Electronic properties of Graphene and 2-D materials

* 2D materials - background Carbon allotropes Graphene Structure and Band structur Electronic properties
* Electrons in a magnetic field Onsager relation
 Landau levels
Quantum Hall effect
\& Engineering electronic properties Kondo effect
Atomic collapse and artificial atom
Twisted graphene

Eva Y. Andrei
 Rutgers University

Aug 27-29, 2018

Summer School on
 Collective Behaviour in Quantum Matter

Graphene: a theorists invention

No long range order in 2-Dimensions

...continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions $\mathrm{D} \leq 2$.
... No Magnets
. No superfluids
...No superconductors
No 2D crystals

First 2D materials

Graphene, $\mathrm{hBN}, \mathrm{MoS}_{2}$, $\mathrm{NbSe}_{2}, \mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{\mathrm{x}}$,

Two-dimensional atomic crystals

K. S. Novoselov*, D. Jiang*, F. Schedin*, T. J. Booth*, V. V. Khotkevich*, S. V. Morozov ${ }^{\dagger}$, and A. K. Geim* ${ }^{\star \ddagger}$
*Centre for Mesoscience and Nanotechnology and School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom; and ${ }^{\dagger}$ Institute for Microelectronics Technology, Chernogolovka 142432, Russia

Edited by T. Maurice Rice, Swiss Federal Institute of Technology, Zurich, Switzerland, and approved June 7, 2005 (received for review April 6, 2005)

We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality, and are continuous on a macroscopic scale.
wafer (Fig. 1d), because even a monolayer adds up sufficiently to the optical path of reflected light so that the interference color changes with respect to the one of an empty substrate (phase contrast). The whole procedure takes literally half an hour to implement and identify probable 2D crystallites. Their further analysis was done by atomic force microscopy (AFM), for which single-layer crystals were selected as those exhibiting an apparent (12) thickness of approximately the interlayer distance in the corresponding 3D crystals.

Can We Cheat Nature?

ANY LAYERED MATERIAL

SLICE DOWN TO
ONE ATOMIC PLANE?
A. Geim

Making graphene

P. Blake et.al, 2007
D. S. L. Abergel 2007
S. Roddaro et. al Nano Letters 2007

300nm oxide White light

Novoselev et al (2005)

EnydAneme

Properties: Mechanical

Unsupported graphene with Cu particles

Young's modulus E ~ 2TPa
Stiffest materal

T. Booth et al,Nano Letters'08

- Young's modulus ~ 2 TPa

Properties: Optical

Transmittance at Dirac point:

$$
\mathrm{T}=1-\alpha \pi=97.2 \%
$$

R.R. Nair et al, Science (2008).

P. Blake et al, Nano Letters, '08

Properties: Chemical

Single molecule detection $\mathrm{NO}_{2}, \mathrm{NH}_{3}, \mathrm{CO}$

F Schedin et al,Nature Materials ‘07

2D Building Blocks

E.g.: Graphene, hBN, Silicene, Germanene, Stanene.

- About 40 2D materials are currently known.
- About half of them have been isolated.
- Others shown to be

Transition Metal Dichalcogenides (TMDCs)

E.g.: $\mathrm{MoS}_{2}, \mathrm{WSe}_{2}, \mathrm{NbS}_{2}, \mathrm{TaS}_{2}$

Phosphorene family

E.g.: Phosphorene, SnS, GeS, SnSe, GeSe stable using simulations.

Van der Waals heterostructures

Nature 499, 419 (2013)

Stacking 2D Layers

The most important element in nature

Periodic Table of the Elements

I	II	Transition Metals									III	IV		V	VI	VII		0
H^{1}											∇							He^{2}
Li^{3}	Be													∇^{\square}	0^{8}	F^{9}		Ne
Na^{14}	Mg	IIIB IVB	vB	VIB	vIIB	vilis					A	y		-	S^{16}	Cl^{17}		Ar^{18}
K	Ca	$\mathrm{Sc}{ }^{21} \mathrm{Ti}^{22}$	V^{23}	Cr^{24}	Mn	Fe^{26}	Co	Ni ${ }^{28}$	Cu	Zn	Ga	Ge		As	Se ${ }^{34}$	Br		Kr^{36}
Rb	Sr	$\mathrm{Y}^{35} \mathrm{Zr}^{45}$	Nb	Mo	Tc^{43}	Ru	Rh	Pd ${ }^{46}$	Ag	Cd	In ${ }^{49}$	Sn		Sb	Te	$1{ }^{\text {a }}$		Xe^{564}
Cs	Ba	${ }_{1}^{57,71} \mathrm{Hf}^{7 / 2}$	Ta^{73}	W^{74}	Re^{75}	Os	Ir ${ }^{7}$	Pt^{78}	Au	Hg	71^{81}	Pb		$B i^{183}$	Po	At ${ }^{85}$		Rn
Fr^{87}	Rá	$\stackrel{1}{10303})^{100}$	Ha^{105}	${ }^{106}$	107	${ }^{108}$	109											
Lanthanides																		
Actinides		$\rightarrow A_{C}^{\text {a }}$	Th ${ }^{\text {go }}$	Pa^{81}	$U^{5 / 2}$	Np	Put	$\mathrm{Am}_{\square}^{95}$	Cm	BK	Cf^{58}	Es		${ }^{\text {Fma }}$		-		Lr^{103}

\square Metal \square Metalloid \square Nonmetal

Carbon chemical bonds

Carbon: Z=6
4 valence electrons $2 s^{2} 2 p^{2}$

sp^{3}

$2 S+2 p_{x}+2 p_{y}+2 p_{z}$ hybridize
$4 \mathrm{sp}^{3}$ orbitals: tetrahedron

Diamond

Carbon chemical bonds

Carbon: Z=6
4 valence electrons $2 s^{2} 2 p^{2}$

sp^{2}

$$
2 S+2 p_{x}+2 p_{y} \text { hybridize }
$$

3 planar σ orbitals: tetragon 1 Out of plane $2 p_{z}$ [" π " orbital]
π electrons allow conduction
σ bonds: 2D and exceptional rigidity

Carbon chemical bonds

Carbon: Z=6
4 valence electrons $2 s^{2} 2 p^{2}$

sp^{2}

Carbon allotropes

Diamond is Metastable in ambient conditions!!

Carbon Allotropes

Graphene

* 2D materials - background

Carbon allotropes
Graphene Structure and Band structure
Electronic properties
\& Electrons in a magnetic field
Onsager relation
Landau levels
Quantum Hall effect
\& Engineering electronic properties
Kondo effect
Atomic collapse and artificial atom
Twisted graphene

Tight binding model

Eigenstates of the isolated atom:

$$
H_{a t}\left|\varphi_{\alpha}\right\rangle=E_{\alpha}\left|\varphi_{\alpha}\right\rangle
$$

- Overlaps between orbitals \mapsto corrections to system Hamiltoniar

$$
H(r)=\sum_{R} H_{a t}(r-R)+\Delta U\left(r \quad H\left|\psi_{k}\right\rangle=E_{k}\left|\psi_{k}\right\rangle\right.
$$

- Tight binding \mapsto small overlaps \mapsto small corrections $\Delta \mathrm{U}$

Tight binding model

Build Bloch waves out of atomic orbitals (Bravais lattice!)

$$
\left|\psi_{k \alpha}(\boldsymbol{r})\right\rangle=\sum_{\boldsymbol{R}_{\boldsymbol{j}}} e^{i k \cdot R_{j}}\left|\hat{\varphi}_{\alpha}\left(\boldsymbol{r}-\boldsymbol{R}_{\boldsymbol{j}}\right)\right\rangle_{\text {Lattice vector }}
$$

Solutions have to satisfy:

1. Normalization

$$
\left\langle\psi_{k} \mid \psi_{k}\right\rangle=1
$$

2. Eigenstate of the Hamiltonian

$$
\left\langle\psi_{k}\right| H\left|\psi_{k}\right\rangle=E_{k}
$$

3. Algebra \mapsto Find Solutions in terms of:

- Nearest neighbor transfer (hopping) integral

$$
\frac{\left\langle\varphi_{i}\right| H\left|\varphi_{j}\right\rangle=t_{i j}}{\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=s_{i j}}
$$

- Nearest neighbour overlap integral

$$
H=\sum_{\langle i, j\rangle} t_{i j} c_{i}^{\dagger} c_{j}+h . c .
$$

Band Structure

Simple metal

Bravais lattice
> Parabolic dispersion

$$
E=\frac{p^{2}}{2 m^{*}}
$$

How is graphene different?

Graphene honeycomb lattice

1. 2 D
2. Honeycomb structure (non-Bravais)
3. 2 identical atoms/cell

2 interpenetrating Bravais (triangular) lattices

Honeycomb lattice - two sets of Bloch functions

1. 2 D
2. Honeycomb structure (non-Bravais)
3. 2 identical atoms/cell

$\Phi_{A}(\vec{k}, \vec{r})=\frac{1}{\sqrt{N}} \sum_{\vec{R}_{A}}^{N} e^{i \vec{k} \cdot \vec{R}_{A}} \varphi_{A}\left(\vec{r}-\vec{R}_{A}\right)$
$\Phi_{B}(\vec{k}, \vec{r})=\frac{1}{\sqrt{N}} \sum_{N_{B}}^{N} e^{i \vec{k} \cdot \vec{R}_{B}} \varphi_{B}\left(\vec{r}-\vec{R}_{B}\right)$
sum over all type B atomic sites in N unit cells

Honeycomb lattice - two sets of Bloch functions

1. 2 D
2. Honeycomb structure (non-Bravais)
3. 2 identical atoms/cell

Two non-equivalent K-points

$$
K=\frac{4 \pi}{3 a}(1,0)
$$

2 interpenetrating Bravais (triangular) lattices

$$
\psi_{\vec{k}}(\vec{r})=Q\left|\psi_{A}\right\rangle+O\left|\psi_{B}\right\rangle=\binom{\psi_{\uparrow}}{\psi_{\downarrow}}
$$

New degree of freedom -like spin up and spin down but instead sublattice A or B \mapsto pseudo-spin

Tight binding model of monolayer graphene : Energy solutions

$$
H=\left(\begin{array}{cc}
\varepsilon_{B} & -t f(\vec{k}) \\
-t f^{*}(\vec{k}) & \varepsilon_{B}
\end{array}\right) ; \quad S=\left(\begin{array}{cc}
1 & s f(\vec{k}) \\
s f^{*}(\vec{k}) & 1
\end{array}\right)
$$

$\varepsilon_{A} \equiv\left\langle\varphi_{A}\right| H\left|\varphi_{A}\right\rangle ; \varepsilon_{B}=\left\langle\varphi_{B}\right| H\left|\varphi_{B}\right\rangle$
$t \equiv\left\langle\varphi_{A}\right| H\left|\varphi_{B}\right\rangle$

$$
f(\vec{k})=\sum_{\delta_{j}=1}^{3} e^{i \vec{k} \vec{\delta}_{j}}=e^{i k_{y} a / \sqrt{3}}+2 e^{-i k_{y} a / 2 \sqrt{3}} \cos \left(\frac{k_{x} a}{2}\right)
$$

identical atoms : $\varepsilon_{0}=\varepsilon_{A}=\varepsilon_{B}$
Edward McCann arXiv:1205.4849
Secular equation gives the eigenvalues:

$$
\operatorname{det}(H-E S)=0
$$

$\operatorname{det}\left(\begin{array}{cc}\varepsilon_{0}-E & -(t+E s) f(\vec{k}) \\ -(t+E s) f^{*}(\vec{k}) & \varepsilon_{0}-E\end{array}\right)=0$

$$
\left(E-\varepsilon_{0}\right)^{2}-(t+E s)^{2} \mid f(\vec{k})^{2}=0
$$

$$
E=\frac{\varepsilon_{0} \pm t|f(\vec{k})|}{1 \mp s \mid f(\vec{k})}
$$

Note:

If atoms on the two sublattices are different:

$$
H=\left(\begin{array}{cc}
\varepsilon_{A} & -t f(\vec{k}) \\
-t f^{*}(\vec{k}) & \varepsilon_{B}
\end{array}\right)
$$

Solutions more complicated

Graphene tight binding band structure

$E=\frac{\varepsilon_{0} \pm t|f(\vec{k})|}{1 \mp s|f(\vec{k})|}$
$f(\vec{k})=e^{i k_{y} a / \sqrt{3}}+2 e^{-i k_{y} a / 2 \sqrt{3}} \cos \left(\frac{k_{x} a}{2}\right)$
Typical parameter values :

$$
\varepsilon_{0}=0, t=3.033 e V, s=0.129
$$

Two bands: no energy gap at the K-points

Two non-equivalent K-points

Band Structure

$\left.\psi_{\bar{k}}(\vec{r})=c_{A}|Q\rangle\right\rangle+c_{B} \left\lvert\,\langle \rangle=\binom{\psi_{\uparrow}}{\psi_{\downarrow}}\right.$
New-degree of Freedom > Pseudospin

Low energy excitations

Dirac cones

Dirac point

6 Dirac points, but only 2 independent points K and K , others can be derived with translation by reciprocal lattice vectors.

The Dirac points are protected by 3 discrete symmetries: T, I, C_{3}

Low energy band structure

Conduction band \Rightarrow electrons
Dirac cones

Fermi energy E_{F}
Fermi "surface" =2 points

Valence band \Rightarrow holes

Low energy band structure

1 Linear expansion near the K point

Brillouin
zone

Two non-equivalent K-points

Consider two non-equivalent K points:

$$
\vec{K}, \vec{K}^{\prime}=\xi\left(\frac{4 \pi}{3 a}, 0\right) ; \quad \xi= \pm 1
$$

and small momentum near them:

$$
\begin{aligned}
& \vec{k}=\xi\left(\frac{4 \pi}{3 a}, 0\right)+\frac{\vec{p}}{\hbar} \quad p_{x}=-i \hbar \frac{\partial}{\partial x} ; p_{y} \equiv-i \hbar \frac{\partial}{\partial y} \\
& f(\vec{k})=e^{i k, a / \sqrt{3}}+2 e^{-i k_{k}, a / 2 \sqrt{3}} \cos \left(\frac{k, a}{2}\right)
\end{aligned}
$$

Linear expansion in small momentum: $f(\vec{k})=-\frac{\sqrt{3} a}{2 \hbar}\left(5 p_{x}-i p_{y}\right)+O(p a / \hbar)^{2}$

$$
H=\left(\begin{array}{cc}
0 & -t f(\vec{k}) \\
-t f^{*}(\vec{k}) & 0
\end{array}\right) \approx v_{F}\left(\begin{array}{cc}
0 & \xi p_{x}-i p_{y} \\
\xi p_{x}+i p_{y} & 0
\end{array}\right)
$$

$$
v_{F}=\frac{\sqrt{3} a t}{2 \hbar} \approx 10^{6} \mathrm{~m} / \mathrm{s}
$$

Low energy band structure

2. Dirac-like equation with Pseudospin

For one K point (e.g. $\xi=+1$) we have a 2 component wave function,

$$
\psi=\binom{\psi_{A}}{\psi_{B}}
$$

with the following effective Hamiltonian (Dirac Weyl Hamiltonian):

$$
H=v_{F}\left(\begin{array}{cc}
0 & p_{x}-i p_{y} \\
p_{x}+i p_{y} & 0
\end{array}\right)=v_{F}\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}\right)=v_{F} \vec{\sigma} \cdot \vec{p}
$$

$$
\sigma_{x}=;\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ; \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Bloch function amplitudes on the $A B$ sites ('pseudospin') mimic spin components of a relativistic Dirac fermion.
Pauli Matrices
$>$ Operate on sublattice degree of freedom

Low energy band structure

2. Dirac-like equation with Pseudospin

To take into account both K points ($\xi=+1$ and $\xi=-1$) we can use a 4 component wave function,

$$
\psi=\left(\begin{array}{l}
\psi_{A K} \\
\psi_{B K} \\
\psi_{A K^{\prime}} \\
\psi_{B K^{\prime}}
\end{array}\right) \quad \begin{aligned}
& \text { Note: real spin not included. } \\
& \text { Including spin gives 8x8 Hamiltonian }
\end{aligned}
$$

with the following effective Hamiltonian:

$$
H_{K}=v_{F} \vec{\sigma} \cdot \vec{p} \quad H_{K^{\prime}}=-v_{F} \vec{\sigma}^{*} \cdot \vec{p}
$$

H_{K} and H_{K} are related by time reversal symmetry

Massless Dirac fermions

3. Massless Dirac Fermions Hamiltonian near K point:

$$
H=\hbar v_{F}\left(\begin{array}{cc}
0 & -i \partial_{x}+\partial_{y} \\
-i \partial_{x}-\partial_{y} & 0
\end{array}\right)=\hbar v_{F}\left(-i \sigma_{x} \partial_{x}-i \sigma_{y} \partial_{y}\right)
$$

$$
E=s v_{F} p \quad \Leftrightarrow \quad \psi=\frac{1}{\sqrt{2}} e^{i \overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}}
$$

$$
\begin{aligned}
& \varphi=\arctan \left(p_{y} / p_{x}\right) \text { polar angle } \\
& s=\text { band index }
\end{aligned}
$$

Pseudospin vector

- Is parallel to the wave vector k in upper band
- Antiparallel to k in lower band ($\mathrm{s}=-1$)

Massless particle : m=0
..Photons, neutrinos..

$$
E=c p
$$

$>$ But 300 times slower $v_{F} \approx 10^{6} \mathrm{~m} / \mathrm{s}$

No backscattering within Dirac cone
4. Absence of backscattering within a Dirac cone

$$
\psi=\frac{1}{\sqrt{2}} e^{i \vec{k} \cdot \vec{T}}\binom{1}{s e^{i \rho}}
$$

angular scattering probability:

$$
|\langle\psi(\varphi) \mid \psi(\varphi=0)\rangle|^{2}=\cos ^{2}(\varphi / 2)
$$

under pseudospin conservation, backscattering within one valley is suppressed

Helicity (Chirality)

5. Helicity Hamiltonian at K point:

$$
H(K)=v_{F} \vec{\sigma} \cdot \vec{p}=v_{F} p \vec{\sigma} \cdot \vec{n}
$$

Helicity operator: $\quad \widehat{h}=\vec{\sigma} \cdot \vec{n}$

$$
H(K)=v_{F} p \hat{h}
$$

Helicity is conserved

Helical electrons

pseudospin direction is linked to an axis determined by
electronic momentum.
for conduction band electrons,

$$
\vec{\sigma} \cdot \vec{n}=1
$$

$$
\vec{\sigma} \cdot \vec{n}=-1
$$

valence band ('holes')

Helicity (Chirality)

5. Helicity

Helical electrons
 pseudospin direction
 is linked to an axis determined by
 electronic momentum.

for conduction band electrons,

$$
\vec{\sigma} \cdot \vec{n}=1
$$

$$
\vec{\sigma} \cdot \vec{n}=-1
$$

valence band ('holes')
Helicity conserved \mapsto No backscattering between cones

No Backscattering

Pristine graphene

Pseudospin + chirality \mapsto Klein tunneling

No electrostatic confinement

1

- No quantum dots
- No switching
- No guiding

Klein tunneling

normal

Klein "paradox"

$>$ Transmission of relativistic particles unimpeded even by highest barriers >Physical picture: particle/hole conversion

Angular dependence of transmission
Katsnelson et al Nature physics (2006)

Carrier density outside the barrier is $0.5 \times 10^{12} \mathrm{~cm}^{-2}$ Inside the barrier, hole concentrationn is 1×10^{12} and $3 x$ $10^{12} \mathrm{~cm}^{-2}$ for the red and blue curves.

The Berry phase

Imagine a quantal sy changing environment mont, and hence \hat{H}, is s 1962) that at any instr In particular, if the I return to its original st by interference if the from it at an earlier ti My purpose here is component $\exp (\mathrm{i} \gamma$) in which accompanies th in terms of the eigens degeneracy in the see derived in $\S 3$; this cor of the eigenstates of

$$
\phi=-\operatorname{Im} \oint d \lambda\left\langle u_{\lambda} \left\lvert\, \frac{d u_{\lambda}}{d \lambda}\right.\right\rangle
$$

$$
\phi=-\operatorname{Im} \oint d \lambda\left\langle u_{\lambda}\right| \frac{d}{d \lambda}\left|u_{\lambda}\right\rangle
$$

effects of an unte. If the environtheorem (Messiah instantaneous \hat{H}. m the system will actor is observable hat was separated ant.
circuit-dependent hent $\exp (-\mathrm{i} E t / \hbar)$ aral formula for γ ircuit is close to a form which will be ind a degeneracy well as Hermitian

Berry phase

- Examples
- Curved space
- Mobius strip
- Twisted optical fiber
- Bohm Aharonov phase
- Dirac belt

Berry Phase Tutorial:
https://www.physics.rutgers.edu/grad/682/textbook/ch-3.pdf

Berry phase

$$
\phi=-\operatorname{Im} \oint d \lambda\left\langle u_{\lambda} \left\lvert\, \frac{d u_{\lambda}}{d \lambda}\right.\right\rangle
$$

$$
\psi(\varphi)=\frac{1}{\sqrt{2}} e^{i k \vec{r}}\binom{1}{e^{i \varphi}}
$$

$$
\phi=-\operatorname{Im} \oint d \lambda\left\langle u_{\lambda}\right| \frac{d}{d \lambda}\left|u_{\lambda}\right\rangle
$$

$$
\varphi \equiv 2 \pi \lambda \Rightarrow \varphi[0,2 \pi] \rightarrow \lambda[0,1] \longrightarrow \psi_{\lambda}=\frac{1}{\sqrt{2}} e^{i l r \cos (2 \pi \lambda)}\binom{1}{e^{i 2 \pi \lambda}}
$$

$$
\text { Berry phase }=-\operatorname{Im} \oint_{\lambda} d \lambda\left[\psi_{\lambda} \frac{d \psi_{\lambda}}{d \lambda}\right]=\pi
$$

Homework:
Prove this relationship

Graphene Relatives

> Many natural materials have Dirac cones in their bandstructure (e.g. highTc compnds). But the Fermi surface of these materials contains many states that are not on a Dirac cone. As a result the electronic properties are controlled by the normal electrons and the Dirac electrons are invisible.
$>$ Graphene is the ONLY naturally occurring material where the Fermi surface consists of Dirac points alone. As a result all its electronic properties are controlled by the Dirac electrons.

Graphene - biffiskatotsture

Gurphedients

Graphene (2005)
Silicene (2010)
Germanine (2014)
Stanene (2013)

Phosphorene (2014) Borophene B_{36} (2014)

Artificial Graphene

Ingredients:

1. 2 D
2. Honeycomb structure
3. Identical populations

LETTER

Designer Dirac fermions and topological phases in molecular graphene
Kenjiro K. Gomes ${ }^{1,2 *}$, Warren $\mathrm{Mar}^{2,3 *}$, Wonhee $\mathrm{Ko}^{2,4 *}$, Francisco Guinea ${ }^{5}$ \& Hari C. Manoharan ${ }^{1,2}$

Also:

PATTERNED GALLIUM ARSENIDE
20-100 nanometres

MICROWAVES BETWEEN CERAMIC CYLINDERS 15 millimetres

Graphene bandstructure

1. 2 D
2. Honeycomb structure
3. 2 identical atoms/cell
4. $t_{1}=t_{2}=t_{3}=t$

Can one control/manipulate the bandstructure?

$>$ Relax the condition: $\mathrm{t}_{1}=\mathrm{t}_{2}=\mathrm{t}_{3}$
\checkmark Strain
\checkmark Impose external potential
\checkmark Hybridization
$>$ Electrostatic potential
$>$ Defects

Summary

1. 2 D
2. Honeycomb structure (non-Bravais)
3. 2 identical atoms/cell

$$
H=v_{F} \vec{\sigma} \cdot \vec{p}
$$

$$
E=s v_{F} p \quad ; \quad \psi=\frac{1}{\sqrt{2}} e^{i \bar{k} \cdot \hat{r}}\binom{1}{s e^{i \varphi}}
$$

$$
s= \pm 1 \quad \text { band } \quad \text { index }
$$

Pseudospin ; Helicity

- Chiral quasiparticles
$>$ No backscattering

Berry phase π

Density of states

$$
g(E)=2 \frac{L^{2}}{\pi\left(\hbar v_{F}\right)^{2}}|E|
$$

