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Graphene:  a theorists invention

2016
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No long range order in 2-Dimensions

…continuous symmetries cannot be spontaneously broken at finite temperature 

in systems with sufficiently short-range interactions in dimensions D ≤ 2. 

David Mermin Herbert Wagner 

… No Magnets 

….No superfluids

…No superconductors 

...    No 2D crystals 

No long range order in 2D 

.. long-range fluctuations 

can be created with little energy cost and 

since they increase the entropy they are favored.



E.Y. Andrei

First 2D materials 

Andre Geim Konstantin Novoselov

Graphene, hBN, MoS2, 

NbSe2, Bi2Sr2CaCu2Ox,



ANY LAYERED MATERIAL

SLICE DOWN TO 

ONE ATOMIC PLANE?

Can We Cheat Nature?

A. Geim
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300nm oxide

White light
300nm oxide
560nm green light

200nm oxide

White light

Making graphene

 Micromechanical 
cleavage by 
“drawing” 

Novoselev et al (2005)

SiO2300 nm

Si

P. Blake et.al, 2007

D. S. L. Abergel 2007

S. Roddaro et. al Nano Letters 2007

Andre GeimK. Novoselov



Properties: Mechanical

S. Bunch  et al,Nano Letters‘08

• Young’s modulus ~ 2 TPa

0.5 µm

T. Booth et al,Nano Letters‘08

Young’s modulus E ~ 2TPa

Stiffest materal

Unsupported graphene

with Cu particles

~5m ~1nm

1011 nano-particles

graphene



Properties: Optical

Transmittance at Dirac point:

T=1-ap =97.2%

P. Blake et al, Nano Letters, ‘08

, 

R.R. Nair et al, Science (2008).



Properties: Chemical

F Schedin et al,Nature Materials ‘07

Single molecule detection

NO2, NH3, CO
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2D Building Blocks

10

E.g.: Graphene, hBN, 

Silicene, Germanene, 

Stanene.

Graphene family Transition Metal Dichalcogenides 

(TMDCs)

E.g.: MoS2 ,WSe2 , NbS2, TaS2

Phosphorene family

E.g.: Phosphorene, SnS, GeS, SnSe, GeSe

Group 13 Monochalcogenides

E.g.: GaS, InSe

Group 2 Monochalcogenides

E.g.: BaS, CaS, MgS

• About 40 2D 

materials are 

currently known.

• About half of them 

have been isolated.

• Others shown to be 

stable using 

simulations.
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Van der Waals heterostructures

Nature 499, 419 (2013)
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Stacking 2D Layers
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The most important element in nature
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Carbon chemical bonds

2S + 2px + 2py + 2pz hybridize

4 sp3 orbitals: tetrahedron

Diamond

sp3

Carbon: Z=6

4 valence electrons 2s22p2
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Carbon chemical bonds
Carbon: Z=6

4 valence electrons 2s22p2

2S + 2px + 2py hybridize 

3 planar s orbitals: tetragon

1 Out of plane 2pz [“p” orbital] 

sp2

p electrons allow 

conduction

s bonds: 2D and 

exceptional rigidity 
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Carbon chemical bonds
Carbon: Z=6

4 valence electrons 2s22p2

2S + 2px + 2py hybridize 

3 planar s orbitals: tetragon

1 Out of plane 2pz [“p” orbital] 

sp2

Graphite
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Diamond

Carbon allotropes
sp2sp3

Graphite

p

s

Diamond is Metastable in ambient conditions!! break
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3D

Graphite ~16 century

Carbon Allotropes sp2

2D

Graphene
Single -layer 2005

“1D”

Carbon nanotube

Multi-wall1991

Single wall 1993

“0D”

Buckyball

1985

2010

1996



E.Y. Andrei

Graphene

 2D materials – background

Carbon allotropes

Graphene Structure and Band structure 
Electronic properties

 Electrons in a magnetic field

Onsager relation

Landau levels

Quantum Hall effect

 Engineering electronic properties 

Kondo effect 

Atomic collapse and artificial atom

Twisted graphene 



E.Y. Andrei

Tight binding model

Eigenstates of the isolated atom:

aaa
 EHat =



• Overlaps between orbitals a corrections to system Hamiltonian. 

• Tight binding a small overlaps a small corrections DU

rUR-rHrH
R

at ()()( D= 



kkk EH  =

Periodic potential

Atomic orbitals
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Lattice vector

1. Normalization

2. Eigenstate of the Hamiltonian

3. Algebra aFind Solutions in terms of: 

Tight binding model

Build Bloch waves out of atomic orbitals (Bravais lattice!)

kkk EH =

Solutions have to satisfy:

)()( j

R

Rrr
j

= 


aa  jRik

k e

1=kk 

• Nearest neighbor transfer (hopping) integral

• Nearest neighbour overlap integral

ijji tH =

ijji s=
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Wallace, 1947

Band Structure

Bravais lattice

 Parabolic dispersion

How is graphene different? 

Simple metal

honeycomb  lattice Not Bravais

 strong diffraction by lattice

z unconventional dispersion

*m

p
E

2

2

=

E

px
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Graphene honeycomb lattice
1. 2D
2. Honeycomb structure (non-Bravais)
3. 2 identical atoms/cell

A

B

2 interpenetrating Bravais (triangular) lattices
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Honeycomb lattice – two sets of Bloch functions
1. 2D
2. Honeycomb structure (non-Bravais)
3. 2 identical atoms/cell

A

B
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1. 2D
2. Honeycomb structure (non-Bravais)
3. 2 identical atoms/cell

A

B
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2 interpenetrating Bravais (triangular) lattices

New degree of freedom –like spin up and spin down  -

but instead sublattice A or B a pseudo-spin 

)0,1(
3

4

a
K

p
=

Honeycomb lattice – two sets of Bloch functions



Tight binding model of monolayer graphene : Energy solutions
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If atoms on the two sublattices are different:
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Solutions more complicated

Edward McCann arXiv:1205.4849
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Graphene tight binding band structure

129.0,033.3,00 === seVt
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Typical parameter values :

Bonding

Anti-

bonding
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New degree of Freedom 

 Pseudospin

Band Structure

KK’

Dirac cones

G

Dirac point

E

kx

ky

6 Dirac points, but only 2 independent 

points K and K’, others can be derived with 

translation by reciprocal lattice vectors.   

Low energy excitations

The Dirac points are protected by 3 

discrete symmetries: T, I, C3
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Low energy band structure

KK’

Dirac cones

Fermi energy EF

Fermi “surface” =2 points

Conduction band a electrons

Valence band a holes
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Consider two non-equivalent K points:

and small momentum near them:

Linear expansion in small momentum:

p

Low energy band structure 

1 Linear expansion  near  the K point
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2. Dirac-like equation with  Pseudospin
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For one K point (e.g. =+1) we have a 2 component wave function,

with the following  effective Hamiltonian (Dirac Weyl Hamiltonian):

Bloch function amplitudes on 

the AB sites (‘pseudospin’) 

mimic spin components of  

a relativistic Dirac fermion.

Low energy band structure 

Pauli Matrices 

 Operate on sublattice degree of freedom
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To take into account both K points (=+1 and =-1) we can use a 4 

component wave function,

with the following effective Hamiltonian:

Note: real spin not included. 

Including spin gives 8x8 Hamiltonian  

H(K)

H(K’)

pvH FK


.s= pvH FK


.*

' s=

2. Dirac-like equation with  Pseudospin

Low energy band structure 

HK and HK’ are related by time reversal symmetry 
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Hamiltonian near K point: 

3. Massless Dirac Fermions

Massless Dirac fermions
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Py
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E
Dirac Cone

indexbands

anglepolarpp xy

=

= )/arctan( Pseudospin vector
• Is parallel to the wave vector k in upper band

• Antiparallel to k in lower band (s=-1) 

 But 300 times slower

Massless particle : m=0 cpE =
..Photons, neutrinos..

smvF /106
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under pseudospin conservation, 

backscattering within one valley 

is  suppressed

angular scattering probability:

 = 0

     2/cos0 22

 ==

4. Absence of backscattering within a Dirac cone 

No backscattering within Dirac cone
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npvpvKH FF


== ss)(

Helical electrons
pseudospin direction  

is linked to an axis 

determined by 

electronic momentum.

for conduction band 

electrons,

valence band (‘holes’)

1=n


s

1=n


s

Hamiltonian at K point: 

5. Helicity

Helicity (Chirality)

nh


= sHelicity operator: 

hpvKH F
ˆ)( =

Helicity is conserved
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pvE F=

xp
yp

Helical electrons
pseudospin direction  

is linked to an axis 

determined by 

electronic momentum.

for conduction band 

electrons,

valence band (‘holes’)

1=n


s

1=n


s

p


p


Note: Helicity is reversed in the K’ cone

5. Helicity

Helicity (Chirality)

Helicity conserved a No backscattering between cones
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K’K

conserved Helicity hp


.s

X

X

No Backscattering

 No backscattering 

 High carrier mobility

A

B

No backscattering between cones

No backscattering within cones

Dirac Weyl Hamiltonian
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Pristine graphene

Katsnelson, Novoselov,  Geim (2006)

Klein Tunneling

Pseudospin + chirality a Klein tunneling 

a no backscattering

a large mobility

Katsnelson, Novoselov,  Geim (2006)

No electrostatic confinement

• No quantum dots

• No switching 

• No guiding
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Klein tunneling

Klein “paradox”

 Transmission of relativistic particles 

unimpeded even by highest barriers

Physical picture: particle/hole conversion

Katsnelson et al Nature physics (2006)

Angular dependence 

of transmission

Carrier density outside the barrier is 0.5 x 1012 cm-2 . 

Inside the barrier, hole concentrationn is 1 x 1012 and 3 x 

1012 cm-2 for the red and blue curves.
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The Berry phase
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Berry phase

 Examples

– Curved space

– Mobius strip

– Twisted optical fiber

– Bohm Aharonov phase

– Dirac belt

Berry Phase Tutorial:

https://www.physics.rutgers.edu/grad/682/textbook/ch-3.pdf
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Berry phase
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Graphene Relatives
 Many natural materials have Dirac cones in their bandstructure (e.g. 

highTc compnds). But the Fermi surface of these materials contains 

many states that are not on a Dirac cone. As a result the electronic 

properties are controlled by the normal electrons and the Dirac electrons 

are invisible. 

 Graphene is the ONLY naturally occurring material where the Fermi 

surface  consists of Dirac points alone. As a result all its electronic 

properties are controlled by the Dirac electrons. 
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Graphene – bandstructureGraphene – offshoots

Graphene (2005)

Silicene (2010) 

Germanine (2014) 

Stanene (2013) 

Phosphorene (2014) 

Borophene B36 (2014) 

1. 2D
2. Honeycomb structure 
3. 2 identical atoms/cell

Ingredients
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Ingredients:
1. 2D
2. Honeycomb structure 
3. Identical populations

Artificial Graphene

nma 2~

sm
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meV
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120
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A

B

Cold atom  “graphene” 87Rb

Also: 
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Graphene bandstructure

1. 2D
2. Honeycomb structure 
3. 2 identical atoms/cell
4. t1=t2=t3= t  Relax the condition: t1=t2=t3  

 Strain
 Impose external potential
 Hybridization 

 Electrostatic potential
 Defects

Can one  control/manipulate the 

bandstructure? 

A

B
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Density of states

Summary

1. 2D
2. Honeycomb structure (non-Bravais)
3. 2 identical atoms/cell
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Pseudospin ; Helicity 

 Chiral quasiparticles

 No backscattering

Berry phase p
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