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The magnetic properties of electrons in a metal are investigated
for the case of an arbitrary dispersion law. The energy levels
of a quasiparticle for an arbitrary dispersion law in a magnetic
field are found, and the magnetic moment of a gas of such
quasiparticles is computed, spin paramagnetism being taken
into account. It is shown that the periods and amplitudes of
oscillations are determined by the form of the Fermi boundary
surface. Knowledge of these quantities allows one to reconstruct
the form of the Fermi surface and the values of velocities on it.

Introduction

The question of the electron energy spectrum is of
central importance in the construction of a quantum
theory of metals. There is every reason to suppose
that the electron spectrum for metals is of the Fermi
type. This implies that, at low temperatures, the
electrons in the metal, interacting with one another and
with the lattice, may be replaced for thermodynamic
purposes by an ideal Fermi gas of charged particles
following some dispersion law E = E(px, py, pz). The
majority of the thermodynamic and kinetic properties
of a degenerate Fermi gas, however, are highly
insensitive to the dispersion law, as a consequence
of which their investigation does not allow one to
draw any conclusions concerning the form of the
law.

Substantially different in this respect is the behavior
of certain magnetic properties of metals — in particular,
oscillations of the magnetic susceptibility — which,
it appears, depend strongly on the electron energy
spectrum and may serve to distinguish it uniquely.

The periodic dependence of the magnetic suscep-
tibility on the field at low temperatures (the de Haas
– van Alphen effect) has by now been observed for a
large number of metals (Bi, Sb, Hg, Zn, Cd, Be, C,
Mg, Ga, In, Sn, Tl, and Al) [1] and can be regarded
as a property common to all metals. At the same time,
the quantitative theory of this phenomenon had been

worked out till now only for the case of an electron gas
following a quadratic dispersion law [2a,2].

The quadratic dispersion law is correct for an
electron in a metal only in the lower part of the
appropriate energy band and can be used to investigate
the magnetic properties of metals having a small number
of conduction electrons (such as Bi). In general, however,
there is no justification for the use of a quadratic
dispersion law, as a consequence of which it is essential
to determine to just what extent the peculiarities of the
effect are to be attributed to the electronic dispersion
law. Certain qualitative considerations associated with
this circumstance have been presented earlier by
Onsager [3]. A quantitative theory has been offered in
a paper by the present authors [4].

The present article contains a detailed presentation
of the results published earlier in the brief
communication [4], with, in addition, a treatment
of the spin paramagnetism (a treatment of spin
paramagnetism for the case of a quadratic dispersion
law has been given elsewhere [2a]).

1. Energy Levels of Quasiparticles in a
Magnetic Field

Let us consider the motion of a charged quasiparticle
under a general dispersion law

E = E(px, py, pz) (1.1)

in a homogeneous magnetic field.
If the magnetic field H is directed along the z-axis,

the Hamiltonian for such a particle in the magnetic
field is obtained formally by replacing the momentum
components pi in (1.1) by components of the kinetic
momentum operator P̌i, which are interrelated by the
commutation relations

[P̌y, P̌x] =
e

c
H, [P̌y, P̌z] = [P̌x, P̌z] = 0. (1.2)
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This relation between P̌x and P̌y corresponds to
the commutation relation between the generalized
coordinate and the generalized momentum: [P̌y, P̌y] = 1.

The role of the generalized coordinate operator Q̌y

is played here by the operator (c/eH)P̌x. Therefore, the
quasiclassical quantization condition

1
2π

∮
PydQy = (n + γ)!

can be written in the form

(c/2πeH)
∮

Py dPx = (n + γ)! (0 < γ < 1) (1.3)

(for the case of a quadratic dispersion law, γ = 1/2; in
the general case, γ can differ from 1/2).

The integral
∮

PydPx defines the area bounded by a
plane closed curve

E(Px, Py, Pz) = E = const, Pz = pz = const, (1.4)

which allows relation (1.3) to be written in the more
symmetric form

S(E, pz) ≡
∫ ∫

dPx dPy = (n + γ)2π!eH

c
, (1.5)

the double integral being taken over the region bounded
by the curve (1.4). Here, S(E, pz) is the area intercepted
on the surface of constant energy

E(Px, Py, Pz) = E (1.6)

by a plane perpendicular to the direction of the magnetic
field.

Condition (1.5) specifies, in the quasiclassical
approximation, the implicit dependence of the energy
of a quasiparticle in a magnetic field on the quantum
number n:

E = En(pz;H). (1.7)

In accordance with (1.5), the distance between the
energy levels will be

∆En = En+1 − En = 2π!eH/(c ∂S/∂E).

If the quasiparticle possesses spin 1/2 and has a
magnetic moment 1

2µ0 = 1
2 (e!/m0c), then the two

possible orientations of the spin relative to the direction
of the magnetic field H must be taken into account in
the expression for the energy of such a particle:

E = En(pz;H) ± 1
2
µ0H. (1.8)

Thus, the energy levels in the magnetic field of a
quasiparticle having an arbitrary dispersion law and spin
1/2, which we shall henceforth refer to as an electron,
are given by expression (1.8); m0 which appears in the
definition of µ0 represents the mass of the electron.

It is worth to note that the components pi in
(1.1) for electrons in a metal are components of a
quasimomentum. This fact, however, does not affect
the results obtained, provided that the surface given
by (1.6) does not intersect itself, and that each of the
curves (1.4) is located within one of the cells of the
reciprocal lattice. In addition, the radius of curvature
of the electron trajectory must clearly be assumed to be
large compared to the lattice constant.

2. Calculation of the Magnetic Moment

The magnetic moment M of the electron gas is
calculated as the derivative of the thermodynamic
potential Ω with respect to the field: M = −∂Ω/∂H.
To determine the thermodynamic potential Ω, we make
use of the usual formula of statistical physics

Ω = −Θ
∑

s

ln
{

1 + exp
ζ − E(s)

Θ

}
, (2.1)

where E(s) is the energy of the electron in the state s, ζ
is the chemical potential, Θ = kT , and the summation
is performed over all of the possible states s of the
individual electron. The energy E(s) for an electron in
a state, where pz, n, and the direction of spin are set, is
given by expression (1.8).

Since, in computing the number of states, the
commutation relations (1.2) rather than the dispersion
law for electrons are the essential factor, the number of
states is calculated by the same method as that used by
Landau for free electrons [2]. In particular, it is possible
to assert that the number of states with momentum pz

in the interval (pz, pz + ∆pz) for a given n and a given
spin orientation is equal to

V
eH

4π2!2c
∆pz.

Therefore, relation (2.1) can be rewritten in the form

Ω = −V
eH

4π2!2c

∑

spin

∞∑

n=0

Θ
∞∫

−∞

dpz ×

× ln
{

1 + exp
ζ − En(pz;H) ∓ 1

2µ0H

Θ

}
. (2.2)
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Denoting the expression following the summation
sign in (2.2) by ϕ(n), we use the Poisson formula for
the summation over n [5]:

Ω = −V
eH

4π2!2c

∑

spin

{
1
2
ϕ(0) +

∞∫

0

dnϕ(n) +

+2
∞∑

k=1

∞∫

0

dnϕ(n) cos 2πkn

}
.

Inasmuch as γ → 1/2 for En → E0, it can be readily
shown that the thermodynamic potential can be written
in the form

Ω = −V
eH

4π2!2c

∑

spin

{ ∞∫

−1/2

dnϕ(n) +

+2Re
∞∑

k=1

∞∫

−1/2

dnϕ(n)e2πkin

}
. (2.3)

The first term inside the curly brackets corresponds
to the continuous energy spectrum. It can easily be
shown that this term will contribute only to the spin
paramagnetism of the electron gas. Introducing the
symbol ε = ζ ∓ 1

2µ0H, we obtain

J1 =
∞∫

−1/2

dnϕ(n) = Θ
∞∫

−1/2

dn

∞∫

−∞

dpz ln
{

1 + e(ε−En)/Θ
}

=

= Θ
∞∫

0

dE ln
{

1 + e(ε−En)/Θ
} ∫

S>0

dpz

(
∂n

∂E

)
,

where S = S(E, pz).
The relation between E and n is given by expression

(1.5). Hence,

∂n

∂E
=

c

2πe!H

∂S

∂E
; (2.4)

J1 =
Θc

2πe!H

∞∫

0

dE ln
{

1+e(ε−En)/Θ
} ∫

S>0

dpz

(
∂S

∂E

)
. (2.5)

Taking the specificity of the limits of integration for
the inner integral in (2.5) into consideration, we write

J1 =
Θc

2πe!H

∞∫

0

dE ×

× ln
{

1 + e(ε−E)/Θ
} d

dE

∫

S>0

dpzS(E, pz) =

=
c

2πe!H

∞∫

0

dE

e(E−ε)/Θ + 1

∫

S>0

S(E, pz) dpz . (2.6)

We now note that the inner integral in (2.6) gives
the volume bounded by the surface of constant energy
E in the momentum space. Representing this volume by
U(E) and introducing the notation

W (ε) =
∞∫

0

U(E)dE

e(E−ε)/Θ + 1
,

we obtain

J1 =
c

2πe!H
W (ε). (2.7)

Making use of the fact that µ0H & ζ, we can expand
W (ε) in powers of µ0H, stopping with the second-order
terms. If we insert this expansion into (2.3) and sum
over the two possible spin orientations, it is seen that
the corresponding part of the thermodynamic potential
Ω is equal to

Ω1 = − V

8π3!3

[
2W (ζ) +

(
µ0H

2

)2 d2W (ζ)
dζ2

]
. (2.8)

Therefore, J1 actually contributes only to the spin
paramagnetism of the electron gas:

M1z = µ0V
1

16π3!3

d2W (ζ)
dζ2

µ0H. (2.9)

Relation (2.9) has a simple physical interpretation.
Under the condition Θ & ζ, which we consider to be
fulfilled always, one can set

W (ζ) ≈
ζ∫

0

U(E) dE,

which yields

d2W (ζ)
dζ2

≈ dU(ζ)
dζ

.

The product

V

8π3!3

dU(ζ)
dζ

= ρ(ζ) (2.10)
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gives the number of states per unit energy interval near
the Fermi boundary energy. Therefore, relation (2.9) can
be written in the form

M1z =
1
2
µ0ρ(ζ)µ0H. (2.11)

The diamagnetism of the electron gas and the de
Haas–van Alphen effect are described by the second term
in the curly brackets in (2.3). Using (1.5) and (2.4), we
can transform the integrals entering into this term:

J(k) =
∞∫

−1/2

dnϕ(n)e2πkin =

= Θ
∞∫

−1/2

dn

∞∫

−∞

dpz ln
{

1 + exp
ε − En

Θ

}
e2πkin =

=
Θc

2πe!

∞∫

0

dE ln
{

1 + exp
ε − En

Θ

}
×

×
∫

S>0

dpz

(
∂S

∂E

)
exp

{
kc

e!H
S(E, pz) − 2πkiγ

}
.

Integration by parts leads to the expression

J(k) =
c

2πe!H

∞∫

0

dEf

(
E − ε

Θ

)
×

×
∞∫

0

dE′
∫

S>0

dpz
∂S(E′, pz)

∂E′ ×

× exp
{

i
kc

e!H
S(E′, pz) − 2πkiγ

}
; (2.12)

where f(x) represents the Fermi distribution function:
f(x) = (1 + ex)−1.

While computing the inner double integral in (2.12),
we used the fact that (c/2πe!H)S = n + γ is a very
large number, by assumption. This allows us to use
the method of stationary points for the asymptotic
evaluation of the integral. It turns out that the major
contribution to J(k) comes, first, from the integration in
a vicinity of the extremum point S(E′, pz) for E′ = E,
i.e., the point at which ∂S(E, pz)/∂pz = 0. Second, it
comes from the integration in a vicinity of the vertices
of the region of integration: E′ = E, S(E, pz) = 0.
As for the integration in a vicinity of the stationary
point, it yields the oscillating part of J(k) (cf. Appendix)
corresponding to the oscillating part of the magnetic
moment. The integration in a vicinity of the vertex

E′ = E, S(E, pz) = 0, yields the nonperiodic part of
J(k) which determines the diamagnetism of the electron
gas. The neighborhood of S(E, pz) = 0 corresponds,
however, to small values of the quantum number n
[cf. (1.5)], for which the energy levels calculated in the
quasiclassical approximation (Section 1) are, generally
speaking, incorrect. Therefore, the nonperiodic part of
J(k), the expression for which is given in Appendix,
can give the correct value for the diamagnetism of
the electron gas only in the special case where the
quasiclassical energy levels coincide with the true levels
for all n (for instance, in the case of a quadratic
dispersion law).

The principal term in the asymptotic expansion of
the inner double integral in a vicinity of the stationary
point leads to the following expression:

J(k) =
1√
2π

(
e!H

c

)1/2 1
k3/2

×

× exp
{
−2πkiγ ∓ i

π

4
− i

π

2

}
×

×
∞∫

0

dEf

(
E − ε

Θ

) ∣∣∣∣
∂2S(E, pz)

∂p2
z

∣∣∣∣
−1/2

m

×

× exp
{

i
kc

e!H
Sm(E)

}
. (2.13)

By Sm(E), we denote the extremal value of S(E, pz)
for E to be constant. If Sm(E) represents a maximum
for the intercepted area, then the phase iπ/4 takes the
minus sign in (2.13). Whereas, if Sm(E) is a minimum
area, the phase iπ/4 takes the plus sign. The derivative
(∂2S/∂p2

z)m is taken at the extremal point.
To compute the integral in (2.13), we use the fact

that, under the assumption that dSm(E) / dE )= 0 and
for the evident inequality Θ & ε, the major contribution
to the integral comes from the integration about the
point, at which the function f [(E − ε)/Θ] varies most
rapidly; i.e., about E = ε. Therefore, expanding Sm(E)
in powers of E − ε and integrating, we obtain

∞∫

0

dEf

(
E − ε

Θ

) ∣∣∣∣
∂2S

∂p2
z

∣∣∣∣
−1/2

m

exp
{

i
kc

e!H
Sm(E)

}
≈

≈ e!H

kc
Ψ(k)

exp
{
−iπ

2 + i kc
e!H Sm(ε)

}

|∂2S/∂p2
z|

1/2
m dSm(ε)/dε

, (2.14)

where Ψ(z) = z/ sinh z, and λ = (πcΘ/e!H) ×
(dSm(ε)/dε).
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Inserting expression (2.14) in (2.13), we obtain

J(k) = − 1√
2π

(
e!H

c

)3/2

×

× 1
k5/2

Ψ(kλ) exp
{
i kc
e!H Sm(ε) ∓ iπ

4 − 2πkiγ
}

|∂2S(ε, pz)/∂p2
z|

1/2
m dSm(ε)/dε

. (2.15)

We compute the second term in the curly brackets
of (2.3) by summing over k:

2Re
∞∑

k=1

J(k) =

= − 2√
2π

(
e!H

c

)3/2 ∣∣∣∣
∂2S(ε, pz)

∂p2
z

∣∣∣∣
−1/2

m

(
dSm(ε)

dε

)−1

×

×
∞∑

k=1

1
k5/2

Ψ(kλ) cos
[

kc

e!H
Sm(ε) ∓ π

4
− 2πkγ

]
. (2.16)

In summing over the two spin orientations, it is
possible, in all of the expressions in (2.16) except the
argument of the cosine, simply to replace ε by ζ. In
the argument of the cosine, however, it is necessary to
expand Sm(ε) in powers of µ0H, stopping with the first
power of µ0H:

Sm(ε) = Sm(ζ) ± 1
2
µ0H

dSm(ζ)
dζ

.

Taking this into account in the summation, we obtain
the final expression for the oscillating part of the
thermodynamic potential Ω corresponding to the second
term in the curly brackets of (2.3) as

Ω2 =
V

π2
√

2π!3

(
e!H

c

)5/2 ∣∣∣∣
∂2S

∂p2
z

∣∣∣∣
−1/2

m

(
dSm

dζ

)−1

×

×
∞∑

k=1

Ψ(kλ)
k5/2

cos
[

kc

e!H
Sm(ζ) ∓ π

4
− 2πkγ

]
×

× cos
[

k

2m0

dSm(ζ)
dζ

]
. (2.17)

In order to determine that part of the magnetic
moment which is contributed by (2.17), we must
differentiate Ω2 with respect to the magnetic field
intensity. In this differentiation, the factors preceding
the cosine, which vary slowly with H, need not be
differentiated at all; it is necessary only to differentiate
the cosine, whose argument depends on H. We have,
therefore, for the component of the moment in the

direction of the magnetic field1:

Mosc = − V

π2
√

2π!3

(
e!
c

)3/2 Sm(ζ)
√

H

|∂2S/∂p2
z|

1/2
m dSm/dζ

×

×
∞∑

k=1

1
k3/2

Ψ(kλ) sin
[

kc

e!H
Sm(ζ) ∓ π

4
− 2πkγ

]
×

× cos
[

k

2m0

dSm(ζ)
dζ

]
. (2.18)

Combining (2.8) and (2.17), as well as (2.11) and
(2.18), and taking the diamagnetism of the electron gas
into consideration, we write the final expressions for the
thermodynamic potential Ω and the magnetic moment:

Ω = − V

4π3!3
W (ε) − V

1
2
(χ1 + χ2)H2 +

+
V

π2
√

2π!3

(
e!H

c

)5/2 ∣∣∣∣
∂2S

∂p2
z

∣∣∣∣
−1/2

m

(
dSm

dζ

)−1

×

×
∞∑

k=1

Ψ(kλ)
k5/2

cos
[ kc

e!H
Sm(ζ) ∓

∓π

4
− 2πkγ

]
cos

[ k

2m0

dSm(ζ)
dζ

]
; (2.19)

M = V (χ1 + χ2)H−

− 4V

!3(2π)5/2

(
e!
c

)3/2 Sm(ζ)
√

H

|∂2S(ζ, pz)∂p2
z|

1/2
m dSm(ζ)/dζ

×

×
∞∑

k=1

Ψ(kλ)
k3/2

sin
[ kc

e!H
Sm(ζ) ∓

∓π

4
− 2πkγ

]
cos

[ k

2m0

dSm(ζ)
dζ

]
. (2.20)

Here, χ1 represents the spin paramagnetic
susceptibility of the electron gas determined from
(2.11), and χ2 is the constant part of the diamagnetic
susceptibility (cf. Appendix).

We may remark that the nonperiodic part of the
magnetic moment [the first two terms in (2.20)] is of
little interest, inasmuch as it is obscured in metals by the
other effects (for example, by the atomic magnetism).
The oscillating part of the magnetic moment, to the
analysis of which we now turn, is of primary interest.

1Throughout what follows, the values given are those of the
component Mz of the momentum in the direction of H. The
corresponding oscillating component Mx of the momentum in
the perpendicular direction is obtained by multiplying (2.18) by
(1/Sm)(∂Sm/∂ϑ) (ϑ being the angle in the x − z plane).
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whence it follows that

ξ(H) =
2
√

2π

ζ0dU(ζ0)/dζ0

(
e!H

c

)3/2

×

× G(ζ0,H)
|∂2S(ζ0, pz)/∂p2

z|
1/2
m

. (3.6)

Inasmuch as the summation G(ζ,H) appearing in
(3.6) is of the order of unity, while

∣∣∂2S/∂p2
z

∣∣1/2

m
is a

dimensionless quantity representing the anisotropy of
the Fermi boundary surface (in the case of a spherical
surface, it is equal to

√
2π), the quantity ξ(H) is

determined by the ratio (e!H/c)3/2/ζ0(dU(ζ0)/dζ0). If
the cases in which the anisotropy of the Fermi surface
is anomalously large are neglected, then it is possible
to assume that U(ζ0) ∼ [S(ζ0)]3/2, where S(ζ0) is the
mean area intercepted on the Fermi surface by the
planes pz = const. This allows setting, by the order of
magnitude,

ζ0
dU(ζ0)

dζ0
∼ U(ζ0) ∼ [S(ζ0)]3/2 ∼

[
ζ0

dS

dζ0

]3/2

,

and we can write

ξ(H) ∼
(

e!H

c

)3/2/
ζ0

dU(ζ0)
dζ0

∼

∼
(

e!H

ζ0c

/
dS(ζ0)

dζ0

)3/2

. (3.7)

We note here that, as follows from (1.5), the mean
distance between neighboring energy levels near the
boundary energy is equal to

∆E =
2πe!H

c

/dS(ζ0)
dζ0

.

The distance between the levels is assumed to be
considerably less than the boundary energy ζ0; from
(3.7), therefore, we obtain the following estimation of
ξ(H):

ξ(H) ∼ (∆E/ζ0)3/2 & 1. (3.8)

Thus, the quantity ξ(H) determined by expression
(3.6) is actually small in magnitude. In the case of the
quadratic dispersion law (3.1),

ξ(H) =
(

e!H

mcζ0

)3/2 G(ζ0,H)
2π

√
2

∼

∼
(

e!H

mcζ0

)3/2

=
(

µH

ζ0

)3/2

& 1.

As for the argument of the sine in (2.20), (3.2),
or (3.3), its dependence on the magnetic field is
incorporated in the expression

c

e!H
Sm(ζ) =

c

e!H

[
Sm(ζ0) + ξζ0

dSm(ζ0)
dζ0

]
=

=
c

e!H
Sm(ζ0) +

2
√

2π

dU(ζ0)/dζ0

(
e!H

c

)1/2

×

×
G(ζ0,H)dSm(ζ0)

dζ0

|∂2S(ζ0, pz)/∂p2
z|

1/2
m

. (3.9)

The second term in (3.9) is equal in the order of
magnitude to (∆E/ζ0)1/2 & 1; the periodic dependence
of the magnetic moment on the magnetic field is
therefore fully determined by the first term in (3.9):

c

e!H
Sm(ζ) ≈ c

e!H
Sm(ζ0). (3.10)

It follows from (3.8) and (3.10) that ζ can be replaced
by ζ0 in (2.19) and (2.20), as well as in (3.2) and (3.3),
and the period of oscillations can be represented in the
form

∆
(

1
H

)
=

2πe!
cSm(ζ0)

. (3.11)

If there are several unfilled zones, in which the
classical motion of the electron is independent, i.e., when
the Fermi surface is reduced to a few closed surfaces,
then each group of electrons has its own Sm(E) and
makes its own oscillatory contribution to the magnetic
moment. If, in this case, the boundary energy ζ is found
to be placed near the bottom of the unfilled zone, we can
restrict ourselves with the expansion

E(Px, Py, Pz) = ε0 +

(
P 2

x

2m1
+

P 2
y

2m2
+

P 2
z

2m3

)
.

The maximum area intercepted on the ellipsoid
E(Px, Py, Pz) = E by the plane P × H = const will
be

Sm = 2πm(E − ε0),

m = (m1m2m3)1/2/(m1α
2
1 + m2α

2
2 + m3α

2
3)

1/2,

where the αi are the direction cosines of the magnetic
field vector H in the system of the crystallographic axes.
For the corresponding factor, this yields ∂Sm/∂E =
2πm and the period

∆
(

1
H

)
=

µ

ζ − ε0

(
µ =

e!
mc

)
.
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In the case of a nearly filled zone, the energy at the
upper boundary has the form

E(Px, Py, Pz) = ε′0 −
(

P 2
x

2m1
+

P 2
y

2m2
+

P 2
z

2m3

)
,

which yields

∂Sm/∂E = −2πm and ∆
(

1
H

)
=

µ∗

ε′0 − ζ
,

µ∗ =
e!

m∗c
,

m∗ = (m∗
1m

∗
2m

∗
3)

1/2/(m∗
1α

2
1 + m∗

2α
2
2 + m∗

3α
2
3)

1/2.

In the presence of strong mass anisotropy, even a
slightly mosaic structure leads to the obscuration or
complete obliteration of oscillations in the case where the
number of electrons in the corresponding zone is large.
This obscuration of the phase of the oscillatory term can
be represented in the form

∆ϕ =
ζ − ε0

µH

∆m

m
∼ ζ − ε0

µH
∆ϑ,

where ∆ϑ is the angle of mosaicity. For ∆ϕ &
1, the oscillations disappear. Therefore, only those
groups of electrons or holes, in which the number of
particles is extremely small, will participate in the effect.
Oscillations having smaller periods can appear only for
sufficiently high fields. Since, however, the curvature
of the surface corresponding to an anomalously small
number of electrons is, as a rule, extremely high
(anomalously small electronic “masses”), there is no
foundation, even in this case, for assuming a quadratic
dispersion law.

Thus, the occurrence of the experimentally
observable de Haas–van Alphen effect in a large
group of metals provides grounds for assuming that the
presence of zones having an anomalously small number
of electrons is a general property of metals. It is possible
that the appearance of these zones is related to the
interaction between the electrons and the lattice. The
discovery of an isotopic effect might serve to confirm
such a supposition.

Finally, we turn our attention to the fact that
the careful experimental measurement of the period of
oscillations of the magnetic moment ∆(1/H), as well
as of the amplitude of oscillations and the temperature
dependence, would allow one to reconstruct the form
of the Fermi boundary surface and to determine the
velocity of electrons on this surface. That is, this

allows one to solve the problem inverse in some
sense to that we have solved. The feasibility of this
procedure is a consequence of the fact that the period
of oscillations determines the extreme value Sm(ζ) of
the area intercepted on the Fermi boundary surface
by the planes perpendicular to the direction of the
magnetic field, while the amplitude of oscillations and
the temperature dependence determine dSm(ζ)/dζ and∣∣∂2S(ζ, pz)/∂p2

z

∣∣ 1/2
m . As has been demonstrated in a

paper by Lifshits and Pogorelov [6], the knowledge of
these quantities, under quite general assumptions, is
adequate for the solution of the inverse problem.

If it is assumed that the Fermi boundary surface has
a center of symmetry and that the extremal intercept is
the central one, then the length of the radius vector r,
extending from the center to the surface in the direction
e (e being the unit vector), is determined by the formula
[6]

πr2(e) = Xe(0) −
1∫

0

[Xe(u) − Xe(0)]
du

u2
. (3.12)

Here, we have introduced the notation

Xe(u) =
1
2π

∫
[Sm(ζ)]nδ(ne − u)dΩn,

where [Sm(ζ)]n is the area intercepted on the boundary
surface E(Px, Py, Pz) = ζ by a plane passing through
the center normally to a given unit vector n, δ(z) is the
delta-function, and dΩn is the element of solid angle in
the direction n.

Having determined the form of the surface r(e)
and knowing the quantity dSm(ζ)/dζ, one can readily
determine the velocity of electrons on the boundary
surface.

For the magnetic fields at which the measurements
of the de Haas–van Alphen effect have been conducted
(H ∼ 104 Oe), the periods observed experimentally for
oscillations are determined, as we have pointed out,
by the zones having an anomalously small number of
electrons. For this reason, the method described above
can be used to reconstruct the Fermi boundary surface
only for these zones. Measurements in considerably
stronger fields are needed before it will be possible to
draw any conclusions regarding the form of the boundary
surface for the normal energy zones.

APPENDIX

We will evaluate the integral

I =

∫ ∫
dE′ dpz

∂S(E′, pz)

∂E′ exp

{
i

kc

e!H
S(E′, pz) − 2πkγi

}
,
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in which the region of integration is bounded by the straight line
E′ = E and the curve S(E′, pz) = 0. We shall not specify the
extremely weak dependence of γ on E′ and pz .

Assuming that ∂S(E′, pz)/∂E′ "= 0, we may conclude that
the primary contribution to I is provided by the integration in
the neighborhood of the point on the boundary of the region of
integration E′ = E for which ∂S(E, pz)/∂pz = 0, in the vicinity
of the point E′ = pz = 0 for which ∂S(0, pz)/∂pz = 0, and near
the vertices of the region of integration [7].

1) On integrating near the stationary point on the straight
line E′ = E, we expand S(E′, pz) in a power series in (E − E′)
and (pz − pm) (pm corresponds to the stationary point), stopping
after the first nonvanishing terms:

I1 =
∂S(E, pm)

∂E
exp

{
i

kc

e!H
S(E, pm) − 2πkiγ

}
×

×
E∫

E−0

dE

pm+0∫

pm−0

dpz exp




i
kc

e!H

[
(E′ − E)

∂S

∂E
+

+
1

2
(pz − pm)2

∂2S

∂p2
z

]


.

After the further computation, we obtain

I1 ∼
(

e!H

kc

)3/2 √
2π

|∂2S/∂p2
z |

1/2
m

exp




i
kc

e!H
S(E, pm) −

−2πkiγ − i
π

2
∓ i

π

4




.

The sign of the last term in the exponent agrees with the sign of
∂2S(E, pm)/∂p2

m.
In computing the integral, we have made use of the asymptotic

formula
∫

x0

f(x) exp {±iW (x − x0)} dx ∼

∼ fn
Γ(n + 1)

W n+1
exp

{
±i

n + 1

2
π

}
(W ' 1),

assuming that, in the neighborhood of x = x0, the function f(x)
has the form f(x) ≈ fn(x − x0)n.

The expression obtained for I1 determines the oscillatory part
of J(k); if we insert it in (2.12) and denote Sm(E) = S(E, pm),
we obtain (2.13).

2) Denoting the values of pz corresponding to the vertices in
the region of integration by ±p0, we investigate the integral in the
vicinity of one of the vertices

I2 ≈
∂S(E, p0)

∂E
e−2πkiγ

p0∫

p0−0

dpz

E∫
dE′ ×

× exp

{
i

kc

e!H

[
(pz − p0)

∂S

∂p0
+ (E′ − E)

∂S

∂E

]}
.

The lower limit of the integral over E′ lies on the curve
S(E′, pz) = 0. Near the vertex, it is possible to make the
substitution

E′ = E + (p0 − pz)

(
∂S

∂p0
/

∂S

∂E

)
.

With the change of variables, we have

I2 ∼
(

e!H

kc

)2 e−2πkiγ

∂S(E, p0)/∂p0

∫

0

dxe−ix

−x∫

0

dye−iy .

Computing the integral with the use of the above formula, we
obtain

I2 ∼
(

e!H

kc

)2 sin 2πkγ − cos 2πkγ

∂S(E, p0)/∂p0
(1 + ia),

where a is some real quantity; its value is not important, since we
shall be interested only in the real part of I.

Inserting I2 in (2.12), we obtain the corresponding
contribution to the real part of J(k):

Re{J(k)} ∼
e!H

c

sin 2πkγ − cos 2πkγ

2πk2

∞∫

0

f
(

E−ε
Θ

)
dE

∂S(E, p0)/∂p0
.

Noting that the region of integration has two symmetric
vertices, we write the expression for that part of the
thermodynamic potential Ω and the magnetic moment M which
is determined by the quantity I2 in the form

Ω = −V
1

!3

(
e!H

c

)2 1

π3

∞∑

k=1

sin 2πkγ − cos 2πkγ

k2
×

×
∞∫

0

f
(

E−ζ
Θ

)
dE

∂S(E, p0)/∂p0
, (A.1)

M = V
2

π3

e2

!c2
H

∞∑

k=1

sin 2πkγ − cos 2πkγ

k2

∞∫

0

f
(

E−ζ
Θ

)
dE

∂S(E, p0)/∂p0
. (A.2)

These expressions describe the constant part of the
diamagnetism of the electron gas. In the case of the quadratic
dispersion law (3.1), ∂S(E, p0)/∂p0 = −2π

√
2mE, and (A.2)

passes into the known Landau formula.
In the general case, however, our formulas for the constant

part of the diamagnetic susceptibility can turn out to be incorrect,
since it is impossible to use the quasiclassical energy levels in
the vicinity of S(E, p) = 0. The diamagnetic susceptibility of
the electron gas is determined by the electrons near the Fermi
boundary surface [8], while the expressions (A.1) and (A.2) are
determined by all of the electrons together.

3) One can readily convince oneself that the integration about
the point E′ = pz = 0 yields a contribution to the real part of I

which is small in comparison with the real parts of I1 and I2; we
shall not, therefore, investigate it.
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