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Fabricated two years ago by Manchester group,

Novoselov et al, Science 306, 666 (2004).

Further reports of quantum Hall effect measurements; 

Manchester group: Novoselov et al, Nature 438, 197 (2005)

Columbia group: Zhang et al, Nature 438, 201 (2005).
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Lecture Overview

1) Tight binding model of monolayer graphene

2) Expansion near the K points: chiral quasiparticles 

and Berry phase

3) Bilayer graphene 

4) Quantum Hall effect



1 Tight binding model of monolayer graphene

“Physical Properties of 

Carbon Nanotubes”
R Saito, G Dresselhaus and 

MS Dresselhaus;

Imperial College Press, 1998
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1 Tight binding model of monolayer graphene
1.1 sp2 hybridisation

Carbon has 6 electrons

- 2 are core electrons

- 4 are valence electrons – one 2s and three 2p orbitals

sp2 hybridisation

- remaining 2pz orbital [“p” orbital] exists perpendicular to 

the x-y plane

only p orbital relevant for energies of interest for transport 

measurements – so keep only this one orbital per site in the 

tight binding model



1 Tight binding model of monolayer graphene
1.2 lattice of graphene

2 different ways of 

orienting bonds means 

there are 2 different types 

of atomic sites

[but chemically the same]



1 Tight binding model of monolayer graphene
1.2 lattice of graphene

2 different atomic sites – 2 triangular sub-lattices 



1 Tight binding model of monolayer graphene
1.3 reciprocal lattice

triangular reciprocal lattice

– hexagonal Brillouin zone 



1 Tight binding model of monolayer graphene
1.4 Bloch functions
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1 Tight binding model of monolayer graphene
1.4 Bloch functions
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in N unit cells

atomic 
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We take into account one p orbital per site, so there 

are two orbitals per unit cell.

Bloch functions : label with j = 1 [A sites] or 2 [B sites]



1 Tight binding model of monolayer graphene
1.5 Secular equation
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Eigenfunction j (for j = 1 or 2) is written as a linear 

combination of Bloch functions:

Eigenvalue Ej (for j = 1 or 2) is written as :



1 Tight binding model of monolayer graphene
1.5 Secular equation
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Eigenfunction j (for j = 1 or 2) is written as a linear 

combination of Bloch functions:

Eigenvalue Ej (for j = 1 or 2) is written as :

liilliil SHH  ;

substitute 

expression in terms 

of Bloch functions

defining transfer 

integral matrix 

elements

and overlap 

integral matrix 

elements



1 Tight binding model of monolayer graphene
1.5 Secular equation
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1 Tight binding model of monolayer graphene
1.5 Secular equation
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1 Tight binding model of monolayer graphene
1.5 Secular equation
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1 Tight binding model of monolayer graphene
1.5 Secular equation
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Explicitly write out sums:



1 Tight binding model of monolayer graphene
1.5 Secular equation
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Write as a matrix equation:



1 Tight binding model of monolayer graphene
1.5 Secular equation
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  0det  ESH

Write as a matrix equation:

Secular equation gives the eigenvalues:



1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
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A and B sites are chemically identical:

Same site only:

Diagonal matrix element
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

Off-diagonal matrix element
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

Every A site has 3 B nearest neighbours:

Off-diagonal matrix element
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
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Every A site has 3 B nearest neighbours:

Off-diagonal matrix element
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
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Parameterise nearest neighbour transfer integral:

Every A site has 3 B nearest neighbours:

Off-diagonal matrix element
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals

       BjBAiA

ki
N

R

BjBAiA

ki

AB RrHRreRrHRre
N

H
j

j

Ai j

j






 

















  











3

1

.
3

1

.1

   

    






3

1

.

0

0

;
j

jki

AB

BjBAiA

ekfkfH

RrHRr













Parameterise nearest neighbour transfer integral:

Every A site has 3 B nearest neighbours:

Off-diagonal matrix element
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1 Tight binding model of monolayer graphene
1.6 Calculation of transfer and overlap integrals
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1 Tight binding model of monolayer graphene
1.7 Calculation of energy
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1 Tight binding model of monolayer graphene
1.7 Calculation of energy
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Secular equation gives the eigenvalues:
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1 Tight binding model of monolayer graphene
1.7 Calculation of energy
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1 Tight binding model of monolayer graphene
1.7 Calculation of energy

129.0,033.3,0 00  seV

Typical parameter values [quoted in Saito et al]: 
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2 Expansion near the K points
2.1 Exactly at the K point
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At the corners of the Brillouin zone (K points), 

electron states on the A and B sub-lattices 

decouple and have exactly the same energy
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K points also referred to as “valleys”



Show 3d band structure



2 Expansion near the K points
2.1 Exactly at the K point

6 corners of the Brillouin zone (K points),  

but only two are non-equivalent


















 0,

3

4
';0,

3

4

a
K

a
K

pp 

b1

b2

K’

K’

K

K

We consider two K points with the 

following wave vectors:



2 Expansion near the K points
2.2 Linear expansion
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Consider two non-equivalent K points:

and small momentum near them:p



2 Expansion near the K points
2.2 Linear expansion
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2 Expansion near the K points
2.2 Linear expansion
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2 Expansion near the K points
2.3 Dirac-like equation
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For one K point (e.g. =+1) we have a 2 component wave function,

with the following effective Hamiltonian:

Bloch function amplitudes on 

the AB sites (‘pseudospin’) 

mimic spin components of  

a relativistic Dirac fermion.



2 Expansion near the K points
2.3 Dirac-like equation
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To take into account both K points (=+1 and =-1) we can use a 4 

component wave function,

with the following effective Hamiltonian:



2 Expansion near the K points
2.3 Dirac-like equation
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Show 3D picture
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2 Expansion near the K points
2.4 Absence of backscattering



under pseudospin conservation, 

helicity suppresses 

backscattering in a monolayer

angular scattering probability:
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2 Expansion near the K points
2.4 Absence of backscattering



 Klein paradox 

 Show angular dependence 



2 Expansion near the K points
2.5 Berry’s phase p



Show Dirac belt

Show definition of Berry phase 



massless Dirac fermions 

with Berry’s phase p
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Monolayer graphene



3. Bilayer graphene [Bernal (AB) stacking]
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3. Bilayer graphene [Bernal (AB) stacking]
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Berry phase 2p quasiparticles



no suppression of 

backscattering in a bilayer

angular scattering probability:

 = 0

    






















































p

p
i

i

i

i

e

e

m

p
E

e

e

m

p

m
H

2

1

2

2

22

2

2

2
;

0

0

20

0

2

1

      22

cos0 

3 Bilayer graphene
Berry phase 2p quasiparticles

No absence of backscattering



Some topics in graphene physics

1) Integer Quantum Hall effect
unusual sequencing of Hall conductivity plateaus

2) Minimal conductivity
see talks this afternoon: Jakub Tworzdlo; Jozsef Cserti

3) Tunnelling of chiral quasiparticles
MI Katsnelson, KS Novoselov, and AK Geim, cond-mat/0604343;

VV Cheianov and VI Falko, PRB 74, 041403

5) Andreev reflection
see talk this afternoon: Carlo Beenakker

4) Weak localisation (?)
H Suzuura and T Ando, PRL 89, 266603 (2002); SV Morozov et al, 

PRL 97, 016801 (2006); DV Khveshchenko; AF Morpurgo and F 

Guinea; E McCann et al [all cond-mat 2006]



Integer Quantum Hall effect 

in a 2d semiconductor

Each filled Landau level 

with additional degeneracy 

g contributes conductance 

quantum ge2/h towards the 

Hall conductivity



Novoselov et al, Nature 438, 197 (2005);

Zhang et al, Nature 438, 201 (2005).

Monolayer

Quantum 

Hall effect: 

4e2/h steps

3 Integer quantum Hall effect
Graphene monolayer
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Landau levels and QHE



Show super-symmetry

Get HO and take sqrt.

Check Ezawa

Check McLure
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also, two-fold real 

spin degeneracy

2D Landau levels 

of chiral electrons
J=1 monolayer

J=2 bilayer



4-fold degenerate zero-energy 

Landau level for electrons 

with Berry’s phase p

J.McClure,  Phys. Rev.  104, 666 (1956)

F.Haldane,  PRL 61, 2015 (1988) 

Y.Zheng and T.Ando,

Phys. Rev. B 65, 245420 (2002)

V.P. Gusynin and S.G. Sharapov,

Phys. Rev. Lett 95, 146801 (2005)

N.M.R. Peres, F. Guinea and A.H. Castro Neto, 

PRB 73, 125411 (2006)

8-fold degenerate zero-energy 

Landau level for electrons 

with Berry’s phase 2p

E.McCann and V.I. Fal’ko,

Phys. Rev. Lett. 96, 086805 (2006)







QHE in graphene

monolayer bilayer
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Unconventional Quantum Hall Effect and Berry’s Phase of 2π in Bilayer Graphene

K.Novoselov, E.McCann, S.Morozov, V.Fal’ko, M.Katsnelson, U.Zeitler, D.Jiang, F.Schedin, A.Geim 

Nature Physics 2, 177-180 (2006)









Summary

Graphene monolayer – 2D electron system

with Berry phase π quasiparticles and  4 times degenerate 

zero-energy Landau levels manifested in the quantum Hall effect.

Graphene bilayer – 2D electron system

with Berry phase 2π quasiparticles and  8 times degenerate 

zero-energy Landau levels manifested in the quantum Hall effect.



The  End


