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Graphite

Three dimensional layered material
with hexagonal 2D layers [shown here
with Bernal (AB) stacking]
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zero gap semiconductor;
Dirac spectrum of electrons

Bilayer

Three dimensional layered A B
material with hexagonal 2D

layers [shown here with
Bernal (AB) stacking]

Bilayer as a 2D material
Low energy Hamiltonian=?




Graphite Bilayer Monolayer

ﬁ Two dimensional material;
‘%.g zero gap semiconductor;
Two dimensional material: Dirac spectrum of electrons
.&ﬁ Low energy Hamiltonian?
) \Y
Fabricated two years ago by Manchester group,

Three dimensional layered Novoselov et al, Science 306, 666 (2004).
material with hexagonal 2D
layers [shown here with
Bernal (AB) stacking]

Further reports of quantum Hall effect measurements;
Manchester group: Novoselov et al, Nature 438, 197 (2005)
Columbia group: Zhang et al, Nature 438, 201 (2005).



Graphite Bilayer Monolayer

. Two dimensional material;
‘%ﬁ zero gap semiconductor;
Two dimensional material: Dirac spectrum of electrons
A, B ﬁ Low energy Hamiltonian?
S y

_ecture Overview

Three dimensional layered
material with hexagonal 2D
layers [shown here with
Bernal (AB) stacking]

1) Tight binding model of monolayer graphene

2) Expansion near the K points: chiral quasiparticles
and Berry phase

3) Bilayer graphene

4) Quantum Hall effect



1 Tight binding model of monolayer graphene
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“Physical Properties of

Carbon Nanotubes”

R Saito, G Dresselhaus and
MS Dresselhaus;
Imperial College Press, 1998



1 Tight binding model of monolayer graphene
1.1 sp? hybridisation

Carbon has 6 electrons
- 2 are core electrons
- 4 are valence electrons — one 2s and three 2p orbitals



1 Tight binding model of monolayer graphene
1.1 sp? hybridisation

Carbon has 6 electrons
- 2 are core electrons
- 4 are valence electrons — one 2s and three 2p orbitals

sp? hybridisation

- single 2s and two 2p orbitals hybridise forming three “c
bonds” in the x-y plane

c bonds



1 Tight binding model of monolayer graphene
1.1 sp? hybridisation

Carbon has 6 electrons
- 2 are core electrons
- 4 are valence electrons — one 2s and three 2p orbitals

sp? hybridisation

- remaining 2p, orbital [“wt” orbital] exists perpendicular to
the x-y plane

7t bonds

only & orbital relevant for energies of interest for transport
measurements — so keep only this one orbital per site in the
tight binding model



1 Tight binding model of monolayer graphene

1.2 lattice of graphene

2 different ways of

orienting bonds means
there are 2 different types £
of atomic sites

[but chemically the same]



1 Tight binding model of monolayer graphene
1.2 lattice of graphene

Wigner-Seitz____ "conventional”
unit cell '

2 different atomic sites — 2 triangular sub-lattices



1 Tight binding model of monolayer graphene
1.3 reciprocal lattice

triangular reciprocal lattice

L_1st Brillouin — hexagonal Brillouin zone
Zone




1 Tight binding model of monolayer graphene
1.4 Bloch functions

We take into account one & orbital per site, so there
are two orbitals per unit cell.

Bloch functions cDA(IZ, F)z %ZNZEM'QA%(F— ﬁA)
R

= 1 & i B . =
CDB(k’ r)m%ekRB%’(r\RB)
sum over all type atomic

_B atoml_c sites wavefunction
in N unit cells



1 Tight binding model of monolayer graphene
1.4 Bloch functions

We take into account one & orbital per site, so there
are two orbitals per unit cell.

Bloch functions : label with j = 1 [A sites] or 2 [B sites]

sum over all type atomic

J atomic sites wavefunction
In N unit cells



1 Tight binding model of monolayer graphene
1.5 Secular equation

Eigenfunction ¥; (for j = 1 or 2) is written as a linear
combination of Bloch functions:

¥ (‘Z’ F): icﬂ.(ﬁ)@j.(ﬁ, F)
Eigenvalue E; (for j = 1 or 2) is written as :
Ej(IZ)— <qu ‘H‘\PJ>

(%)




1 Tight binding model of monolayer graphene
1.5 Secular equation

Eigenfunction ¥; (for j = 1 or 2) is written as a linear
combination of Bloch functions:

¥ (‘Z’ F): icﬂ.(ﬁ)@j.(ﬁ, F)
Eigenvalue E; (for j = 1 or 2) is written as :
Ej(IZ)— <qu ‘H‘\PJ>

SAED
2 2
substitute R ZI:CjiCj,<CDi\H\cI),> ZI:HiICjile
expression in terms Ej(k)= e ==
of Bloch functions ZC}]C” <cI)i ‘q)|> Z:S.”C;CjI
il

defining transfer H, = (CD. \H\CD.>; and overlap S, = (CD. ‘CD|>
integral matrix | integral matrix |
elements elements



1 Tight binding model of monolayer graphene
1.5 Secular equation

iH CiC,
Ej( ): ';
ZS,,C C




1 Tight binding model of monolayer graphene
1.5 Secular equation

ZHH ji j|
ZSH ji j|

If the H; and S, are known, we can find the energy by minimising
with respect to C. ;

jm”
2 2 . 2
ok ZH”"CJ' ZHiICJiCjIZSmlcjl
— | i,

ac’ &2 . 2 ?
jm S.C.C. *
; i~ il (?,I SiICjilej

OE. 2 2
=0 = P € =EY5C,
6CJm =1 =1

£ (k)=




1 Tight binding model of monolayer graphene
1.5 Secular equation




1 Tight binding model of monolayer graphene
1.5 Secular equation

2 2

ZHmICjI = EjZSmICjI

=1 =1

Explicitly write out sums:
m=1 = H11Cj1 + H12Cj2 - Ej(SuCll + SlZCZI)

m=2 = H21Cj1 + H22Cj2 - Ej(821(:1| T SZZCZI)



1 Tight binding model of monolayer graphene
1.5 Secular equation

Explicitly write out sums:
m=1 = H11Cj1 + H12Cj2 - Ej(Sllcll + SlZCZI)

m=2 = H21Cj1 + H22Cj2 - Ej(821(:1| T SZZCZI)

WI |te as a |||at| iX equatiOI 1.
(I |11 I |12j{cle E_[Sll Slzj(:jlj
I I21 I |22 :j2 J S21 S22 Cjz

HC, =E;SC,;



1 Tight binding model of monolayer graphene
1.5 Secular equation

Explicitly write out sums:
m=1 = H,C,+H,C,=E(S,C,+S,C;,)

m=2 = H,C,+H,C, =E(S,C,+5,C,)
Write as a matrix equation:
(Hll lej{cilJ_ E [Sll Slzj(cjlj
== .
H21 H22 Cj2 S21 S22 j2
HC, =E;SC,;

Secular equation gives the eigenvalues:
det(H —ES)=0



1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
H, = (@, |H|®,); S, =(®,|®, (KF)l= S e®®i, (F_R.
< ‘ ‘ > < ‘ > (Dj(k’r) m;e (pj(r RJ)

]




1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

Ho=@He)i  s=(@fe)  ofr)-— e
Rj

Diagonal matrix element

H o = (@, [H|® ) = %ggeﬂﬁ’“ﬁ“)<%(?— R JJH|0a(F ~ Ry

Same site only:



1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

H = (@ H| @, ); Sy =(@i| @) QJ(E’F):%ieiE'ﬁj¢j(F_ﬁj)

R;

Diagonal matrix element

o= (@, H[ @)= = 3 316 O o, (7R, JH[p, R,y )

RA RA]

Same site only:
N

H pa Z%Z<¢A(F_ ﬁAi )‘H‘¢A(F_ ﬁAi )>

Rai

=(palF ~ R JH|0a[F ~Ro )

A and B sites are chemically identical:

Ha =Hgs =&



1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

Hy=(@fHo) s =(0]0) o [r)-—t 3y (r-r,)
Rj

Diagonal matrix element

Hua = (@4H[@) = 5 33 e g, [f-Ro R )

Same site only:
N

o= LSRR Se =y Zlodr-Ruoulr-Ra)

o -Ru MR, “{oir Aot -Ru)

A and B sites are chemically identical:

HAA:HBB:gO SAA:SBB:]'



1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

Off-diagonal matrix element

Hia = (@4 H[04) = 2376 R o~

A Rg;




1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

Off-diagonal matrix element

o = (4[| g) = 336" g 1R JH o[ o )

A Rg;

Every A ssite has 3 B nearest neighbours:

B, = a | =z a a |\
> 5,=Ry,—R,, =|0,—=|; 8,=R,,-R, =|=——|;
5] 1 Bl Ai ( \/gj 2 B2 A (2 zlgj
5, 5,
AN G 5 =R _R_:_E_aj
B : B . ,
3 - 3 B3 Al ( 2 2\/5



1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

Off-diagonal matrix element

Hae = <CDA‘H‘(DB> :%iieiﬁ(ﬁmm%(%(r_ ﬁAi )‘H‘(DB(F_ ﬁBj)>

Rai Rg;

Every A ssite has 3 B nearest neighbours:

B, = a | =z a a |\
R 5 =R,-R,=|0,2| &=R,-R,=|2--2_|
5] 1 Bl Al ( \/éj 2 B2 Al (2 2\/5]
3. 3
AATN 5, =R —R.:—E——aj
" @B, . ,

- 3] Rl R 5 e Rl
5=1

—

Rg

)



1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

Off-diagonal matrix element

Hoo = (@4 |H| @) = zz KRR, (F Ry | H| 06 (F ~ Ry )

RA RBJ

Every A ssite has 3 B nearest neighbours:

B, g a - a a
> 5,=Ry,—R,, =|0,—=|; 8,=R,,-R, =|=——|;
5] 1 Bl Ai ( \/gj 2 B2 A (2 2/3]
5, 5,
AN G 5 =R _R_:_E_aj
H 1 B-,. i )
3 - 2 3 B3 Al ( 2 2\/5

z{z g - FmH%(r-ﬁs,-»}=;eiﬁ-%<¢A<r-ﬁAi>H%(r—ﬁa,-»

Parameterise nearest neighbour transfer integral:
Yo = _<¢A(F_ F—éAi )‘H‘(DB(F_ F_éBj )>
3 ..
= He =tk k)=
5;=1



1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

Off-diagonal matrix element

oo = (@H[00) =3 226 o, - Ro ol -

Every A ssite has 3 B nearest neighbours:

2" 243
Hpg = %i ieiﬁ.gj <¢)A(F - ﬁAi )‘ H ‘ Ps (F . ﬁBj )ﬂ = ieiﬁgj <¢A(F N ﬁAi )‘ H ‘ s (F B ﬁBj )>
Rai | 6;=1 5;=1
Parameterise nearest neighbour transfer integral:

Yo = —<€0A(F —Ry )‘H‘% (F a IiBJ’ )> S = <§0A(F —Ry )‘ Ps (F_ IiBj )>

= H,g=—7f(K) f(li’):(ge‘“‘?j = S, =sf(K)



1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

Off-diagonal matrix element

B] o a | =z a a )
B e O e
05 5, 2 a a
Ai. 5 = R = R = e T —
HH Bz 3 B3 Ai ( 2 2\/§j

. 3. -z : :
f(k): Zelkﬁj _ oMalV3 | ooikal2ya COS(an)

2
1

8%

j



1 Tight binding model of monolayer graphene
1.7 Calculation of energy

L 2 o




1 Tight binding model of monolayer graphene
1.7 Calculation of energy

L 70 oo

Secular equation gives the eigenvalues:
det(H —ES)=0

~(yy + Es)f(IZ)J: A

_E
det %o .
(—(yo+Es)f*(k) ¢ —E

(E—&,) (o +EsY| £ (k] =0




1 Tight binding model of monolayer graphene
1.7 Calculation of energy

L 70 oo

Secular equation gives the eigenvalues:
det(H —ES)=0

~(yy + Es)f(IZ)J: A

_E
det %o .
(—(yo+Es)f*(k) ¢ —E

(E—&,) (o +EsY| £ (k] =0

50+7/o‘f( J
1+s‘ E}




1 Tight binding model of monolayer graphene
1.7 Calculation of enerqy

+ 7/0‘ f (I?] Typical parameter values [quoted in Saito et al]:
179 (k] £,=0,7,=3.033eV,s=0.129

f(IZ) ik,a//3 s |kya/2fcos( )

E—

E -
Brillouin
zone TC*
k,
K K -k
M K K I K
Two non-equivalent Tt
K-points

Two bands: no energy gap at the K-points



2 Expansion near the

K points

2.1 Exactly at the K point

Brillouin
zone

kyA
K’ K
M K

Two non-equivalent
K-points

TO*

ka

Two bands: no energy gap at the K-points

= a =
1: OEJ, — K51:0
i = (a a | K~_27z
=| ==.0 =2728) T s
(Ba 4 ,
- a a = T
= = [Ko,=———
3 2 2\@} 3 3

3 VAR . .
f(K): ZelK-ﬁj _ @0 4 p2Al3 | o243 _ g

At the corners of the Brillouin zone (K points),
electron states on the A and B sub-lattices
decouple and have exactly the same energy

K points also referred to as “valleys”



Show 3d band structure



2 Expansion near the K points
2.1 Exactly at the K point

6 corners of the Brillouin zone (K points),
but only two are non-equivalent

Brillouin
zone

We consider two K points with the
following wave vectors:

SEOREED
3a 3a

K K’
Two non-equivalent
K-points



2 Expansion near the K points
2.2 Linear expansion

Consider two non-equivalent K points:
Brillouin

zone K,K'=§(4—ﬂ,0j; §=i1
k, & 3a
K K and small momentum near them:
é%é%M K, . 4 0
K = 5(—” ,Oj P
Two non-equivalent 3a h

K-points



2 Expansion near the K points
2.2 Linear expansion

Consider two non-equivalent K points:
Brillouin

zone K,K'=§(4—ﬂ,0j; E=+1
k a4 3a
K'Y/ K and small momentum near them:
é%i%M k, - p
K = 5(4—77 ,Oj + P
Two non-equivalent 3a h
K-points
Linear expansion in small momentum: (IZ) — _@(gp _ ipy)+ C)(pa/h)2
2h "

(0 —ptk)_( 0 &-ip
H_L_Vof*(lz) 0 jNV(épX”py 0 ]




2 Expansion near the K points
2.2 Linear expansion

H:[_ 0 —yof(ﬁ))zv( 0 §px—ipyj

7/01:*(_’) 0 &, +1p, 0
S = 16 Sf() R e +O(ﬁ) V:\/gayo ~10°m/s
k) 1) l0 1) \n o
New notation for
le WA
components on A C, = C SINES
and B sites i2 Ve

0 i
STHC,=E,C, = vV Pl (‘”AJZE(WAJ
g, +ip, 0 Ny Ve



2 Expansion near the K points
2.3 Dirac-like equation

For one K point (e.g. E=+1) we have a 2 component wave function,
o
W =
4
with the following effective Hamiltonian:

0 —|
H :v£ _ Px IOVJ:V
P, +1p, 0

0 ﬂ+] =V(O'X p, +o, py):v&.ﬁ

9 /

_ | Bloch function amplitudes on

T = p, T 1p, = pe'’ the AB sites (‘pseudospin’)

Tt =p. - ip. = pe-i© mimic spin components of
Pe=1by ™ P a relativistic Dirac fermion.




2 Expansion near the K points
2.3 Dirac-like equation

To take into account both K points (§=+1 and §=-1) we can use a 4
component wave function,

W ax
VK
(// =
W ak:
Yek:
with the following effective Hamiltonian:
(0 p, —ip, 0 IR
+1 0 0 0
byl PPy |
0 0 0 - P, —1p,
. 0 0 - p,+Ip, 0




2 Expansion near the K points

2.3 Dirac-like equation

H

0 x°

V
x 0
E=vp

Wl

=\VOo -

p

Vp o -

p
+}
p

n

Helical electrons
pseudospin direction
IS linked to an axis
determined by
electronic momentum.

for conduction band

electrons,
o-n=1
o-n=-1

valence band (‘holes’)



Show 3D picture



2 Expansion near the K points
2.4 Absence of backscattering

H:VLO ﬂ+)=vp(o ew]; E=wp < ylp)

7 0O e’ 0



2 Expansion near the K points
2.4 Absence of backscattering

0 7 0 e, L [e7

angular scattering probability:

/\ (v (o)ly (o= 0)>\2 =cos’(p/2)

=0 under pseudospin conservation,
\ helicity suppresses

backscattering in a monolayer




o Klein paradox
o Show angular dependence



2 Expansion near the K points

2.5 Berry’s phase it

E=vip
e-iu‘.pﬂ eip.r
( ein‘.pﬂ )

Q—>¢+2m
Y —em¥




Show Dirac belt
Show definition of Berry phase



Monolayer graphene

0 = 0 e
H=v =Vp| . ;
z O e’ 0

e—i(p/Z
S RO

€

massless Dirac fermions
with Berry’s phase &



3. Bilayer graphene [Bernal (AB) stacking]

4 atoms a
per unit cell H= B
A

B




3. Bilayer graphene [Bernal (AB) stacking]

2>
oo
>
vy

(B to A) and (B to A)

hopping \% 1N
givenby H= VT
T =P, - 1P, VTt
VT

woli-glvelie




3. Bilayer graphene [Bernal (AB) stacking]

Bilayer 0 vt A
Hamiltonian H= | 0 vt 0 | B
O vt 0 71 ] A

V Y1 0 B




with energy [E| > v,

Quadratic dispersion at low energy:

Bilayer
Hamiltonian H =




with energy [E| > v,

Quadratic dispersion at low energy:

Bilayer Hamiltonian written in a 2 component basis of A and B sites

+)2
H=-1 (0 () _ |
21Tl 2 A to B hopping
ni()*) ® bottom layer A —2» B (factor )
/1/ ® switch layers via dimer BA (y,)
Mass ® iop layer E—_)- B (factor )

m =V 7 =p,+ip,




3 Bilayer graphene
Berry phase 2wt quasiparticles

L Lo (@f|__p [0 &™)
2m| 72 0 2mle? 0 )




3 Bilayer graphene
Berry phase 2wt quasiparticles

H=_1(02 (7,+)2J:_p2[0 GMJ; =l o =

No absence of backscattering

angular scattering probability:

m (@) w(p=0))| =cos*(p)
-0

>

T no suppression of

backscattering in a bilayer




Some topics in graphene physics

1) Integer Quantum Hall effect
unusual sequencing of Hall conductivity plateaus

2) Minimal conductivity
see talks this afternoon: Jakub Tworzdlo; Jozsef Cserti

3) Tunnelling of chiral quasiparticles

MI Katsnelson, KS Novoselov, and AK Geim, cond-mat/0604343;
VV Cheianov and VI Falko, PRB 74, 041403

4) Weak localisation (?)

H Suzuura and T Ando, PRL 89, 266603 (2002); SV Morozov et al,
PRL 97, 016801 (2006); DV Khveshchenko; AF Morpurgo and F
Guinea; E McCann et al [all cond-mat 2006]

5) Andreev reflection
see talk this afternoon: Carlo Beenakker



Integer Quantum Hall effect
In a 2d semiconductor

i crxy(ge2/h)

Each filled Landau level
J/ with additional degeneracy

g contributes conductance
| I nhigeB quantum ge?/h towards the

Hall conductivit
-2+ //\/ y




3 Integer quantum Hall effect
Graphene monolayer

e 7/

Monolayer | *X e

Quantum et
10F Hall effect: [ f./ ____________ T

o | 4e?/hsteps .2

g = n
5 ) 0 %
Q i U 5

Novoselov et al, Nature 438, 197 (2005);
Zhang et al, Nature 438, 201 (2005).



Landau levels and QHE

Monolayer: Bilayer:

Hv&(o ?'T+) H=-] (0(ﬂ+)3)

T 0 2m\ 1w ()

p=-inV—2¢A, rotA=BlI,
=P, +ip,; 7" =p,—ip,
. —> lowering operator | of magnetic oscillator

In a perpendicular magnetic field B:

Tt —> raising operator eigenstates (),

We are able to determine the spectrum of discrete Landau levels

States at zero energy are determined by
monolayer: T, = 0

bilayer: ¢, = m*p, = 0




Show super-symmetry
Get HO and take sqrt.
Check Ezawa
Check McLure




2D Landau levels o (ﬂ+)J

of chiral electrons
J=1 monolayer
J=2 bilayer

T, =..=1¢p, =0 (Ooj,.. (Cﬁglj: &=0

also, two-fold real
spin degeneracy (_ 72_)J




monolayer

monolayer: chyfiv N 4-fold degenerate zero-energy
energy scale hv/h, 6T 838% Landau level for electrons
A O T e 9
where 7\~B _ ﬁ 7 (L)) with Berry’s phase &
eB J.McClure, Phys. Rev. 104, 666 (1956)
(0.1 F.Haldane, PRL 61, 2015 (1988)
state at zero energy: (0.-) Y.Zheng and T.Ando,
Phys. Rev. B 65, 245420 (2002)
TC(I) = () J2 < (1.4)(1-) V:P.Gusyninand S.G. Sharapov,
0 gL oo Phys. Rev. Lett 95, 146801 (2005)
-JE 1 %’Pf%") N.M.R. Peres, F. Guinea and A.H. Castro Neto,
i (B:4):6-) PRB 73, 125411 (2006)
bilayer 1|
bilayer: mgf‘iwz; i 8-fold degenerate zero-energy
—_— s_|_ :(4.-
energy scale  hao, & +6onas | Landau level for electrons
— T . ’
where @, = %3 5 Losen with Berry’s phase 27t
e=0 _| (0.9):(1,¥) | E.McCann and V.I. Fal’ko,
states at zero energy: (0.-);(1.-) Phys. Rev. Lett. 96, 086805 (2006)
TCZ(I)O o O -E __(29+)-(2>')
-J6 __(39+);(3a_)
24y =
g, =0 -T2 = (44)i(4.7)




QHE in graphene

monolayer bilayer




3\ 3 N
21 \ 2
saf N\ s b\
2 0 2 0
At \ <4
bx 2+ \- bx -2 —_\
3t L 3 \
4t N 4 .
| | | 1 | | | 1
E 1L graphene
6L A
cl N c
é 4r p é
5L
N\/\/U U\/\f\jv
O 1

-4 -2 0 2 4
n (1012 cm2) n (10*2cm2)
Unconventional Quantum Hall Effect and Berry’s Phase of 2z in Bilayer Graphene

K.Novoselov, E.McCann, S.Morozov, V.Fal’ko, M.Katsnelson, U.Zeitler, D.Jiang, F.Schedin, A.Geim
Nature Physics 2, 177-180 (2006)



monolayer 5
monolayer: SM{TW N Oy S-“4e /h)
Jg = (39+);(39')
H — Vé 0 TC+ J_ - (29_'_);(29_) 3
Tt O 22—+ (1,%)(1,-) 2]
l ]
(0,+) JhN
state at zero energy: 0,-) -16 -12 -8 -4 L 4 8 12 16¢B
TIZ(I)O = () -2 (1,49):(1,-) 2
-4 T (25+);(25') -3
(6 = (3:4):(3,) A
bilayer 4 o.. (-4e*/h)
bilayer: efho, S
M2 (444, +
H=-1 ( 02 (T“)Q) 16 =BG, .
2o 0 2 4@+ T
e=0 _|_(0,4)(1,+) BN
states at zero energy: T (0-);(1.-) |-T6 -12 -8 -4 i § 12 16eB
-l
_ 3 —-(2.4)(2-
¢, = 0 2+ (2.)2.) _2
-J6 —(3.1):3.-)
28 — 3
g, =0 12 —(4,4):(4,) 4




Summary

Graphene monolayer — 2D electron system
with Berry phase m quasiparticles and 4 times degenerate
zero-energy Landau levels manifested in the quantum Hall effect.

Graphene bilayer — 2D electron system
with Berry phase 27 quasiparticles and 8 times degenerate
zero-energy Landau levels manifested in the quantum Hall effect.



The End



