliers. If
one of the them is greater than one, the corresponding κi is
positive and the Z2-symmetric limit cycle is unstable.

In our case, one of the characteristic multipliers is iden-
tically equal to one. This is because, as we discussed below
Eq. (1.22), each limit cycle is a member of a one-parameter
family of limit cycles related to each other by rotations around
the z axis. An infinitesimal rotation of the original limit cycle
produces an identical limit cycle just in a “wrong” coordi-
nate system, where qx and qy are infinitesimal but nonzero.
This must be a periodic solution of Eq. (4.24). Specifically,
�sτ

x = −��sτ
y and �sτ

y = ��sτ
x for a rotation by ��.

Equation (4.22) then implies qx = −2��sy and qy = 2��sx.
Therefore,

p1 =
⎛⎝ sy

−sx

0

⎞⎠ (4.26)

is a solution of Eq. (4.24) with the same period T . We verify
this directly using also Eq. (1.16). Thus, Eq. (4.25) simplifies
to

q(t ) = d1 p1(t ) + d2eκ2t p2(t ) + d3eκ3t p3(t ). (4.27)

We observe that the Z2-symmetric limit cycle becomes unsta-
ble as we cross the dashed line in Fig. 1 and the asymptotic
dynamics of the two ensembles lose the Z2 symmetry in the
yellow region to its left. Near this line of symmetry breaking
the other two characteristic multipliers (ρ2 and ρ3) are also
real. Both are less than one to the immediate right of this line,
while one of them becomes greater than one as we cross the
line and enter the yellow subregion; see, e.g., Fig. 15.

In practice, we find it more convenient to determine the line
of symmetry breaking by monitoring the asymptotic value of

FIG. 15. Absolute values of Floquet multipliers |ρi| as functions
of δ for the Z2-symmetric limit cycle at W = 0.40. The red dot-
ted line marks the point of symmetry breaking (loss of stability)
according to the criterion |sA

z − sB
z | > 0.01 at large times. Across

criticality |ρ1| = 1 indicates the presence of nearby Z2-symmetric
limit cycles related by overall rotations about the z axis, whereas
|ρ3| < 1 corresponds to a stable direction.

|sA
z − sB

z |, which is zero for a Z2-symmetric limit cycle. When
this quantity exceeds a certain threshold (0.01 at t > 2 ×
104 in our algorithm), we declare the symmetry broken and
the Z2-symmetric limit cycle unstable. This method agrees
with our Floquet stability analysis to within few percent as
evidenced by Table II and Fig. 15.

C. Limit cycles without Z2 symmetry

Upon losing stability, each Z2-symmetric limit cycle gives
birth to two limit cycles with broken Z2 symmetry in the
yellow subregion to the left of the dashed line in Fig. 1. The

TABLE II. As discussed in the text, we determine points (δ,W )
where the Z2-symmetric limit cycle loses stability by requiring that
|sA

z − sB
z | exceeds a certain threshold at large times. The first column

shows some of these points. Here we compare them to the results
of Floquet stability analysis. The second and third columns show
Floquet multipliers ρ1, ρ2, and ρ3 for the same W as in the first
column and two values of δ, δ = δ> and δ<. We see that one of ρi

exceeds 1, signaling instability, at approximately the same value of δ

as in the first column. We indicate values in the intervals (0.00, 0.01),
(1.00, 1.01), and (0.99, 1.00) as 0.00+, 1.0+, and 1.0−.

(δ,W ) δ>, ρ1, ρ2, ρ3 δ<, ρ1, ρ2, ρ3

(0.40, 0.051) 0.42, 1.0, 0.99, 0.27 0.41, 1.0, 1.1, 0.24
(0.52, 0.10) 0.54, 1.0, 0.97, 0.14 0.53, 1.0, 1.0+, 0.066
(0.54, 0.15) 0.56, 1.0, 1.0−, 0.069 0.55, 1.0, 1.0+, 0.031
(0.53, 0.20) 0.53, 1.0, 0.99, 0.033 0.52, 1.0, 1.0+, 0.031
(0.55, 0.25) 0.55, 1.0, 1.0−, 0.017 0.54, 1.0, 1.0+, 0.016
(0.54, 0.30) 0.58, 1.0, 1.0−, 0.00+ 0.57, 1.0, 1.0+, 0.00+
(0.60, 0.35) 0.61, 1.0, 1.0−, 0.00+ 0.60, 1.0, 1.0+, 0.00+
(0.64, 0.40) 0.64, 1.0, 0.97, 0.00+ 0.63, 1.0, 1.1, 0.00+
(0.64, 0.45) 0.67, 1.0, 0.90, 0.00+ 0.66, 1.0, 1.0+, 0.00+
(0.67, 0.50) 0.69, 1.0, 0.93, 0.00+ 0.68, 1.0, 1.1, 0.00+
(0.70, 0.55) 0.71, 1.0, 0.98, 0.00+ 0.70, 1.0, 1.1, 0.00+
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FIG. 16. A limit cycle at (δ,W ) = (0.42, 0.056). Classical spins sA and sB describe the mean-field dynamics of two atomic ensembles
A and B coupled to a heavily damped cavity mode. This limit cycle breaks the Z2 symmetry because sA

⊥ − sB
⊥ and sA

z − sB
z are nonzero and

time-dependent (see also Fig. 17), unlike for the Z2-symmetric limit cycle at a nearby point (δ,W ) = (0.44, 0.056) shown in Fig. 10. For these
values of the detuning δ between the two ensembles and pumping W, the cavity radiates the frequency comb shown in Fig. 21.

two are related by the Z2 transformation Σ ◦ R(φ0) [see the
text below Eq. (1.13)]. We verified the existence of these two
distinct limit cycles numerically by simulating the equations
of motion (1.4) for two initial conditions similarly related by
the Z2 transformation. Thus, the Z2-symmetric limit cycle
undergoes a supercritical pitchfork bifurcation on the dashed
line; see the text at the end of Sec. III A 4, keeping in mind
that limit cycles correspond to fixed points on the Poincaré
section—the intersection of the attractor with a hyperplane
transverse to the flow [53]. Examples of limit cycles without
Z2 symmetry appear in Figs. [16–18].

While the limit cycles in the yellow subregion of Fig. 1
break the Z2 symmetry, e.g., sA

z (t ) �= sB
z (t ), we find that a

weaker version of this symmetry specific to periodic solutions

of Eq. (1.12) still survives. Namely,

sτ (t ) = Σ ◦ R(φ0) · sτ

(
t + T

2

)
, (4.28)

and in particular,

sA
⊥(t ) = sB

⊥

(
t + T

2

)
, sA

z (t ) = sB
z

(
t + T

2

)
. (4.29)

In Fig. 17 this property manifests itself as the symmetry with
respect to reflection through the diagonal. In contrast, the limit
cycle in Fig. 18 does not have this symmetry. This limit cycle
is from the dark blue subregion near the origin of Fig. 1, where
it coexists with a quasiperiodic solution of Eq. (1.12); see
Ref. [49] for details.
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FIG. 17. sA
⊥ vs sB

⊥ and sA
z vs sB

z projections for the limit cycle in Fig. 16. The difference with the Z2-symmetric limit cycle at a nearby point
(δ,W ) = (0.44, 0.056) shown in Fig. 11 is dramatic. Nevertheless, both plots are symmetric with respect to reflection through the diagonal.
Note also self-intersections that result from projecting a multidimensional (5D) curve onto 2D planes.

The property (4.28) ensures that the offset frequency ωq

in Eq. (1.22) vanishes even in the absence of the true Z2

symmetry. Consider Eq. (1.11) and recall that by definition
ωq is the zeroth harmonic of

G(t ) = sin 2ϕ

4

(
sA

z sB
⊥

sA
⊥

− sB
z sA

⊥
sB
⊥

)
. (4.30)

Equation (4.29) implies that the term in the parentheses on
the right-hand side changes sign when shifted by half a period
and Eq. (4.28) shows that sin 2ϕ is periodic with a period T/2.
Therefore,

G(t ) = −G

(
t + T

2

)
. (4.31)

This in turn means that the Fourier series of G(t ) contains only
odd harmonics, i.e., ωq = 0.

On the other hand, ωq �= 0 for the limit cycle in Fig. 18.
Like all limit cycles in region III of the phase diagram, this

limit cycle is a periodic solution Eq. (1.12). However, the net
phase � introduces the second fundamental frequency ωq as
discussed below Eq. (1.22). We can eliminate this frequency
by going to an appropriate rotating frame. If we stay in the
frame where ωA = −ωB as we did throughout this paper,
then � = ωqt + F (t ) and the two-frequency motion in the
full 6D phase space of components of sA and sB traces out a
2-torus rather than a closed curve. Consider, for example, the
projection of this attractor onto the sA

x -sA
y plane. The relation

sA
+ = sA

⊥eı(�+ϕ) implies

sA
x (t ) = sA

⊥(t ) cos[ωqt + F1(t )],

sA
y (t ) = sA

⊥(t ) sin[ωqt + F1(t )],
(4.32)

where F1(t ) = F (t ) + ϕ(t ) and sA
⊥(t ) are periodic with the

period of the limit cycle [recall that ϕ is defined modulo π ].
For time-independent sA

⊥ and F1, Eq. (4.32) describes a motion
on a circle of radius sA

⊥. In the present case, the radius of the

FIG. 18. An asymmetric limit cycle at (δ,W ) = (0.225, 0.05) from the dark blue subregion near the origin of Fig. 1. This is a periodic
attractor when we factor out the net phase �(t ) as in Eq. (1.12). Otherwise, �(t ) brings about another frequency ωq transforming it into a
2-torus in the full phase space. Plot (c) is the projection of this torus onto the sA

x -sA
y plane. Given enough time the trajectory densely fills an

annulus with radii sA
⊥,max and sA

⊥,min. The additional frequency disappears if we move into a rotating frame or consider rotationally invariant
quantities as in (a) and (b), but shows up as an overall shift by ωq/2π in the power spectrum of the light radiated by the cavity; see Fig. 5(c).
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FIG. 19. Different limit cycles in the Z2-symmetric green island to the left of the symmetry-breaking line in Fig. 1; (δ,W ) = (0.23, 0.0802)
and (0.12, 0.055) in the first and second rows, respectively. In the main figures, we plot sA

x vs time, whereas in the insets we corroborate the Z2

symmetry in the sA
z -sB

z projections. The initial condition for the two limit cycles in the first column, which are unstable in the full 6D phase space,
is (sA

0 , sB
0 ) = (0.4, −0.469, 0.7, 0.4, 0.469, 0.7). The ones in the second column are stable in the full phase space. The initial condition for (b)

is (sA
0 , sB

0 ) = (0.4, 0.63, 0.7, 0.4, −0.64, 0.7), whereas (d) has (sA
0 , sB

0 ) = (0.471036, −0.423628, −0.566317, 0.471036, 0.43, −0.566317).

circle sA
⊥(t ) oscillates periodically between certain sA

⊥,max and
sA
⊥,min with a frequency that is in general incommensurate with

ωq. The sA
x -sB

y projection then fills an annulus of inner radius
sA
⊥,min and outer radius sA

⊥,max as seen in Fig. 18(c).
Similarly, l− = sA

− + sB
− contains two frequencies,

l−(t ) = e−ıωqt [sA
⊥e−ı(ϕ+F ) + sA

⊥e−ı(ϕ−F )], (4.33)

where we used Eq. (1.10). The term in square brackets is
periodic with the period of the limit cycle, while e−ıωqt in front
introduces the second period 2π/ωq.

D. Reentrance of Z2-symmetric limit cycles

Z2-symmetric limit cycles reemerge as stable attractors of
the equations of motion (1.4) in the green island to the left

of the symmetry-breaking line in Fig. 1; see Figs. 19(b) and
19(d). It turns out that the stable Z2-symmetric limit cycle
living in this island is unrelated to that in the unbounded
green subregion to the right of the dashed line. The latter
limit cycle remains unstable in the full 6D phase space, but is
stable in the Z2-symmetric submanifold sA

⊥ = sB
⊥ and sA

z = sB
z

well past the symmetry-breaking line. Therefore, restricting
the dynamics to the above submanifold, we are able to con-
tinuously follow this limit cycle into the green island [see
Fig. 19(a)] and observe that it is distinct from the stable one
shown in Fig. 19(b). In fact, there are more than one such limit
cycles stable in the Z2-symmetric submanifold, but unstable
in the full phase space in various parts of the green island.
For example, unstable limit cycles in Figs. 19(a) and 19(c)
are not related by a continuous deformation. We ascertained
the stability or instability of these limit cycles using Floquet
analysis.
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FIG. 20. Power spectrum for a Z2-symmetric limit cycle at
(δ,W ) = (0.44, 0.056). Note that only odd peaks with fundamental
frequency f0 ≈ 0.040 are present. In particular, there is no peak at
the origin.

V. EXPERIMENTAL SIGNATURES

A key experimental observable is the autocorrelation func-
tion of the radiation electric field outside of the cavity, mea-
surable with a Michelson interferometer. Its Fourier transform
is the power spectrum of the radiated light. In Appendix
D, we show that within the mean-field approximation this
quantity is proportional to |l−( f )|2—the Fourier transform
of the transverse part of the total classical spin l (t ); see
Eq. (1.23). In other words,

Power spectrum ∝ |l−( f )|2. (5.1)

A. Fixed points: Time-independent superradiance

In the TSS both spins are along the z axis and l− = 0; see
Eq. (1.17). Therefore, |l−( f )|2 = 0 and no light is radiated by
the cavity when (δ,W ) is in phase I.

On the other hand, the power spectrum of the NTSS has a
single peak at f = 0. Here we must recall that we are working
in a rotating frame, where all frequencies are shifted by fmc =
(ωA + ωB)/4π . Thus, the NTSS produces monochromatic
superradiance with this frequency. For example, if we take
the 1S0 and 3P0 levels of 87Sr atoms to be the ground and
excited states of our two-level atoms, the monochromatic
superradiance frequency is fmc ≈ 4.3 × 105 GHz [54]. Also,
note that in this phase we have

|〈Ĵ−( f )〉|2 = |l−( f )N |2
4

∝ N2, (5.2)

where Ĵ−( f ) is the Fourier transform of Ĵ−(t ) defined below
Eq. (2.3). This provides high-intensity light (recall that in
good-cavity lasers the intensity is proportional to N). More-
over, such lasers have relatively high Q factors. These ob-
servations motivated the proposal for accurate atomic clocks
utilizing this kind of superradiance [28,29].

B. Limit cycles: Frequency combs

In phase III, the ensembles synchronize nontrivially to emit
a frequency comb, such as the one in Fig. 20, rather than a
single frequency. This behavior corresponds to the limit cycle

that comes to pass after the TSS loses stability via a supercriti-
cal Hopf bifurcation on the boundary between phases I and III
in Fig. 1. We will see that the distance between consecutive
peaks in the comb can take arbitrary values depending on δ

and W. For typical experimental parameters and δ and W of
order 1, this distance is many orders of magnitude smaller
than the frequency fmc of the monochromatic superradiance in
the NTSS. By filtering out one of the peaks, we can therefore
fine-tune the laser frequency to a high precision.

1. Z2-symmetric limit cycle

Figure 20 shows the power spectrum for a representa-
tive Z2-symmetric limit cycle at δ = 0.44 and W = 0.056
in the rotating frame. This frequency comb has peaks at
± f0,±3 f0,±5 f0, . . . , where f0 ≈ 0.040 is the fundamental
frequency. To estimate the value of f0 in SI units, recall
that in our units N	c = 1. In a typical experiment there are
about N = 106 atoms inside the optical cavity. Representative
values of the Rabi frequency � and the cavity decay rate κ

are � = 37 Hz and κ = 9.4 × 105 Hz according to Ref. [28].
Using these numbers, we calculate

N	c = 1.4 kHz, f0 = 0.040N	c = 56 Hz, (5.3)

which is indeed 4 orders of magnitude smaller than fmc.
We numerically verify that Z2-symmetric limit cycles have

the following time translation property:

sx,y

(
t ± T

2

)
= −sx,y(t ), sz

(
t ± T

2

)
= sz(t ). (5.4)

This property explains why the power spectrum consists only
of odd harmonics. We prove this by Fourier-transforming the
two sides of the equation l−(t ) = l−(t + T/2). Equation (5.4)
also holds for the analytical solutions in Eqs. (4.7) and (4.12).
Since the Z2-symmetric limit cycle elsewhere is topologically
connected to the one near the W = 1 line, it also retains the
above property. However, note that Eq. (5.4) is different from
a related property (4.28) of limit cycles without Z2 symmetry.
Equation (5.4) is valid for any choice of x and y axes. On the
other hand, Eq. (4.28) implies that sy(t ) changes sign when
shifted by half a period, while sx(t ) does not, in a special
coordinate frame rotated by φ0 around the z axis.

Moreover, because of the Z2 symmetry ly(t ) = 0 and
lx(t ) = 2sx(t ) in a suitable coordinate system [see the text
above Eq. (1.16)]; i.e., l−(t ) is a real function. As a result the
power spectrum has a reflection symmetry about f = 0,

|l−( f )|2 = |l−(− f )|2. (5.5)

One can infer more about the power spectra where analyti-
cal solutions exist. The harmonic solution from Sec. IV A 1
entails prominent peaks at ± f0, where f0 in various
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FIG. 21. Power spectrum for a Z2-symmetry-broken limit cycle
at (δ,W ) = (0.42, 0.056). Unlike in the Z2-symmetric spectrum,
both even and odd peaks are present. The fundamental frequency is
f0 ≈ 0.038. The most pronounced peak is at f = 0.

limits is

W → 1 : f0 =
√

δ2 − 1

4π
, (5.6a)

W → 0 : f0 = δ

4π
, (5.6b)

δ � 1 : f0 =
√

δ2 − W 2

4π
. (5.6c)

Near δ = W = 1 the solution is in terms of the Jacobi el-
liptic function cn. According to Eqs. (4.12) and (4.8), lx(t ) =
2sx(t ) = 2aW

δ
cn(bt, k). The function cn has the following

series expansion [62,63]:

cnu = 2π

kK (k)

∞∑
n=1

qn− 1
2

1 − q2n−1
cos

[
(2n − 1)

πu

2K (k)

]
, (5.7)

where q = e− πK (k′ )
K (k) and k′ = √

1 − k2. In our case,

u ≡ bt =
√|r|t√

2|1 − 2k2|
, (5.8)

where r = δ − 1 and we used Eq. (4.13). This again corrob-
orates the appearance of only odd harmonics in the power
spectrum at ± f0,±3 f0,±5 f0, . . . , where f0 is

f0 =
√|r|

4K (k)
√

2|1 − 2k2|
. (5.9)

Expressions (5.6) and (5.9) demonstrate that the frequency
f0 and, therefore, the spacing between peaks in the power
spectrum, can take any value from 0 to ∞ depending on δ and
W . In particular, for δ and W of order 1, f0 ∼ 0.1N	c close to
the value in Eq. (5.3).

2. Z2-symmetry-broken limit cycle

In Fig. 21, we show the power spectrum of a Z2-
symmetry-broken limit cycle at δ = 0.42 and W = 0.056 in
the rotating frame. Unlike for the Z2-symmetric limit cycle,
both odd and even harmonics are present, i.e., peaks are at

FIG. 22. Power spectrum for a Z2-symmetry-broken limit cy-
cle at (δ,W ) = (0.23, 0.056). In contrast to Fig. 21, the reflection
symmetry of the power spectrum is completely lost and the carrier
frequency is shifted to a negative value from f = 0.

0,± f0,±2 f0, . . . . The most pronounced peak is at zero. This
is because of the loss of the time translation property (5.4).

Moreover, here ly(t ) �= 0 and as a result l−(t ) is complex.
Thus, l−( f ) does not obey Eq. (5.5) and the spectra no longer
have reflection symmetry about the f = 0 axis. However,
notice that the spectrum in Fig. 21 still seems to have retained
this symmetry. We explain this based on our numerical obser-
vation that for these values of δ and W, in a suitably rotated
frame,

ly(t ) = ly0 + small oscillations, (5.10)

where ly0 is a constant complex number. In the Fourier
transform of l−(t ) = lx(t ) + ıly(t ), lx(t ) produces a symmetric
spectrum, ly0 contributes only to the peak at f = 0, and the
small oscillations lead to a small asymmetry. As a result,
although a careful analysis of the peak heights shows that the
reflection symmetry of the power spectrum is in fact broken,
this is hard to discern from Fig. 21.

In contrast, the Z2-symmetry-broken limit cycle in Fig. 22
is visibly asymmetric with respect to the f = 0 axis. Fur-
thermore, it features an offset of all frequencies originating
from the ωqt term (overall precession) in the net phase �(t )
discussed in detail in Sec. IV C. Specifically, Eq. (4.33) im-
plies that the power spectrum of such limit cycles is fq + p f0,

where p is an arbitrary integer, fq = ωq/2π , and f0 is the
frequency of the limit cycle.

VI. DISCUSSION

In this paper, we studied the long-time dynamics of two
atomic ensembles (clocks) in an optical cavity and constructed
the nonequilibrium phase diagram for this system shown
in Fig. 1. In the extreme bad-cavity regime, we adiabat-
ically eliminated the cavity degrees of freedom to obtain
an effective master equation in terms of the atomic oper-
ators only. Further, we performed a consistent system size
expansion for the master equation to derive the mean-field
equations of motion and the Fokker-Planck equation gov-
erning quantum fluctuations. Mean-field time evolution is in
terms of two collective classical spins representing individual
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ensembles. Each nonequilibrium phase in Fig. 1 corresponds
to a distinct attractor (asymptotic solution) of the mean-field
dynamics.

Mean-field equations of motion for two ensembles have
two symmetries: an axial symmetry about the z axis and
a Z2 symmetry with respect to an interchange of the two
ensembles. The phase diagram features spontaneous breaking
of one or both of these symmetries.

There are two types of fixed points: the trivial steady state
or TSS (normal nonradiative phase), and the nontrivial steady
state or NTSS (monochromatic superradiance). Using linear
stability analysis, we obtained their basins of attraction as
phases I and II in Fig. 1. Both of them lose stability via Hopf
bifurcations. Going beyond the linear stability analysis, by
deriving the Poincaré-Birkhoff normal form, we proved that
the TSS goes through a supercritical Hopf bifurcation on the
boundary of phases I and III, whereas the NTSS undergoes
a subcritical Hopf bifurcation on the II-III boundary. Thus,
II to III and I to III transitions are analogous to the first-
and second-order phase transitions, respectively. This analysis
also explains the coexistence region near the boundary of
phases II and III.

After bifurcation, the TSS gives rise to a Z2-symmetric
limit cycle (periodically modulated superradiance). We were
able to derive analytical solutions for this limit cycle in
terms of harmonic or Jacobi elliptic functions in several
parts of phase III. Moreover, we have shown with Flo-
quet analysis that the Z2-symmetric limit cycle becomes
unstable on the symmetry-breaking line (the dashed line in
Fig. 1) to bring about two distinct Z2-symmetry-broken limit
cycles.

Experimentally, one distinguishes between different dy-
namical phases of the two ensembles by measuring the power
spectrum of the light radiated by the cavity. In particular,
the NTSS emits monochromatic light at a certain frequency
fmc. Limit cycles emit frequency combs—series of equidistant
peaks at fmc + p f0, where p is an integer and f0 is the
limit cycle frequency. For a Z2-symmetric limit cycle, p is
always odd, while for Z2-symmetry-broken limit cycles it
takes arbitrary integer values. Certain symmetry-broken limit
cycles also renormalize the value of fmc relative to the NTSS
and produce power spectra that are asymmetric about the
f = 0 axis. We estimated typical values of f0 from available
experimental data and found that it is several orders of magni-
tude smaller than fmc. Therefore, an interesting feature of limit
cycles from the point of view of applications to ultrastable
lasers is that they provide access to a range of frequen-
cies drastically different from the atomic transition (lasing)
frequency.

Here we have not analyzed more complicated time-
dependent solutions to the left of the dashed line in Fig. 1
marking the spontaneous breaking of the Z2 symmetry. After
the loss of the symmetry between the two ensembles, one
needs to consider all six mean-field equations of motion (three
for each classical spin) together. According to the Poincaré-
Benedixson theorem, a system of three or more coupled first-
order ordinary differential equations admits chaos. Indeed, we
show in Refs. [49,50] that chaos emerges by way of quasiperi-
odicity in our system. Moreover, eventually the chaotic time
dependence of one of the clocks synchronizes with that of

the other via on-off intermittency. The transition from chaos
to chaotic synchronization is an example of spontaneous
restoration of the Z2 symmetry.

Making system parameters, such as pump rates and num-
bers of atoms, unequal for the two ensembles naturally de-
stroys the Z2 symmetry of the mean-field equations of motion
with respect to the interchange of the ensembles. Neverthe-
less, we verified numerically that for a weak asymmetry in
system parameters the long-time dynamics of the two ensem-
bles remain close to that in our nonequilibrium phase diagram
in Fig. 1 and exhibit the same main phases. For example, a
nearly Z2-symmetric limit cycle replaces the Z2-symmetric
limit cycle in phase III, etc.

Let us also briefly discuss how the mean-field dynamics
changes when the cavity decay rate κ is not extremely large.
Note that although one cannot adiabatically eliminate the
photon degrees of freedom in this case, the fixed points are
identical to the ones obtained in the bad-cavity limit. The dy-
namics, however, lead to higher-dimensional phase diagrams.
For example, in the single-ensemble setup, the semiclassical
equations for fixed N (number of atoms in the ensemble)
have two dimensionless parameters and can be mapped to
the Lorenz equation [56]. Thus, even the single-ensemble
equations lead to periodic and chaotic asymptotic solutions.
For two ensembles, we do not anticipate any new kinds of
asymptotic solutions other than fixed points, limit cycles,
quasiperiodicity, and chaos. However, the mechanisms that
give rise to different phases (especially chaos and chaotic
synchronization) and the corresponding stability analyses are
expected to be more complicated.

It would be interesting to explore the many-body ver-
sion of our system with n � 1 atomic ensembles identically
coupled to a heavily damped cavity mode. It is simple to
check that the TSS and NTSS survive in the many-body
case. At zero pumping, the evolution Eqs. (1.4) for n ensem-
bles resemble mean-field equations of motion for the s-wave
Bardeen-Cooper-Schrieffer (BCS) superconductor in terms of
classical Anderson pseudospins. Here too individual spins
couple through the x and y components of the total spin.
The main difference is that BCS dynamics are Hamiltonian
and integrable [65]. Nevertheless, there are many similar-
ities between the nonequilibrium phase diagram in Fig. 1
and many-body quantum quench phase diagrams of BCS
superconductors [66]. In particular, the latter contain three
phases closely analogous to phases I–III in Fig. 1. Here the
amplitude of the superconducting order parameter, which is
the analog of |l−(t )|, either asymptotes to zero (phase I) or to a
finite constant (phase II), or oscillates periodically (phase III);
see Ref. [67] for more on this similarity between the phase
diagrams.

Another interesting problem, especially in the many-body
context, is to analyze the dynamics beyond mean field and
determine whether the full master equation supports truly
quantum attractors inaccessible to the semiclassical dynamics
[68]. Recent work has also pointed out an interpretation of
limit cycles in atom-cavity systems as boundary time crystals
[69]. Alternatively, one can consider the same two atomic
ensembles, but place them inside a multimode cavity to see
whether new types of correlated behaviors emerge in this
setup [70].
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APPENDIX A: NONEQUILIBRIUM PHASE DIAGRAM FOR
A SINGLE ATOMIC CLOCK

Here we show that the nonequilibrium phase diagram
for a single atomic clock maps to the δ = 0 axis of the
two-clock diagram in Fig. 1. Therefore, there are only two
phases in this case: the normal phase with no radiation
(TSS), and monochromatic superradiance (NTSS); see also
Refs. [28–30]. We will also show that the mean-field evolution
equations in this case reduce to the damped Toda oscillator.

For one ensemble, the evolution Eqs. (1.4) read

ṡ− =
(

−ıω1 − W

2

)
s− + 1

2
szs−, (A1a)

ṡz = W (1 − sz ) − 1

2
s+s−. (A1b)

Going to a uniformly rotating frame, s− → s−e−ıω1t and
sz → sz, we eliminate ω1 from Eq. (A1a), i.e.,

ṡ− = −W

2
s− + 1

2
szs−, (A2a)

ṡz = W (1 − sz ) − 1

2
s+s−. (A2b)

Now consider Eq. (1.4) for two ensembles with ωA =
−ωB = δ/2 at detuning δ = 0. Summing these equations over
τ , we obtain

l̇− = −W

2
l− + 1

2
lzl−, (A3a)

l̇z = W (2 − lz ) − 1

2
l+l−. (A3b)

After rescaling l → 2s,W → 2W , and 2t → t , these equa-
tions coincide with Eq. (A2). The scaling factor of 2 arises
because Eq. (A3) describes a single ensemble with 2N atoms,
while Eq. (A2) is for N atoms.

On the other hand, Eq. (A3) corresponds to two ensembles
at δ = 0. Thus, the phases are those on the vertical δ = 0
axis in Fig. 1; i.e., l− = 2s− asymptotes to its value in the
TSS or NTSS for δ = 0. Therefore, the nonequilibrium phase
diagram for a single atomic clock is 1D with the following
two phases:

TSS:s− = 0, sz = 1 for W > 1,

NTSS:s− = e−ı�
√

2W (1 − W ), sz = W, for W < 1,

(A4)

where � is arbitrary. We derive these expressions directly
from Eqs. (1.17) and (1.18) by replacing l⊥ → 2s⊥, W →
2W , and setting δ = 0.

Let us also analyze the transient mean-field dynamics of
a single atomic clock. Using s− = s⊥e−ı� in Eq. (A2a) and

separating it into real and imaginary parts, we find that �̇ = 0.
Equation (A2) becomes

sz = 2ṡ⊥
s⊥

+ W, ṡz = W (1 − sz ) − s2
⊥
2

. (A5)

Making the substitution s⊥ = eX/2, we obtain sz = Ẋ + W
and the second-order differential equation for X ,

Ẍ + W Ẋ + eX

2
+ W (W − 1) = 0. (A6)

This equation describes the damped Toda oscillator [71]. It
has been studied with Painlevé analysis and argued to be
nonintegrable unless the last term in Eq. (A6) is twice the
square of the damping coefficient [72]. In our case, this
condition of integrability reads W (W − 1) = 2W 2, i.e., W =
0 or W = −1. The case W = 0 is straightforward to solve.
It corresponds to the origin, δ = W = 0, of the two-clock
phase diagram and we solve it in Appendix C 1. The case
W = −1 is unphysical in our context. Thus, dynamics in
the presence of pumping are nonintegrable already for one
bad-cavity ensemble.

APPENDIX B: DERIVATION OF THE
POINCARÉ-BIRKHOFF NORMAL FORM

We established in Sec. III A 4 that the reduced equations of
motion (1.16) determine the stability of the TSS and NTSS. In
this appendix we derive the corresponding Poincaré-Birkhoff
normal forms, i.e., the right-hand side of Eq. (3.17), starting
from Eq. (1.16). We closely follow the steps in Ref. [51], but
fix a number of mistakes along the way and in the final answer.

A key ingredient in this construction is the center manifold.
Recall that in a Hopf bifurcation two complex conjugate char-
acteristic values cross the imaginary line and acquire positive
real parts. In this case, it is sufficient to study the dynamics
projected onto a 2D center manifold. Imagine all the limit
cycles as they continuously change their shape and size upon
changing a parameter, such as δ or W . Heuristically, the center
manifold is the 2D sheet (this can be sufficiently warped away
from the bifurcation) made by putting these limit cycles one
after the other. This manifold is tangent to the plane defined
by the two unstable characteristic directions at the bifurcation.
For a pitchfork bifurcation, where a real characteristic value
becomes positive and there is a single unstable characteristic
direction, the center manifold is 1D.

1. Hopf bifurcation of the TSS and NTSS

The main steps of the derivation of the Poincaré-Birkhoff
normal form for a Hopf bifurcation are as follows:

(1) Shift the origin of the coordinate system to the fixed
point.

(2) Perform a linear transform s → s′ such that Eq. (1.16)
takes the form

ds′

dt
= [Block diagonal linear part︸ ︷︷ ︸

(2×2)
⊕

(1×1)

] · s′

+ Second or higher order terms, (B1)
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where the 2 × 2 part corresponds to the dynamics in the center
manifold (s′

x, s′
y).

(3) Since the center manifold is 2D, parametrize s′
z in

terms of the other two spin components near criticality,

s′
z = h(s′

x, s′
y). (B2)

Using this, produce the effective part of the dynamics pro-
jected onto the center manifold. This is still not the Poincaré-
Birkhoff normal form. It contains all (including the nonessen-
tial) nonlinear terms.

(4) Write the equations in terms of s′
± = s′

x ± ıs′
y.

(5) Perform the “near-identity transformation.” This is a
smooth change of variables s′

± → s′′
± that simplifies the kth-

and higher-order terms in projected dynamical equations. For
Hopf bifurcations, it is possible to eliminate even order non-
linear terms in this way (nonessential terms for this bifurca-
tions). Carrying out this transformation up to the second order,
we obtain the coefficient a1 in front of s3 in the Poincaré-
Birkhoff normal form as written in Eq. (3.17).

a. Center manifold reduction

We start by shifting the origin of the coordinate system to
the fixed point s0 in Eq. (1.16),

ṡx =
(

sz0 − W

2

)
sx − δ

2
sy + sx0sz + szsx, (B3a)

ṡy = δ

2
sx − W

2
sy, (B3b)

ṡz = −2sx0sx − W sz − s2
x . (B3c)

Although the fixed point is now at (0, 0, 0), the Jacobian
matrix (3.15) remains the same. Let λr (v1) and γ ± ıω (vr ±
ıvi) be the real and complex characteristic values (vectors) at
a Hopf bifurcation. Explicitly, for the bifurcation of the TSS
on the W = 1, δ � 1 half line, we read off λr , γ , and ω from
Eq. (3.4) and the characteristic vectors are

v1 =
⎛⎝0

0
1

⎞⎠, vr =
⎛⎝1

δ

0

⎞⎠, vi =
⎛⎝√

δ2 − 1
0
0

⎞⎠. (B4)

Similarly, for the bifurcation of the NTSS on the II-III bound-
ary λr and γ ± ıω are the roots of the polynomial P3(λ) in

Eq. (3.7b), while the characteristic vectors read

v1 =
⎛⎝ λr + W

δ
(

λr+W
2λr+W

)
−2sx0

⎞⎠, vr =

⎛⎜⎝ γ + W
δ[(2γ+W )(γ+W )+2ω2]

[(2γ+W )2+4ω2]

−2sx0

⎞⎟⎠,

vi =
⎛⎝ ω

−W ωδ
[(2γ+W )2+4ω2]

0

⎞⎠. (B5)

Next, we perform a linear transformation that block-
diagonalizes the Jacobian into 2 × 2 and 1 × 1 blocks,⎛⎝sx

sy

sz

⎞⎠ = QH ·
⎛⎝s′

x

s′
y

s′
z

⎞⎠, (B6)

where QH = (vr vi v1). Using the above relation in Eq. (B3),
we obtain(

ṡ′
x

ṡ′
y

)
=
(

γ ω

−ω γ

)(
s′

x

s′
y

)
+
(

R1(s′
x, s′

y, s′
z )

R2(s′
x, s′

y, s′
z )

)
, (B7a)

ṡ′
z = λrs′

z + R3(s′
x, s′

y, s′
z ), (B7b)

where

Ri(s
′
x, s′

y, s′
z ) = Ri1(s′

x )2 + Ri2(s′
y)2 + Ri3s′

xs′
y + Ri4s′

xs′
z

+ Ri5s′
ys′

z + Ri6(s′
z )2. (B8)

Note that Ri j for all i and j are known functions of δ and W .
Near the fixed point (0, 0, 0) we parametrize the center

manifold through s′
z ≡ h(s′

x, s′
y). Since the fixed point belongs

to the manifold and the s′
x-s′

y plane is tangential to it at (0,0,0),
we have

h(0, 0) = 0,
∂h

∂s′
x

∣∣∣∣
(0,0)

= 0,
∂h

∂s′
y

∣∣∣∣
(0,0)

= 0. (B9)

This implies

h(s′
x, s′

y) = h1(s′
x )2 + h2(s′

y)2 + h3s′
xs′

y + O(|s′
⊥|3). (B10)

Substituting s′
z = h(s′

x, s′
y) into Eq. (B7), we derive

(
∂h

∂s′
x

∂h

∂s′
y

)[(
γ ω

−ω γ

)(
s′

x
s′

y

)
+
(

R1

R2

)]
= λrh(s′

x, s′
y) + R3. (B11)

Now using the form of h(s′
x, s′

y) in Eq. (B10) and equating the coefficients of (s′
x )2, (s′

y)2, and s′
xs′

y on both sides, we solve for
h1, h2, and h3 as follows:

h1 = h3ω + R31

2γ − λr
, h2 = −h3ω + R32

2γ − λr
, h3 = 2ω(R32 − R31) + (2γ − λr )R33

(2γ − λr )2 + 4ω2
. (B12)

Finally, the effective equation projected onto the center manifold is(
ṡ′

x

ṡ′
y

)
=
(

γ ω

−ω γ

)(
s′

x

s′
y

)
+
(

R11(s′
x )2 + R12(s′

y)2 + R13s′
xs′

y

R21(s′
x )2 + R22(s′

y)2 + R23s′
xs′

y

)

+ g[h1(s′
x )2 + h2(s′

y)2 + h3s′
xs′

y]

(
R14s′

x + R15s′
y

R24s′
x + R25s′

y

)
+ O(|s′

−|4). (B13)
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b. Normal form

The next step is to rewrite Eq. (B13) in terms of s′
± = s′

x ± ıs′
y,(

ṡ′
+

ṡ′
−

)
=
(

(γ − ıω)s′
+

(γ + ıω)s′
−

)
︸ ︷︷ ︸

V (1) (s′+,s′− )

+
(

R(2,0)
+ (s′

−)2 + R(2,1)
+ s′

−s′
+ + R(2,2)

+ (s′
−)2

R(2,0)
− (s′

−)2 + R(2,1)
− s′

+s′
− + R(2,2)

− (s′
+)2

)
︸ ︷︷ ︸

V (2) (s′+,s′− )

+
(

R(3,0)
+ (s′

−)3 + R(3,1)
+ s′

+(s′
−)2 + R(3,2)

+ (s′
+)2s′

− + R(3,3)
+ (s′

+)3

R(3,0)
− (s′

−)3 + R(3,1)
− s′

+(s′
−)2 + R(3,2)

− (s′
+)2s′

− + R(3,3)
− (s′

+)3

)
︸ ︷︷ ︸

V (3) (s′+,s′− )

+O(|s′
−|4), (B14)

where V (k) : R2 −→ R2 are homogeneous polynomial maps of degree k = 1, 2, 3, . . . . Hence, for a ∈ R one has
V (k)(as′

+, as′
−) = akV (k)(s′

+, s′
−). At this point it is helpful to introduce the following basis functions for V (k):

ξ
(k,l )
+ =

(
sl
+sk−l

−
0

)
ξ

(k,l )
− =

(
0

sl
+sk−l

−

)
⎫⎪⎪⎬⎪⎪⎭ l = 0, 1, …, k. (B15)

From the definitions of R(k,l )
± in Eq. (B14), it is clear that they are nothing but the coefficients of different ξ

(k,l )
± , i.e.,

V (k) =
k∑

l=0

R(k,l )
+ ξ

(k,l )
+ +

k∑
l=0

R(k,l )
− ξ

(k,l )
− . (B16)

We read off these coefficients R(k,l )
± from Eqs. (B14) and (B13) as

R(3,0)
+ = [R(3,3)

− ]∗ = 1

8
[h1(R14 − R25) + h2(R25 − R14) − h3(R15 + R24)]

+ ı

8
[(h1 − h2)(R15 + R24) + h3(R14 + R25)], (B17a)

R(3,1)
+ = [R(3,2)

− ]∗ = 1

8
[3(h1R14 − h2R25) + h2R14 + h3R15 − h3R24 − h1R25]

+ ı

8
[3(h2R15 + h1R24) + h3R14 + h1R15 + h2R24 + h3R25], (B17b)

R(3,2)
+ = [R(3,1)

− ]∗ = 1

8
[3(h1R14 + h2R25) + h2R14 + h3R15 + h3R24 + h1R25]

+ ı

8
[3(h1R24 − h2R15) + h2R24 + h3R25 − h3R14 + h1R15], (B17c)

R(3,3)
+ = [R(3,0)

− ]∗ = 1

8
[h3(−R15 + R24) + h1(R14 + R25) − h2(R14 + R25)]

+ ı

8
[−(h1 − h2)(R15 − R24) − h3(R14 + R25)], (B17d)

R(2,0)
+ = [R(2,2)

− ]∗ = 1

4
(R11 − R12 − R23) + ı

4
(R13 + R21 − R22), (B17e)

R(2,1)
+ = [R(2,1)

− ]∗ = 1

2
(R11 + R12) + ı

2
(R21 + R22), (B17f)

R(2,2)
+ = [R(2,0)

− ]∗ = 1

4
(R11 − R12 + R23) + ı

4
(R21 − R13 − R22). (B17g)

Next, we eliminate as many nonlinear terms as possible from Eq. (B14). To achieve this, we introduce the following
transformation: (

s′
+

s′
−

)
=
(

s′′
+

s′′
−

)
−
⎛⎝φ

(k)
s′′+

(s′′
+, s′′

−)

φ
(k)
s′′−

(s′′
+, s′′

−)

⎞⎠, φ(k)(s′′
+, s′′

−) ≡
⎛⎝φ

(k)
s′′+

(s′′
+, s′′

−)

φ
(k)
s′′−

(s′′
+, s′′

−)

⎞⎠, (B18)

where φ
(k)
s′′±

(s′′
+, s′′

−) are small homogeneous polynomials of order k. One needs to perform such near-identity transformations

iteratively. In particular, substituting Eq. (B18) into Eq. (B14) and using Taylor expansions for V (2) and (1 − O)−1 = 1 + O +
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O2 + · · · , we derive(
ṡ′′
+

ṡ′′
+

)
=V (1) + [V (2) − DV (1) · φ(2) + Dφ(2) · V (1)]

+ [V (3) − DV (2) · φ(2) + Dφ(2) · V (2) − Dφ(2) · DV (1) · φ(2) + (Dφ(2) )2 · V (1)] + O(|s′′
−|4), (B19)

where

DV k ≡
⎛⎝ ∂V k

+
∂s′′+

∂V k
+

∂s′′−
∂V k

−
∂s′′+

∂V k
−

∂s′′−

⎞⎠, Dφk ≡

⎛⎜⎝
∂φk

s′′+
∂s′′+

∂φk
s′′+

∂s′′−
∂φk

s′′−
∂s′′+

∂φk
s′′−

∂s′′−

⎞⎟⎠. (B20)

The modified nonlinear terms are

Ṽ (2) ≡ [V (2) − DV (1) · φ(2) + Dφ(2) · V (1)], (B21a)

Ṽ (3) ≡ [V (3) − DV (2) · φ(2) + Dφ(2) · V (2) − Dφ(2) · DV (1) · φ(2) + (Dφ(2) )2 · V (1)]. (B21b)

Note, a near-identity transformation at the kth order alters terms of the kth and higher orders. In particular, the kth-order term
becomes

Ṽ (k) = V (k) − DV (1) · φ(k) + Dφ(k) · V (1) ≡ V (k) − L(φ(k) ), (B22)

where we have introduced a linear operator. A function φ(k) satisfying

V (k) = L(φ(k) ) (B23)

eliminates the kth-order nonlinear term. We verify that the eigenfunctions of L are the column vectors ξ
(k,l )
± defined in Eq. (B15).

The corresponding eigenvalues are

λ
(k,l )
± ≡ γ (1 − k) − ıω(k − 2l ± 1), L(ξ (k,l )

± ) = λ
(k,l )
± ξ

(k,l )
± . (B24)

At criticality (γ = 0, ω > 0) one ends up with λ
(k,l )
± = 0, if and only if k = 2l ∓ 1, i.e., when k is odd. Moreover, λ

(k,l )
± = 0

guarantees that one is unable to invert Eq. (B23) to obtain φ(k). Therefore, Eq. (B23) does not have a solution if k is odd and V (k)

contains terms proportional to either ξ
(k, k+1

2 )
+ or ξ

(k, k−1
2 )

− , i.e., when R
(k, k±1

2 )
± �= 0 in Eq. (B16). Such nonlinearities that cannot be

eliminated with a near-identity transformation are known as essential nonlinearities. We see that any kth-order polynomial map
is of the form V (k) = V (k)

r + V (k)
c , where V (k)

r and V (k)
c are the removable (inessential) and essential nonlinearities.

Equation (B24) implies that to eliminate V (2) by the second-order near-identity transformation, we need

φ(2) =
2∑

l=0

[
R(2,l )

+
λ2,l

+
ξ

(2,l )
+ + R(2,l )

−
λ2,l

−
ξ

(2,l )
−

]
. (B25)

This introduces extra terms at the third and higher orders. Similarly, the third-order near-identity transformation, such that
L(φ(3) ) = Ṽ (3)

r , eliminates the nonessential parts of Ṽ (3) defined in Eq. (B21). This transformation does not affect Ṽ (3)
c =

α1ξ
(3,2)
+ + α∗

1ξ
(3,1)
− . Thus,

α1 = R(3,2)
+ + R(2,1)

+ (φ(2,2)
+ − φ

(2,1)
− ) + φ

(2,1)
+ (R(2,1)

− − R(2,2)
+ ) + 2(R(2,2)

− φ
(2,0)
+ − R(2,0)

+ φ
(2,2)
− ) + γ [2φ

(2,2)
− φ

(2,0)
+

+φ
(2,1)
+ (φ(2,1)

− + 3φ
(2,2)
+ )] + ıω[φ(2,1)

+ (φ(2,2)
+ − φ

(2,1)
− ) − 6φ

(2,2)
− φ

(2,0)
+ ], (B26)

where

φ
(2,l )
± ≡ R(2,l )

±
λ

(2,l )
±

. (B27)

Substituting s′′
± = se±ıθ into the resulting equations of motion,

we obtain

ṡ = γ s + Re(α1)s3 + O(s5), (B28a)

θ̇ = ω − Im(α1)s2 + O(s4). (B28b)

This is Eq. (3.17) with a1 = Re(α1).

2. Pitchfork bifurcation of the TSS

As we discussed at the end of Sec. III A 4, the TSS loses
stability via a pitchfork bifurcation in the reduced equations of
motion (1.16) on the upper quarter arc forming the boundary
between phases I and II. In this case, the center manifold
is 1D. We diagonalize the linear part of Eq. (B3) with the
following linear transformation:

⎛⎝sx

sy

sz

⎞⎠ = QP ·

⎛⎜⎝s′
x

s′
y

s′
z

⎞⎟⎠, (B29)
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where QP = (vx′ vy′ vz′ ), and vx′ , vy′ , and vz′ are the eigenvec-
tors of the Jacobian (3.15), where now sx0 = 0 and sz0 = 1.
We wrote down the corresponding eigenvalues in Eq. (3.4),

which we now rename as λx′ ≡ λ3,4, λy′ ≡ λ5,6, and λz′ ≡
λ1,2. Explicitly, the eigensystem of the Jacobian matrix at the
TSS reads

λx′ = 1

2
(1 − W +

√
1 − δ2), λy′ = 1

2
(1 − W −

√
1 − δ2), λz′ = −W,

vx′ =
⎛⎝ 1

δ
(1 + √

1 − δ2)
1
0

⎞⎠, vy′ =
⎛⎝ 1

δ
(1 − √

1 − δ2)
1
0

⎞⎠, vz′ =
⎛⎝0

0
1

⎞⎠. (B30)

Inside phase II, λx′ becomes positive. After the linear transformation (B29), Eq. (B3) becomes

ṡ′
x = λx′s′

x + R1(s′
x, s′

y, s′
z ), (B31a)

ṡ′
y = λy′s′

y + R2(s′
x, s′

y, s′
z ), (B31b)

ṡ′
z = λz′s′

z + R3(s′
x, s′

y, s′
z ). (B31c)

Below we list the nonzero Ri j using the same notation as in Eq. (B8):

R14 = −R24 = 1

2
+ 1

2
√

1 − δ2
, R15 = −R25 = −1

2
+ 1

2
√

1 − δ2
,

R31 = − 1

δ2
(1 +

√
1 − δ2)2, R32 = − 1

δ2
(1 −

√
1 − δ2)2, R33 = −2. (B32)

Since the center manifold is 1D, we parametrize it as

s′
y = h1(s′

x )2 + · · · , s′
z = g1(s′

x )2 + · · · . (B33)

This parametrization guarantees that the fixed point s′
x = s′

y =
s′

z = 0 lies on the center manifold and the s′
x axis (the unstable

characteristic direction) is tangential to it; cf. Eq. (B9). Using
Eq. (B33) in Eqs. (B31b) and (B31c) and equating the coeffi-
cients of s′

x and (s′
x )2 on both sides, we find

h1 = 0, g1 = R31

2λx′ − λz′
= − 1

δ2
(1 +

√
1 − δ2). (B34)

Finally, substituting the resulting s′
y and s′

z into Eq. (B31a), we
derive the normal form for this bifurcation as

ṡ′
x = λx′s′

x + R14g1(s′
x )3 + O(s4). (B35)

The coefficient of (s′
x )3 is − (1+√

1−δ2 )2

2δ2
√

1−δ2 < 0 proving that the
TSS goes through a supercritical pitchfork bifurcation at the
boundary between phases I and II.

APPENDIX C: DYNAMICS OF TWO ATOMIC ENSEMBLES
IN A BAD CAVITY IN THE ABSENCE OF PUMPING

In this Appendix, we analyze the dynamics of our system
without pumping, i.e., on the W = 0 line of the nonequilib-
rium phase diagram in Fig. 1. Only attractors on this line are
nonradiative fixed points. In fact, there is a family of such
fixed points for each value of the detuning δ, only one of
which is continuously connected to the limit cycle living in
the green region of Fig. 1 at W �= 0. We will also see that in
the absence of pumping, mean-field equations of motion (1.4)
for an arbitrary number n of ensembles are a set of generalized
Landau-Lifshitz-Gilbert equations that conserve the lengths
of the spins. Separately, we will study the dynamics for

δ = W = 0, which reduces to the W = 0 case of the one-
ensemble dynamics we considered in Appendix A.

At W = 0 it is useful to rewrite the mean-field evolution
Eqs. (1.4) [or equivalently Eq. (2.8)] in a vector form as

dsτ

dt
= ωτ ẑ × sτ + 1

2
(ẑ × l ) × sτ , l =

∑
τ

sτ . (C1)

This is the Landau-Lifshitz-Gilbert equation [73,74] for the
total spin l when all ωτ are the same. Otherwise, it is an inho-
mogeneous variant of the latter. The Landau-Lifshitz-Gilbert
damping term in Eq. (C1) pushes the spins towards the z axis
whenever l �= 0. Equation (C1) conserves the magnitudes of
classical spins sτ since

sτ · dsτ

dt
= 0. (C2)

First, consider the case δ �= 0. We observe numerically
that for a generic initial condition (sA

x0, sA
y0, sA

z0, sB
x0, sB

y0, sB
z0),

the asymptotic solution for two atomic ensembles is
(0, 0,−|sA

0 |, 0, 0,−|sB
0 |). By analyzing the eigenvalues of the

Jacobian (3.1), we also establish that this fixed point is stable,
while any other choice of signs of the z components results
in an unstable fixed point. Therefore, there is a family of
stable fixed points labeled by |sA

0 | and |sB
0 | for each δ on the

W = 0 axis of the phase diagram, which are not Z2-symmetric
and different from the TSS. According to Eq. (4.6), the Z2-
symmetric limit cycle in the W → 0 limit turns into a fixed
point sA = sB = 0, which is only one member of the above
family of fixed points.

1. Origin of the phase diagram

Here we exactly solve the case W = δ = 0. In this case, the
total spin satisfies Eq. (A3) with W = 0, which is the same

033802-28



DRIVEN-DISSIPATIVE DYNAMICS OF ATOMIC … PHYSICAL REVIEW A 99, 033802 (2019)

as Eq. (A2) at W = 0. Therefore, it is legitimate to simply
replace s with l and set W = 0 in Eq. (A5), i.e.,

lzl⊥ = 2l̇⊥, l̇z = − l2
⊥
2

. (C3)

Let l⊥ = eX/2 to obtain the Toda oscillator equation,

Ẍ + eX

2
= 0. (C4)

As discussed below Eq. (A6), this equation is integrable. Its
general solution is

l2
⊥ = 2C2

1

1 + cosh [C1t + C2]
, (C5)

where C1 and C2 are arbitrary constants. Equations (C5) and
(C3) show that l⊥ → 0 and lz → constant as t → +∞.

Then, Eq. (2.8), where now W = 0 and ωA = −ωB =
δ/2 = 0 implies that the time derivatives ṡτ

x , ṡτ
y , and ṡτ

z vanish
since l⊥ → 0 at large times. Thus, the asymptotic solution for
an arbitrary initial condition (sA

x0, sA
y0, sA

z0, sB
x0, sB

y0, sB
z0) is

sA
x (∞) = −sB

x (∞) = sx∞, (C6a)

sA
y (∞) = −sB

y (∞) = sy∞, (C6b)

sτ
z (∞) = ±

√∣∣sτ
0

∣∣2 − s2
x∞ − s2

y∞, τ = A, B. (C6c)

In the last equation we took into account that the spin
length is conserved in the absence of pumping. The choice of
signs in Eq. (C6c) depends on the initial condition, but should
be such that lz � 0. Indeed, a linear stability analysis with the
Jacobian (3.1) reveals that fixed points (C6) are unstable when
lz > 0 and stable when lz < 0. These fixed points are distinct
from the TSS and generally do not retain the Z2 symmetry.

One describes the resultant dynamics as follows. Start with
two arbitrary pointing spin vectors. Since δ = 0, ωτ = 0 in
Eq. (C1) and the spins do not precess. Due to the Landau-
Lifshitz-Gilbert damping, both spins are pushed towards the
z axis. Eventually, they align in such a way that lx = ly = 0
and lz � 0. At that point all the time derivatives vanish and
the spins get stuck.

APPENDIX D: POWER SPECTRUM OF RADIATED
ELECTRIC FIELD

In this Appendix, we show that the emission spectrum of
atomic ensembles coupled through a heavily damped cavity
mode is proportional to |l−( f )|2, where l−( f ) is defined
in Eq. (1.23). Our derivation combines the approaches of
Refs. [56,58]. For simplicity, we examine a ring cavity at z =
0 coupled to a 1D reservoir of length L, which is a collection
of standing waves with nodes at ±L/2. The Hamiltonian is

Ĥ = ĤS + ĤR + ĤSR, (D1)

where,

ĤS = ω0â†â, ĤR =
∑

j

ω j r̂
†
j r̂ j,

(D2)
ĤSR =

∑
j

(κ∗
j âr̂†

j + κ j â
†r̂ j ),

and â (â†) and r̂ j (r̂†
j ) are the annihilation (creation) operators

for the cavity and the reservoir modes, respectively. The
periodic boundary condition allows us to replace the sum
over ω j with an integration over ω with the density of states
g(ω) = L/2πc, where c is the speed of light. Assuming the
reservoir is in the state of thermal equilibrium at temperature
T0 and adopting the Born-Markov approximation, we obtain
the following master equation:

ρ̇ = −ıω0[â†â, ρ] + κ (1 + n̄)L[â]ρ︸ ︷︷ ︸
Emission

+ κ n̄L[â†]ρ︸ ︷︷ ︸
Absorption

, (D3)

where n̄ ≡ exp (−ω0/kBT0 )
1−exp (−ω0/kBT0 ) , κ ≡ 2πg(ω0)|κ (ω0)|2 = �c/2L,

and � < 1 is the transmission coefficient of the mirror sepa-
rating the cavity from its surroundings. At temperatures close
to 0 K, we neglect all terms proportional to n̄ in Eq. (D3). As
a result, we are left only with the spontaneous emission of the
cavity mode as shown in Eq. (1.1). We also neglect the Lamb
shift.

The measurable output electric field in terms of the reser-
voir operators reads

Ê(z, t ) = Ê(+)(z, t ) + Ê(−)(z, t ), (D4)

where

Ê(+)(z, t ) ≡ ıê0

∑
k

√
ωk

2ε0AL
r̂k (t )eıωk z/c+ζ (z),

Ê(−)(z, t ) ≡ Ê(+)(z, t )†. (D5)

The phase shift ζ (z) due to the mirror separating the cavity
from the reservoir is ζ (z) = ζR for z > 0 and zero otherwise.
The unit vector ê0 is perpendicular to the z axis and A is the
cross-sectional area of the cavity mode.

To relate the evolution of the reservoir modes r̂k (t ) to that
of the cavity mode â(t ), consider the equation of motion for
r̂k (t ),

˙̂rk (t ) = −ıωk r̂k (t ) − ıκ∗
k â(t ). (D6)

The solution of the above equation is

r̂k (t ) = r̂k (0)e−ıωkt − ıκ∗
k

∫ t

0
dt ′â(t )eıωk (t ′−t ). (D7)

Equation (D5) becomes

Ê(+)(z, t ) = Ê(+)
f (z, t ) + Ê(+)

s (z, t ). (D8)

Here Ê(+)
f (z, t ) is the freely evolving part of the electric field

involving only r̂k and Ê(+)
s (z, t ) originating from the second

term on the right-hand side of Eq. (D7) describes the effect of
the cavity. We are interested in the autocorrelation function,

Auto(τ ) =
∫ +∞

−∞
dt〈Ê(−)(z, t + z/c)Ê(+)(z, t + z/c + τ )〉,

(D9)

where the angular brackets denote taking a trace over the sys-
tem and the reservoir degrees of freedom. At low temperatures
the state of the reservoir is very close to the vacuum electro-
magnetic field, n̄(ω j, T0) ≈ 0. Therefore, the contribution of
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the freely evolving part of the electric field is negligible, i.e.,

〈Ê(−)(z, t + z/c)Ê(+)(z, t + z/c + τ )〉
≈ 〈Ê(−)

s (z, t + z/c)Ê(+)
s (z, t + z/c + τ )〉. (D10)

Following the steps outlined in Sec. 1.4 of Ref. [58], we obtain

Ê(+)
s (z, t ) =

⎧⎨⎩ê0

√
ω0

2ε0Ac

√
2κeıζR â(t − z/c), if ct > z > 0,

0, if z < 0.

(D11)

According to Eq. (2.7) in the bad-cavity limit,

〈â(t )〉 ∝ l−(t ). (D12)

Outside of the cavity, using Eqs. (D11), (D12) and the mean-
field approximation in Eqs. (D9) and (D10), we derive

Auto(τ ) ∝
∫ +∞

−∞
dt l+(t )l−(t + τ ). (D13)

Finally, the Fourier transform of the autocorrelation function
(the power spectrum) is

Auto( f ) ∝ |l−( f )|2, (D14)

where we used the Wiener-Khintchine theorem.
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