Due date: Thursday, March 23, at the end of the lecture.
Note: you are allowed to use only the textbook (Grosso \& Parravicini), lecture notes, materials that I specifically provided, and Mathematica or other similar software to do the homework.

1. Spin waves in a $2 D$ triangular ferromagnet A 2 D ferromagnet on a triangular lattice in a magnetic field is described by the Hamiltonian

$$
H=-J \sum_{j \delta} \mathbf{S}_{j} \cdot \mathbf{S}_{j+\delta}-B \sum_{j} S_{j}^{z}
$$

where j labels the lattice sites and δ denotes the nearest neighbors of site j. Assume $S \gg 1$.

1. Determine the spectrum of the spin-waves. You can use the expression we derived in class, but make sure to modify it to include B, which we did not have.
2. Compute the spin-wave contribution to the specific heat per lattice site in two limits: $T \ll$ $B \ll J$ and $B \ll T \ll J$.
3. Holstein-Primakoff transformation. Prove that the spin operator as expressed in the HolsteinPrimakoff transformation

$$
S^{+}=\left(2 S-a^{\dagger} a\right)^{1 / 2} a, \quad S_{-}=a^{\dagger}\left(2 S-a^{\dagger} a\right)^{1 / 2}, \quad S^{z}=S-a^{\dagger} a
$$

satisfies the usual commutation relations

$$
\begin{equation*}
\left[S^{+}, S^{-}\right]=2 S^{z}, \quad\left[S^{z}, S^{ \pm}\right]= \pm S^{ \pm} \tag{1}
\end{equation*}
$$

3. Schwinger boson representation. In the Schwinger boson representation, the spin operator is expressed in terms of two bosonic operators a and b

$$
S^{+}=a^{\dagger} b, \quad S^{-}=b^{\dagger} a, \quad S^{z}=\frac{a^{\dagger} a-b^{\dagger} b}{2}
$$

1. Show that the above expressions satisfy the usual spin commutation relations (1).
2. Show that

$$
|S m\rangle=\frac{\left(a^{\dagger}\right)^{S+m}\left(b^{\dagger}\right)^{S-m}|0\rangle}{[(S+m)!(S-m)!]^{1 / 2}}
$$

is a common eigenstate of \mathbf{S}^{2} and S_{z}. Note that the physical state space is given by $\left\{\left|n_{a}, n_{b}\right\rangle\right\}$ with $n_{a}+n_{b}=2 S$.
4. Jordan-Wigner transformation. In the Jordan-Wigner transformation spin operators living on a 1D chain are expressed as

$$
S_{k}^{+}=f_{k}^{\dagger} e^{i \pi \sum_{j<k} n_{j}}, \quad S_{k}^{-}=e^{-i \pi \sum_{j<k} n_{j}} f_{k}, \quad S_{k}^{z}=f_{k}^{\dagger} f_{k}-\frac{1}{2}
$$

where f_{k} and f_{k}^{\dagger} are the annihilation and creation operators of spineless fermions and $n_{j}=f_{j}^{\dagger} f_{j}$ as usual.

1. Show that

$$
S_{k}^{+} S_{k+1}^{-}=f_{k}^{\dagger} f_{k+1} .
$$

2. The Hamiltonian of an anisotropic quantum Heisenberg spin- $1 / 2$ chain is given by

$$
H=-\sum_{k}\left[\frac{1}{2} J_{\perp}\left(S_{k}^{+} S_{k+1}^{-}+S_{k}^{-} S_{k+1}^{+}\right)+J_{z} S_{k}^{z} S_{k+1}^{z}\right] .
$$

Show that the Hamiltonian can be written as

$$
H=-\sum_{k}\left[\frac{1}{2} J_{\perp}\left(f_{k}^{\dagger} f_{k+1}+f_{k+1}^{\dagger} f_{k}\right)+J_{z}\left(\frac{1}{4}-f_{k}^{\dagger} f_{k}+f_{k}^{\dagger} f_{k} f_{k+1}^{\dagger} f_{k+1}\right)\right]
$$

3. Show that for 1 D spin-1/2 $X Y$-model, i.e. $J_{z}=0$, the eigenvalues of the Hamiltonian H are given by

$$
\hbar \omega_{k}=-J_{\perp} \cos (k a)
$$

where a is the lattice spacing.

