Interaction of Dirac electrons with spins and point charges

Vacancies in graphene

Vacancy Magnetic moment and Kondo screening

Vacancy Charge and Tunable artificial atom

Twisted bilayer graphene

Eva Y. Andrei

LECTURE NOTES POSTED AT:

http://www.physics.rutgers.edu/~eandrei/links.html#trieste18

Scanning tunneling microscopy and spectroscopy

Engineering electronic properties

- Density of states and Landau levels in graphene
- Scanning tunneling microscopy (STM) and spectroscopy (STS)
- Defects:
 - Atomic collapse and artificial atom
 - Kondo effect
- Substrate:
 - Twisted graphene

What happens in a pseudogap system?

Kondo Screening in pseudo-gap systems

> Pseudo- gap systems $\rho(E) \propto E^r$ screening suppressed.

r = 1 (graphene, high T_c superconductors)

$\mu \sim 0$ (undoped) •Kondo screening only for J>Jc •J_c finite only for asymmetric DOS

$|\mu| >> 0$ doped

Normal Kondo screening

- D. Withoff and E. Fradkin, Phys. Rev. Lett. 64, 1835(1990)
- K. Chen and C. Jayaprakash, J. Phys L491 (1995)
- K. Ingersent, Phys. Rev. B54, 11936 (1996)
- C. Cassanello and E. Fradkin, (1996)
- R. Bulla, T. Pruschke, and A. C. Hewson, (1998)
- Polkovnikov A., Phys. Rev. B, 65 (2002) 064503
- Vojta M. and Fritz L., Phys. Rev. B, 70 (2004) 094502.
- Vojta, Fritz, Bulla EPL (2010)
- PW Lo, GY Guo, F. Anders, arXiv:1402.0040

Electrical tuning of magnetic moment

Kondo Screening Experimental Signatures

Vacancy in graphene

Vacancy Peak

Vacancy Peak

- Iocalized on vacancy site <2nm.</p>
- pinned to the Dirac point

Kondo Temperature

Fit to Fano lineshape

$$\frac{dI(V)}{dV} = A \frac{(\varepsilon + q)^2}{1 + \varepsilon^2} + B$$

 $k_B T_K \sim \Gamma/2$

$$\varepsilon = \frac{\mathrm{E} - \varepsilon_0}{\Gamma/2}$$

Fit to T dependence

$$\Gamma = \sqrt{(\alpha k_B T)^2 + (2k_B T_K)^2}$$

O. Újsághy, et al. Solid State Commun. **117**, 167(2001) A.S. Zyazin, et al. Synthetic Metals **161**, 591 (2010) M. Ternes, *et.al.* J. Phys.: Condens. Matter 21, 053001, (2009)

Gate Dependence

E.Y. Andrei

Reentrant Kondo Screening

J. Mao et al Nature Communications 2018

J<J

Model for Kondo screening of vacancy moment

Anderson impurity model

Numerical renormalization group calculations

- On site Coulomb
- Exchange coupling
- Hund coupling
- Critical coupling

$$\varepsilon_d = -1.6eV$$

$$U_{dd} = 2eV$$

$$U_{d\pi} = 0.1 eV$$

$$J_{H} \sim -0.35 eV$$

$$\Gamma_c = 1.15 eV$$

Single orbital approximation:

$$U_{eff}(\mu) = \begin{cases} U_{dd} & \mu \le 0\\ U_{dd} + \min(U_{d\pi}, \alpha \mu) & \mu > 0 \end{cases}$$

D. May et al Phys. Rev. B 97, 155419 (2018)

Y Jiang et al Nature Communications 2018 J. Mao et al arXiv:1711.06942 (2017)

Kondo Screening Phase Diagram

Numerical Renormalization Group

D. May et al Phys. Rev. B 97, 155419 (2018)

Y Jiang et al Nature Communications 2018 J. Mao et al arXiv:1711.06942 (2017)

What determines J?

• σ Dangling bond \mapsto localized state $\mapsto 1\mu_B$

 $\succ \sigma$ state (in plane) – orthogonal to π conduction electrons \mapsto J=0

> p_z state – Ferromagnetic coupling \mapsto J=0

 $J=0 \mapsto NO KONDO SCREENING !!$

Hentschel, M. & Guinea, F*Phys Rev B* **76**, 115407 (200)7 Haase, P., Fuchs, S., Pruschke, T., Ochoa, H. & Guinea, F (2011) Cazalilla, M. A. I., A.; Guinea, F.; Castro Neto, A. H (2012)

Can J be Finite in Graphene?

Local Moment Formation and Kondo Effect in Defective Graphene

M. A. Cazalilla,^{1,2} A. Iucci,³ F. Guinea,⁴ and A. H. Castro Neto²

> Out of plane distortion of dangling bond \mapsto Finite AF coupling with conduction electrons \mapsto Kondo screening

Corrugated Substrate ??

Substrate corrugation and Kondo screening

J. Mao et al Nature Communications 2018

Substrate corrugation and Kondo screening

	Substrate Corrugation	G/SiO ₂ 2nm	G/G/SiO ₂ 1nm	G/hBN 0.2nm	G/G/hBN 0.2nm
	Maximum T _K	Т _к ~180К	Т _к ~ 70К	No Kondo	No Kondo
	% of screened vacancies	Most	30%	none	none
1.8 nm		1.5 G on SiO2 G on BN GG on BN GG on BN 0.5 O GG on BN 0.0 O O O O O O O O O O O O O O O O O O		N N 100	

J depends on Local corrugation → Mechanically controlled magnetism

J. Mao et al Nature Communications 2018

Global Measurements and Conflicting results

Global measurements probe complementary properties

Graphene with a twist

Engineering electronic properties

- Density of states
- Landau levels in graphene
- Scanning tunneling microscopy (STM) and spectroscopy (STS)
- Atomic collapse and artificial atom
- Kondo effect
- Twisted graphene

Twisted graphene – Moire patterns

Twist between layers \mapsto Moiré pattern:

 $\theta = 3^0$

Superstructure with period L

STM topography: Moiré superstructure

G. Li, et al Nature Physics (2010)

Spectroscopy Surprise

G. Li, et al Nature Physics (2010)

Band structure of twisted graphene

Band structure engineering with a twist

J. Lopes dos Santos, A.H. Castro Neto

Band structure engineering with a twist

Van Hove singularities

G. Li, et al Nature Physics (2010) A. Luican, et al PRL 106, 126802 (2011)

Hybridization

Twisted graphene develops strong *Van Hove singularities*

E.Y. Andrei

Van Hove singularities

G. Li, et al Nature Physics (2010) A. Luican, et al PRL 106, 126802 (2011)

Low energy Band structure and DOS using perturbation theory

What happens at small twist angles?

Moire units cell contains 1.3x10⁴ atoms!

Moire Brillouin zone

What happens at small twist angles?

Fermi velocity : slowdown

A. Luican, et al PRL 106, 126802 (2011)

For $\theta > 10^{\circ}$

low energy band structure of twisted layers is identical to single layer

$$\frac{\widetilde{v}_{F}(\theta)}{v_{F}} = 1 - 9 \left(\frac{w}{\hbar v_{F} \Delta K}\right)^{2}$$

J.M.B.L. dos Santos et al. PRL 99, 256802 (2007).
G.T. Laissardière et al, Nanoletters ASAP (2009)
Shallcross et al. PRL. 101, 056803 (2008)
R. Bistritzer, and A. H. MacDonald, (2010)

Correlation effects

- When the energy scale of electron-electron interactions is comparable to the band-width, correlation effects become important.
- At ½ filling (Fermi energy in middle of gap): Correlated states can emerge: superconductivity, charge density waves, antiferromagnetism, topological insulators etc.

$$E_{coulomb} = \frac{e^2}{4\pi\varepsilon_0 \kappa \lambda^2};$$

 λ moire period;

 κ dielectric constant

Correlation gap

For $\theta = 1.16^{\circ}$

- 12meV Gap opens at the Fermi energy! •
- Correlation gap CDW? ightarrow

2018 -Magic angle insulator and superconductor

Y. Cao et al., Nature(2018)

• Half Full band – 2 electrons (holes) per moire cell.

 $\frac{1}{2}$ Full band – 2 electrons (holes) per moire cell.

- ½ Full band insulating phase ~ 4K
- Insulating phase flanked by 2 superconducting domes slightly off half-filling
- Maximum Tc ~1.7K

$$\succ$$
 T_c/E_F ~ 10⁻¹ \mapsto strong coupling

Resembles high Tc superconductors
BUT tunable doping and Tc

Strongly coupled superconductor

Heavy-fermion superconduct

Conventional superconductors

Two-dimensional materials

Organic superconductors

Magic-angle TBG

NbSe,

Iron pnictides

Y. Cao et al., Nature(2018)

- ¹/₂ Full band insulating phase ~ 4K Insulating phase flanked by 2 superconducting domes $T_c/E_F \sim 10^{-1} \mapsto \text{strong coupling}$

Resembles high Tc superconductors BUT tunable doping and Tc

OPEN QUESTIONS:

- Pairing mechanism
- Gap symmetry
- Nature of insulating phase

Summary of part IV

- Kondo screening in graphene occurs above a critical coupling strength
 Magnetic moments in graphene can be tuned with gating or local curvature
- If coupling strength is non-uniform global measurements are misleading

- Band structure of bilayer graphene can be tuned with twist angle
- At small twist angles the DOS develops Van-Hove singularities
- > At the "magic angle" θ ~1.1° a flat band forms at the charge neutrality point
- At half filling the flat band developconductings strong correlations resulting in an insulating phase flanked by superconducting domes.

2D materials are cool!

