Graphite monolayers

Edward McCann

Lancaster University, UK

S. Bailey, K. Kechedzhi, V.I. Fal'ko, H. Suzuura, T. Ando, B.L. Altshuler

with

EPSRC

Three dimensional layered material with hexagonal 2D layers [shown here with Bernal (AB) stacking]

Monolayer

Two dimensional material; zero gap semiconductor; Dirac spectrum of electrons

Three dimensional layered material with hexagonal 2D layers [shown here with Bernal (AB) stacking]

Three dimensional layered material with hexagonal 2D layers [shown here with Bernal (AB) stacking]

Monolayer

Two dimensional material; zero gap semiconductor; Dirac spectrum of electrons

Bilayer

Bilayer as a 2D material Low energy Hamiltonian= ?

Bilayer

Two dimensional material; Low energy Hamiltonian?

Monolayer

Two dimensional material; zero gap semiconductor; Dirac spectrum of electrons

Three dimensional layered material with hexagonal 2D layers [shown here with Bernal (AB) stacking] Fabricated two years ago by Manchester group, Novoselov *et al*, Science 306, 666 (2004).

Further reports of quantum Hall effect measurements; Manchester group: Novoselov *et al*, Nature 438, 197 (2005) Columbia group: Zhang *et al*, Nature 438, 201 (2005).

Bilayer

Two dimensional material; Low energy Hamiltonian?

Monolayer

Two dimensional material; zero gap semiconductor; Dirac spectrum of electrons

Three dimensional layered material with hexagonal 2D layers [shown here with Bernal (AB) stacking]

1) Tight binding model of monolayer graphene

2) Expansion near the K points: chiral quasiparticles and Berry phase

3) Bilayer graphene

4) Quantum Hall effect

"Physical Properties of Carbon Nanotubes" R Saito, G Dresselhaus and MS Dresselhaus; Imperial College Press, 1998

<u>1 Tight binding model of monolayer graphene</u> <u>**1.1 sp² hybridisation**</u>

- **Carbon has 6 electrons**
- 2 are core electrons
- 4 are valence electrons one 2s and three 2p orbitals

1 Tight binding model of monolayer graphene 1.1 sp² hybridisation

- **Carbon has 6 electrons**
- 2 are core electrons
- 4 are valence electrons one 2s and three 2p orbitals

sp² hybridisation - single 2s and two 2p orbitals hybridise forming three "σ bonds" in the x-y plane

1 Tight binding model of monolayer graphene 1.1 sp² hybridisation

- **Carbon has 6 electrons**
- 2 are core electrons
- 4 are valence electrons one 2s and three 2p orbitals

sp² hybridisation - remaining $2p_z$ orbital [" π " orbital] exists perpendicular to the x-y plane

only π orbital relevant for energies of interest for transport measurements – so keep only this one orbital per site in the tight binding model

<u>1 Tight binding model of monolayer graphene</u> <u>**1.2 lattice of graphene**</u>

2 different ways of orienting bonds means there are 2 different types of atomic sites [but chemically the same]

<u>1 Tight binding model of monolayer graphene</u> <u>**1.2 lattice of graphene**</u>

2 different atomic sites – 2 triangular sub-lattices

<u>1 Tight binding model of monolayer graphene</u> <u>**1.3 reciprocal lattice**</u>

triangular reciprocal lattice

– hexagonal Brillouin zone

1 Tight binding model of monolayer graphene 1.4 Bloch functions

We take into account one π orbital per site, so there are two orbitals per unit cell.

Bloch functions

$$\Phi_{A}(\vec{k},\vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{R}_{A}}^{N} e^{i\vec{k}\cdot\vec{R}_{A}} \varphi_{A}(\vec{r}-\vec{R}_{A})$$

$$\Phi_{B}(\vec{k},\vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{R}_{B}}^{N} e^{i\vec{k}\cdot\vec{R}_{B}} \varphi_{B}(\vec{r}-\vec{R}_{B})$$
sum over all type atomic

sum over all type B atomic sites in N unit cells

atomic wavefunction

1 Tight binding model of monolayer graphene 1.4 Bloch functions

We take into account one π orbital per site, so there are two orbitals per unit cell.

Bloch functions : label with j = 1 [A sites] or 2 [B sites]

$$\Phi_{j}(\vec{k},\vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{R}_{j}}^{N} e^{i\vec{k}.\vec{R}_{j}} \varphi_{j}(\vec{r}-\vec{R}_{j})$$
sum over all type

sum over all type j atomic sites in N unit cells atomic wavefunction

1 Tight binding model of monolayer graphene 1.5 Secular equation

Eigenfunction Ψ_j (for j = 1 or 2) is written as a linear combination of Bloch functions:

$$\Psi_{j}\left(\vec{k},\vec{r}\right) = \sum_{j'=1}^{2} C_{jj'}\left(\vec{k}\right) \Phi_{j'}\left(\vec{k},\vec{r}\right)$$

Eigenvalue E_j (for j = 1 or 2) is written as :

$$E_{j}\left(\vec{k}\right) = \frac{\left\langle \Psi_{j} \left| H \right| \Psi_{j} \right\rangle}{\left\langle \Psi_{j} \left| \Psi_{j} \right\rangle}$$

1 Tight binding model of monolayer graphene 1.5 Secular equation

Eigenfunction Ψ_j (for j = 1 or 2) is written as a linear combination of Bloch functions:

$$\Psi_{j}\left(\vec{k},\vec{r}\right) = \sum_{j=1}^{2} C_{jj'}\left(\vec{k}\right) \Phi_{j'}\left(\vec{k},\vec{r}\right)$$

Eigenvalue E_j (for j = 1 or 2) is written as :

$$\frac{E_{j}\left(\vec{k}\right)}{\left\langle \Psi_{j}\left|\Psi_{j}\right\rangle }=\frac{\left\langle \Psi_{j}\left|H\right|\Psi_{j}\right\rangle }{\left\langle \Psi_{j}\left|\Psi_{j}\right\rangle }$$

substitute expression in terms of Bloch functions

$$E_{j}(\vec{k}) = \frac{\sum_{i,l}^{2} C_{ji}^{*} C_{jl} \langle \Phi_{i} | H | \Phi_{l} \rangle}{\sum_{i,l}^{2} C_{ji}^{*} C_{jl} \langle \Phi_{i} | \Phi_{l} \rangle} \equiv \frac{\sum_{i,l}^{2} H_{il} C_{ji}^{*} C_{jl}}{\sum_{i,l}^{2} S_{il} C_{ji}^{*} C_{jl}}$$

defining transfer integral matrix elements $H_{il} = \langle \Phi_i | H | \Phi_l \rangle;$ and overlap integral matrix elements

$$S_{il} = \left\langle \Phi_i \left| \Phi_l \right\rangle \right\rangle$$

1.5 Secular equation

$$E_{j}(\vec{k}) = \frac{\sum_{i,l}^{2} H_{il} C_{ji}^{*} C_{jl}}{\sum_{i,l}^{2} S_{il} C_{ji}^{*} C_{jl}}$$

1.5 Secular equation

$$E_{j}(\vec{k}) = \frac{\sum_{i,l}^{2} H_{il} C_{ji}^{*} C_{jl}}{\sum_{i,l}^{2} S_{il} C_{ji}^{*} C_{jl}}$$

If the H_{il} and S_{il} are known, we can find the energy by minimising with respect to C_{jm}^* :

$$\frac{\partial E_{j}}{\partial C_{jm}^{*}} = \frac{\sum_{l}^{2} H_{ml} C_{jl}}{\sum_{i,l}^{2} S_{il} C_{ji}^{*} C_{jl}} - \frac{\sum_{i,l}^{2} H_{il} C_{ji}^{*} C_{jl} \sum_{l}^{2} S_{ml} C_{jl}}{\left(\sum_{i,l}^{2} S_{il} C_{ji}^{*} C_{jl}\right)^{2}}$$

$$\frac{\partial E_j}{\partial C_{jm}^*} = 0 \implies \sum_{l=1}^2 H_{ml} C_{jl} = E_j \sum_{l=1}^2 S_{ml} C_{jl}$$

1.5 Secular equation

$$\sum_{l=1}^{2} H_{ml} C_{jl} = E_{j} \sum_{l=1}^{2} S_{ml} C_{jl}$$

<u>1 Tight binding model of monolayer graphene</u> <u>**1.5 Secular equation**</u>

$$\sum_{l=1}^{2} H_{ml} C_{jl} = E_{j} \sum_{l=1}^{2} S_{ml} C_{jl}$$

Explicitly write out sums:

$$\begin{array}{ll} m=1 \implies H_{11}C_{j1} + H_{12}C_{j2} = E_j \big(S_{11}C_{1l} + S_{12}C_{2l} \big) \\ m=2 \implies H_{21}C_{j1} + H_{22}C_{j2} = E_j \big(S_{21}C_{1l} + S_{22}C_{2l} \big) \end{array}$$

<u>1 Tight binding model of monolayer graphene</u> <u>**1.5 Secular equation**</u>

$$\sum_{l=1}^{2} H_{ml} C_{jl} = E_{j} \sum_{l=1}^{2} S_{ml} C_{jl}$$

Explicitly write out sums:

$$\begin{array}{ll} m = 1 & \Rightarrow & H_{11}C_{j1} + H_{12}C_{j2} = E_j \big(S_{11}C_{1l} + S_{12}C_{2l} \big) \\ m = 2 & \Rightarrow & H_{21}C_{j1} + H_{22}C_{j2} = E_j \big(S_{21}C_{1l} + S_{22}C_{2l} \big) \end{array}$$

Write as a matrix equation:

$$\begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} C_{j1} \\ C_{j2} \end{pmatrix} = E_j \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} C_{j1} \\ C_{j2} \end{pmatrix}$$

$$HC_j = E_j SC_j$$

<u>1 Tight binding model of monolayer graphene</u> <u>**1.5 Secular equation**</u>

$$\sum_{l=1}^{2} H_{ml} C_{jl} = E_{j} \sum_{l=1}^{2} S_{ml} C_{jl}$$

Explicitly write out sums:

$$\begin{array}{ll} m = 1 & \Rightarrow & H_{11}C_{j1} + H_{12}C_{j2} = E_j \left(S_{11}C_{j1} + S_{12}C_{j2} \right) \\ m = 2 & \Rightarrow & H_{21}C_{j1} + H_{22}C_{j2} = E_j \left(S_{21}C_{j1} + S_{22}C_{j2} \right) \end{array}$$

Write as a matrix equation:

$$\begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} C_{j1} \\ C_{j2} \end{pmatrix} = E_j \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} C_{j1} \\ C_{j2} \end{pmatrix}$$

$$HC_j = E_j SC_j$$

Secular equation gives the eigenvalues:

$$\det(H-ES)=0$$

1.6 Calculation of transfer and overlap integrals

$$H_{ij} = \langle \Phi_i | H | \Phi_j \rangle; \qquad S_{ij} = \langle \Phi_i | \Phi_j \rangle \qquad \Phi_j (\vec{k}, \vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{k}_i}^N e^{i\vec{k}.\vec{R}_j} \varphi_j (\vec{r} - \vec{R}_j)$$

1.6 Calculation of transfer and overlap integrals

$$H_{ij} = \langle \Phi_i | H | \Phi_j \rangle; \qquad S_{ij} = \langle \Phi_i | \Phi_j \rangle \qquad \Phi_j (\vec{k}, \vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{R}_i}^N e^{i\vec{k}.\vec{R}_j} \varphi_j (\vec{r} - \vec{R}_j)$$

Diagonal matrix element

$$H_{AA} = \left\langle \Phi_A \left| H \right| \Phi_A \right\rangle = \frac{1}{N} \sum_{\vec{R}_{Ai}}^N \sum_{\vec{R}_{Aj}}^N e^{i\vec{k} \cdot (\vec{R}_{Aj} - \vec{R}_{Ai})} \left\langle \varphi_A \left(\vec{r} - \vec{R}_{Ai} \right) \right| H \left| \varphi_A \left(\vec{r} - \vec{R}_{Aj} \right) \right\rangle$$

Same site only:

$$H_{AA} = \frac{1}{N} \sum_{\bar{R}_{Ai}}^{N} \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \middle| H \middle| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle$$
$$= \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \middle| H \middle| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle$$
$$\equiv \varepsilon_{0}$$

1.6 Calculation of transfer and overlap integrals

$$H_{ij} = \langle \Phi_i | H | \Phi_j \rangle; \qquad S_{ij} = \langle \Phi_i | \Phi_j \rangle \qquad \Phi_j (\vec{k}, \vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{R}_i}^N e^{i\vec{k}.\vec{R}_j} \varphi_j (\vec{r} - \vec{R}_j)$$

Diagonal matrix element

$$H_{AA} = \left\langle \Phi_A \left| H \right| \Phi_A \right\rangle = \frac{1}{N} \sum_{\vec{R}_{Ai}}^N \sum_{\vec{R}_{Aj}}^N e^{i\vec{k} \cdot (\vec{R}_{Aj} - \vec{R}_{Ai})} \left\langle \varphi_A \left(\vec{r} - \vec{R}_{Ai} \right) \right| H \left| \varphi_A \left(\vec{r} - \vec{R}_{Aj} \right) \right\rangle$$

Same site only:

$$H_{AA} = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \middle| H \middle| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle$$
$$= \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \middle| H \middle| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle$$
$$\equiv \varepsilon_{0}$$

A and B sites are chemically identical:

$$H_{AA} = H_{BB} = \varepsilon_0$$

1.6 Calculation of transfer and overlap integrals

$$H_{ij} = \langle \Phi_i | H | \Phi_j \rangle; \qquad S_{ij} = \langle \Phi_i | \Phi_j \rangle \qquad \Phi_j (\vec{k}, \vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{k}_i}^N e^{i\vec{k}.\vec{R}_j} \varphi_j (\vec{r} - \vec{R}_j)$$

Diagonal matrix element

$$H_{AA} = \left\langle \Phi_A \left| H \right| \Phi_A \right\rangle = \frac{1}{N} \sum_{\vec{R}_{Ai}}^N \sum_{\vec{R}_{Aj}}^N e^{i\vec{k} \cdot (\vec{R}_{Aj} - \vec{R}_{Ai})} \left\langle \varphi_A \left(\vec{r} - \vec{R}_{Ai} \right) \right| H \left| \varphi_A \left(\vec{r} - \vec{R}_{Aj} \right) \right\rangle$$

Same site only:

$$\begin{split} H_{AA} &= \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right| H \left| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle \qquad S_{AA} = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle \\ &= \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right| H \left| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle \qquad = \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle \\ &\equiv \varepsilon_{0} \qquad \equiv 1 \end{split}$$

A and B sites are chemically identical:

1.6 Calculation of transfer and overlap integrals

Off-diagonal matrix element

$$\boldsymbol{H}_{AB} = \left\langle \Phi_{A} \left| \boldsymbol{H} \right| \Phi_{B} \right\rangle = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \sum_{\vec{R}_{Bj}}^{N} e^{i\vec{k} \cdot (\vec{R}_{Bj} - \vec{R}_{Ai})} \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right| \boldsymbol{H} \left| \varphi_{B} \left(\vec{r} - \vec{R}_{Bj} \right) \right\rangle$$

Off-diagonal matrix element

$$\boldsymbol{H}_{AB} = \left\langle \boldsymbol{\Phi}_{A} \left| \boldsymbol{H} \right| \boldsymbol{\Phi}_{B} \right\rangle = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \sum_{\vec{R}_{Bj}}^{N} e^{i\vec{k} \cdot (\vec{R}_{Bj} - \vec{R}_{Ai})} \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right| \boldsymbol{H} \left| \varphi_{B} \left(\vec{r} - \vec{R}_{Bj} \right) \right\rangle$$

Every A site has 3 B nearest neighbours:

$$\vec{\delta}_{1} = R_{B1} - R_{Ai} = \left(0, \frac{a}{\sqrt{3}}\right); \quad \vec{\delta}_{2} = R_{B2} - R_{Ai} = \left(\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right);$$
$$\vec{\delta}_{3} = R_{B3} - R_{Ai} = \left(-\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right)$$

Off-diagonal matrix element

$$\boldsymbol{H}_{AB} = \left\langle \Phi_{A} \left| \boldsymbol{H} \right| \Phi_{B} \right\rangle = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \sum_{\vec{R}_{Bj}}^{N} e^{i\vec{k} \cdot (\vec{R}_{Bj} - \vec{R}_{Ai})} \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right| \boldsymbol{H} \left| \varphi_{B} \left(\vec{r} - \vec{R}_{Bj} \right) \right\rangle$$

Every A site has 3 B nearest neighbours:

Off-diagonal matrix element

$$H_{AB} = \left\langle \Phi_A \left| H \right| \Phi_B \right\rangle = \frac{1}{N} \sum_{\vec{R}_{Ai}}^N \sum_{\vec{R}_{Bj}}^N e^{i\vec{k} \cdot (\vec{R}_{Bj} - \vec{R}_{Ai})} \left\langle \varphi_A \left(\vec{r} - \vec{R}_{Ai} \right) \right| H \left| \varphi_B \left(\vec{r} - \vec{R}_{Bj} \right) \right\rangle$$

Every A site has 3 B nearest neighbours:

$$\vec{\delta}_{1} = R_{B1} - R_{Ai} = \left(0, \frac{a}{\sqrt{3}}\right); \quad \vec{\delta}_{2} = R_{B2} - R_{Ai} = \left(\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right);$$
$$\vec{\delta}_{3} = R_{B3} - R_{Ai} = \left(-\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right)$$
$$H_{AB} = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \left[\sum_{\vec{\delta}_{j}=1}^{3} e^{i\vec{k}\cdot\vec{\delta}_{j}} \left\langle \varphi_{A}\left(\vec{r}-\vec{R}_{Ai}\right)\right| H \left|\varphi_{B}\left(\vec{r}-\vec{R}_{Bj}\right)\right\rangle\right] = \sum_{\vec{\delta}_{j}=1}^{3} e^{i\vec{k}\cdot\vec{\delta}_{j}} \left\langle \varphi_{A}\left(\vec{r}-\vec{R}_{Ai}\right)\right| H \left|\varphi_{B}\left(\vec{r}-\vec{R}_{Bj}\right)\right\rangle$$

Parameterise nearest neighbour transfer integral:

$$\gamma_0 = -\left\langle \varphi_A \left(\vec{r} - \vec{R}_{Ai} \right) \middle| H \middle| \varphi_B \left(\vec{r} - \vec{R}_{Bj} \right) \right\rangle$$
$$\Rightarrow \quad H_{AB} = -\gamma_0 f \left(\vec{k} \right); \qquad f \left(\vec{k} \right) = \sum_{\vec{\delta}_j = 1}^3 e^{i\vec{k}.\vec{\delta}_j}$$

Off-diagonal matrix element

$$H_{AB} = \left\langle \Phi_A \left| H \right| \Phi_B \right\rangle = \frac{1}{N} \sum_{\vec{R}_{Ai}}^N \sum_{\vec{R}_{Bj}}^N e^{i\vec{k} \cdot (\vec{R}_{Bj} - \vec{R}_{Ai})} \left\langle \varphi_A \left(\vec{r} - \vec{R}_{Ai} \right) \right| H \left| \varphi_B \left(\vec{r} - \vec{R}_{Bj} \right) \right\rangle$$

Every A site has 3 B nearest neighbours:

$$\vec{\delta}_{1} = R_{B1} - R_{Ai} = \left(0, \frac{a}{\sqrt{3}}\right); \quad \vec{\delta}_{2} = R_{B2} - R_{Ai} = \left(\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right);$$

$$\vec{\delta}_{3} = R_{B3} - R_{Ai} = \left(-\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right)$$

$$H_{AB} = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \left[\sum_{\vec{\delta}_{j}=1}^{3} e^{i\vec{k}\cdot\vec{\delta}_{j}} \left\langle \varphi_{A}\left(\vec{r}-\vec{R}_{Ai}\right)\right| H \left|\varphi_{B}\left(\vec{r}-\vec{R}_{Bj}\right)\right\rangle \right] = \sum_{\vec{\delta}_{j}=1}^{3} e^{i\vec{k}\cdot\vec{\delta}_{j}} \left\langle \varphi_{A}\left(\vec{r}-\vec{R}_{Ai}\right)\right| H \left|\varphi_{B}\left(\vec{r}-\vec{R}_{Bj}\right)\right\rangle$$

Parameterise nearest neighbour transfer integral:

$$\gamma_{0} = -\left\langle \varphi_{A}\left(\vec{r} - \vec{R}_{Ai}\right) \middle| H \middle| \varphi_{B}\left(\vec{r} - \vec{R}_{Bj}\right) \right\rangle$$

$$\Rightarrow H_{AB} = -\gamma_{0} f\left(\vec{k}\right); \quad f\left(\vec{k}\right) = \sum_{\vec{\delta}_{j}=1}^{3} e^{i\vec{k}.\vec{\delta}_{j}} \qquad \Rightarrow S_{AB} = s f\left(\vec{k}\right)$$

Off-diagonal matrix element

$$f(\vec{k}) = \sum_{\vec{\delta}_j=1}^{3} e^{i\vec{k}\cdot\vec{\delta}_j} = e^{ik_y a/\sqrt{3}} + 2e^{-ik_y a/2\sqrt{3}} \cos\left(\frac{k_x a}{2}\right)$$

1 Tight binding model of monolayer graphene 1.7 Calculation of energy

$$H = \begin{pmatrix} \varepsilon_0 & -\gamma_0 f(\vec{k}) \\ -\gamma_0 f^*(\vec{k}) & \varepsilon_0 \end{pmatrix}; \quad S = \begin{pmatrix} 1 & sf(\vec{k}) \\ sf^*(\vec{k}) & 1 \end{pmatrix}$$

1 Tight binding model of monolayer graphene 1.7 Calculation of energy

$$H = \begin{pmatrix} \varepsilon_0 & -\gamma_0 f(\vec{k}) \\ -\gamma_0 f^*(\vec{k}) & \varepsilon_0 \end{pmatrix}; \quad S = \begin{pmatrix} 1 & sf(\vec{k}) \\ sf^*(\vec{k}) & 1 \end{pmatrix}$$

Secular equation gives the eigenvalues:

 $\det(H-ES)=0$

$$\det \begin{pmatrix} \varepsilon_0 - E & -(\gamma_0 + Es)f(\vec{k}) \\ -(\gamma_0 + Es)f^*(\vec{k}) & \varepsilon_0 - E \end{pmatrix} = 0$$
$$(E - \varepsilon_0)^2 - (\gamma_0 + Es)^2 |f(\vec{k})|^2 = 0$$

1 Tight binding model of monolayer graphene 1.7 Calculation of energy

$$H = \begin{pmatrix} \varepsilon_0 & -\gamma_0 f(\vec{k}) \\ -\gamma_0 f^*(\vec{k}) & \varepsilon_0 \end{pmatrix}; \quad S = \begin{pmatrix} 1 & sf(\vec{k}) \\ sf^*(\vec{k}) & 1 \end{pmatrix}$$

Secular equation gives the eigenvalues:

 $\det(H-ES)=0$

$$\det \begin{pmatrix} \varepsilon_0 - E & -(\gamma_0 + Es)f(\vec{k}) \\ -(\gamma_0 + Es)f^*(\vec{k}) & \varepsilon_0 - E \end{pmatrix} = 0$$
$$(E - \varepsilon_0)^2 - (\gamma_0 + Es)^2 |f(\vec{k})|^2 = 0$$

$$E = \frac{\varepsilon_0 \pm \gamma_0 \left| f\left(\vec{k}\right) \right|}{1 \mp s \left| f\left(\vec{k}\right) \right|}$$
<u>1 Tight binding model of monolayer graphene</u> <u>1.7 Calculation of energy</u>

$$E = \frac{\varepsilon_0 \pm \gamma_0 \left| f\left(\vec{k}\right) \right|}{1 \mp s \left| f\left(\vec{k}\right) \right|}$$

Typical parameter values [quoted in Saito et al]:

$$\varepsilon_0 = 0, \gamma_0 = 3.033 eV, s = 0.129$$

$$f(\vec{k}) = e^{ik_y a/\sqrt{3}} + 2e^{-ik_y a/2\sqrt{3}} \cos\left(\frac{k_x a}{2}\right)$$

2 Expansion near the K points 2.1 Exactly at the K point

Two non-equivalent K-points

$$\vec{\delta}_1 = \left(0, \frac{a}{\sqrt{3}}\right); \qquad \Rightarrow \quad K.\vec{\delta}_1 = 0$$
$$\vec{K} = \left(\frac{4\pi}{3a}, 0\right) \qquad \qquad \vec{\delta}_2 = \left(\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right); \qquad \Rightarrow \quad K.\vec{\delta}_2 = \frac{2\pi}{3}$$
$$\vec{\delta}_3 = \left(-\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right); \qquad \Rightarrow \quad K.\vec{\delta}_3 = -\frac{2\pi}{3}$$

$$f(\vec{K}) = \sum_{\vec{\delta}_j=1}^{3} e^{i\vec{K}\cdot\vec{\delta}_j} = e^0 + e^{2\pi i/3} + e^{-2\pi i/3} = 0$$

At the corners of the Brillouin zone (K points), electron states on the A and B sub-lattices decouple and have exactly the same energy

K points also referred to as "valleys"

Show 3d band structure

2 Expansion near the K points 2.1 Exactly at the K point

6 corners of the Brillouin zone (K points), but only two are non-equivalent

We consider two K points with the following wave vectors:

$$\vec{K} = \left(\frac{4\pi}{3a}, 0\right); \quad \vec{K}' = \left(-\frac{4\pi}{3a}, 0\right)$$

2 Expansion near the K points

2.2 Linear expansion

Brillouin zone K' F K' K' K' K' K' K'

Two non-equivalent K-points **Consider two non-equivalent K points:**

$$\vec{K}, \vec{K}' = \xi \left(\frac{4\pi}{3a}, 0\right); \qquad \xi = \pm 1$$

and small momentum near them:

$$\vec{k} = \xi \left(\frac{4\pi}{3a}, 0\right) + \frac{\vec{p}}{\hbar}$$

2 Expansion near the K points

2.2 Linear expansion

K-points

Consider two non-equivalent K points:

$$\vec{K}, \vec{K}' = \xi \left(\frac{4\pi}{3a}, 0\right); \qquad \xi = \pm 1$$

and small momentum near them:

$$\vec{k} = \xi \left(\frac{4\pi}{3a}, 0\right) + \frac{\vec{p}}{\hbar}$$

Linear expansion in small momentum:

$$f(\vec{k}) = -\frac{\sqrt{3a}}{2\hbar} (\xi p_x - i p_y) + O(pa/\hbar)^2$$

$$H = \begin{pmatrix} 0 & -\gamma_0 f(\vec{k}) \\ -\gamma_0 f^*(\vec{k}) & 0 \end{pmatrix} \approx v \begin{pmatrix} 0 & \xi p_x - ip_y \\ \xi p_x + ip_y & 0 \end{pmatrix}$$
$$S = \begin{pmatrix} 1 & sf(\vec{k}) \\ sf^*(\vec{k}) & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + O\left(\frac{spa}{\hbar}\right) \qquad v = \frac{\sqrt{3}a\gamma_0}{2\hbar} \approx 10^6 \, m/s$$

2 Expansion near the K points 2.2 Linear expansion

$$H = \begin{pmatrix} 0 & -\gamma_0 f(\vec{k}) \\ -\gamma_0 f^*(\vec{k}) & 0 \end{pmatrix} \approx v \begin{pmatrix} 0 & \xi p_x - ip_y \\ \xi p_x + ip_y & 0 \end{pmatrix}$$
$$S = \begin{pmatrix} 1 & sf(\vec{k}) \\ sf^*(\vec{k}) & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + O \begin{pmatrix} spa \\ \hbar \end{pmatrix} \qquad v = \frac{\sqrt{3}a\gamma_0}{2\hbar} \approx 10^6 \, m/s$$

New notation for components on A and B sites

$$\boldsymbol{C}_{j} = \begin{pmatrix} \boldsymbol{C}_{j1} \\ \boldsymbol{C}_{j2} \end{pmatrix} \quad \Leftrightarrow \quad \boldsymbol{\psi} = \begin{pmatrix} \boldsymbol{\psi}_{A} \\ \boldsymbol{\psi}_{B} \end{pmatrix}$$

$$S^{-1}HC_{j} = E_{j}C_{j} \implies v \begin{pmatrix} 0 & \xi p_{x} - ip_{y} \\ \xi p_{x} + ip_{y} & 0 \end{pmatrix} \begin{pmatrix} \psi_{A} \\ \psi_{B} \end{pmatrix} = E \begin{pmatrix} \psi_{A} \\ \psi_{B} \end{pmatrix}$$

2 Expansion near the K points

2.3 Dirac-like equation

For one K point (e.g. $\xi = +1$) we have a 2 component wave function,

$$\boldsymbol{\psi} = \begin{pmatrix} \boldsymbol{\psi}_A \\ \boldsymbol{\psi}_B \end{pmatrix}$$

with the following effective Hamiltonian:

$$H = v \begin{pmatrix} 0 & p_x - ip_y \\ p_x + ip_y & 0 \end{pmatrix} = v \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v (\sigma_x p_x + \sigma_y p_y) = v \vec{\sigma} \cdot \vec{p}$$

$$\pi = p_x + ip_y = p e^{i\varphi}$$

$$\pi^+ = p_x - ip_y = p e^{-i\varphi}$$

Bloch function amplitudes on the AB sites ('pseudospin') mimic spin components of a relativistic Dirac fermion.

a

2 Expansion near the K points 2.3 Dirac-like equation

To take into account both K points (ξ =+1 and ξ =-1) we can use a 4 component wave function,

$$\psi = \begin{pmatrix} \psi_{AK} \\ \psi_{BK} \\ \psi_{AK'} \\ \psi_{BK'} \end{pmatrix}$$

with the following effective Hamiltonian:

$$H = v \begin{pmatrix} 0 & p_x - ip_y & 0 & 0 \\ p_x + ip_y & 0 & 0 & 0 \\ 0 & 0 & 0 & -p_x - ip_y \\ 0 & 0 & -p_x + ip_y & 0 \end{pmatrix}$$

2 Expansion near the K points 2.3 Dirac-like equation

$$H = v \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v \vec{\sigma} \cdot \vec{p} = vp \ \vec{\sigma} \cdot \vec{n}$$

for conduction band electrons, $\vec{\sigma} \cdot \vec{n} = 1$

 $\vec{\sigma} \cdot \vec{n} = -1$ valence band ('holes')

Show 3D picture

2 Expansion near the K points 2.4 Absence of backscattering

$$H = v \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v p \begin{pmatrix} 0 & e^{-i\varphi} \\ e^{i\varphi} & 0 \end{pmatrix}; \qquad E = v p \quad \Leftrightarrow \quad \psi(\varphi)$$

$$\Leftrightarrow \psi(\varphi) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\varphi/2} \\ e^{i\varphi/2} \end{pmatrix}$$

2 Expansion near the K points 2.4 Absence of backscattering

$$H = v \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v p \begin{pmatrix} 0 & e^{-i\varphi} \\ e^{i\varphi} & 0 \end{pmatrix}; \qquad E = v p \quad \Leftrightarrow \quad \psi(\varphi) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\varphi/2} \\ e^{i\varphi/2} \end{pmatrix};$$

angular scattering probability:

$$\left|\left\langle \psi(\varphi) | \psi(\varphi=0) \right\rangle\right|^2 = \cos^2(\varphi/2)$$

under pseudospin conservation, helicity suppresses backscattering in a monolayer

- Klein paradox
- Show angular dependence

2 Expansion near the K points

2.5 Berry's phase π

Show Dirac belt Show definition of Berry phase **Monolayer graphene**

$$H = v \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v p \begin{pmatrix} 0 & e^{-i\varphi} \\ e^{i\varphi} & 0 \end{pmatrix};$$
$$E = v p \iff \psi(\varphi) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\varphi/2} \\ e^{i\varphi/2} \end{pmatrix}$$

massless Dirac fermions with Berry's phase π

3. Bilayer graphene [Bernal (AB) stacking]

3. Bilayer graphene [Bernal (AB) stacking]

$$\begin{array}{cccc} (\text{B to A}) \text{ and } (\widetilde{B} \text{ to } \widetilde{A}) & A & \widetilde{B} & \widetilde{A} & B \\ & \text{hopping} & & \\ & \text{given by} & H = \begin{pmatrix} & & \nu \pi^+ \\ & \nu \pi & & \end{pmatrix} \begin{array}{c} A & & \\ & & V \pi^+ \\ & & \nu \pi^+ & & \\ & & \nu \pi & & \\ & & & H \end{array} \right) \begin{array}{c} \widetilde{B} & & \\ & \widetilde{B} & & \\ & & & H \end{array}$$

3. Bilayer graphene [Bernal (AB) stacking]

$$\begin{array}{cccc} \text{Bilayer} \\ \text{Hamiltonian} & \text{H} = \begin{pmatrix} A & \widetilde{B} & \widetilde{A} & B \\ 0 & 0 & v\pi^+ \\ 0 & 0 & v\pi^- \\ 0 & v\pi^+ & 0 & \gamma_1 \\ v\pi & 0 & \gamma_1 & 0 \end{pmatrix} \begin{pmatrix} A \\ \widetilde{B} \\ \widetilde{A} \\ B \end{pmatrix}$$

<u>3 Bilayer graphene</u> Berry phase 2π quasiparticles

$$H = -\frac{1}{2m} \begin{pmatrix} 0 & (\pi^{+})^{2} \\ \pi^{2} & 0 \end{pmatrix} = -\frac{p^{2}}{2m} \begin{pmatrix} 0 & e^{-2i\varphi} \\ e^{2i\varphi} & 0 \end{pmatrix}; \qquad E = \frac{p^{2}}{2m} \iff \psi(\varphi) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\varphi} \\ e^{i\varphi} \end{pmatrix}$$

<u>3 Bilayer graphene</u> Berry phase 2π quasiparticles

$$H = -\frac{1}{2m} \begin{pmatrix} 0 & (\pi^{+})^{2} \\ \pi^{2} & 0 \end{pmatrix} = -\frac{p^{2}}{2m} \begin{pmatrix} 0 & e^{-2i\varphi} \\ e^{2i\varphi} & 0 \end{pmatrix}; \qquad E = \frac{p^{2}}{2m} \iff \psi(\varphi) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\varphi} \\ e^{i\varphi} \end{pmatrix}$$

No absence of backscattering

angular scattering probability:

Some topics in graphene physics

1) Integer Quantum Hall effect unusual sequencing of Hall conductivity plateaus

2) Minimal conductivity

see talks this afternoon: Jakub Tworzdlo; Jozsef Cserti

3) Tunnelling of chiral quasiparticles

MI Katsnelson, KS Novoselov, and AK Geim, cond-mat/0604343; VV Cheianov and VI Falko, PRB 74, 041403

4) Weak localisation (?)

H Suzuura and T Ando, PRL 89, 266603 (2002); SV Morozov *et al*, PRL 97, 016801 (2006); DV Khveshchenko; AF Morpurgo and F Guinea; E McCann *et al* [all cond-mat 2006]

5) Andreev reflection

see talk this afternoon: Carlo Beenakker

Integer Quantum Hall effect in a 2d semiconductor

3 Integer quantum Hall effect

Graphene monolayer

Novoselov *et al*, Nature 438, 197 (2005); Zhang *et al*, Nature 438, 201 (2005).

Landau levels and QHE

Show super-symmetry Get HO and take sqrt. Check Ezawa Check McLure 2D Landau levels of chiral electrons J=1 monolayer J=2 bilayer

 $\pi^{J} \varphi_{0} = \dots = \pi^{J} \varphi_{J-1} = 0$

$$g\begin{pmatrix} 0 & (\pi^{+})^{J} \\ \pi^{J} & 0 \end{pmatrix} \psi = \varepsilon \psi$$

$$\begin{pmatrix} \varphi_{0} \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} \varphi_{J-1} \\ 0 \end{pmatrix} \Rightarrow \varepsilon = 0$$
value

valley index

also, two-fold real spin degeneracy $\begin{pmatrix} 0 & (\pi^{+})^{J} & & \\ \pi^{J} & 0 & & \\ & 0 & (-\pi^{+})^{J} & \\ & (-\pi)^{J} & 0 & \end{pmatrix} \begin{pmatrix} A & + \\ \widetilde{B} & + \\ \widetilde{B} & - \\ A & - \end{pmatrix}$

4-fold degenerate zero-energy Landau level for electrons with Berry's phase π

J.McClure, Phys. Rev. 104, 666 (1956) F.Haldane, PRL 61, 2015 (1988) Y.Zheng and T.Ando, Phys. Rev. B 65, 245420 (2002) V.P. Gusynin and S.G. Sharapov, Phys. Rev. Lett 95, 146801 (2005) N.M.R. Peres, F. Guinea and A.H. Castro Neto, PRB 73, 125411 (2006)

8-fold degenerate zero-energy Landau level for electrons with Berry's phase 2π

E.McCann and V.I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006)

QHE in graphene

monolayer

bilayer

Unconventional Quantum Hall Effect and Berry's Phase of 2π in Bilayer Graphene K.Novoselov, E.McCann, S.Morozov, V.Fal'ko, M.Katsnelson, U.Zeitler, D.Jiang, F.Schedin, A.Geim Nature Physics 2, 177-180 (2006)

Summary

Graphene monolayer – 2D electron system with Berry phase π quasiparticles and 4 times degenerate zero-energy Landau levels manifested in the quantum Hall effect.

EVALUATE: Graphene bilayer – 2D electron system with Berry phase 2π quasiparticles and 8 times degenerate zero-energy Landau levels manifested in the quantum Hall effect.

The End