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Many systems in nature cannot equilibrate with the environment giving rise to 

novel and surprising behaviour including memory, aging and nonlinear-dynamics.   

Glasses[1-11], interfaces[12] and fractures are some examples[13]. Unlike their 

equilibrated counterparts, the dynamics of out-of-equilibrium systems is generally 

too complex to be captured by simple macroscopic laws[1]. Here we investigate a 

system that straddles the boundary between glass and crystal, a Bragg glass[14,15], 

formed by vortices in a superconductor. We find that the response to an applied 

force evolves according to a stretched exponential, with the exponent reflecting the 

deviation from equilibrium. After removing the force, the system ages with time 

and its subsequent response scales linearly with its “age” (simple aging), i.e. older 

systems are slower than younger ones. We show that simple aging can occur 

naturally in the presence of sufficient quenched disorder and that the hierarchical 

distribution of time scales arising when chunks of loose vortices cannot move 

before trapped ones become dislodged, leads to stretched exponential response.   

Glassy states of matter abound with seeming contradictions: macroscopically they are 

rigid like crystals but microscopically their structure is closer to that of liquids. At the 

same time, their response to external drives is unlike either that of crystals or liquids 
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displaying metastabillity, hysteresis and nonlinear dynamics [1].  In recent years the 

glass family has expanded to include systems that can be modelled by elastic manifolds 

in random potentials such as vortices in superconductors[14-21], domain walls [12] or 

two-dimensional electron layers[5,6]. When the random potential is weak these systems 

are expected to form a marginal glassy state, “Bragg glass”, which is topologically 

ordered like a perfect crystal but unlike crystals, has no long-range spatial order[14,15].  

An intriguing and enduring puzzle associated with this phase is the dynamics at the 

onset of motion: does it move as a rigid object or break up into pieces, does it crystallize 

at high velocities or retain its glassy nature[22-25].     

To probe the dynamics, we focused on vortex states in single crystals of 2H-

NbSe2 because in this material quenched disorder can be sufficiently weak to allow the  

formation of a Bragg glass.  The vortex states were prepared by field-cooling (FC) the 

sample below the superconducting transition in a field of 0.2 Tesla and temperatures 

down to 4.2 K.  The results reported here were obtained on a sample of size   

4.4x.0.8x0.006 mm3  and transition temperature 7.2 K . At low temperatures (T<5.7K), 

where the Bragg glass is expected,  the response of a freshly prepared FC lattice to a 

current pulse was previously[19] found to fit  stretched exponential, or Kohlrausch-

Williams-Watts (KWW) time dependence[10,11] spanning three decades in time: 
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VtV . Here V1  is the saturation voltage, t0 the delay time 

before a measurable voltage appears, τ the rise time and   β ~ 0.6.  The experimental 

protocol consists of applying a first current pulse (FP) of amplitude I1 followed by a 

second pulse (SP) I2, during which the evolution of the voltage is recorded (Fig1.b 

inset). The pulses are separated by a waiting time tw without current.  Remarkably,  the 

response during the SP is significantly slower than during the FP and  its evolution 

depends not only on the elapsed time from the onset of I2 , as is the case in ergodic 

systems, but also on tw, so  V(t) = V(t,tw). This behaviour, also known as aging, is one of 
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the hallmarks of glassy dynamics[1-8]. The response curves for I2 = I1 and several 

values of tw, are presented in Fig. 1a. When the same data is re-plotted against the scaled 

time t/tw,  (Fig. 1b),  all the curves collapse without adjustable parameters onto a master 

curve,  
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The scaling constant, γ , is independent of tw leading to  a special and rare form of aging 

V(t,tw) = V(t/tw), also known as simple or full  aging [6-8].  Simple aging is remarkably 

robust in this system extending over almost five decades in reduced time and holding  

up to the longest measurement times ~ 2 tw. For T < 5.5 K and at low saturation 

voltages, V < 5μV, the exponent β is independent of tw and temperature.    Its value, β ~ 

0.24, obtained for V1 = 1.0 μV, decreases slightly with increasing V1 ( Fig 1c). Simple 

aging continues to hold at higher drives, but the range of the KWW fit is reduced. We 

find that the  KWW function fits the data  over a wider range than other simple choices. 

For example a logarithmic fit, also commonly used[6], is indistinguishable from KWW 

for t <0.1 tw ,  but becomes worse at longer times. We note that for the SP, 2.0≤β 4, is 

significantly lower than in the FP case, where 60.~β . As shown below, this provides 

an important clue to the glassy dynamics of moving vortex states.  

To study the case 21 II ≠  ,  I1 was varied while keeping I2 constant.  The response 

is a sensitive function of I1: it is slowest for 21 II = and becomes faster whenever the 

two levels are not equal (Fig. 2a). In other words, the system retains an imprint of I1 ,  

which can be retrieved later in the form of a maximal slow-down during I2.  For t > 0.1 

s, the response during I2 fits a  generalized form of  Eqn. 1:  
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Here V2 is the SP saturation voltage and  )V/V(ff 21=  is a  “memory function”. 

As shown in Fig. 2b, for each V2, there exists a unique value f that collapses the 

response for all V1 onto one curve. The memory function f(V1/V2) obtained by this 

procedure is plotted in  Fig. 2c.  Although the asymptotic response (t > 0.1 s) obeys 

equation 2, this form is not valid at short times (Fig. 2d).  

 Another limit,  tw = 0, was studied by applying  “step-pulses” where the FP pulse  

I1 was directly switched after a time t1 to  the SP pulse I2.  If the response is not allowed 

to saturate during the FP,  the SP response is identical to that of a single pulse of 

amplitude I2 with a shifted time origin : .)]t - t- (t[V δ1  The shift δt is linear in t1 (Fig. 

3a inset), a behaviour that provides an additional clue to the mechanism underlying the 

glassy dynamics in this system.  

KWW relaxation  is far more common than the "conventional" exponential form 

(β = 1).  It occurs in complex systems where the dynamics is governed by a statistical 

distribution of relaxation times together with constraints that restrict the path towards 

steady state to a hierarchical sequence of steps [9-11]. The hierarchy arises if certain 

segments (here chunks of vortices) cannot start moving until the ones in front of them 

are dislodged. Palmer et al [9] proposed a model of hierarchically constrained dynamics 

that leads to KWW response with )2log1/(1 0μβ +=   where μ0  is the number of 

degrees of freedom involved in  initiating the process of relaxation.  Thus different 

values of β imply qualitative differences in the initial conditions, with smaller 

β corresponding to more entangled states that require more steps to reach steady state. 

The exponents, β ∼ 0.6 and β ∼ 0.2, imply that the corresponding initial states for the FP 

and SP are inherently different. For the former, μ0  ∼ 1,  implies that the initial FC state 

is readily set in motion, while for the latter, μ0  ∼ 10, indicates that the moving state (the 

SP is applied after the system experienced motion) is more entangled. This striking 

difference, together with the fact that the initial value, β ~ 0.6, cannot be recovered 
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without warming up the sample, suggests structure of the FC state is altered irreversibly 

after the onset of motion. We propose that this is due to the introduction of dislocations 

when, due to pinning-potential inhomogeneities, some chunks of vortices start moving 

before others. As was  shown  in numerical simulations of driven 2D interacting 

systems[26], the dislocations minimize their energy by forming grain boundaries and by 

aligning their Burges vectors along the direction of motion.  When the drive is suddenly 

removed they drift to restore the original state.  But if annealing time scales are much 

longer than experimental times, the grain boundaries coarsen forming a more entangled 

spaghetti-like network of dislocations, resulting in a lower value of  β.  

It is generally accepted that the energy landscape of a finite disordered system has 

many local minima corresponding to metastable configurations surrounded by high 

energy barriers that can trap the system[8]. The trapping time in a metastable state 

increases with trap depth.  In this context the dynamics of the vortex system can be 

modelled by mapping each state onto a point in configuration space and representing the 

evolution between two states by a connecting trajectory consisting of a sequence of 

trapped states. Thus, during the first pulse the system evolves from the FC state to the 

moving vortex state (MV) along a connecting trajectory as shown in Fig. 3b. During tw 

when the drive is absent, the system drifts away from the MV point towards a lower 

energy Relaxed State (RS) where the grain boundaries have coarsened. Both simple 

aging and the response to a step-pulse can be described within this model.    

The key point for simple aging is that the deepest traps encountered during tw must 

have trapping times τ t ~ tw . This was shown to be the case[8] for trapping times that 

have exponential or power law distributions, provided the maximum trapping time is 

much shorter than tw. Therefore during the subsequent SP, while the system is driven 

back towards the MV and traversing the same deepest trap, the trapping time should 

again be  ~ tw , provided the drive does not significantly change the energy landscape. In 
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other words, tw selects a time scale (out of a broad distribution) which becomes the 

characteristic scale for subsequent response events. This naturally gives rise to simple 

aging. However, in spite of its “simplicity” simple aging is rare and was only recently 

observed in a Coulomb glass[5,6] and in a spin glass[7]. It is noteworthy that aging may 

disappear altogether if the distribution of τ t is not continuous or if it is truncated. For 

example in very disordered samples where τ t  >> tw, the system remains trapped close 

to  the MV long after  the drive is removed. This is the case for vortex states in Fe 

doped  2H-NbSe2 where no aging was observed  for tw ≤  24 hours[17].   At the other 

extreme lies the case of clean samples where aging is not seen either because there is a 

unique equilibrium state (no trapping) or because τ t is much shorter than the 

measurement times. This implies that there is a critical amount of disorder needed to 

observe aging.  

The response to step-pulses imposes two additional constraints:  (a) For a given 

FP amplitude I, the configuration space “speed”, v( I ) , along the FC- MV trajectory is 

constant.  (b) v( I ) increases with increasing I . Thus during the FP the system evolves 

at an average speed v1 = v( I1 ) so that at time t1 it reaches an intermediate point P  along 

FC-MV.  During the SP the remainder trajectory  is traversed at a higher speed v2 = 

v(I2).  Had the entire FC-MV trajectory been traversed at speed v2 , then P  would have 

been reached at a time δt = t1  (v1 /v2 ) after the pulse  onset. Therefore the response 

during SP,   V’(t- (t1 – δt)),   is identical to that for a single pulse of amplitude  I2 applied  

δt  prior to t1 . 

 The experiments described here demonstrate that in the presence of quenched 

disorder the response of a driven vortex system to a current pulse can be described by 

KWW time dependence, with the exponent reflecting the deviation of the initial state 

from equilibrium.  It is shown that there exists a range of strengths of the quenched 

disorder for which the system can exhibit aging and that simple aging arises naturally in 
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samples with a continuous distribution of trapping times whose range is much wider 

than that of experimental waiting times.  

Correspondence and request for materials should be addressed to E.Y.A. 

(eandrei@physics.rutgers.edu). 
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    FIGURE CAPTIONS 

 

Fig. 1. a, Response during the SP following an  FP of duration  t1=  512 s and  

amplitude I1 = I2 = 5.36 mA. The waiting times tw= 4s, 8s, 16s, 32s, 64s, 128s, 256s, 

512s, 1024s, 2048s increase along the arrow. b, Scaled SP response versus scaled time. 

A linear fit gives β  (slope) and of γ  from the intercept, –log(1-V/V1) = 1. The 

experimental setup is shown in the inset. c, Temperature dependence of β  for  FP and 

SP  (open and solid symbols). Pulse amplitudes were adjusted to give the same 

saturation voltage at all temperatures.  

Fig. 2.  a, Time evolution of SP for V2 = 1.3 μV. b, Same data as in (a) showing that 

there exists a value, f (V1 / V2), for which the scaled data, -log[(1-V/V2)/f]  collapse onto 

a master curve. c, The memory function,  f (V1 / V2) obtained as described in (b). 

Highlighted area encloses data taken in the Bragg glass regime, where  memory is 

strongest..  For T > 5.7K,  f  flattens out signalling a more feeble memory. d, Response 

in the first 0.3 ms of the SP, for tw = 240 s , I2 = 9.1 mA showing strong FP  memory.  

Fig.3. a, Response to step-pulse (11 = 8.12 mA I2 = 9.13 mA  tw=0). The SP response 

(triangles) is compared to the response to a single pulse with the same current level I2 

(circles).  The two curves overlap when shifting the time axis by t1-δt.   The inset shows 
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that δt is linear in  t1. b, Configuration space representation of vortex states and 

connecting trajectories. During the FP  the system evolves along the FC - MV trajectory 

which is independent of driving force. In between pulses the systems drifts toward RS. 

During the SP, the it is driven back to the MV. 
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Figure 1.  [No smaller than 4’’(H) x 3.4’’ (W)] 
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Figure 2.  [No smaller than 3.61’’(H) x 3.4’’(W)] 
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Figure 3.  [No smaller than 3.4’’(H) x 3.4(W)’’] 
 

 


