Graphene viewed through STM and transport

FSTM graphene on graphite

- ➢ Structure
- Density of States
- Landau levels
 - Fermi Velocity
 - e-ph interactions
 - Quasiparticle lifetime
 - Gap

📂 Transport

- Suspended graphene
 - Ballistic transport
 - Dirac point
 - Quantum Hall effect

Eva Y. Andrei Rutgers

Rutgers Graphene Group

STM - Guohong Li Adina Luican

Transport - Xu Du Ivan Skachko Anthony Barker Alex Archer

- G. Li , E.Y. A Nature Physics, 3, 623 (2007)
- X. Du, G. Li, A. Barker, E. Y. A, Nature Nano 3, 491 (2008); arxiv:0802.2933
- G. Li, A. Luican, E. Y. A., arXiv:0803.4016
- X. Du, I. Skachko, E.Y. A. PRB **77**,184507 (2008) arxiv:0710.4984

Graphene on graphite: STM

Temperature T=4 (2K)
Magnetic field B=13 (15T)
Scanning range 10⁻¹⁰ -10⁻³ m

Topography - honeycomb

Spectroscopy B=0

B>0 Landau level spectroscopy

Interlayer coupling

Pereira et al (PRB,2007) LL vs interlayer coupling parameter

Graphene vs graphite

topography

500 nm

B=0 spectroscopy

B>0 spectroscopy

Graphite

Graphene

Landau level spectroscopy

Massless Dirac Fermions

Fermi Velocity

• 2D (isotropic)
Number of states /ce

$$N(E) = \int_{0}^{E} \rho(E') dE' = A_{c} \frac{1}{\pi} k^{2}$$

$$k(E) = \pm \left(\frac{\pi}{A_{c}} \int_{0}^{E} \rho(E') dE'\right)^{1/2}$$

Fermi Velocity

$$v_{F} \equiv \frac{dE}{\hbar dk} = \frac{2}{\hbar} \sqrt{\frac{A_{c}}{\pi}} \left(\int_{0}^{E} \rho(E') dE' \right)^{1/2} / \rho(E')$$

Electron phonon coupling

E-ph coupling strength

$$\lambda_{k_F} = -\frac{\partial \operatorname{Re} \sum_{k} (E)}{\partial E} \bigg|_{E=E_F}$$

$$\lambda_{k_F} = -\frac{v_F(E_F) - v_F^0(E_F)}{v_F(E_F)}$$

S. Nakajima and M. Watabe 1963 G. Grimvall 1981

Bostwick et al Nature Physics (2007)

Zhou et al (2008) preprint

Electron phonon coupling

IXS data J. Maultzsch et al. PRL. 92, 075501 (2004)

High resolution STS – 4T

16 resolved LL

1

Quasiparticle lifetime

$$\tau_0 = 0.7 \, ps \Longrightarrow l_{mfp} \sim v_F \tau_0 = 700 \, nm$$

$$\tau \propto E^{-1} \approx 9 \, ps \, / \, meV$$

Enerav (meV)

Phemtosecond photoemission on Graphite, B=0 Xu et al PRL (1996)

High resolution STS (B>0) SPLITTING of n=0 LL

STS (B = 0)

Rutgers

GAP at Dirac Point B=0

Gap at DP (not E_F)
 Broken AB symmetry

$$E_{k,\pm} = \pm \sqrt{(v_F k)^2 + \Delta^2}; \quad \Delta = m v_F^2$$
$$\implies m = 0.002 m_e$$

Spontaneously broken symmetry CDW?
Substrate induced potential <u>modulation</u>

Suspended graphene

Substrate roughnessTrapped chargesQuench condensed ripples

X. Du, I. Skachako, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008)
Bolotin et al. Solid State Comm. 2008

ShdH Oscillations

-5V

4

3

-2<u>V</u>

5

Substrate induced Potential fluctuations

reduced potential fluctuations

Substrate induced Potential fluctuations

suspended

Residual carriers $n_{sat} \sim 4 \ 10^9 cm^{-2}$

Mobility ~ $200,000 \text{ cm}^2/\text{V} \text{ s}$

Non suspended

Residual carriers $n_{sat} \sim 10^{11} \text{cm}^{-2}$ Mobility $\sim 20,000 \text{ cm}^2/\text{V} \text{ s}$

reduced potential fluctuations

Ballistic transport

T<100K: At low densities: $\sigma \sim n^{1/2} \sim E_F$ Approaching Ballistic transport!

Temperature dependence of minimum conductivity

 σ_{min} ~ T for T<150K
 Slope – sample dependent Eva Andrei

Mean-free-path

suspended vs non-suspended graphene

Temperature dependence of suspended graphene

T>100K: Onset of long-range scattering:

Summary

Graphene on graphite

- Honeycomb structure
- Direct observation of Landau levels
- Dirac fermions
 - Linear Density of states
 - Well defined Dirac point
- Long lived
- Slow down by interactions with lattice
- Mass ~ 0.002m_e?

Suspended graphene

- Well defined Dirac point
- Ballistic transport on micron scales
- Quantum Hall effect
- v=0 Insulating

