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2D electron system in a magnetic field

Classical motion:

Lorentz force: F = —e(E + [v x B]) Perpendicular to the velocity!

Newtonian equation of motion: E =0 — m'v = —e|v X B]

.
/Nﬂ Cyclotron orbit

J Cyclotron frequency, we = eB/m*

k/ Cyclotron radius, 1o = v/we x 1/B

In classical mechanics, any size of the orbit is allowed.
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Landau levels

In the discussion above the radius of the cyclotron orbit
could be varied continuously.

What happens if we add the lattice and quantum
mechanics?

We will start by looking at the effect of the lattice on the
electronic motion

Using a semi-classical approach based on the Onsager
relation we will show that the cyclotron orbits are now
guantized.

This will allow us to calculate the Landau level energy
sequence
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Bloch electrons. in external fields

Semiclassical electron dynamics (Kittel, p.192)

Consider a wave packet with average location r and wave vector Kk,
then dr (k) 1 9e(k)
Tdt ok
dk

. erivati
h—:q(E+vk><B) Derivation
dt neglected here

* Notice that E is the external field, which does not include the
lattice field. The effect of lattice is hidden in ¢ (k)

Vi

Range of validity
» This looks like the usual Lorentz force eq. But It is valid only when
Interband transitions can be neglected. (One band approximation)

In graphene this approximation is valid for all transport
experiments.

E.Y. Andrei



Bloch electrons. in external fields

Bloch electron in an uniform magnetic field

29 ey xB, v, =120
dt hook
LK g K _10e(k) _

Tt at K Th o

Therefore, 1. Change of k is perpendicular to the B field,
k, does not change
and 2. ¢ (k) is a constant of motion

This determines uniquely the electron orbit on the FS
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Bloch electrons. in external fields

Cyclotron orbit in real space

The above analysis gives us the orbit in k-space.
What about the orbit in r-space?

magnetic length |I; =

r-orbit \ k-orbit SiEE T
| ™

| &
EE G

- r-orbit is rotated by 90 degrees from the k-orbit and

scaled by
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Flux Quantum

Semiclassical Onsager guantization

Electron wavefunction is single valued. Therefore a closed cyclotron orbit
must satisfy:

1¢= dF o Bohr-Sommerfeld
%3“3' r=2zN; Ninteger quantization

Electron in a
magnetic field
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Flux Quantum

Semiclassical Onsager guantization

Electron wavefunction is single valued. Therefore a closed cyclotron orbit
must satisfy:

1¢= dF o Bohr-Sommerfeld
%igp. r=2zN; Ninteger quantization

Electron in a
magnetic field

@ is the magnetic flux
through the orbit

Homework: prove this relationship
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Flux Quantum

Semiclassical Onsager guantization

Electron wavefunction is single valued. Therefore a closed cyclotron orbit
must satisfy:

lez o o Bohr-Sommerfeld
%§P-dr =27N; N integer quantization

Electron in a
magnetic field

@ is the magnetic flux
through the orbit

Field phase or Bohr Aharonov Phase :

fleld _

§A dr —%ﬁ(ﬁx I§)-dr =%®
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Flux Quantum

E§|5.dr:27zN; N integer
h

le=s e e
£§Pdr =9kin—(9ﬁe|d =£(2(D_(D)=27ZE(D

:zn%cpzan S d="N=gN
e

¢, = h_ 4.14-10"gauss-cm?®  Quantum unit of flux
e

() : . . . :
= — =N Magnetic flux enclosed by cyclotron orbit is quantized in units of ¢,
0
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Onsager quantization condition

» The area of the cyclotron orbit encloses an integer number of flux lines

+ ® =S(r)B = Ng,
S(r) =Area of r-orbit

= S(r)=N-- = 2N L — 2N
eB eB

If S(k) is the k - orbit, and using :|k| =|r|/I3
= S(r) = S(k)I
Area of N'th cyclotronorbitin k -space:
= S(k)IZ =22N

Generalized Onsager relation

= S(ky)I> =27(N +4)
Quantum correction A=112-yl2n

y = Berry Phase;

1/2  Maslov phase - (zero- point contribution)



http://link.springer.com/journal/10051

EXAMPLE:
Landau levels of massive 2D electrons from Onsager: relation

For free electrons
In the absence of a scalar potential V(x) , orbits are circular and S(ky) = mky?

+ 7zk§|I§=27z(N +1/2—y/27)
y = Berry Phase

Express the area in terms of energy using E(k)

Non-relativistic case  [ENELS
_O 2m
y_ B hzkﬁ B h2 272_

eB
B

= E

cyclotron frequency :

E, =hw (N+1/2) N=012...




Landau levels

= How does this compare to the full guantum mechanical
solution?
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2D electron system in a magnetic field

The magnetic field is independent of the choice of gauge

Example:
Landau gauge:

Symmetric gauge

« All gauges give the same energy spectrum.
« The wavefunctions will be different they will have the
symmetry of the gauge.




2D electron system in a magnetic field

Non-relativistic - 2D in semiconductors

Canonical momentum
Covariant momentum

Landau gauge

Contains p? and x? : Resembles Harmonic oscillator

Quantized levels

Plan : transform Hamiltonian to HO
Solve in energy base .




2D electron system in a magnhetic field

1. Landau levels

« 1D Harmonic oscillator

« Shifted origin to x, does not affect EN — h(()C(N ‘|‘1/ 2) N — 0,1,...

energy




Landau levels

E, =ha,(N+1/2) N=01,..

= Same as the semiclassical result!!
= But now we can also calculate the wavefunctions
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2D electron system in a magnetic field

X and Y motion decoupled:
X: Harmonic oscillator Y: Free

U(z,y) = e dn(z — 20) .

E, =ha,(N+1/2) N=01,..



2D electron system in a magnetic field: wave function

e' 1‘1"I:‘L1n|: T — 11}_:} :

* Y direction- Plane wave Landau gauge

- Xdirection - Gaussian around X, (k,) of width I (2N)*/2

1’st Landau level N=0 2'nd Landu level N=1




2D electron system in a magnetic field: wave function

2. Wavefunctions — symmetric
gauge

Symmetric gauge

Figure 3: The ground state wave functions with n = 0, 3, and 10.




Landau levels in non-relativistic 2D electron system

3. Landau level degeneracy

E, =ha,(N+1/2) N=01,..

1
, 2y
One orbital state per flux line

Orbital Degeneracy g, =

Total degeneracy

Degeneracy =g.0,

g; degeneracy from internal
degrees of freedom: spin, valley ..




Landau levels in graphene from Onsager relation

Onsager relation Graphene: y=n

S(K)I? =22(N +1/2—y/27x) S(K)I? =272(N +1/2—y/27) = 22N

y = Berry Phase

no electric field: S(k)I? = 7kJ1Z = 27zN

Express the area S(k) in terms of energy using E(k)
E(k) = Av Kk

E, = +Vp /2enB|N| = ico,+/2N; N =0,+1,..

w, =V g

Berry's phase “swallowed” the zero point energy




Landau levels In graphene from Dirac-\Weyl equation
Band structure Density of states

ho, =hve g ~35\/7 B meV
|, =~/A/eB =25/~/B nm

Degeneracy : g =449,; ¢ =hle

Orbital Degeneracy g, =B/¢, =2.5x10" m~B[T]



Graphene and conventional 2d electron systems

Low energy excitations Density of states Landau levels
= ‘t' I (f:Ep Ey =h%(N +1/2)
onventiona
semiconductor ' . ) P

D(E), Na.

Graphene




Summary of part IT

Quantum unit of flux

= 4.14-10" gauss-cm? [Tesla-m?]

() .
— — =N fluxenclosed by cyclotron orbit
0

Onsager relation :k-space area of cyclotron orbit
S(ky)I? =272(N +1/2—y/27)
y = Berry Phase

Landau level energy
Non-relativistic Ultra-relativistic (graphene)

25 degeneracy: g9, 4E
Po Po
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