
Physics 8.05 Sep 12, 2007

SUPPLEMENTARY NOTES ON DIRAC NOTATION,
QUANTUM STATES, ETC.

c©R. L. Jaffe, 1996

These notes were prepared by Prof. Jaffe for the 8.05 course which he taught in 1996.
In next couple of weeks we will cover all of this material in lecture, though not in as much
detail. I am handing them out early so you have an additional source for the material that
you can read as we go along, perhaps also filling in some gaps.

There are three main parts.

1. The “Postulates of Quantum Mechanics”.

2. Completeness and orthonormality.

3. An extended example of the use of Dirac notation — position and momentum.

Note that Prof. Jaffe had not yet introduced spin as a two state system at the time he
distributed these notes. I recommend that as you read these notes, at every step of the
way you think how to apply them to the two state system.

If you are having difficulty with the concepts we have covered in the first part of 8.05
please study these notes carefully. The notes are written using Dirac Notation throughout.
One of the purposes is to give you lots of exposure to this notation.

If, after reading these notes, it all still seems confusing, or overly formal, give yourself
time. We will study some simple physical examples (especially the harmonic oscillator and
the “two state systems” which we have already introduced) where you will learn by doing.

Here, then, are Prof. Jaffe’s notes:

1 The Postulates of Quantum Mechanics

I’m not a lover of “postulates”. In general it is better to develop the ideas gradually and
let them sink in and become familiar, rather than to announce a set of postulates and try
to derive physics from them. In this case, however, we began 8.05 with a wide range of
backgrounds, so it is worthwhile to make sure we have a common understanding of how
quantum mechanics works in general. Hence this section.
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1.1 First Postulate

At each instant the state of a physical system is represented by a ket |ψ〉 in the space of

states .

Comments

• The space of states is a vector space. This postulate is already radical because it
implies that the superposition of two states is again a state of the system. If |ψ1〉 and
|ψ2〉 are possible states of a system, then so is

|ψ〉 = a1|ψ1〉 + a2|ψ2〉, (1)

where a1 and a2 are complex numbers. Imagine that |ψ1〉 is a particle with one value
for some property like location and |ψ2〉 is the same particle with a different value. In
quantum mechanics we must allow ourselves to consider which superpose a particle
in different locations. We were forced to do this by the results of experiments like
the double-slit diffraction of electrons.

• The space of states comes equipped with the concept of an inner product which we
abstract from wave mechanics. The inner product associates a complex number to
any two states

(|ψ〉, |φ〉) ≡ 〈ψ|φ〉 =
∫

dxψ∗(x)φ(x). (2)

Here we have used two different notations. The first defines the inner product as an
operation acting on two states in the ket space. The second introduces another copy
of the space of states called the “bra space”, and defines the inner product as an
operation involving one element of the bra space and one element of the ket space.
Either way, the inner product reduces to the integral overlap of the two states when
evaluated in terms of wavefunctions —

∫

ψ∗φ. From (2) we see that

〈ψ|φ〉∗ = 〈φ|ψ〉. (3)

1.2 Second Postulate

Every observable attribute of a physical system is described by an operator that acts on the

kets that describe the system.

Comments

• By convention, an operator Â acting on a ket |ψ〉 is denoted by left multiplication,

Â : |ψ〉 → |ψ′〉 = Â|ψ〉. (4)
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You are used to this concept in the context of wave-mechanics, where the concept of
a state is replaced by that of a wavefunction. A system (a particle in a potential,
for example) is described by a wavefunction ψ(x) in wave-mechanics. Some simple
observable attributes of such a system are its position, its momentum and its energy .
These are represented in wave mechanics by differential operators, X̂ = x, P̂ = −ih̄ d

dx

and Ĥ = − h̄2

2m
d2

dx2 +V (x) respectively. These operators act on a wavefunction by left-
multiplication, like

P̂ψ(x) = −ih̄dψ
dx

(5)

• It is important to recognize that acting with an operator on a state in general changes
the state. Again think back to wave mechanics. The lowest energy eigenfunction in
a square well (0 ≤ x ≤ L) is

ψ(x) =
√

2/L sin πx/L for 0 ≤ x ≤ L. (6)

When we act on this wavefunction with P̂ , for example, we get

P̂ψ(x) = −ih̄π/L
√

2/L cosπx/L (7)

which is no longer an energy eigenfunction at all. So the operator changed the state
of the particle.

• For every operator, there are special states that are not changed (except for being
multiplied by a constant) by the action of an operator,

Â|ψa〉 = a|ψa〉. (8)

These are the eigenstates and the numbers a are the eigenvalues of the operator. You
have encountered them in wave mechanics, now they show up in the abstract space
of states.

1.3 Third Postulate

The only possible result of the measurement of an observable A is one of the eigenvalues of

the corresponding operator Â.

Comments

• This is, of course, the origin of the word “quantum” in quantum mechanics. If
the observable has a continuous spectrum of eigenvalues, like the position x or the
momentum p, then the statement is not surprising. If it has a discrete spectrum, like
the Hamiltonian for an electron bound to a proton (the hydrogen atom), then the
statement is shocking. A measurement of the energy of the hydrogen atom will yield
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only one of a discrete set of values. Needless to say, this postulate reflects mountains
of experimental evidence such as the discrete spectral lines observed in the radiation
from a tube of hot hydrogen gas.

• Since we measure only real numbers, the eigenvalues of operators corresponding to
observables had better be real. Operators with real eigenvalues are hermitian.

The eigenstates of a hermitian operator have some important properties.

– They are orthogonal

〈aj |ak〉 ≡ (aj , ak) =
∫

dxψ∗
aj

(x)ψak
(x) = δjk. (9)

– They span the space of states, so they form a basis . This means than an arbitrary
state can be expanded as a sum (with complex coefficients) of the eigenstates of
a hermitian operator. For this reason we say that the set of states is “complete”.

1.4 Fourth Postulate

When a measurement of an observable A is made on a generic state |ψ〉, the probability

of obtaining an eigenvalue an is given by the square of the inner product of |ψ〉 with the

eigenstate |an〉, |〈an|ψ〉|2.
Comments

• The states are assumed to be normalized. Usually we normalize our states to unity,

〈ψ|ψ〉 = 1

〈aj|ak〉 = δjk. (10)

Sometimes this is not possible. The case of momentum eigenstates, ψp(x) = 1√
2πh̄

exp ipx/h̄,
is the classic example. In this case we must use “δ-function” or “continuum” normal-
ization as discussed in Section 2.

• The complex number, 〈an|ψ〉 is known as the “probability amplitude” or “amplitude”,
for short, to measure an as the value for A in the state |ψ〉.

• Here is the algebraic exercise suggested by this postulate. First, any state can be
expanded as a superposition of A-eigenstates (see Post. 3),

|ψ〉 =
∑

n

cn|an〉. (11)
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Next use the orthonormality of the A eigenstates to find an expression for the expan-
sion coefficients cn,

〈aj|ψ〉 =
∑

n

cn〈aj|an〉

= cj . (12)

So,
|ψ〉 =

∑

n

〈an|ψ〉 · |an〉. (13)

The · is added just to make clear the separation between the complex number 〈an|ψ〉
and the state |an〉. So, the component of |ψ〉 along the “direction” of the nth eigenstate
of A is given by 〈an|ψ〉. The measurement operation yields the result an with a
probability proportional to the square of this component, |〈an|ψ〉|2.

• The probability of obtaining some result is unity. For states normalized to unity,

|〈ψ|ψ〉|2 =
∑

m

∑

n

c∗mcn〈am|an〉. (14)

Using |〈ψ|ψ〉| = 1 and 〈am|an〉 = δmn, we get

∑

n

|cn|2 = 1 (15)

• According to the usual rules of probability, we can compute the “expected value” of
the observable A. If the probability to observe an is |cn|2 then the expected value
(denoted 〈A〉) is

〈A〉 =
∑

n

an|cn|2. (16)

• When there is more than one eigenstate with the same eigenvalue, then this discussion
needs a little bit of refinement. We’ll let this go until we need to confront it.

1.5 Fifth Postulate

Immediately after the measurement of an observable A has yielded a value an, the state of

the system is the normalized eigenstate |an〉.
Comments

• Known picturesquely as the “collapse of the wavepacket”, this is the most controver-
sial of the postulates of quantum mechanics, and the most difficult to get comfortable
with. It is motivated by experience with repeated measurements. If an experimental
sample is prepared in a state |ψ〉 then it is observed that a measurement of A can
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yield a variety of results an with probabilities |〈an|ψ〉|2. Identically prepared systems
can yield different experimental outcomes. This is encompassed by the fourth pos-
tulate. However, if A is measured with outcome an on a given system, and then is
immediately remeasured , the results of the second measurement are not statistically

distributed, the result is always an again. Hence this postulate.

• The collapse of the wavepacket preserves the normalization of the state. If |ψ〉 and
|an〉 are both normalized to unity, then the measurement process replaces |ψ〉 by |an〉,
not by |〈an|ψ〉|2 · |an〉.

1.6 Sixth Postulate

The time evolution of a quantum system preserves the normalization of the associated ket.

The time evolution of the state of a quantum system is described by |ψ(t)〉 = Û(t, t0)|ψ(t0)〉,
for some unitary operator Û .

Comments

• We have not got to this subject yet. I include it for completeness.

• Under time evolution, a state |ψ〉 moves through the space of states on a trajectory
we can define as |ψ(t)〉. The preservation of the norm of the state is associated
with conservation of probability. If the observable A is energy, for example, then the
statement (15) says that the probability to find the system with some value for the

energy is unity when summed over all possible values. For this to remain true as time
goes on, it is necessary for the norm of the state to stay unity.

• Soon we will show that this postulate requires |ψ〉 to obey a differential equation of
the form

ih̄
d

dt
|ψ(t)〉 = H|ψ(t)〉 (17)

where H is a hermitian operator (we know it as the Hamiltonian). This is Schroedinger’s
equation written as an operator equation in the space of states (as opposed to a dif-
ferential equation in the space of wavefunction).

2 Bases and Operators

In this section I want to go over two topics not treated in sufficient detail in lecture.
First, more about orthonormality and completeness, and second, some of the properties of
hermitian operators.
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2.1 Orthonormality and Completeness

We are working in the space of states S of a quantum system. The states are denoted by
kets, |ψ〉, or equivalently by bras 〈ψ|. We will assume from the start that it is possible to
find a basis for this space. The process for finding a basis is discussed in courses in linear
algebra. Simply put, one chooses a state, and includes it in the basis. Next one chooses
another. If it is proportional to the first, one discards it. If not, one puts it in the basis. On
to another. If it is a linear combination of the first two, it is not “new” and is discarded. If
it is not a linear combination of the first two, it must be added to the basis. This continues
until one has the largest possible set of linearly independent states, which is the basis.

We will have to deal with two different types of bases:

• Denumerable

Denumerable ≡ countable, meaning the states can be put into one-to-one correspon-
dence with the integers. We can denote them by {|n〉}, where n = 1, 2, 3, . . . The
energy eigenstates of the one-dimensional harmonic oscillator are a good example.

• Non-denumerable

Here the elements of the basis cannot be counted. Instead they are denoted |z〉,
labelled by a continuous variable, z, that ranges from −∞ < z <∞. The eigenstates
of position and momentum are the classic examples.

Of course there are other cases, where the basis requires two integer labels, or two contin-
uous labels, or one of each. These are handled by simple generalizations of the analysis
given here.

Our space of states has an inner product, 〈ψ|φ〉. Using the inner product it is always
possible to generate an orthonormal basis from one originally possessing no special proper-
ties with respect to the inner product. The process of making a basis orthonormal is called
the “Schmidt orthogonalization process”. It is explained in courses on linear algebra. I
am going to skip it because we will see that the eigenstates of hermitian operators are
automatically orthogonal. All we need to do to make them into an orthonormal basis is to

divide out their length: |ψ〉 →
√

〈ψ|ψ〉|ψ〉, so 〈ψ|ψ〉 = 1.

I need to say how “orthonormality” is defined. If we were dealing with a finite di-
mensional vector space (like Euclidean 3-space), then orthonormality means that the inner
product of two different basis elements is zero and the inner product of a basis vector with
itself is unity: ~vj · ~vk = δjk. This generalizes directly to the case of a denumerable basis

〈m|n〉 = δmn (18)

but not to a non-denumerable basis. The symbol δzz′ doesn’t make sense — how closely
equal do z and z′ have to be before δ takes on the value 1? For a non-denumerable basis,
we postulate an orthonormality relation more suited to continuous variables,

〈z|z′〉 = δ(z − z′) (19)

7



where δ(z) is Dirac’s δ-function. This is known as “continuum normalization”. My hope
is that you’ll accept this as a candidate for an orthonormality condition and pursue its
consequences with me.

Anyone who has studied Fourier Series and Fourier Integrals will recognize these two

different orthonormality conditions. The independent sine functions,
√

2
L

sin nπx/L, that

enter into Fourier Series satisfy an orthonormality condition like (18), where the inner
product is defined as the integral from 0 to L. On the other hand, the independent functions
that appear in Fourier Integrals, 1√

2π
exp iqx, obey an orthonormality condition with a δ-

function like (19).

There is a fancy way to state orthonormality that is very useful in quantum mechanics.
First let’s develop it in the case of denumerable bases. Take an arbitrary ket and expand
it in the orthonormal basis {|n〉},

|ψ〉 =
∑

n

cn|n〉. (20)

Using the orthonormality of the basis states we obtain an equation for the expansion
coefficients,

cn = 〈n|ψ〉, (21)

and substitute back into (20), to obtain

|ψ〉 =
∑

n

〈n|ψ〉 · |n〉. (22)

The “dot” is again added to the equation explicitly to remind us that each term in the sum
is the product of a complex number (c-number) 〈a|ψ〉 and a ket |ψ〉.

Now we do some Dirac trickery, by rearranging the terms in (22) and separating them
in a suggestive manner,

|ψ〉 =
∑

n

|n〉 · 〈n|ψ〉

=

[

∑

n

|n〉〈n|
]

|ψ〉. (23)

In the last version the quantity in square-brackets plays the role of the identity operator ,

1 =
∑

n

|n〉〈n| (24)

Acting on the state |ψ〉, it gives |ψ〉 back again. Also it is placed properly (acting by left
multiplication) for an operator in the ket space.

Perhaps it will help to make the analogy to ordinary vectors in 3-space. Expanding
an arbitrary vector in a Cartesian basis (call the basis vectors êj, j = 1, 2, 3 and keep track
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of transposes) we get

~v =
∑

j

(êT
j · ~v) êj

=





∑

j

êj ê
T
j



 · ~v. (25)

So the quantity
∑

j êj ê
T
j seems to play the role of the identity. Well, if we write

ê1 =







1
0
0





 ê2 =







0
1
0





 ê3 =







0
0
1





 (26)

and explicitly construct the 3 × 3 matrix
∑

j êj ê
T
j , it is easy to see it is the unit matrix .

Our result, (24) is the extension of this result to a denumerably infinite dimensional space.

Finally I want to generalize (24) to non-denumerable bases. Since the label for the
basis states is continuous, we must integrate over it in the analog of (20)

|ψ〉 =
∫ ∞

−∞
dzc(z)|z〉. (27)

Note that the function c(z) has taken the place of the expansion coefficients cn. To find
the analog of (21), we take the inner product with 〈z′|,

〈z′|ψ〉 =
∫ ∞

−∞
dzc(z)〈z′|z〉, (28)

use 〈z′|z〉 = δ(z − z′) and perform the integral over z, leaving

c(z) = 〈z|ψ〉 (29)

just like (21). Now substitute back into (27) and rearrange the terms as we did in the
denumerable case,

|ψ〉 =
[∫ ∞

−∞
dz|z〉〈z|

]

|ψ〉 (30)

from which we extract
1 =

∫ ∞

−∞
dz|z〉〈z| (31)

2.2 Operators and Hermitian Conjugation

Here I want to derive some of the properties of hermitian operators. First, however, lets
review the derivation of hermitian conjugation.

9



2.2.1 Hermitian Conjugation

If Â is an operator defined by its action on the kets,

Â : |ψ〉 → |ψ′〉 = Â|ψ〉, (32)

then the hermitian conjugate of Â, denoted Â†, is defined to be the operator that has the
same action on the bras,

Â† : 〈ψ| → 〈ψ′| = 〈ψ|Â†, (33)

The quantity Â|ψ〉 is again a state in S. To emphasize that fact we could put it into
a ket notation,

Â|ψ〉 = |Âψ〉 (34)

The equivalent statement for the bra space is

〈ψ|Â† = 〈Âψ| = 〈ψ′|. (35)

Note that we do not denote the bra by 〈Â†ψ|, because it is the state with the same attributes
as |ψ′〉 = |Âψ〉.

Consider the inner product of |ψ′〉 defined in (32) with some arbitrary state |φ〉

〈φ|ψ′〉 ≡ 〈φ|Â|ψ〉 (36)

This defines a new kind of expression, with an operator sandwiched between a bra and a
ket. Think of it as follows: when Â operates on |ψ〉, it creates some ket which one can
overlap with |φ〉. Completely equivalently, one can view Â as an operator on the bra space,
tranforming the bra 〈φ| to a new element of the bra space, 〈φ|Â, which then overlaps with
|ψ〉. The notation defined in (36) with Â between bra and ket includes both points of view
and is the one we’ll generally use.

Quantities of the form 〈φ|Â|ψ〉 are called “matrix elements”. They are c-numbers and
measure the capacity of the operator Â to provide overlap between the two states.

Complex conjugation of matrix elements involves hermitian conjugation of operators.
Consider

〈φ|Â|ψ〉∗ = 〈φ|ψ′〉∗ (37)

Using the complex conjugation property of the inner product, 〈φ|ψ′〉∗ = 〈ψ′|φ〉, and (35)
we find

〈φ|Â|ψ〉∗ = 〈ψ|Â†|φ〉 (38)

If the operator Â is hermitian, then its matrix elements have a simple behavior: complex
conjugation is equivalent to exchanging the bra and the ket.
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2.2.2 Eigenvalues and eigenstates of a hermitian operator

Here we show that the eigenvalues of a hermitian operator are real and that the eigenstates
of a hermitian operator form an orthonormal set. Let’s define the eigenkets and eigenvalues
of some operator Â in the usual fashion

Â|ak〉 = ak|ak〉 (39)

To be definite, we have assumed the eigenvalues are countable, and we’ve labelled the states
by their eigenvalues.

From the definition of Â† we see that 〈ak| is an eigenbra of Â† with eigenvalue a∗k,

〈ak|Â† = a∗k〈ak| (40)

Let us restrict ourselves to hermitian operators, Â† = Â. Then take the inner product of
(39) with the state |ak〉 to obtain,

〈ak|Â|ak〉 = ak〈ak|ak〉. (41)

If Â is hermitian, then the matrix element 〈ak|Â|ak〉 is real, as is the norm 〈ak|ak〉. So
if we take the complex conjugate of (41) we conclude that the eigenvalues of a hermitian

operator are real .

Next take the inner product of (39) with an eigenstate belonging to a different eigen-
value of Â, say aj,

〈aj |Â|ak〉 = ak〈aj |ak〉. (42)

Next write the eigenvalue equation for the eigenbra 〈aj|,

〈aj|Â = aj〈aj|, (43)

where we used both that Â is hermitian, and that aj is real. Finally take the inner product
of (43) with the eigenket |ak〉,

〈aj |Â|ak〉 = aj〈aj |ak〉. (44)

If we compare (42) with (44) (subtract the two equations), we see that

〈aj |ak〉 = 0 if aj 6= ak. (45)

So the eigenstates belonging to different eigenvalues of a hermitian operator are neces-
sarily orthogonal. Next, choose the norm of the eigenstates to be unity and we have an
orthonormal set of eigenstates for every hermitian operator.

There is one lacuna in this derivation. If two eigenstates share the same eigenvalue (the
eigenvalue is said to be degenerate), we have not shown that the eigenstates are orthogonal.
The flaw is fairly simple to repair: it is always possible to choose linear combinations of the

11



set of states belonging to the same eigenvalue so that they are orthogonal to one another,
and of course any linear combination is still orthogonal to the eigenstates corresponding to
different eigenvalues.

It is more difficult to show that the set of orthonormal eigenvectors of a hermitian
operator is complete. It mirrors the completeness proof for Fourier Series or Fourier Inte-
grals, which you may have encountered in other courses. Accepting completeness, we see
that hermitian operators generate complete orthonormal bases for our space of states.

2.2.3 Operators as matrices in an orthonormal basis

The objects of interest in quantum mechanics are matrix elements of the form

〈φ|Â|ψ〉. (46)

If we make use of an orthonormal basis we can reduce the manipulation of matrix elements
to matrix algebra. We consider denumerable and non-denumerable bases in turn.

Suppose the space of states has a denumerable basis, {|n〉}. We may expand both |ψ〉
and |φ〉 in this basis,

|ψ〉 = =
∑

n

〈n|ψ〉 · |n〉

|φ〉 = =
∑

m

〈m|φ〉 · |m〉 (47)

and substitute in (46).

〈φ|Â|ψ〉 =
∑

n

∑

m

〈φ|m〉 · 〈m|Â|n〉 · 〈n|ψ〉 (48)

a double sum over products of three complex numbers. To make (48) simpler in appearance,
we define

ψn ≡ 〈n|ψ〉
φm ≡ 〈m|φ〉
Amn ≡ 〈m|Â|n〉 (49)

so (48) now reads
〈φ|Â|ψ〉 =

∑

m

∑

n

φ∗
mAmnψn (50)

or
〈φ|Â|ψ〉 = φ†Aψ (51)

where A is the matrix of complex numbers whose mnth component is Amn, ψ is the column
vector whose nth component is ψn, and φ† is the row vector whose mth component is
φ∗

m. This is the origin of the term “Matrix Mechanics” that was originally applied to this
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formulation of quantum mechanics. States are represented by vectors and operators by
matrices.

Now consider the case of a non-denumerable basis |z〉. We start with (46). The
expansions given in (47) are replaced by integrals

|ψ〉 =
∫ ∞

−∞
dz〈z|ψ〉 · |z〉

|φ〉 =
∫ ∞

−∞
dz〈z|φ〉 · |z〉. (52)

The c-number 〈z|ψ〉 is a function of the parameter z, so we denote it

〈z|ψ〉 = ψ(z). (53)

When we substitute these decompositions of the states into (46) we will encounter a matrix
element of the form 〈z|Â|z′〉, which is a c-number function of the the two variables z and
z′, so we denote it,

〈z|Â|z′〉 = A(z, z′). (54)

Putting this all together in the case of a non-denumerable basis we obtain,

〈φ|Â|ψ〉 =
∫ ∞

−∞
dz

∫ ∞

−∞
dz′φ∗(z)A(z, z′)ψ(z′) (55)

Vectors generalize to functions, matrices generalize to functions of two variables, and matrix
multiplication generalizes to integration. We still talk about the states as vectors and the
operators as “matrix elements” even in the case of non-denumerable bases. Next we’ll go
through the example of position and momentum eigenstates in an attempt to put all this
together.

3 Position and Momentum in Dirac Notation

We are now ready to apply all this formalism to some physically interesting cases. The
simplest, and most important, place to start is with the operators that dominate wave
mechanics: position, x, and momentum p. [For simplicity we consider only one space
dimension, the generalization to three dimensions is obvious.]

On the basis of everyday experience with the mechanics of classical systems, we assume

the existence of two observables, position and momentum. We assume that measurement
of position or momentum yield values from the continuum of real numbers.1 Given the
discussion of the previous two sections, we can assume the existence of

1Note: we could be wrong! Sometimes the quantum world is fundamentally unlike the classical one.

There are cases where, for example, the momentum of a quantum particle is quantized. But until we

encounter a disagreement with experiment, we will follow the natural path.
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• Two hermitian operators, X̂ and P̂

• Two complete, orthonormal sets of eigenkets, |x〉, and |p〉, obeying

X̂|x〉 = x|x〉
P̂ |p〉 = p|p〉
〈x|y〉 = δ(x− y)

〈p|q〉 = δ(p− q) (56)

with x and p both real.

Notice that the existence of the eigenstates, and the reality of the eigenvalues follow from
the postulates of quantum mechanics. The orthonormality condition is the one we choose
for non-denumerable bases.

So far, we have not given any information defining a relation between x and p. We
would have written down the same statements about two coordinates, x1 and x2, for exam-
ple. The standard thing to do to connect x and p would be to postulate the commutator

between Xop and Pop, but the reason for postulating [X̂, P̂ ] = ih̄ won’t be clear until we
talk about “Canonical Quantization” in a few weeks. Instead I propose we rely on our
knowledge of wave mechanics to tell us the position space wavefunction for a momentum

eigenstate, namely,

〈x|p〉 =
1√
2πh̄

eipx/h̄, (57)

which embodies the observation that momentum eigenstates propagate like plane waves.

First let’s check the normalization of (57). This will give us an opportunity to use the
completeness relation for non-denumerable states. We demand 〈q|p〉 = δ(q − p). We want
to convert this to an expression in terms of coordindate space wavefunctions, so we insert
a complete set of coordinate eigenstates,

〈q|p〉 = 〈q|1|p〉
=

∫ ∞

−∞
dx〈q|x〉 · 〈x|p〉

=
1

2πh̄

∫ ∞

−∞
dxei(p−q)x/h̄

= δ(q − p) (58)

where the last step uses the Fourier representation for the δ-function (see the Appendix of
Gasiorowicz).

Next let’s look a coordinate space wavefunctions and the way the position and momen-
tum operators are represented in coordinate space. An arbitrary state |ψ〉 can be expressed
as a superposition of coordinate eigenstates,

|ψ〉 =
∫ ∞

−∞
dx|x〉〈x|ψ〉 =

∫ ∞

−∞
dx〈x|ψ〉 · |x〉 =

∫ ∞

−∞
dxψ(x)|x〉, (59)
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where we have defined 〈x|ψ〉 = ψ(x). Note this is the standard definition of the coordinate
space wavefunction of the that |ψ〉, since 〈x|ψ〉 is the amplitude to find the state |ψ〉 at the
position x.

How does X̂ act on |ψ〉? Using (59) and working slowly step by step we easily find

X̂|ψ〉 = X̂
∫ ∞

−∞
dy |y〉〈y|ψ〉

=
∫ ∞

−∞
dyX̂|y〉〈y|ψ〉

=
∫ ∞

−∞
dy y |y〉〈y|ψ〉

=
∫ ∞

−∞
dy y ψ(y)|y〉 . (60)

So,

〈x|X̂|ψ〉 =
∫ ∞

−∞
dy ψ(y) 〈x|y〉 =

∫ ∞

−∞
dy ψ(y) δ(x− y) = xψ(x) , (61)

and we recover the familiar fact that when X̂ acts on the state |ψ〉 whose coordinate space
wave function is ψ(x) the resulting state has coordinate space wave function is xψ(x).

How does P̂ act on |ψ〉? To answer this, let’s find the coordinate space wavefunction
of the state |Ψ〉 ≡ P̂ |ψ〉. As a first step, we look at a momentum eigenstate,

〈x|P̂ |p〉 = p〈x|p〉

= p
1√
2πh̄

eipx/h̄

= −ih̄ d
dx

1√
2πh̄

eipx/h̄

= −ih̄ d
dx

〈x|p〉. (62)

So the coordinate space wave function of the state P̂ |ψ〉 is −ih̄ times the derivative of the
wavefunction of |ψ〉. Now let’s look at an arbitrary state. Define |Ψ〉 ≡ P̂ |ψ〉. Then,

〈x|Ψ〉 = 〈x|P̂ |ψ〉
=

∫ ∞

−∞
dp〈x|P̂ |p〉 · 〈p|ψ〉

=
∫ ∞

−∞
dp(−ih̄ d

dx
〈x|p〉) · 〈p|ψ〉

= −ih̄ d
dx

〈x|
[∫ ∞

−∞
dp|p〉〈p|

]

|ψ〉

= −ih̄ d
dx
ψ(x), (63)
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where we have liberally used the completeness relation for momentum eigenstates,
∫

dp|p〉〈p| =
1. So we conclude

P̂ |ψ〉 = |Ψ〉 ⇒ Ψ(x) = −ih̄dψ
dx
, (64)

a standard result from wavemechanics. So we say that the “coordinate space representation
of the momentum operator” is −ih̄ d

dx
. If you want an exercise to check your understanding,

try to show that the momentum space representation of the position operator is ih̄ d
dp

.

Finally let’s look at the coordinate space matrix elements of the position and momen-
tum operators, 〈x|X̂|y〉 and 〈x|P̂ |y〉. The first is easy,

〈x|X̂|y〉 = y〈x|y〉
= yδ(x− y). (65)

X̂ is a “local” operator in position space; it connects states only if they have the same
eigenvalue. This is the continuum analog of a diagonal matrix: if we view 〈x|X̂|y〉 ≡ f(x, y)
as a matrix, only the diagonal (x = y) elements are non-zero.

The momentum operator is a little harder. Start with 〈x|P̂ |ψ〉 from (63)

〈x|P̂ |ψ〉 = −ih̄ d
dx
ψ(x) (66)

and insert a complete set of position eigenstates after P̂ ,

〈x|P̂ |ψ〉 = 〈x|P̂
∫ ∞

−∞
dy|y〉〈y|ψ〉

=
∫ ∞

−∞
dy〈x|P̂ |y〉 · 〈y|ψ〉

=
∫ ∞

−∞
dy〈x|P̂ |y〉ψ(y). (67)

Comparing (66) and (67) we conclude

〈x|P̂ |y〉 = −ih̄δ(x− y)
d

dy
, (68)

which you can check by substitution. So the momentum operator is almost, but not
quite, local in coordinate space. The derivative shows that acting with P̂ involves two
infinitesmally nearby points in coordinate space.

Just as an arbitrary matrix is not diagonal, so an arbitrary operator matrix element in
coordinate space is not local. If T̂ is some unspecified operator, then acting on an arbitrary
state |ψ〉, we find,

〈x|T̂ |ψ〉 ≡ ψT (x)

=
∫ ∞

−∞
dy〈x|T̂ |y〉 · 〈y|ψ〉

ψT (x) =
∫ ∞

−∞
dy T (x, y) ψ(y). (69)
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So the operator T̂ gets represented by its coordinate space matrix elements T (x, y) =
〈x|T̂ |y〉, which acts as an integral transform on the wavefunction ψ(x). Only when T̂ is
local (like X̂) or nearly local (like P̂ ) does the integral go away leaving a simpler situation.
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7 Commutators, Measurement and The Uncertainty Principle

A black cat went past us, and then

another that looked just like it.

Neo

In this section, we return from the wilderness of solving differential equations to more formal mathe-

matics. In particular, we want to study the notion of measurement, and simultaneous measurements

of observables that we alluded to way back in the introduction. There we have been careful to say that

we cannot measure with arbitrary accuracy the position and momentum of a particle at the same time.

Then when we study the Gaussian Wavepacket in section 5.4, we saw that the product of the dispersions

of its position and momentum has the minimum value

(∆x)2(∆p)2 ≥ �2
4
, (298)

which we proceed to argue should be interpreted as our inability to measure p and x to arbitrary accuracy

at the same time. In this section, we will show that non-commuting observables will lead to the Heisenberg

Uncertainty Principle – one of the pillars of Quantum Mechanics.

7.1 Pure Ensembles and Expectation Values

Postulate 3 tells us that the measurement of an observable Ô in some state ψ =
�∞

n=1 anun yields the

eigenvalue λn with some probability |an|2. The state then collapses into un. This is all fine and good in

theory, the question is: how do we test for this fact?

The way to do this, is to make many repeated measurements of identically prepared states, and plot

out a histogram of the results, e.g. we measure λ1 6 times, λ2 32 times, λ3 8 times etc. And then compare

this to our theoretical prediction. Of course the more identically prepared states there are, the better

our experiment will test the theoretical prediction. Such a set of identically prepared states is called a

Pure Ensemble.

Given a pure ensemble, and a set of measurements, we can also ask what is the average value of all

the the measured eigenvalues. In the limit of a very large number of measurements, this is called the

Expectation Value, which is defined to be

�O�ψ = ψ(x) · (Ôψ(x)) =

�

R3

ψ†(x)Ôψ(x) dV. (299)

We can show that this exactly is the average value of the measured eigenvalues

�

R3

ψ†(x)Ôψ(x) dV =
∞�

n=1

∞�

m

�

R3

a∗manu
∗
m(x)Ôun(x) dV

=
∞�

n=1

∞�

m

λna
∗
manu

∗
m

�

R3

u∗
m(x)un(x) dV

=
∞�

n=1

∞�

m

λna
∗
manδmn , and hence

�O�ψ =
∞�

n=1

λn|an|2. (300)

It is trivial to show that the expectation value of a Hermitian operator is purely real.

Some examples:
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• Expectation of x̂,

�x̂�ψ =

�
dx ψ†(x)x̂ψ(x)

=

�
dx x|ψ(x)|2

=

�
dx xρ(x), (301)

which is the same as the classical notion of finding the expectation value of x given probability

distribution of ρ(x).

• Expectation of p̂,

�p̂�ψ = −i�
�

dx ψ†(x)
d

dx
ψ(x)

= − i�
4π2

�
dx

�
dk

�
dk� f†(k�)e−ikx

d

dx
f(k)eikx

= − i�
4π2

�
dk

�
dk� f†(k�)(2πδ(k − k�))f(k)

=
1

2π

�
dk �k|f(k)|2, (302)

which is the same as the classical notion of finding the expectation value of x given probability

distribution of |f(k)|2, in agreement with Eq. (122).

7.2 Commutators and Simultaneous Measurement

What do we mean by “measuring both things at the same time”?

In Classical Mechanics, this simply means that we can set up two different detectors, say X (for x

measurement) and P (for p measurement). To make simultaneous measurements, we press the buttons

both at the same time or even with some slight difference in time (to account for experimental error). It

doesn’t matter which detectors “goes first”, we will get the more or less the same answer.

In Quantum Mechanics, Postulate 3 tells us that the very act of measurement collapses the wave-

function, so now it matters which detector goes first! Given a wavefunction ψ(x), if X goes first then the

following sequence of events occurs

ψ(x)
X→ φx0(x)

P→ up(x) (303)

where φx0(x) is a highly localized function around the measured value x0 as discussed previously, and

up0(x) is some highly localized function around the measured value p0. On the other hand, if P goes first

then

ψ(x)
P→ up�

0
(x)

X→ φx�
0
(x). (304)

Since φx0 �= ψ(x) and up�
0
(x) �= ψ(x) in general, the measured pair of values will be different – the first

measurement has destroyed some information regarding the second observable! This is the root reason of

why there exist an uncertainty relation in Quantum Mechanics.

We can now ask: under what conditions will the order of the measurements not matter? Say if we

have two observables, ÔA and ÔB , then we want

ψ(x)
OA→ φ(x)

OB→ χ(x), (305)

and

ψ(x)
OB→ φ(x)

OA→ χ(x), (306)

55



to give the same observed eigenvalues of ÔA and ÔB . By inspection, it is clear that this will occur if φ

are both eigenfunctions of ÔA and ÔB, and hence so is χ.

To formalize all these words, we will introduce some new mathematics.

(Definition) Commutator: The Commutator of two operators ÔA and ÔB is defined by

[ÔA, ÔB ] = ÔAÔB − ÔBÔA. (307)

This definition means that

[ÔA, ÔB ] = −[ÔB , ÔA]. (308)

We now have two possibilities that describe the situation on measurements above:

• Commuting Observables and Simultaneous Eigenfunctions: Suppose now ÔA and ÔB are

two observables. Suppose, further that the wavefunction ψ(x) is a simultaneous eigenfunction ÔA

and ÔB with eigenvalues a and b

ÔAψ(x) = aψ(x) , ÔBψ(x) = bψ(x) (309)

then

[ÔA, ÔB ]ψ(x) = (ÔAÔB − ÔBÔA)ψ(x) = ab− ba = 0, (310)

which is to say, “ÔA and ÔB commute”. We can write this relation in operator form by droping ψ

Commuting Observables : [ÔA, ÔB ] = 0. (311)

As have seen in the above example, commuting observables can be measured simultaneously. We

call such observables Compatible Observables or Commuting Observables. Physically, this

means that ÔA and ÔB has definite eigenvalues in ψ.

Now, let’s state an extremely important theorem.

Theorem (Simultaneous Basis of Eigenfunctions) : Suppose ÔA and ÔA commute, then they

share (at least) a basis of simultaneous eigenfunctions.

Proof : We will prove this Theorem for the special case where at least one of the operator is non-

degenerate. Assuming ÔA is no-degenerate, so it possess a set of eigenfunctions {ψai} with distinct

eigenvalues {ai}. By the eigenvalue equation

ÔAψai = aiψai , (312)

and operating from the left with ÔB ,

ÔBÔAψai = aiÔBψai (313)

and using commutativity [ÔA, ÔB ] = 0,

ÔA(ÔBψai) = ai(ÔBψai) (314)

which is to say that ÔBψai is also an eigenfunction of ÔA with eigenvalue ai. But since ÔA

is degenerate, ÔBψai must be the same eigenfunction as ψai up to a (for the moment possibly

complex) number λ (recall that there exist an equivalence class of wavefunctions see Eq. (71)) as

ψai , i.e.

ÔBψai = λψai . (315)

But this is nothing but an eigenvalue equation for ÔB and we identify λ as its eigenvalue, which by

Hermiticity is real. Since every eigenfunction of ÔA is also an eigenfunction of ÔB , it is clear that
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{ψai} forms a complete basis for both operators. In this special case where ÔA is non-degenerate,

there is only one such basis. �
The proof for the case where both operators are degenerate is much more involved. Those interested

can see Shankar (pg 45).

Since ψai is also an eigenfunction of both ÔA and ÔB , and we can also give it a b label ψa,b, and

we say that ψa,b are Simultaneous Eigenfunctions of ÔA and ÔB .

Example: Harking back to section 4.1, recall that p̂ and Ĥfree share the same Eigenfunctions up,E(x)

where now we have democratically label the eigenfunction without prejudice to any operator:

Ĥfreeup,E(x) = Eup,E(x) , p̂up,E(x) = pup,E(x). (316)

We will see another case of degeneracy and simultaneous eigenfunctions when we discuss Angular

Momentum in section 8.4.

Example : Recall the Parity operator in 1 dimension has the action P̂ψ(x) = ψ(−x). Now consider

a Hamiltonian Ĥ = p̂2/2m+ U(x) where the potential U(x) = U(−x) is reflection invariant. Then

P̂ and Ĥ commute

[P̂ , Ĥ] = 0. (317)

Proof : Recall from Eq. (187) that for a reflection symmetric potential U(x), if χE(x) is an eigen-

function of Ĥ with energy E, then so is χE(−x), then

[P̂ , Ĥ]χE(x) = P̂ ĤχE(x)− ĤP̂χE(x)

= P̂EχE(x)− ĤχE(−x)

= E(χE(−x)− χE(−x)) = 0 (318)

and by Completeness of the eigenfunctions of Ĥ, the proof is complete. �
Conservation Laws: In Classical Mechanics, some observables are conserved under time evolution

if the potential U(x) has some symmetry. For example, if U(x) = f(r) is spherically symmetric, then

we know that the total angular momentum L is conserved. In Quantum Mechanics, conservation

laws are expressed as the vanishing of the observable with the Hamiltonian, i.e. if Ô commutes with

Ĥ

[Ô, Ĥ] = 0 (319)

then the observable is conserved under time evolution. In the above example with Parity, you can

see from the many examples in section 5 that if a state has a definite parity, then this parity is

conserved under time evolution as long as the Potential is symmetric under reflection.

• Non-commuting Observables: The definition for non-commuting observables ÔA an ÔB is

simply

non−Commuting Observables : [ÔA, ÔB ] �= 0. . (320)

In words, we say that “ÔA and ÔB do not commute”.

As you can easily prove to yourself, non-commuting observables do not share eigenfunctions, hence

from the example at the start of this section this means that observations of one will now affect the

observations of the other.

An example of this is our favorite pair of observables p̂ and x̂. Acting on some generic state ψ(x)

we find

[x̂i, x̂j ]ψ(x) = (xixj − xjxi)ψ(x) = 0 (321)
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while

[p̂i, p̂j ]ψ(x) = (−i�)2
�

∂

∂xi

∂

∂xj

− ∂

∂xj

∂

∂xi

�
ψ(x) = 0 (322)

using the symmetry of mixed partial derivatives. Finally,

[x̂i, p̂j ]ψ(x) =

�
xi

�
−i� ∂

∂xj

�
−

�
−i� ∂

∂xj

�
xi

�
ψ(x)

= −i�
�
xi

∂f

∂xj

− ∂

∂xj

(xiψ)

�

= −i�
�
xi

∂ψ

∂xj

− ψ
∂xi

∂xj

− xi

∂ψ

∂xj

�

= i�δijψ(x). (323)

We obtain the Canonical Commutator Relationships for x̂i and p̂i

[x̂i, p̂j ] = i�δij , [x̂i, x̂j ] = 0 , [p̂i, p̂j ] = 0 (324)

As we will see in the next section, non-commuting observables lead to the Uncertainty Principle.

*Canonical Quantization: In the lectures, we have derived Eq. (324) from our definitions of x̂ and

p̂, working in the position basis. However, if we take away the basis, we can impose the canonical

commutator relations, i.e. specifying Eq. (324) as the starting point for Quantum Mechanics

and then deriving the position (or any other) basis operators from there. This is the more usual

“modern” view, although our approach of deriving the momentum operator from the properties of

translation is, in the view of some, more general.*

7.3 Non-commuting Observables and The Uncertainty Principle

As we told the story at the start of this section, if two observables Ô1 and Ô2 do not commute, then the

order of the measurements matter. Indeed, since say when the measurement associated with observable

Ô1 is made, the wavefunction collapses into one of its eigenstate, some of the information associated with

Ô2 is “lost” so to speak. In this section, we will quantify this.

(Definition) Uncertainty Operator: The uncertainty of a state ψ with respect to an observable

Ô is defined as

∆Ô = Ô − �Ô�ψ. (325)

This operator has the following properties

• ∆Ô is Hermitian. Proof : As Ô is an observable, it must be Hermitian, and since �Ô�ψ is just a

number, ∆Ô must also be Hermitian. �

• Dispersion: The expectation value of (∆Ô)2 of a state ψ is known as the dispersion, and has the

following form

�(∆Ô)2�ψ = �Ô2 + �Ô�2ψ − 2Ô�Ô�ψ�ψ (326)

= �Ô2�ψ + �Ô�2ψ − 2�Ô�ψ�Ô�ψ (327)

or

�(∆Ô)2�ψ = �Ô2�ψ − �Ô�2ψ (328)

i.e. the dispersion of Ô is the “expectation of the square minus the square of the expectation”,

which is consistent with the classical notion of a dispersion of an ensemble.

58



Furthermore, if χ is a normalized eigenfunction of Ô then �∆Ô2�χ = 0. Proof is by direct application

of Eq. (328):

�Ô2�χ = χ · (Ô2χ) = λ2 and

�Ô�2χ = (χ · (Ôχ)) = λ2 (329)

so

�Ô2�χ − �Ô�2χ = 0 �. (330)

In other words, if the state χA is an eigenstate of ÔA then the uncertainty is zero and we measure it

with probability 1, which is a trivial statement. What is non-trivial is that if ÔB is another observable

which does not commute with ÔA, then its uncertainty in any simultaneous measurement on χA will be

infinite! We now state the general form of the Uncertainty Principle:

Uncertainty Principle: For any given two observables ÔA and ÔB , then the following uncertainty

relation holds for any state ψ

�∆Ô2
A�ψ�∆Ô2

B�ψ ≥ 1

4
|�[ÔA, ÔB |2�ψ. (331)

In the case when ÔA = x̂ and ÔB = x̂, then using the canonical commutator relation [x̂, p̂] = i�, we get

the original famous Heisenberg Uncertainty Principle

�∆x̂2��∆p̂2� ≥ �2
4

(332)

which you have already seen derived using the Gaussian wavepacket in section 5.4.

We want to prove the Uncertainty Principle Eq. (331) in a snazzy operator way16. To do this, we

require 2 useful lemmas.

Lemma 1 (The Schwarz inequality): For any two normalized states ψ and φ, then17

(ψ · ψ)(φ · φ) ≥ |ψ · φ|2. (333)

Proof : For any complex number λ and any two normalized states ψ and φ, we can construct a state

Φ = ψ + λφ (334)

and then

Φ · Φ ≥ 0 ∀ λ (335)

since Φ is just another state and its norm must be ≥ 0 but ≤ ∞ if both ψ and φ are normalizable. If we

now set

λ = −(φ · ψ)(φ · φ) (336)

and plug it into Eq. (335), we get Eq. (333). �

Lemma 2: An anti-Hermitian operator is defined to be a linear operator which obey the rela-

tionship �

R3

f†(x)Ĉg(x) dV = −
�

R3

�
Ĉf(x)

�†
g(x) dV. (337)

or more compactly

Ĉ ≡ −Ĉ†. (338)

16See Prof. Nick Dorey’s notes for a perhaps more direct way.
17This inequality is analogous to the vector space inequality |a|2|b|2 ≥ |a · b|2 which you might have seen before.
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The expectation values of anti-Hermitian operator is purely imaginary. Proof : Suppose χ(x) is a nor-

malized eigenfunction of Ĉ with eigenvalue λ, then taking expectation values of both Ĉ and Ĉ†

�Ĉ�χ =

�

R3

χ†(x)Ĉχ(x) dV = λ, and

�Ĉ†�χ =

�

R3

χ†(x)Ĉ†χ(x) dV (339)

=

�

R3

(Ĉχ(x))†χ(x) dV = λ∗, (340)

and using Eq. (337) we see that λ+ λ∗ = 0 so λ ∈ C, i.e. all its eigenvalues are purely imaginary. Using

the Completeness property of linear operators, we can expand any state ψ in this basis so it follows that

the expectation value �Ĉ�ψ ∈ C. �

We are now ready to prove Eq. (331).

Proof (Uncertainty Principle): Given a state Ψ, then operating on this state with the uncertainty

operators ∆ÔA and ∆ÔB yield

ψ = ∆ÔAΨ , φ = ∆ÔBΨ (341)

where ψ and φ are some other states. Using Hermiticity of ∆ÔA, we see that

ψ · ψ =

�

R3

(∆ÔAΨ(x))†∆ÔAΨ(x) dV

=

�

R3

Ψ(x)†∆Ô2
AΨ(x) dV = �(∆ÔA)

2�Ψ (342)

where we have used the Hermiticity of ∆ÔA in the 2nd line. Similarly we can calculate φ ·φ = �(∆ÔB)2�Ψ
and ψ · φ = �∆ÔA∆ÔB�Ψ.

Using Lemma 1, we then take the expectation value around the state Ψ to get

(ψ · ψ)(φ · φ) ≥ |ψ · φ|2

=⇒ �(∆ÔA)2�Ψ�(∆ÔB)2�Ψ ≥ |�∆ÔA∆ÔB�Ψ|2. (343)

We are halfway through the proof – our next task is to evaluate the RHS of Eq. (343). First we note

that the following identiy holds

∆ÔA∆ÔB =
1

2

�
∆ÔA∆ÔB +∆ÔA∆ÔB

�

=
1

2

�
∆ÔA∆ÔB −∆ÔB∆ÔA +∆ÔB∆ÔA +∆ÔA∆ÔB

�

=
1

2
[∆ÔA,∆ÔB ] +

1

2
(∆ÔA∆ÔB +∆ÔB∆ÔA). (344)

But the commutator [∆ÔA,∆ÔB ] = [ÔA, ÔB ] is anti-Hermitian

([ÔA, ÔB ])
† = (ÔAÔB − ÔBÔA)

† = ÔBÔA − ÔAÔB = −[ÔA, ÔB ] (345)

while the last term on Eq. (344) is Hermitian

(∆ÔA∆ÔB +∆ÔB∆ÔA)
† = ∆ÔB∆ÔA +∆ÔA∆ÔB . (346)

Hence the RHS of Eq. (343) becomes, using Lemma 2 for the expectation value of [ÔA, ÔB ],

|�∆ÔA∆ÔB�Ψ|2 ≥ | 1
2
�[ÔA, ÔB ]�

� �� �
Imaginary

+
1

2
�(∆ÔA∆ÔB +∆ÔB∆ÔA)�

� �� �
Real

|2

≥ 1

4

����[ÔA, ÔB ]�
���
2
+

1

4

����(∆ÔA∆ÔB +∆ÔB∆ÔA)�
���
2

(347)

and since the last term can only make the inequality stronger, the proof is complete. �
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7.4 Summary

In this section, we study the notion of simultaneous observations and elaborated on how some observables

are inherently incompatible with each other and the measurement of one will destroy information of

the other(s). Such incompatibility is encoded in mathematical language as non-commutativity of the

operators associated with the observables.

We then show that the Postulates of Quantum Mechanics lead us to the Uncertainty Principle – which

is a powerful consequence of Postulate 3 (collapse of a wavefunction after a measurement), restricting our

ability to extract information out of a wavefunction. How much information is “destroyed” by the collapse

is given by the amount of non-commutativity of the observables as indicated by Eq. (331). Returning

to x̂ and p̂, their commutator is [x̂i, p̂j ] = i�δij , i.e. the amount of “lost information” is proportional to

the Planck’s Constant �, which sets the scale of Quantum Mechanics. Since Classically, no information

is “lost” in any measurement, the “Classical Limit” of a quantum theory can be recovered by taking the

limit � → 0.

This section marks the end of our formal development of Quantum Mechanics.
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Next: Postulates of Quantum Mechanics Up: Mathematical Background Previous: Commutators in Quantum
Mechanics Contents

We have observed that most operators in quantum mechanics are linear operators. This is fortunate because it
allows us to represent quantum mechanical operators as matrices and wavefunctions as vectors in some linear
vector space. Since computers are particularly good at performing operations common in linear algebra
(multiplication of a matrix times a vector, etc.), this is quite advantageous from a practical standpoint.

In an -dimensional space we may expand any vector  as a linear combination of basis vectors

(80)

For a general vector space, the coefficients  may be complex; thus one should not be too quick to draw

parallels to the expansion of vectors in three-dimensional Euclidean space. The coefficients  are referred to

as the ``components'' of the state vector , and for a given basis, the components of a vector specify it
completely. The components of the sum of two vectors are the sums of the components. If 

and  then

(81)

and similarly

(82)

The scalar product of two vectors is a complex number denoted by

(83)

where we have used the standard linear-algebra notation. If we also require that

(84)
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then it follows that

(85)

We also require that

(86)

If the scalar product vanishes (and if neither vector in the product is the null vector) then the two vectors are
orthogonal.

Generally the basis is chosen to be orthonormal, such that

(87)

In this case, we can write the scalar product of two arbitrary vectors as

(88)

This can also be written in vector notation as

(89)

It is useful at this point to introduce Dirac's bra-ket notation. We define a ``bra'' as

(90)

and a ``ket'' as
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(91)

A bra to the left of a ket implies a scalar product, so

(92)

Sometimes in superficial treatments of Dirac notation, the symbol  is defined alternatively as

(93)

This is equivalent to the above definition if we make the connections  and . This

means that our basis vectors are every possible value of x. Since  is continuous, the sum is replaced by an
integral (see Szabo and Ostlund [4] , exercise 1.17). Often only the subscript of the vector is used to denote a
bra or ket; we may have written the above equation as

(94)

Now we turn our attention to matrix representations of operators. An operator  can be characterized by its

effect on the basis vectors. The action of  on a basis vector  yields some new vector  which can be

expanded in terms of the basis vectors so long as we have a complete basis set.

(95)

If we know the effect of  on the basis vectors, then we know the effect of  on any arbitrary vector
because of the linearity of .

(96)
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or

(97)

This may be written in matrix notation as

(98)

We can obtain the coefficients  by taking the inner product of both sides of equation 95 with , yielding

(99)

since  due to the orthonormality of the basis. In bra-ket notation, we may write

(100)

where  and  denote two basis vectors. This use of bra-ket notation is consistent with its earlier use if we

realize that  is just another vector .

It is easy to show that for a linear operator , the inner product  for two general vectors (not

necessarily basis vectors)  and  is given by

(101)

or in matrix notation
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(102)

By analogy to equation (93), we may generally write this inner product in the form

(103)

Previously, we noted that , or . Thus we can see also that

(104)

We now define the adjoint of an operator , denoted by , as that linear operator for which

(105)

That is, we can make an operator act backwards into ``bra'' space if we take it's adjoint. With this definition,
we can further see that

(106)

or, in bra-ket notation,

(107)

If we pick  and  (i.e., if we pick two basis vectors), then we obtain

(108)

But this is precisely the condition for the elements of a matrix and its adjoint! Thus the adjoint of the matrix
representation of  is the same as the matrix representation of .
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This correspondence between operators and their matrix representations goes quite far, although of course the
specific matrix representation depends on the choice of basis. For instance, we know from linear algebra that
if a matrix and its adjoint are the same, then the matrix is called Hermitian. The same is true of the operators;
if

(109)

then  is a Hermitian operator, and all of the special properties of Hermitian operators apply to  or its
matrix representation.

Next: Postulates of Quantum Mechanics Up: Mathematical Background Previous: Commutators in Quantum
Mechanics Contents
David Sherrill 2006-08-15
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Chapter 10 The Hydrogen Atom

There are many good reasons to address the hydrogen atom beyond its historical significance.
Though hydrogen spectra motivated much of the early quantum theory, research involving the
hydrogen remains at the cutting edge of science and technology. For instance, transitions in
hydrogen are being used in 1997 and 1998 to examine the constancy of the fine structure constant
over a cosmological time scale2. From the view point of pedagogy, the hydrogen atom merges many
of the concepts and techniques previously developed into one package. It is a particle in a box
with spherical, soft walls. Finally, the hydrogen atom is one of the precious few realistic systems
which can actually be solved analytically.

The Schrodinger Equation in Spherical Coordinates
In chapter 5, we separated time and position to arrive at the time independent Schrodinger

equation which is
H

∣∣Ei> = Ei

∣∣Ei>; (10 − 1)

where Ei are eigenvalues and
∣∣Ei> are energy eigenstates. Also in chapter 5, we developed a one

dimensional position space representation of the time independent Schrodinger equation, changing
the notation such that Ei → E, and

∣∣Ei> → ˆ. In three dimensions the Schrodinger equation
generalizes to (

− h̄2

2m
∇2 + V

)
ˆ = Eˆ;

where ∇2 is the Laplacian operator. Using the Laplacian in spherical coordinates, the Schrodinger
equation becomes

−
h̄2

2m

[
1
r2

@

@r

(
r2 @

@r

)
+

1
r2 sin µ

@

@µ

(
sin µ

@

@µ

)
+

1
r2 sin2 µ

@2

@`2

]
ˆ + V (r)ˆ = Eˆ: (10 − 2)

In spherical coordinates, ˆ = ˆ(r; µ; `), and the plan is to look for a variables separable solution
such that ˆ(r; µ; `) = R(r)Y (µ; `). We will in fact find such solutions where Y (µ; `) are the
spherical harmonic functions and R(r) is expressible in terms of associated Laguerre functions.
Before we do that, interfacing with the previous chapter and arguments of linear algebra may
partially explain why we are proceeding in this direction.

Complete Set of Commuting Observables for Hydrogen
Though we will return to equation (10–2), the Laplacian can be expressed

∇2 =
@2

@r2 +
2
r

@

@r
+

1
r2

(
@2

@µ2 +
1

tan µ

@

@µ
+

1
sin2 µ

@2

@`2

)
: (10 − 3)

Compare the terms in parenthesis to equation 11–33. The terms in parenthesis are equal to
−L2=h̄2, so assuming spherical symmetry, the Laplacian can be written

∇2 =
@2

@r2 +
2
r

@

@r
−

L2

r2h̄2 ;

2 Schwarzschild. “Optical Frequency Measurement is Getting a Lot More Precise,” Physics
Today 50(10) 19–21 (1997).
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and the Schrodinger equation becomes
[
−

h̄2

2m

(
@2

@r2 +
2
r

@

@r
−

L2

r2h̄2

)
+ V (r)

]
ˆ = Eˆ: (10 − 4)

Assuming spherical symmetry, which we will have because a Coulomb potential will be used for
V (r), we have complicated the system of chapter 11 by adding a radial variable. Without the radial
variable, we have a complete set of commuting observables for the angular momentum operators
in L2 and Lz. Including the radial variable, we need a minimum of one more operator, if that
operator commutes with both L2 and Lz. The total energy operator, the Hamiltonian, may be
a reasonable candidate. What is the Hamiltonian here? It is the group of terms within the square
brackets. Compare equations (10–1) and (10–4) if you have difficulty visualizing that. In fact,

[
H; L2 ]

= 0; and
[
H; Lz

]
= 0;

so the Hamiltonian is a suitable choice. The complete set of commuting observables for the
hydrogen atom is H; L2, and Lz. We have all the eigenvalue/eigenvector equations, because the
time independent Schrodinger equation is the eigenvalue/eigenvector equation for the Hamiltonian
operator, i.e., the the eigenvalue/eigenvector equations are

H
∣∣ˆ> = En

∣∣ˆ>;

L2
∣∣ˆ> = l(l + 1)h̄2∣∣ˆ>;

Lz

∣∣ˆ> = mh̄
∣∣ˆ>;

where we subscripted the energy eigenvalue with an n because that is the symbol conventionally
used for the energy quantum number (per the particle in a box and SHO). Then the solution to
the problem is the eigenstate which satisfies all three, denoted |n; l;m> in abstract Hilbert space.
The representation in position space in spherical coordinates is

<r; µ; `
∣∣n; l; m> = ˆnlm(r; µ; `):

Example 10–1: Starting with the Laplacian included in equation (10–2), show the Laplacian
can be express as equation (10–3).

∇2 =
1
r2

@

@r

(
r2 @

@r

)
+

1
r2 sin µ

@

@µ

(
sin µ

@

@µ

)
+

1
r2 sin2 µ

@2

@`2

=
1
r2

(
2r

@

@r
+ r2 @2

@r2

)
+

1
r2 sin µ

(
cos µ

@

@µ
+ sin µ

@2

@µ2

)
+

1
r2 sin2 µ

@2

@`2

=
@2

@r2 +
2
r

@

@r
+

1
r2

@2

@µ2 +
1

r2 tan µ

@

@µ
+

1
r2 sin2 µ

@2

@`2

=
@2

@r2 +
2
r

@

@r
+

1
r2

(
@2

@µ2 +
1

tan µ

@

@µ
+

1
sin2 µ

@2

@`2

)
;

which is the form of equation (10–3).

Example 10–2: Show
[
H; L2

]
= 0.

[
H; L2 ]

= HL2 − L2 H
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=
[
−

h̄2

2m

(
@2

@r2 +
2
r

@

@r
−

L2

r2h̄2

)
+ V (r)

]
L2 − L2

[
−

h̄2

2m

(
@2

@r2 +
2
r

@

@r
−

L2

r2h̄2

)
+ V (r)

]

= − h̄2

2m

@2

@r2 L2 − h̄2

2m

2
r

@

@r
L2 +

h̄2

2m

L4

r2h̄2 +
h̄2

2m
V (r)L2

+
h̄2

2m
L2 @2

@r2 +
h̄2

2m
L2 2

r

@

@r
− h̄2

2m

L4

r2h̄2 − h̄2

2m
L2V (r)

= −
h̄2

2m

@2

@r2 L2 −
h̄2

2m

2
r

@

@r
L2 +

h̄2

2m
V (r)L2 +

h̄2

2m
L2 @2

@r2 +
h̄2

2m
L2 2

r

@

@r
−

h̄2

2m
L2V (r)

where the third and seventh terms in L4 sum to zero. The spherical coordinate representation of
L2 is

L2 = −h̄2
(

@2

@µ2 +
1

tan µ

@

@µ
+

1
sin2 µ

@2

@`2

)

and has angular dependence only. The partial derivatives with respect to the radial variable act
only on terms without radial dependence. Partial derivatives with respect to angular variables do
not affect the potential which is a function only of the radial variable. Therefore, the order of the
operator products is interchangeable, and

[
H; L2 ]

= −
h̄2

2m
L2 @2

@r2 −
h̄2

2m
L2 2

r

@

@r
+

h̄2

2m
L2V (r) +

h̄2

2m
L2 @2

@r2 +
h̄2

2m
L2 2

r

@

@r
−

h̄2

2m
L2V (r) = 0:

Instead of the verbal argument, we could substitute the angular representation of L2, form the
18 resultant terms, explicitly interchange nine of them, and get the same result.

Example 10–3: Show
[
H; Lz

]
= 0.

[
H; Lz

]
= H Lz − Lz H

=
[
−

h̄2

2m

(
@2

@r2 +
2
r

@

@r
−

L2

r2h̄2

)
+ V (r)

]
Lz − Lz

[
−

h̄2

2m

(
@2

@r2 +
2
r

@

@r
−

L2

r2h̄2

)
+ V (r)

]

= −
h̄2

2m

@2

@r2 Lz −
h̄2

2m

2
r

@

@r
Lz +

h̄2

2m

L2 Lz

r2h̄2 +
h̄2

2m
V (r)Lz

+
h̄2

2m
Lz

@2

@r2 +
h̄2

2m
Lz

2
r

@

@r
−

h̄2

2m

Lz L2

r2h̄2 −
h̄2

2m
LzV (r)

= −
h̄2

2m
@2

@r2 Lz −
h̄2

2m

2
r

@

@r
Lz +

h̄2

2m
V (r)Lz +

h̄2

2m
Lz

@2

@r2 +
h̄2

2m
Lz

2
r

@

@r
−

h̄2

2m
LzV (r)

where the third and seventh terms in L2 Lz sum to zero because we already know those two
operators commute. The spherical coordinate representation of Lz is

Lz = −ih̄
@

@`

and has angular dependence only. Again there are no partial derivatives which affect any term of
the other operator, or the potential V (r), in any of the operator products. Therefore, the order
of the operator products is interchangeable, and

[
H; Lz

]
= −

h̄2

2m
Lz

@2

@r2 −
h̄2

2m
Lz

2
r

@

@r
+

h̄2

2m
Lz V (r) +

h̄2

2m
Lz

@2

@r2 +
h̄2

2m
Lz

2
r

@

@r
−

h̄2

2m
LzV (r) = 0:
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Separating Radial and Angular Dependence
In this and the following three sections, we illustrate how the angular momentum and magnetic

moment quantum numbers enter the symbology from a calculus based argument. In writing
equation (10–2), we have used a representation, so are no longer in abstract Hilbert space. One of
the consequences of the process of representation is the topological arguments of linear algebra are
obscured. They are still there, simply obscured because the special functions we use are orthogonal,
so can be made orthonormal, and complete, just as bras and kets in a dual space are orthonormal
and complete. The primary reason to proceed in terms of a position space representation is to
attain a position space description. One of the by–products of this chapter may be to convince
you that working in the generality of Hilbert space in Dirac notation can be considerably more
efficient. Since we used topological arguments to develop angular momentum in the last chapter,
and arrive at identical results to those of chapter 11, we rely on connections between the two to
establish the meanings of of l and m. They have the same meanings within these calculus
based discussions.

As noted, we assume a variables separable solution to equation (10–2) of the form

ˆ(r; µ; `) = R(r)Y (µ; `): (10 − 5)

An often asked question is “How do you know you can assume that?” You do not know. You
assume it, and if it works, you have found a solution. If it does not work, you need to attempt
other methods or techniques. Here, it will work. Using equation (10–5), equation (10–2) can be
written

1
r2

@

@r

(
r2 @

@r

)
R(r)Y (µ; `) +

1
r2 sin µ

@

@µ

(
sin µ

@

@µ

)
R(r)Y (µ; `)

+
1

r2 sin2 µ

@2

@`2 R(r) Y (µ; `) − 2m

h̄2

[
V (r) − E

]
R(r)Y (µ; `) = 0

⇒ Y (µ; `)
1
r2

@

@r

(
r2 @

@r

)
R(r) + R(r)

1
r2 sin µ

@

@µ

(
sin µ

@

@µ

)
Y (µ; `)

+R(r)
1

r2 sin2 µ

@2

@`2 Y (µ; `) −
2m

h̄2

[
V (r) − E

]
R(r)Y (µ; `) = 0:

Dividing the equation by R(r)Y (µ; `), multiplying by r2, and rearranging terms, this becomes
{

1
R(r)

@

@r

(
r2 @

@r

)
R(r) −

2mr2

h̄2

[
V (r) − E

]}

+
[

1
Y (µ; `) sin µ

@

@µ

(
sin µ

@

@µ

)
Y (µ; `) +

1
Y (µ; `) sin2 µ

@2

@`2 Y (µ; `)
]

= 0:

The two terms in the curly braces depend only on r, and the two terms in the square brackets
depend only upon angles. With the exception of a trivial solution, the only way the sum of the
groups can be zero is if each group is equal to the same constant. The constant chosen is known
as the separation constant. Normally, an arbitrary separation constant, like K, is selected and
then you solve for K later. In this example, we are instead going to stand on the shoulders of
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some of the physicists and mathematicians of the previous 300 years, and make the enlightened
choice of l(l + 1) as the separation constant. It should become clear l is the angular momentum
quantum number introduced in chapter 11. Then

1
R(r)

d

dr

(
r2 d

dr

)
R(r) − 2mr2

h̄2

[
V (r) − E

]
= l(l + 1) (10 − 6)

which we call the radial equation, and

1
Y (µ; `) sin µ

@

@µ

(
sin µ

@

@µ

)
Y (µ; `) +

1
Y (µ; `) sin2 µ

@2

@`2 Y (µ; `) = −l(l + 1); (10 − 7)

which we call the angular equation. Notice the signs on the right side are opposite so they do,
in fact, sum to zero.

The Angular Equation
The solutions to equation (10–7) are the spherical harmonic functions, and the l used in

the separation constant is, in fact, the same used as the index l in the spherical harmonics
Yl;m(µ; `). In fact, it is the angular momentum quantum number. But where is the index m?
How is the magnetic moment quantum number introduced? To answer these questions, remember
the spherical harmonics are also separable, i.e., Yl;m(µ; `) = fl;m(µ) gm(`). We will use such a
solution in the angular equation, without the indices until we see where they originate. Using the
solution Y (µ; `) = f(µ) g(`) in equation (10–7),

1
f(µ) g(`) sin µ

@

@µ

(
sin µ

@

@µ

)
f(µ) g(`) +

1
f(µ) g(`) sin2 µ

@2

@`2 f (µ) g(`) = −l(l + 1)

⇒
1

f(µ) sin µ

@

@µ

(
sin µ

@

@µ

)
f(µ) +

1
g(`) sin2 µ

@2

@`2 g(`) = −l(l + 1):

Multiplying the equation by sin2 µ and rearranging,

sin µ

f (µ)
@

@µ

(
sin µ

@

@µ

)
f(µ) + l(l + 1) sin2 µ +

1
g(`)

@2

@`2 g(`) = 0:

The first two terms depend only on µ, and the last term depends only on `. Again, the only
non–trivial solution such that the sum is zero is if the groups of terms each dependent on a single
variable is equal to the same constant. Again using an enlightened choice, we pick m2 as the
separation constant, so

sin µ

f(µ)
d

dµ

(
sin µ

d

dµ

)
f(µ) + l(l + 1) sin2 µ = m2; (10 − 8)

1
g(`)

d2

d`2 g(`) = −m2; (10 − 9)

and that is how the magnetic moment quantum number is introduced. Again, (10–8) and (10–9)
need to sum to zero so the separation constant has opposite signs on the right side in the two
equations.

334



The Azimuthal Angle Equation

The solution to the azimuthal angle equation, equation (10–9), is

g(`) = eim` ⇒ gm(`) = eim`; (10 − 10)

where the subscript m is added to g(`) because it is now clear there are as many solutions as
there are allowed values of m.

Example 10–4: Show gm(`) = eim` is a solution to equation (10–9).

d2

d`2 gm(`) =
d2

d`2 eim` =
d

d`
(im)eim` = (im)2eim` = −m2gm(`):

Using this in equation (10–9),

1
g(`)

d2

d`2 g(`) = −m2 ⇒ 1
g(`)

(
− m2gm(`)

)
= −m2 ⇒ −m2 = −m2;

therefore gm(`) = eim` is a solution to equation (10–9).

The Polar Angle Equation

This section is a little more substantial than the last. Equation (10–8) can be written

sin µ
d

dµ

(
sin µ

d

dµ

)
f(µ) + l(l + 1) sin2 µ f (µ) − m2 f(µ) = 0:

Evaluating the first term,

sin µ
d

dµ

(
sin µ

d

dµ

)
f(µ) = sin µ

d

dµ

(
sin µ

d f(µ)
dµ

)

= sin µ

(
cos µ

d f (µ)
dµ

+ sin µ
d2 f(µ)

dµ2

)

= sin2 µ
d2 f (µ)

dµ2 + sin µ cos µ
d f(µ)

dµ
:

Using this, equation (10–8) becomes

sin2 µ
d2 f(µ)

dµ2 + sin µ cos µ
d f(µ)

dµ
+ l(l + 1) sin2 µ f (µ) − m2 f(µ) = 0: (10 − 11)

We are going to change variables using x = cos µ, and will comment on this substitution later.
We then need the derivatives with respect to x vice µ, so

d f(µ)
dµ

=
d f(x)

dx

dx

dµ
=

d f(x)
dx

(
− sin µ

)
= − sin µ

d f(x)
dx

;
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and

d2 f (µ)
dµ2 =

d

dµ

(
− sin µ

d f(x)
dx

)
= − cos µ

d f(x)
dx

− sin µ
d

dµ

d f (x)
dx

= − cos µ
d f(x)

dx
− sin µ

d

dx

dx

dµ

d f(x)
dx

= − cos µ
d f(x)

dx
− sin µ

d

dx

(
− sin µ

)d f(x)
dx

= − cos µ
d f(x)

dx
+ sin2 µ

d2 f(x)
dx2 :

Substituting just the derivatives in the equation (10–11),

sin2 µ

(
sin2 µ

d2 f(x)
dx2 − cos µ

d f (x)
dx

)
+sin µ cos µ

(
− sin µ

d f(x)
dx

)
+l(l+1) sin2 µf(x)−m2 f(x) = 0;

which gives us an equation in both µ and x, which is not formally appropriate. This is, however,
an informal text, and it becomes difficult to keep track of the terms if all the substitutions and
reductions are done at once. Dividing by sin2 µ, we get

sin2 µ
d2 f(x)

dx2 − cos µ
d f(x)

dx
− cos µ

d f(x)
dx

+ l(l + 1) f(x) −
m2

sin2 µ
f(x) = 0:

The change of variables is complete upon summing the two first derivatives, using cos µ = x, and
sin2 µ = 1 − cos2 µ = 1 − x2, which is

(
1 − x2

) d2 f(x)
dx2 − 2x

d f(x)
dx

+ l(l + 1) f(x) −
m2

1 − x2 f (x) = 0:

This is the associated Legendre equation, which reduces to Legendre equation when
m = 0. The function has a single argument so there is no confusion if the derivatives are indicated
with primes, and the associated Legendre equation is often written

(
1 − x2

)
f ′′(x) − 2x f ′(x) + l(l + 1) f(x) −

m2

1 − x2 f(x) = 0;

and becomes the Legendre equation,

(
1 − x2

)
f ′′(x) − 2x f ′(x) + l(l + 1) f (x) = 0;

when m = 0. The solutions to the associated Legendre equation are the associated Legendre
polynomials discussed briefly in the last section of chapter 11. To review that in the current
context, associated Legendre polynomials can be generated from Legendre polynomials using

Pl;m(x) = (−1)m
√

(1 − x2)m
dm

dxm
Pl(x);

where the Pl(x) are Legendre polynomials. Legendre polynomials can be generated using

Pl(x) =
(−1)l

2ll!
dl

dxl
(1 − x2)l:
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The use of these generating functions was illustrated in example 11–26 as intermediate results in
calculating spherical harmonics.

The first few Legendre polynomials are listed in table 10–1. Our interest in those is to generate
associated Legendre functions. The first few associated Legendre polynomials are listed in table
10–2.

P0(x) = 1 P3(x) = 1
2

(
5x3 − 3x

)

P1(x) = x P4(x) = 1
8

(
35x4 − 30x2 + 3

)

P2(x) = 1
2

(
3x2 − 1

)
P5(x) = 1

8

(
63x5 − 70x3 + 15x

)

Table 10 − 1: The First Six Legendre Polynomials:

P0;0(x) = 1 P2;0(x) = 1
2

(
3x2 − 1

)

P1;1(x) = −
√

1 − x2 P3;3(x) = −15
(√

1 − x2
)3

P1;0(x) = x P3;2(x) = 15x
(
1 − x2

)

P2;2(x) = 3
(
1 − x2

)
P3;1(x) = −3

2

(
5x2 − 1

)√
1 − x2

P2;1(x) = −3x
√

1 − x2 P3;0(x) = 1
2

(
5x3 − 3x

)

Table 10 − 2: The First Few Associated Legendre Polynomials:

Two comment concerning the tables are appropriate. First, notice Pl = Pl;0. That makes
sense. If the Legendre equation is the same as the associated Legendre equation with m = 0, the
solutions to the two equations must be the same when m = 0. Also, many authors will use
a positive sign for all associated Legendre polynomials. This is a different choice of phase. We
addressed that following table 11–1 in comments on spherical harmonics. We choose to include a
factor of (−1)m with the associated Legendre polynomials, and the sign of all spherical harmonics
will be positive as a result.

Finally, remember the change of variables x = cos µ. That was done to put the differential
equation in a more elementary form. In fact, a dominant use of associated Legendre polynomials is
in applications where the argument is cos µ. One example is the generating function for spherical
harmonic functions,

Yl;m(µ; `) = (−1)m

√
(2l + 1)(l − m)!

4…(l + m)!
Pl;m(cos µ) eim` m ≥ 0; (10 − 10)

and
Yl;−m(µ; `) = Y ∗

l;m(µ; `); m < 0;

where the Pl;m(cos µ) are associated Legendre polynomials. If we need a spherical harmonic with
m < 0, we will calculate the spherical harmonic with m =

∣∣m
∣∣, and then calculate the adjoint.

To summarize the last three sections, we separated the angular equation into an azimuthal
and a polar portion. The solutions to the azimuthal angle equation are exponentials including the
magnetic moment quantum number in the argument. The solutions to the polar angle equation
are the associated Legendre polynomials, which are different for each choice of orbital angular
momentum and magnetic moment quantum number. Both quantum numbers are introduced into

337



the respective differential equations as separation constants. Since we assumed a product of the
two functions to get solutions to the azimuthal and polar parts, the solutions to the original angular
equation (10–7) are the products of the two solutions Pl;m(cos µ) eim`. These factors are included
in equation (10–10). All other factors in equation (10–12) are simply normalization constants. The
products Pl;m(cos µ) eim` are the spherical harmonic functions, the alternating sign and radical
just make the orthogonal set orthonormal.

Associated Laguerre Polynomials and Functions
The azimuthal equation was easy, the polar angle equation a little more substantial, but you

will likely percieve the solution to the radial equation as plain, old heavy! There is no easy way to
do this. Our approach will be to relate the radial equation to the associated Laguerre equation,
for which the associated Laguerre functions are solutions. A popular option to solve the radial
equation is a power series solution, for which we will refer you to Griffiths3, or Cohen–Tannoudji4.

Laguerre polynomials are solutions to the Laguerre equation

x L
′′

j (x) +
(
1 − x

)
L

′

j(x) + j Lj(x) = 0:

The first few Laguerre polynomials are listed in table 10–3.

L0(x) = 1
L1(x) = −x + 1
L2(x) = x2 − 4x + 2
L3(x) = −x3 + 9x2 − 18x + 6
L4(x) = x4 − 16x3 + 72x2 − 96x + 24
L5(x) = −x5 + 25x4 − 200x3 + 600x2 − 600x + 120
L6(x) = x6 − 36x5 + 450x4 − 2400x3 + 5400x2 − 4320x + 720

Table 10 − 3: The First Seven Laguerre Polynomials:

Laguerre polynomials of any order can be calculated using the generating function

Lj(x) = ex dj

dxj
e−x xj :

The Laguerre polynomials do not form an orthogonal set. The related set of Laguerre functions,

`j(x) = e−x=2Lj(x) (10 − 13)

is orthonormal on the interval 0 ≤ x < ∞. The Laguerre functions are not solutions to the
Laguerre equation, but are solutions to an equation which is related.

Just as the Legendre equation becomes the associated Legendre equation by adding an ap-
propriate term containing a second index, the associated Laguerre equation is

xLk′′

j (x) +
(
1 − x + k

)
Lk′

j (x) + j Lk
j (x) = 0; (10 − 14)

3 Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Englewood Cliffs, New Jersey,
1995), pp. 134–141.

4 Cohen–Tannoudji, Diu, and Laloe, Quantum Mechanics (John Wiley & Sons, New York,
1977), pp. 794–797.
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which reduces to the Laguerre equation when k = 0. The first few associated Laguerre polyno-
mials are

L0
0(x) = L0(x) L2

0(x) = 2
L0

1(x) = L1(x) L0
3(x) = L3(x)

L1
1(x) = −2x + 4 L1

3(x) = −4x3 + 48x2 − 144x + 96
L1

0(x) = 1 L3
2(x) = 60x2 − 600x + 1200

L0
2(x) = L2(x) L3

3(x) = −120x3 + 2160x2 − 10800x + 14400
L1

2(x) = 3x2 − 18x + 18 L2
3(x) = −20x3 + 300x2 − 1200x + 1200

L2
2(x) = 12x2 − 96x + 144 L3

1(x) = −24x + 96
L2

1(x) = −6x + 18 L3
0(x) = 6

Table 10 − 4: Some Associated Laguerre Polynomials:

Notice L0
j = Lj. Also notice the indices are all non–negative, and either index may assume any

integral value. We will be interested only in those associated Laguerre polynomials where k < j
for hydrogen atom wave functions.

Associated Laguerre polynomials can be calculated from Laguerre polynomials using the gen-
erating function

Lk
j (x) =

(
− 1

)k dk

dxk
Lj+k(x):

Example 10–5: Calculate L1
3(x) starting with the generating function.

We first need to calculate L4(x), because

Lk
j (x) =

(
− 1

)k dk

dxk
Lj+k(x) ⇒ L1

3(x) =
(

− 1
)1 d1

dx1 L3+1(x) = −
d

dx
L4(x):

Similarly, if you want to calculate L2
3, you need to start with L5, and to calculate L3

4, you
need to start with L7. So using the generating function,

L4(x) = ex d4

dx4 e−xx4

= ex d3

dx3

(
− e−xx4 + e−x 4x3

)

= ex d2

dx2

(
e−xx4 − e−x 4x3 − e−x 4x3 + e−x 12x2

)
= ex d2

dx2

(
e−xx4 − e−x 8x3 + e−x 12x2

)

= ex d

dx

(
− e−xx4 + e−x 4x3 + e−x 8x3 − e−x 24x2 − e−x 12x2 + e−x 24x

)

= ex d

dx

(
− e−xx4 + e−x 12x3 − e−x 36x2 + e−x 24x

)

= ex
(
e−xx4 − e−x 4x3 − e−x 12x3 + e−x 36x2 + e−x 36x2 − e−x 72x − e−x 24x + e−x 24

)

= exe−x
(
x4 − 16x3 + 72x2 − 96x + 24

)

= x4 − 16x3 + 72x2 − 96x + 24;
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per table 10–4. Then to get L1
3(x),

L1
3 = −

d

dx
L4(x)

= − d

dx

(
x4 − 16x3 + 72x2 − 96x + 24

)

= −
(
4x3 − 48x2 + 144x − 96

)

= −4x3 + 48x2 − 144x + 96;

per table 10–3.

Associated Laguerre polynomials are not orthogonal but associated Laguerre functions of
the type

Φk
j (x) = e−x=2xk=2Lk

j (x)

are orthogonal on the interval 0 ≤ x < ∞, so can be made an orthonormal set. Again, the Φk
j (x)

are not solutions to the associated Laguerre equation but are solutions to a related equation.

We are specifically interested in a slightly different associated Laguerre function than the usual
first choice indicated above, i.e., we are interested in

yk
j (x) = e−x=2x(k+1)=2Lk

j (x): (10 − 15)

These are also not solutions to the associated Laguerre equation, but they are solutions to

yk′′

j (x) +
(

−1
4

+
2j + k + 1

2x
− k2 − 1

4x2

)
yk

j (x) = 0: (10 − 16)

The reason for our interest in (10–16) and its solutions (10–15), is that equation (10–16) is a form
of the radial equation, so the radial functions R(r) we seek are Rn;l(r) = A yl

n(r), where A is
simply a normalization constant.

Example 10–6: Show equation (10–15) satisfies equation (10–16).

Unlike some of the toy problems given as examples, this example is a critical connection...unless
you take our word for it, and then you should skip this. We are going to use the result of this
example as a direct link to the solution of the radial equation. We are going to simplify the notation
to minimize clutter, and will explain as we go.

To attain the second derivative, we need the first derivative, and use the notation

y = e−x=2x(k+1)=2v;

for equation (10–15) where v = Lk
j (x), because the indices do not change and only serve to add

clutter, and we can remember the independent variable is x. The first derivative is

y′ = −
1
2
e−x=2x(k+1)=2v + e−x=2

(
k + 1

2

)
x(k−1)=2v + e−x=2x(k+1)=2v′

=
[
−1

2
v +

(
k + 1
2x

)
v + v′

]
e−x=2x(k+1)=2

⇒
(
ex=2x−(k+1)=2

)
y′ = −

1
2
v +

k + 1
2x

v + v′:
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Notice we adjusted the second term on the right to do the factoring. Using the same adjustment
technique, will factor these terms out of the second derivative as we go. These are also factors
common to equation (10–15). Since the right side of equation (10–16) is zero, after we substitute
the second derivative and the function into (10–16), we will simplify the equation by dividing
the equation by common factors, therefore, none of the common factors will enter into the final
solution. The exponentials and powers still need to be considered in differentiation, but their
inverses will appear on the left and only the terms which have impact will appear on the right.
Proceeding....

(
ex=2x−(k+1)=2

)
y′′ =

1
4
v−

1
2

k + 1
2x

v−
1
2
v′−

1
2

k + 1
2x

v+
k + 1
2x

k − 1
2x

v+
k + 1
2x

v′−
1
2

v′+
k + 1
2x

v′+v′′:

Substituting the second derivative and the function into equation (10–16),

y′′ +
(

−
1
4

+
2j + k + 1

2x
−

k2 − 1
4x2

)
y = 0;

and dividing by the common factor of e−x=2x(k+1)=2, the remaining terms are
(

1
4
v −

1
2

k + 1
2x

v −
1
2
v′ −

1
2

k + 1
2x

v +
k + 1
2x

k − 1
2x

v +
k + 1
2x

v′ −
1
2

v′ +
k + 1
2x

v′ + v′′
)

+
(

−
1
4

+
2j + k + 1

2x
−

k2 − 1
4x2

)
v = 0

⇒ v′′ +
1
4
v

/
−

1
2

k + 1
2x

v −
1
2
v′ −

1
2

k + 1
2x

v +
k2 − 1
4x2 v

/
+

k + 1
2x

v′ −
1
2

v′ +
k + 1
2x

v′

−1
4

v

/
+

2j + k + 1
2x

v − k2 − 1
4x2 v

/
= 0

⇒ v′′ −
k + 1
4x

v

/
−

1
2
v′ −

k + 1
4x

v

/
+

k + 1
x

v′ −
1
2

v′ +
j

x
v +

k + 1
2x

v

/
= 0

⇒ v′′ − v′ +
k + 1

x
v′ +

j

x
= 0

⇒ x v′′ − x v′ + (k + 1) v′ + j v = 0
⇒ x v′′ + (1 − x + k) v′ + j v = 0 (10 − 17)

which is the associated Laguerre equation. Since v = Lk
j (x), and the Lk

j (x) are solutions to the
associated Laguerre equation, equation (10–17) is equivalent to

xLk′′

j (x) +
(
1 − x + k

)
Lk′

j (x) + j Lk
j (x) = 0;

which is the associated Laguerre, which we know to be a true statement, so

y = e−x=2x(k+1)=2v

= e−x=2x(k+1)=2Lk
j (x)

are solutions to equation (10–16).
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The Reduced Mass

Equation (10–2) describes a single particle in a central potential. The hydrogen atom is a two
body problem, and the potential is not central but is dependent upon the distance between the
nucleus and the electron. Were we able to anchor the nucleus to a stationary location we could
designate an origin, equation (10–2) would be an accurate description. This is not possible, but
we can reach a similar end by picturing the center of mass being anchored to a fixed location. If
we use the reduced mass in place of the electron mass,

„ =
mp me

mp + me
;

the radial coordinate r accurately describes the distance between the nucleus and the electron.
The effect in equation (10–2) is cosmetic; where there was an m representing me, it is replaced
by „. Because the proton is about 1836 times more massive than the electron, the reduced mass
is nearly identically the electron mass. Many authors simply retain the electron mass. Since the
center of mass is not actually anchored, a second set of coordinates is required to track the center
of mass using this scheme. This consideration and other details of reducing a two particle problem
to a one particle problem are adequately covered in numerous texts, including Chohen–Tannoudji5,
Levine6, and many classical mechanics texts.

Solution of the Radial Equation
The radial equation (10–6) using the reduced mass and the Coulomb potential, V (r) = −e2=r,

is

1
R(r)

d

dr

(
r2 d

dr

)
R(r) −

2„r2

h̄2

[
−

e2

r
− E

]
− l(l + 1) = 0

⇒
d

dr

(
r2 d

dr

)
R(r) −

2„r2

h̄2

[
−

e2

r
− E

]
R(r) − l(l + 1)R(r) = 0

⇒ d

dr

(
r2 d

dr

)
R(r) +

[2„r2

h̄2
e2

r
+

2„r2

h̄2 E − l(l + 1)
]
R(r) = 0: (10 − 18)

The plan is to get (10–18) into a form comparable to equation (10–16), and we already know the
solutions are equation (10–15). We will be able to glean additional information by comparing the
equations term by term. The energy levels of the hydrogen atom and the meaning of the indices
of the associated Laguerre polynomials, which will be quantum numbers for the hydrogen atom,
will come from the comparison of individual terms.

We will make three substitutions to get the last equation into the form of equation (10–16).
The first is

y(r) = r R(r) ⇒ R(r) =
y(r)
r

: (10 − 19)

5 Cohen–Tannoudji, Diu, and Laloe, Quantum Mechanics (John Wiley & Sons, New York,
1977), pp. 784–788.

6 Levine, Quantum Chemistry (Allyn and Bacon, Inc., Boston, Massachusetts, 1983), pp. 101–
106.
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Making this substitution in the first term and evaluating the derivatives

d

dr

(
r2 d

dr

)
R(r) =

d

dr

(
r2 d

dr

)(
r−1) y(r)

=
d

dr
r2

[(
−r−2) y(r) +

(
r−1) d y(r)

dr

]

=
d

dr

[
−y(r) + r

d y(r)
dr

]

= −d y(r)
dr

+
d y(r)

dr
+ r

d2 y(r)
dr2

= r
d2 y(r)

dr2 :

The substitution serves to eliminate the first derivative. We would have both a first and second
derivative if we had evaluated the first term using R(r). With this and the substitution of
equation (10–19), equation (10–18) becomes

r
d2 y(r)

dr2 +
[2„re2

h̄2 +
2„r2

h̄2 E − l(l + 1)
] y(r)

r
= 0

⇒
d2 y(r)

dr2 +
[2„e2

r h̄2 +
2„E

h̄2 −
l(l + 1)

r2

]
y(r) = 0:

The second substitution is essentially to simplify the notation, and is

( †

2

)2
= −2„E

h̄2 (10 − 20)

where the negative sign on the right indicates we are looking for bound states, states such that
E < 0, so including the negative sign here lets us have an † which is real. The last equation
becomes

d2 y(r)
dr2 +

[2„e2

r h̄2 −
†2

4
−

l(l + 1)
r2

]
y(r) = 0:

The third substitution is a change of variables, and notice it relates radial distance and energy
through equation (10-20),

x = r† ⇒ r =
x

†
; (10 − 21)

⇒ dr =
dx

†
⇒ d2 y(r)

dr2 =
d

dr

d y(r)
dr

= †
d

dx
†
d y(x)

dx
= †2

d2 y(x)
dx2 ;

so our radial equation becomes

†2
d2 y(x)

dx2 +
[2„e2†

x h̄2 −
†2

4
− †2

l(l + 1)
x2

]
y(x) = 0

⇒
d2 y(x)

dx2 +
[

−
1
4

+
2„e2

h̄2†x
−

l(l + 1)
x2

]
y(x) = 0; (10 − 22)

and equation (10–22) is equation (10–16) where

l(l + 1) =
k2 − 1

4
; (10 − 23)
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and
2„e2

h̄2†
=

2j + k + 1
2

; (10 − 24)

Per example 10–6, the solutions are equation (10–15),

yk
j (x) = e−x=2x(k+1)=2Lk

j (x):

Eigenenergies from the Solution of the Radial Equation
Equation (10–23) tells us k = 2l + 1.

Example 10–7: Show k = 2l + 1.

Equation (10–23) is
k2 − 1

4
= l(l + 1)

⇒ k2 = 4l(l + 1) + 1

= 4l2 + 4l + 1

=
(
2l + 1

)2

⇒ k = 2l + 1:

We are going to take what appears to be a slight diversion to evaluate a particular set of
factors in equation (10–24), h̄2=„e2, which recurs repeatedly. Going back to the old quantum
theory, this is called the Bohr radius, that is

a0 =
h̄2

„e2 = 0:529 Å: (10 − 25)

We want to express lengths in terms of the Bohr radius because it is a natural length for the
hydrogen atom.

Example 10–8: Show a0 = 0:529 Å, using both the electron mass and the reduced mass.

This example is intended to illustrate three simple things. First, a0 = 0:529 Å, second is to
work out the CGS units for e2, and then to show the electron mass is a very good approximation
to the reduced mass in hydrogen. The electrostatic force in MKS and CGS systems is defined

1
4…†0

e2
MKS

r2 = F =
e2
CGS

r2

⇒ e2
CGS =

e2
MKS

4…†0
=

(
1:602 × 10−19 C

)2(8:988 × 109 N · m2=C2)

= 2:307 × 10−28 N · m2 = 2:307 × 10−19 dyne · cm2

= 2:307 × 10−19 erg · cm = 14:42 eV · Å:

So

a0 =
h̄2

mee2 =
1

4…2

(hc)2

mec2e2 =
1

4…2

(1:240 × 104 eV · Å)2

(0:5110 × 106 eV )(14:42 eV · Å)
= 0:5286 Å:
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The reduced mass is

„ =
mp me

mp + me
=

1:673 × 10−24

1:673 × 10−24 + 9:110 × 10−28 me = 0:9995 me;

⇒ h̄2

„e2 =
h̄2

0:9995mee2 =
0:5286 Å
0:9995

= 0:5288 Å:

There is 0.03% difference between the electron mass and reduced mass values. Many authors
simply use the electron mass and it yields a good approximation. The CGS value of e2 can
be mysterious for those who have worked primarily in MKS units. By the way, the square root
e = 3:797 (eV · Å)1=2 can be a convenient way to express the charge on the electron in CGS units.

Equation (10–24) gives us the eigenenergies of the hydrogen atom, but requires some devel-
opment. Since k = 2l + 1,

2j + k + 1
2

=
2j + (2l + 1) + 1

2
= j + l + 1:

From the discussion on associated Laguerre polynomials, the indices j and k are non–negative.
The sum j + l + 1 can, therefore, assume any integer values of 1 or greater. We are going to
rename it n, or

n = j + l + 1: (10 − 26)

The new integer index n is known as the principal quantum number. Using the principal
quantum number, it follows that the eigenenergies of the hydrogen atom are

En = −
h̄2

2„a2
0n

2 = −
13:6 eV

n2 ; (10 − 27)

where the quantity 13:6 eV is called the Rydberg, usually denoted R or Ry. The ground state
energy is E0 = −13:6 eV when n = 1. It is often convenient to express excited state energies
in terms of the ground state energy.

Example 10–9: Show equation (10–27) follows from equation (10–24).

2„e2

h̄2†
=

2j + k + 1
2

⇒ j + l + 1 = n =
2„e2

h̄2†

⇒ † =
2„e2

h̄2n

⇒ †2 =
4„2e4

h̄4n2
:

Substituting equation (10–20) to eliminate † and insert energy,

−4
2„E

h̄2 =
4„2e4

h̄4n2
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⇒ E = − „2e4h̄2

2„h̄4n2
= −

(
„e2

h̄2

)2
h̄2

2„n2

⇒ En = − h̄2

2„a2
0n

2 :

Inserting numerical values,

En = − h̄2

2„a2
0n

2 = − 1
4…2

(hc)2

2(„c2)a2
0n

2

= − 1
4…2

(1:24 × 104 eV · Å)2

2(0:511 × 106 eV )(0:529 Å)2n2
= −13:6 eV

n2 ;

so eigenenergies do follow from the solution of the radial equation.
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Radial Wave Functions from the Solution of the Radial
Equation
Again per example 10–6, the solutions of the radial equation are equation (10–15),

yk
j (x) = e−x=2x(k+1)=2Lk

j (x):

Since

k = 2l + 1; (k + 1)=2 = ((2l + 1) + 1)=2 = l + 1; and j + l + 1 = n ⇒ j = n − l − 1;

we can now express the indices in terms of the quantum numbers n and l, meaning

yl
n(x) = e−x=2xl+1L2l+1

n−l−1(x);

so the solution starts to assume some of the traits of the hydrogen atom. The independent variable
is still x = †r. We need an independent variable r, or at least in terms of r, to be consistent
with the spherical coordinate system. Using (10–20) and (10–27), we can solve for † in terms of
the Bohr radius and the principal quantum number,

( †

2

)2
= −

2„E

h̄2 = −
2„

h̄2

(
−

h̄2

2„a2
0n

2

)
=

1
a2
0n

2

⇒ †2 =
4

a2
0n

2 ⇒ † =
2

a0n
;

⇒ x =
2r

na0
;

and this is in terms of the desired independent variable, or

yl
n(r) = e−r=na0

(
2r

na0

)l+1

L2l+1
n−l−1

(
2r

na0

)
:

Finally we can relate the associated Laguerre function to the radial function we set out to find
through equation (10–19). Remember y(r) = r R(r), so

r Rn;l(r) = e−r=na0

(
2r

na0

)l+1

L2l+1
n−l−1

(
2r
na0

)

⇒ Rn;l(r) = Ae−r=na0

(
2r

na0

)l

L2l+1
n−l−1

(
2r

na0

)
;

where we have added a normalization constant which has absorbed the factor 2=na0 from the
power term when we cancel the factor of r. This still needs to be normalized. We want the radial
functions to be individually normalized so the product of the radial wave functions and spherical
harmonics, the hydrogen wave function, is normalized. The normalized radial wave functions are

Rn;l(r) =

√√√√
(

2
na0

)3 (n − l − 1)!

2n
[
(n + l)!

]3 e−r=na0

(
2r
na0

)l

L2l+1
n−l−1

(
2r

na0

)
: (10 − 28)
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The first few normalized radial wave functions are listed in table 10–5.

R1;0(r) = 2a
−3=2
0 e−r=a0

R2;0(r) =
1√
2
a

−3=2
0

(
1 − r

2a0

)
e−r=2a0

R2;1(r) =
1√
24

a
−3=2
0

r

a0
e−r=2a0

R3;0(r) =
2√
27

a
−3=2
0

(
1 −

2r
3a0

+
2r2

27a2
0

)
e−r=3a0

R3;1(r) =
8

27
√

6
a

−3=2
0

(
1 −

r

6a0

)
r

a0
e−r=3a0

R3;2(r) =
4

81
√

30
a

−3=2
0

r2

a2
0
e−r=3a0

Table 10 − 5: The First Six Radial Wave Functions for Hydrogen:

Example 10–10: Show equation (10–28) is properly normalized.

We want to normalize

Rn;l(r) = Ae−r=na0

(
2r

na0

)l

L2l+1
n−l−1

(
2r
na0

)
:

The normalization condition for a function of the radial variable in spherical coordinates is

<ˆ(r)
∣∣ˆ(r)> = 1 =

∫ ∞

0

(
Rn;l(r)

)∗
Rn;l(r) r2 dr

where the factor of r2 is the radial portion of the volume element in spherical coordinates. Using
the radial wave functions, this is

1 =
∫ ∞

0

(
Ae−r=na0

(
2r

na0

)l

L2l+1
n−l−1

(
2r

na0

))∗

Ae−r=na0

(
2r

na0

)l

L2l+1
n−l−1

(
2r

na0

)
r2 dr

=
∫ ∞

0
A∗A ; e−2r=na0

(
2r

na0

)2l (
r2)L2l+1

n−l−1

(
2r

na0

)
L2l+1

n−l−1

(
2r

na0

)
dr

=
∣∣ A

∣∣2
(na0

2

)3
∫ ∞

0
e−2r=na0

(
2r

na0

)2l+2

L2l+1
n−l−1

(
2r
na0

)
L2l+1

n−l−1

(
2r

na0

)
d

(
2r
na0

)
;(10 − 29)

where the cubic factor preceding the integral comes from the fact we have grouped the factor of
r2 with the other powers of r, and also have expressed the differential in terms of the argument
of the associated Laguerre polynomial. We are going to borrow two relations from Morse and
Feshbach7, the first of which is

∫ ∞

0
za e−z La

b (z)La
b (z) dz = –b;c

[ Γ(a + b + 1)]3

Γ(b + 1)
: (10 − 30)

7 Morse and Feshbach, Methods of Theoretical Physics (McGraw–Hill, New York, 1953), pp.
784–785
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There are some things to notice about equation (10–30). The Kronecker delta –b;c reflects
the orthogonality of the associated Laguerre polynomials. The integral is zero unless the lower
indices of the two associated Laguerre polynomials are identical. Also, we expect all indices to be
integers, so expect the gamma functions to become factorials. Comparing (10–29) and (10–30), the
argument of the associated Laguerre polynomial, the base of the power term, and the differential
are all the same in both equations. The upper index of the associated Laguerre polynomials and
the power term are the same in (10–30), but differ in (10–29). We can adjust (10-29) using a
recursion relation from Morse and Feshbach,

z La
b (z) =

(
a + 2b + 1

)
La

b (z) − b + 1
a + b + 1

La
b+1(z) −

(
a + b

)2
La

b−1(z):

If we take one factor of the power term and group it with the first associated Laguerre polynomial,
we get

1 =
∣∣ A

∣∣2
(na0

2

)3
∫ ∞

0
e−2r=na0

(
2r

na0

)2l+1 {(
2r

na0

)
L2l+1

n−l−1

(
2r

na0

)}
L2l+1

n−l−1

(
2r

na0

)
d

(
2r

na0

)
;

which makes the exponent of the power term match the upper index of the associated Laguerre
polynomial, and we can evaluate the term in braces using the recursion relation. For a = 2l + 1
and b = c = n − l − 1, this is
(

2r

na0

)
L2l+1

n−l−1

(
2r

na0

)
=

(
2l + 1 + 2n − 2l − 2 + 1

)
L2l+1

n−l−1

(
2r

na0

)

−
n − l − 1 + 1

2l + 1 + n − l − 1 + 1
L2l+1

n−l

(
2r

na0

)
−

(
2l+1+n−l−1

)2
L2l+1

n−l−2

(
2r

na0

)

= 2n L2l+1
n−l−1

(
2r

na0

)
− n − l

n + l + 1
L2l+1

n−l

(
2r
na0

)
−

(
n + l

)2
L2l+1

n−l−2

(
2r

na0

)
:

We are going to ignore all but the first term. We could substitute all three terms into the integral,
distribute other factors, break the integral into three integrals, and evaluate each one using equa-
tion (10–30). But the Kronecker delta tells us integrals with unequal lower associated Laguerre
polynomial indices will be zero. The only non–vanishing integral will come from the first term, so

1 =
∣∣ A

∣∣2
(na0

2

)3
∫ ∞

0
e−2r=na0

(
2r

na0

)2l+1 {
2n L2l+1

n−l−1

(
2r

na0

)}
L2l+1

n−l−1

(
2r

na0

)
d

(
2r

na0

)
;

=
∣∣ A

∣∣22n
(na0

2

)3
∫ ∞

0
e−2r=na0

(
2r

na0

)2l+1

L2l+1
n−l−1

(
2r

na0

)
L2l+1

n−l−1

(
2r

na0

)
d

(
2r

na0

)
;

and we are ready to evaluate this integral using equation (10–30) where

z →
(

2r

na0

)
; a → 2l + 1; b = c → n − l − 1;

and for integers Γ(j) = (j − 1)!. Then

1 =
∣∣ A

∣∣22n
(na0

2

)3 [Γ (2l + 1 + n − l − 1 + 1)]3

Γ(n − l − 1 + 1)

=
∣∣ A

∣∣22n
(na0

2

)3 [Γ (n + l + 1)]3

Γ(n − l)

=
∣∣ A

∣∣22n
(na0

2

)3 [(n + l)!]3

(n − l − 1)!
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⇒ A =

√√√√
(

2
na0

)3 (n − l − 1)!

2n
[
(n + l)!

]3

⇒ Rn;l(r) =

√√√√
(

2
na0

)3 (n − l − 1)!

2n
[
(n + l)!

]3 e−r=na0

(
2r

na0

)l

L2l+1
n−l−1

(
2r

na0

)
:

Example 10–11: Calculate R3;1(r) from equation (10–29).

For n = 3; l = 1,

R3;1(r) =

√√√√
(

2
3a0

)3 (3 − 1 − 1)!

2(3)
[
(3 + 1)!

]3 e−r=3a0

(
2r

3a0

)1

L
2(1)+1
3−1−1

(
2r
3a0

)

=
2
3

√(
23

33a3
0

)
1

2 · 3
[
(4 · 3 · 2)

]3 e−r=3a0

(
r

a0

)
L3

1

(
2r

3a0

)

=
2
3

√
22

34
[
26 · 33 · 23

]a
−3=2
0 e−r=3a0

(
r

a0

)(
−24

(
2r

3a0

)
+ 96

)

= 96
2
3

√
22

29 · 37 a
−3=2
0

(
−

(
r

6a0

)
+ 1

)
r

a0
e−r=3a0 ;

and because 96 = 25 · 3,

R3;1(r) =
26

23 · 33

√
1

2 · 3
a

−3=2
0

(
1 −

r

6a0

)
r

a0
e−r=3a0

=
8

27
√

6
a

−3=2
0

(
1 −

r

6a0

)
r

a0
e−r=3a0 ;

in agreement with table 10–5.

Graphs of Radial Wave Functions

The radial wave functions listed in table 10–5 are plotted in figure 10–1. The radial wave
functions are all individually normalized, so the probability associated with radial wave functions
is

<ˆ(r)
∣∣ˆ(r)> = <Rn;l(r)

∣∣Rn;l(r)> =
∫ ∞

0
R∗

n;l(r) Rn;l(r) r2 dr =
∫ ∞

0
R2

n;l(r) r2 dr;

where the factor of r2 in the integrals is from the volume element in spherical coordinates.
The functions R2

n;l(r) r2 are the radial probability densities for the hydrogen atom. The radial
probability densities are plotted abreast their corresponding radial wave function in figure 10–2.
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Figure 10 − 1: Radial Wave Functions: Figure 10 − 2: Radial Probability Densities:

Hydrogen Wave Functions
We have all three parts. The product of the azimuthal, polar, and radial wave functions are

the hydrogen wave functions. The product of the azimuthal and polar wave functions are the
spherical harmonics, so the hydrogen wave functions are the product of the radial wave functions
and spherical harmonics,

ˆnlm(r; µ; `) = Rn;l(r)Yl;m(µ; `):

You can construct the desired hydrogen wave function by selecting the appropriate radial wave
function from table 10–5, or calculating it from equation 10–28, and multiplying it by the appro-
priate spherical harmonic from table 11–1, or calculating it from equation 10–10, i.e.,

ˆnlm(r; µ; `) = Rn;l(r)Yl;m(µ; `):

The equation
<r; µ; `

∣∣n; l;m> = Rn;l(r)Yl;m(µ; `)

denotes representation from Hilbert space.

Example 10–10: What is ˆ3;1;−1(r; µ; `)?

From tables 10–5 and 11–1,

R3;1(r) =
8

27
√

6
a

−3=2
0

(
1 −

r

6a0

)
r

a0
e−r=3a0 ; Y1;−1(µ; `) =

√
3
8…

sin µ e−i`;

so
ˆ3;1;−1(r; µ; `) = R3;1(r) Y1;−1(µ; `)

=
8

27
√

6
a

−3=2
0

(
1 −

r

6a0

)
r

a0
e−r=3a0

√
3
8…

sin µ e−i`

=
8
√

3
27

√
6
√

8…
a

−3=2
0

(
1 −

r

6a0

)
r

a0
e−r=3a0 sin µ e−i`

=
2

27
√

…
a

−3=2
0

(
1 − r

6a0

)
r

a0
sin µ e−r=3a0−i`:

Graphics of Hydrogen Wave Functions
The probability of finding the electron in a hydrogen atom in a specific volume is

∫

∆V

∣∣ˆnlm(r; µ; `)
∣∣2 dV =

∫ r2

r1

∫ µ2

µ1

∫ `2

`1

∣∣ˆnlm(r; µ; `)
∣∣2 r2 sin µ dr dµ d`:

The probability of finding the electron of the hydrogen atom anywhere in space is non–zero, how-
ever, the probability is vanishingly small for most locations. The locations where the probability
densities are highest are depicted in figure 10–3.
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Figure 10 − 3: Graphics for Significant Probability Densities by Quantum Number:

The graphics of figure 10–3 are illustrative and are a culmination of the calculations of this chapter.
Additional calculations demonstrate the similarity of simpler systems to this realistic system. In
many regards, the techniques developed earlier with simpler systems were examined so we could
arrive at the hydrogen atom and figure 10–3.

Quantum Numbers and Chemistry Terminology
Another depiction explains common chemistry terminology in terms of quantum numbers.

The ground state of hydrogen is n = 1; l = 0 and m = 0. Common chemistry designations
for the ground state are the K–shell and the 1s subshell. Remember the K–shell may house two
electrons in many electron atoms. This means the one electron in the hydrogen atom can exist
in one of two possible states, though there is only one possible combination of the three quantum
numbers n; l, and m. There is, however, a fourth quantum number associated with spin.
For each set of the three quantum numbers n; l; m, there is a possibility of spin up or spin
down, and thus two possible states associated with the quantum numbers n = 1; l = 0, and
m = 0, therefore two states associated with the K–shell. We will examine spin in the next chapter.
The point of the moment is the desigation K–shell and quantum number n = 1 have the same
meaning. The quantum number n = 2 is the same as the chemical designation of L–shell. The
L–shell has subshells 2s and 2p, where s corresponds to l = 0 and p corresponds to l = 1,
which are possible quantum numbers for n = 2. For l = 1; m = −1; 0, or 1 so there are three
states possible in the p subshell. Each of the four L–shell states may have spin up or spin down,
so there are eight possible eigenstates in the L–shell. The M–shell corresponds to n = 3, the
N–shell corresponds to n = 4, and the O–shell corresponds to n = 5. As the quantum number
n becomes larger, the quantum number l can take on a greater range of values. The quantum
number l = 0 corresponds to the s–subshell, the quantum number l = 1 corresponds to the
p–subshell, the quantum number l = 2 corresponds to the d–subshell, the quantum number l = 3
corresponds to the f–subshell, and the quantum number l = 4 corresponds to the g–subshell.
Each subshell has 2l + 1 states. The total states in each shell is n2. Figure 10–4 summarizes
the commentary in this discussion.

total
shell n2

O n = 5 5s 1 5p
3

5d 5 5f
7

5g
9

25
N n = 4 4s 1 4p

3
4d 5 4f

7
16

↑ M n = 3 3s 1 3p
3

3d 5 9
E L n = 2 2s 1 2p

3
4

K n = 1 1s 1 1
l = 1 l = 2 l = 3 l = 4 l = 5

Figure 10 − 4: Quantum Number; Chemical Designation Correspondence:

The subscripts on the underbars of the subshells indicate the number
of states 2l + 1 in that subshell:

One final comment. Since the energy, to this point, depends only on n, the quantum numbers
l and m having no effect on energy, we have an n2–fold degeneracy in energy using this picture.
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A magnetic field removes this degeneracy...the same magnetic field that will define the z-axis
and provide orientation to the scheme, will remove this degeneracy. This was explored by Pieter
Zeeman, so is known as the Zeeman effect. Pragmatically, a field is necessary if the orientation is
to make sense.

Possibilities and Probabilities
In addition to being of intrinsic interest because it is a real system, the electron in a hydrogen

atom is a particle in a fancy box. Comparable to a particle in the infinite square well or harmonic
oscillator, the electron is confined. Also comparable to other systems, the state vector describing
the electron in a hydrogen atom is a linear combination of eigenstates. We assume a limited linear
combination to provide some sample calculations which should be reminiscent of calculations for
other systems. The examples in that follow all refer to the t = 0 state vector

Ψ(r; µ; `) = 2ˆ1;0;0 + ˆ2;1;0 (10 − 31)

Example 10–13: Normalize equation (10–31).

The state function is composed of 2 parts ground state and 1 part of the given excited state,
so we can write

Ψ(r; µ; `) = 2
(

1
0

)
+

(
0
1

)
=

(
2
1

)
;

so the normalization condition can be written

1 = A∗(2; 1
)
A

(
2
1

)
=

∣∣A
∣∣2(4 + 1

)

⇒ A =
1√
5

⇒ Ψ(r; µ; `) =
2√
5
ˆ1;0;0 +

1√
5
ˆ2;1;0

is the properly normalized wave function or state vector.

Example 10–14: Normalize equation (10–31) using the orthonormality of the spherical har-
monics.

This example demonstrates a useful technique using spherical harmonics as well as the reason
the radial wave functions are individually normalized.

Ψ(r; µ; `) = 2ˆ1;0;0 + ˆ2;1;0

= 2 R1;0Y0;0 + R2;1Y1;0;

and the normalization condition is

1 =
∫

V

A∗(2R1;0Y0;0 + R2;1Y1;0
)
A

(
2R1;0Y0;0 + R2;1Y1;0

)
dV

=
∣∣A

∣∣2
∫

V

(
4R2

1;0Y
2
0;0 + 4R2;1R1;0Y1;0R1;0Y0;0 + R2

2;1Y
2
1;0

)
dV

=
∣∣A

∣∣2
(∫

V

4 R2
1;0Y

2
0;0 dV +

∫

V

4R2;1R1;0Y1;0Y0;0 dV +
∫

V

R2
2;1Y

2
1;0 dV

)
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=
∣∣A

∣∣2
(

4
∫ ∞

0
R2

1;0r
2 dr

∫

Ω
Y 2

0;0 dΩ + 4
∫ ∞

0
R2;1R1;0r

2 dr

∫

Ω
Y1;0Y0;0 dΩ +

∫ ∞

0
R2

2;1r
2 dr

∫

Ω
Y 2

1;0 dΩ
)

=
∣∣A

∣∣2
(

4
(
1
)(

1
)

+ 4
∫ ∞

0
R2;1R1;0r

2 dr
(
0
)
+

(
1
)(

1
))

(10 − 32)

where
∫

Y1;0Y0;0 dΩ is zero because the spherical harmonics are orthonormal, so

1 =
∣∣A

∣∣2(4 + 0 + 1
)

⇒ A =
1√
5

⇒ Ψ(r; µ; `) =
2√
5
ˆ1;0;0 +

1√
5
ˆ2;1;0:

The orthonormality of spherical harmonics means
∫

Yi;jYk;l dΩ = –i;k–j;l;

We have previously done this calculation using < i|j> = –i;j, which is the same statement for
systems in a Hilbert space. If integrated over solid angle, the indices must be identical or the
integral is zero, as illustrated in equation (10–32). The radial wave functions are not orthonormal,
but they are normalized. This means

∫ ∞

0
Ri;jRi;jr

2 dr = 1:

Note the matching indices. If the indices match, the integral of their product and r2 over all
possible values of radius is 1. If the indices do not match, you will often have the good fortune
of a multiplication by zero by virtue of the integral of the spherical harmonics as in equation
(10–32). In the circumstance the spherical harmonics are the same, the integral of radial functions
will vanish. The bottom line is the hydrogen wave functions are orthonormal. The radial wave
functions themselves, however, are normalized but they are not orthonormal.

A third method to calculate the normalization constant is to use the representations of the
hydrogen wave functions and do the integrations explicitly. That method is much longer and more
difficult than either of the previous two examples, and will yield the same result.

Example 10–15: What are the possible results of individual measurements of energy, angular
momentum, and the z–component of angular momentum?

The possible results are the eigenvalues. For

Ψ(r; µ; `) =
2√
5
ˆ1;0;0 +

1√
5
ˆ2;1;0

we could measure a state with a principal quantum number of n = 1 or n = 2. The corresponding
eigenenergies are

En = −
13:6 eV

n2 ⇒ E1 = −13:6 eV; or −
13:6 eV

4
= −3:4 eV
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so are the possible results of a measurement of energy. For a measurement of angular momentum,
we could measure a state with orbital angular momentum quantum number of l = 0 or l = 1,
so anticipate a measurement of

√
0(0 + 1)h̄ = 0 or

√
1(1 + 1)h̄ =

√
2h̄

because the eigenvalues of the square of angular momentum, L2, are l(l +1)h̄. The eigenvalues
of the z–component of angular momentum are mh̄, and both eigenstates of the state vector have
m = 0, so the only possibility of a measurement of the z–component of angular momentum is
0 h̄ = 0.

Example 10–16: What are the probabilites of the possible results of individual measurements
of energy, angular momentum, and the z–component of angular momentum?

The probabilites are
∣∣ < ˆ

∣∣Ψ>
∣∣2, so the probability of measuring E0 = −13:6 eV , cor-

responding to measuring the eigenstate with n = 1, and the probability of measuring orbital
angular momentum of 0, corresponding to measuring the eigenstate with l = 0, is

P
(
E = −13:6 eV

)
= P

(√
L2 = 0

)
=

∣∣∣∣<ˆ1;0;0

∣∣∣∣
2√
5
ˆ1;0;0 +

1√
5
ˆ2;1;0>

∣∣∣∣
2

=
∣∣∣∣

2√
5

<ˆ1;0;0
∣∣ˆ1;0;0> +

1√
5

<ˆ1;0;0
∣∣ˆ2;1;0>

∣∣∣∣
2

=
∣∣∣∣

2√
5

(
1
)

+ 0
∣∣∣∣
2

=
4
5

where we have used the orthonorality of eigenstates, regardless of whether we represent the eigen-
states as functions of position and use the orthonormality of the spherical harmonics, or use a
more general argument like <i|j> = –ij . Similarly, the probability of measuring E1 = −3:4 eV ,
corresponding to measurement of the eigenstate with n = 2, and the probability of measuring
orbital angular momentum of

√
2h̄, corresponding to measuring the eigenstate with l = 1, is

P
(
E = −3:4 eV

)
= P

(√
L2 =

√
2h̄

)
=

∣∣∣∣<ˆ2;1;0

∣∣∣∣
2√
5
ˆ1;0;0 +

1√
5
ˆ2;1;0>

∣∣∣∣
2

=
∣∣∣∣

2√
5

<ˆ2;1;0
∣∣ˆ1;0;0> +

1√
5

<ˆ2;1;0
∣∣ˆ2;1;0>

∣∣∣∣
2

=
∣∣∣∣0 +

1√
5

(
1
)∣∣∣∣

2

=
1
5
:

Notice the sum of the probabilities is 1, P
(
E = −13:6 eV

)
+ P

(
E = −3:4 eV

)
= 4=5 + 1=5 = 1,

for example. Notice also, we use the normalized state vector, and the bra of the eigenstate serves
only to identify the eigenstate is being used for the calculation.

Lastly, there is but one possibility for z–component of angular momentum, corresponding to
m = 0 in both eigenstates, so we can conclude

P
(
Lz = 0

)
= 1;
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without further calculation. Just to illustrate a calculation for which two eigenstates have the
same eigenvalue,

P
(
Lz = 0

)
=

∣∣∣∣<ˆ1;0;0

∣∣∣∣
2√
5
ˆ1;0;0 +

1√
5
ˆ2;1;0>

∣∣∣∣
2

+
∣∣∣∣<ˆ2;1;0

∣∣∣∣
2√
5
ˆ1;0;0 +

1√
5
ˆ2;1;0>

∣∣∣∣
2

=
∣∣∣∣

2√
5

<ˆ1;0;0
∣∣ˆ1;0;0>

∣∣∣∣
2

+
∣∣∣∣

1√
5

<ˆ2;1;0
∣∣ˆ2;1;0>

∣∣∣∣
2

=
∣∣∣∣

2√
5

(
1
)∣∣∣∣

2

+
∣∣∣∣

1√
5

(
1
)∣∣∣∣

2

=
4
5

+
1
5

= 1:

There are two additional teaching points in exercise 10–16. If we have a more general linear
combination of eigenstates, say

Ψ =
∑

i

ci ˆi = c1 ˆ1 + c2 ˆ2 + c3 ˆ3 + · · ·

where the sum may terminate at some value n or be an infinite sum as indicated above. The ci

are expansion coefficients or more simply, the ci are individual normalization constants for
individual eigenstates. Generalizing from a two eigenstate system to a many eigenstate system,
the probability of measuring a property associated with one specific eigenstate, say eigenstate ˆj,
is

P =
∣∣ <ˆj

∣∣Ψ>
∣∣2 =

∣∣ <ˆj

∣∣c1 ˆ1 + c2 ˆ2 + c3 ˆ3 + · · ·>
∣∣2 =

∣∣cj <ˆj

∣∣ˆj>
∣∣2 =

∣∣cj

∣∣2;

where the orthonormality condition <i|j> = –ij tells us <ˆj

∣∣ˆj> = 1, and cross terms with
unlike indices are zero. Knowing this, the calculation for any property associated with ˆ1;0;0 for
instance is

P
(
ˆ1;0;0

)
=

∣∣∣∣
2√
5

∣∣∣∣
2

=
4
5

and the remainder of the symbology in the calculation is unnecessary.

The second teaching point concerns the calculation of P
(
Lz = 0

)
. Why do we use

P
(
Lz = 0

)
=

∣∣∣∣<ˆ1;0;0

∣∣∣∣
2√
5
ˆ1;0;0 +

1√
5
ˆ2;1;0>

∣∣∣∣
2

+
∣∣∣∣<ˆ2;1;0

∣∣∣∣
2√
5
ˆ1;0;0 +

1√
5
ˆ2;1;0>

∣∣∣∣
2

;

and not ∣∣∣∣<ˆ1;0;0 + ˆ2;1;0

∣∣∣∣
2√
5
ˆ1;0;0 +

1√
5
ˆ2;1;0>

∣∣∣∣
2

?

The answer, referring to equations (1–2) and (1–3), is a measurement will place a linear combination
into one specific eigenstate. We have a final state which is distinctly one of two eigenstates, and we
can ascertain from the measurement which one. That tells us

∣∣ˆ
∣∣2 =

∣∣ˆa

∣∣2+
∣∣ˆb

∣∣2. If we could not
uniquely distinguish a final state, a situation we will encounter in the circumstance of degeneracy,∣∣ˆ

∣∣2 =
∣∣ˆa +ˆb

∣∣2. One reason a complete set of commuting observables is important is to provide
a capability to uniquely distinguish final states, thus avoiding the indeterminacy associated with
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∣∣ˆ
∣∣2 =

∣∣ˆa + ˆb

∣∣2, where we do not know what portion of the probability originates with which
eigenstate.

Expectation Value, Uncertainty and Time Dependence

Example 10–17: What are the expectation values of energy, orbital angular momentum, and
the z–component of angular momentum?

<E> =
∑

i

P (Ei)Ei =
4
5
(

− 13:6 eV
)

+
1
5
(
− 3:4 eV

)
= −10:88 eV − 0:68 eV = −11:56 eV:

<
√

L2> =
∑

i

P (fii)fii =
4
5
(
0
)

+
1
5
(√

2h̄
)

=
√

2h̄

5
:

The expectation value of the z–component of angular momentum is 0, since that is the only
possibility.

Example 10–18: What are the uncertainties of energy, orbital angular momentum, and the
z–component of angular momentum?

∆E =
√∑

i

P (Ei)
(
Ei− <E>

)2

=
[
4
5
(

− 13:6 eV − −11:56 eV
)2

+
1
5
(

− 3:4 eV − −11:56 eV
)2

]1=2

=
[
4
5
(

− 2:04
)2

+
1
5
(
8:16

)2
]1=2

eV =
[
4
5
(
4:16

)
+

1
5
(
66:59

)]1=2

eV

= [3:33 + 13:32]1=2
eV = [16:65]1=2

eV

= 4:08 eV:

∆
√

L2 =


4

5

(
0 −

√
2h̄

5

)2

+
1
5

(
√

2h̄ −
√

2h̄

5

)2



1=2

=


4

5

(
−

√
2

5

)2

+
1
5

(
4
√

2
5

)2



1=2

h̄

=
[
4
5

(
2
52

)
+

1
5

(
16 · 2
52

)]1=2

h̄ =
[

8
53 +

32
53

]1=2

h̄ =
[
40
53

]1=2

h̄

=
2
√

2
5

h̄:

The uncertainty in the z–component of angular momentum is 0, since there is only one possibility.

Example 10–19: What is the time dependent state vector?
∣∣Ψ(t)> =

∑
|j><j|ˆ(0)> e−iEjt=h̄

=
(

1
0

)(
1; 0

) 1√
5

(
2
1

)
e−iE1t=h̄ +

(
0
1

)(
0; 1

) 1√
5

(
2
1

)
e−iE2t=h̄

=
(

1
0

)
1√
5

(
2
)
e−iE1t=h̄ +

(
0
1

)
1√
5

(
1
)
e−iE2t=h̄

=
2√
5

(
1
0

)
e−iE1t=h̄ +

1√
5

(
0
1

)
e−iE2t=h̄;
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and using eigenenergies in terms of fundamental constants, i.e.,

En = − h̄2

2„a2
0n

2 ;

this becomes ∣∣Ψ(t)> =
2√
5

(
1
0

)
eith̄=2„a2

0 +
1√
5

(
0
1

)
eith̄=8„a2

0 :
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