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1. Introduction 
 
 
 The Hall effect is basic to solid-state physics and an important diagnostic tool for 

the characterization of materials – particularly semi-conductors. It provides a direct 

determination of both the sign of the charge carriers, e.g. electron or holes (appendix A), 

and their density in a given sample.   

The basic setup is shown in Fig. 1:  A thin strip (thickness δ) of the material to be 

studied is placed in a magnetic field B oriented at right angles to the strip. 

 
Fig. 1:  Hall effect geometry.  This arrangement corresponds to our laboratory setup. 

 



A current I is arranged to flow through the strip from left to right, and the voltage 

difference between the top and bottom is measured.  Assuming the voltmeter probes are 

vertically aligned, the voltage difference is zero when B = 0.   

The current I flows in response to an applied electric field, with its direction 

established by convention.  However, on the microscopic scale I is the result of either 

positive charges moving in the direction of I, or negative charges moving backwards.   In 

either case, the magnetic Lorentz force Bv ×q  causes the carriers to curve upwards.  

Since charge cannot leave the top or bottom of the strip, a vertical charge imbalance 

builds up in the strip.  This charge imbalance produces a vertical electric field which 

counteracts the magnetic force, and a steady-state situation is reached.  The vertical 

electric field can be measured as a transverse potential difference on the voltmeter. 

Suppose now that the charge carriers where electrons ( eq −= ).  In this case 

negative charge accumulates on the strip’s top so the voltmeter would read a negative 

potential difference.  Alternately, should the carriers be holes ( eq += ) we measure a 

positive voltage. 

The above argument provides a simple picture in which to think about the Hall 

effect — and in fact leads to the correct answer if pursued.  However, it presupposes a 

steady current of charge carriers flowing in the conductor all in a single direction with 

constant speed.  Why, for instance, don’t the carriers accelerate?  The true nature of 

macroscopic conduction is a bit more complicated, relying on a statistical average over 

individual carrier’s motions.  In the next section we will briefly look at this issue. 



 

2. The Drude theory and the Hall effect 
 
 
 Before considering the effect of magnetic fields on conductors, we need some 

model to describe the flow of currents in response to electric fields.  To do so we will use 

the Drude theory of conductors.  This is a simple classical model, and many of its 

concepts extend to the quantum case.  A more careful account of the Drude model can be 

found in the first chapter of “Solid State Physics” by Ashcroft and Mermin. 

The Drude model envisions a conductor as a gas of free current-carrying charges.  

The freely moving carriers suffer randomizing collision events on average every τ 

seconds.  The parameter τ  is called the relaxation time1, and is the only feature 

describing the (otherwise unspecified) collision events. 

 

 
 

Fig. 2:  Example of a charge carrier’s random trajectory after four collision events. 

 

Figure 2 indicates the basic idea.  The solid black lines show a specific trajectory of a 

charge carrier in the absence of any external force.  It proceeds with some constant 

                                                 
1 One might think that collisions occur more often the faster the particles are moving, so that τ could 
depend on the average particle velocity V.  However, we’ll see that the thermal velocities the carriers 
actually move with between collisions is very much greater than V. 



velocity in some direction until it experiences a thermal2 collision. The red dashed lines 

indicate how each of these trajectories would be influenced by a constant external force 

F:  The particle now accelerates in the direction of F consistent with its initial conditions 

dictated by the last collision. When these paths are assembled, we see that F has caused a 

net displacement Δx after the four collisions; the particle has begun to ‘drift’ in the 

direction of F. 

 For macroscopic quantities, only averages over all particles are of interest. With 

the above assumptions, one can obtain an equation of motion for the average momentum 

P, given by 

 

FPP
=+

τ
1

dt
d . 

 

Here, P is interpreted as follows: a group of charge carriers (say 2310≈ ) all have 

some specific average momentum P0 at t = 0, the group’s average momentum P(t) at any 

future time is then determined by this initial value and the first order equation above.  

The average momentum P of the group evolves in time like a single carrier subjected to 

the average external force F per particle, but subjected additionally to a resistive 

damping.  This damping is a consequence of all the random collisions; when τ  is large 

collisions are uncommon. 

For a constant force a terminal momentum is reached — independent of the initial 

conditions.  This is in complete analogy with the motion of an object falling through air: 

the object either speeds up or slows down enough so that the air-resistance counteracts its 

weight.  In our case P becomes constant in time as FP τ→ .  Thus, if we apply a force F 

and wait ‘long’ enough, a steady state develops where, on average, each particle drifts 

with a constant speed in the direction of F. 

In response to a constant electric field ( EF q= ) a constant current of charge 

carriers is established.  The current density J is the average charge crossing an (oriented) 

area per unit time.  If there are n charge carriers per unit volume with average (drift) 

                                                 
2 That is, the new velocity has a random direction and its magnitude, unrelated to the old velocity, is 
consistent with the temperature at the collision site (i.e. on average  ½ mv2 = kT ) 



velocity m/PV = , the associated current density is mqnqnq /EVJ τ×== .  Thus, we 

arrive at Ohm’s law  

 

JEEEJ ρστ
=≡= or           

2

m
nq , 

 

where σ is the conductivity, and σρ /1=  the resistivity, of the material; 

 

nq
m

2τ
ρ = . 

 

Note that ρ is inversely proportional to the relaxation time.  Since we expect that τ 

decreases with increasing temperature (carrier collisions occur more often), we expect a 

metal’s resistance to increase with temperature (which it does). 

 Now, consider what happens when we apply a magnetic field B to a thin strip of 

material in which a current I is flowing, as shown in Fig. 3. 

 

 
Fig. 3:  Hall effect geometry again; the strip has a thickness δ, length l, and height h. 

 

Here, the applied field B is directed only in the z direction (into the paper).  The x-

component of E drives the steady current I in the x direction, and a y-component of E 

must appear to balance the Lorentz force on the charge carriers:  The equation of motion 

(in SI units) is  
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m
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dt
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Again, when a steady current flow is established the time derivative of V at each 

point vanishes3.  Multiplying the above by qnτ , the time-independent result can be 

written in terms of J as  

 

( )BJEJ ×+=
m
qτσ . 

 

With the setup shown in Fig. 3 steady current can only flow in the x direction xJ ˆJ= , 

while zB ˆB= .   Performing the cross product and resolving into components gives 

 

JB
m
qEJE yx

τσσ ==        and       . 

 

Along with Ohm’s law describing current flow along the strip, we now have a component 

to the electric field in the transverse direction — proportional to J and B.  The Hall 

Coefficient (or Constant) RH is officially defined as this proportionality constant: 

 

JBRE Hy = . 

 

The Drude model thus predicts  

 

nq
RH

1
= . 

 

The Hall constant thus gives a direct indication of the sign of the charge carriers; it is 

negative for electrons ( eq −= ) and positive for holes ( eq += ).  Note its independence of 

                                                 
3 Remember that V is not the velocity of any given particle, but an average.  Note that F is a velocity-
dependant force. When averaged, the single-particle velocity v is replaced by the average V. 



the our model parameter τ :  it turns out from a quantum mechanical analysis of the 

problem that this formula generalizes to a wide class of materials.  Note also that the Hall 

field is large for low carrier concentrations: we might expect that the effect will be harder 

to detect in metals than in semi-conductors.   

 The Hall field Ey can be measured by the voltage difference between points a and 

b (Fig. 3) since hEVVV ybaH =−=Δ , where h is the sample height.  The total current 

flowing through the strip is )( δhJI ×= .  Thus, in terms of laboratory quantities we have 

the equivalent definition of RH in terms of the Hall voltage and the current: 

 

BI
R

V H
H δ

=Δ  

 

Where, again, δ is the thickness of the strip.  As we reasoned from the mechanics of Fig. 

1, the Hall voltage-difference is negative for electron carriers and positive for hole 

conduction.  

The Hall constant should not be confused with what researchers term the Hall 

resistance (often denoted by the same symbol used for the Hall constant).  The normal 

resistance of the sample is just the voltage drop along the sample divided by I.  In 

analogy, the Hall resistance (in ohms) is defined as IVH /Δ — a kind of transverse 

resistance.  Obviously, the Hall resistance is linearly dependent on B.  However, in 2-D 

systems, at very low temperature and large fields, the Hall resistance show a step-like 

(rather than linear) dependence on B.   These steps are completely independent of the 

type of sample and quantitized to values meh 2/ , where m is an integer.  This is the 

famous Quantum Hall Effect4.  The fundamental quantum of Hall resistance is 

Ω= 813,25/ 2eh .  In this lab we will only be concerned with the Hall coefficient.   

                                                 
4 There is also a fractional quantum Hall effect. 



 

 In the SI system the Hall coefficient unit is (volt m)/(amp tesla) or m/TΩ , 

however RH  is often reported in hybrid units such as (volt cm)/(amp gauss).  One tesla  

[T — equal to one (newton sec)/(coulomb m) ] is equivalent to ten kilogauss (kG). 

 

Here is a list of values for some common elemental conductors 

 

Element RH   (10-12 Ω cm/G) ρ   (μΩ cm) @ 20C 

Ag    – 0.8  1.63 
Al    – 0.4  2.67 
Au    – 0.7  2.20 
Co   + 2.5   6.34 
Cu   – 0.5   1.69 
Fe  + 11.0 10.1 
Mg    – 0.9  4.2 
Mo   + 1.3  5.7 
Ni   – 5.1  6.9 
Sb +200.0 40.1 
W   + 1.2  5.4 
Zn   + 1.0    5.96 

 

 

These values should be regarded as characteristic; real-world values of RH  are dependant 

on a number of parameters such as temperature, sample purity, and even magnetic field. 

   

 Determination of RH and ρ  provide some insight into the nature of conduction in 

solids.  As an example, consider room-temperature silver with   

 

Ag:  
⎩
⎨
⎧

Ω=
×−=×−= −−

cm 6.1
Vm/AT 108.0Vcm/AG 108.0 1012

μρ
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The negative Hall coefficient indicates that electrons are the charge carriers.  From its 

magnitude, we can derive the carrier concentration 

 



322328 cm108.7m108.71 −− ×=×==
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H
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We can compare this with the density of Ag atoms, which we find from its density of 

10.5 g/cm3 and mass number 107.87 g/mole.  These values give an atomic density of 
-322 cm 10  5.9 × .  We see there is about one (1.3) conduction-electron/atom, more-or-less 

in keeping with what we might expect from Ag’s 5s1 valence configuration.    

This simple expectation that atomic valence electrons provide the conduction 

carriers breaks down for most metals, e.g. a similar calculation for Be (valence 2s2) yields 

0.2 holes/atom! 

The relaxation time can be found from the resistivity and the carrier concentration 

 

s108.2 14−×== HR
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Here, in keeping with the free-electron model, we’ve used the electron mass rather than 

an effective mass (see App. A).  This is the average time between scattering events for 

the electrons conducting the current.   

This gives us some insight into the scattering mechanism (at least within our 

Drude model).  The mean free path, , is the average distance an electron travels 

between collisions.  We can estimate this from the average thermal velocity of an 

electron ( kTmvT 22 = ).  For room temperature (300K) this is m/s105.9 4×=Tv , and so 

 

m107.2 9−×=≈ τTv . 

 

Hence the electron travels about 27 Å between collisions.  This is larger than our 

expectation of the Ag atomic spacing ( 5.23/1 =≈ −n Å).  The quantum mechanical model 

shows that the principle scattering mechanism is not the atomic lattice sites, but the 

interaction with vibrations of the lattice (phonons). 



What is the drift velocity of the carriers?  This depends on the electric field 

applied.  Suppose we apply a familiar field, say 100 V/m – this is the field we would have 

by placing a 1 V potential difference across a 1 cm length of material.  The drift velocity 

in this case would be 

 

m/s 49.0/ == mqEV τ ! 

 

Notice how slow the average drift is to the thermal speed.  This gives some 

justification in defining τ  independently of V.  The applied forces barely perturb the 

actual trajectories, so that Fig. 2 is highly exaggerated. 

 



 

3. Measuring the Hall Coefficient in Metals 
 

 On the practical side of things, consider actually measuring the Hall Voltage 

using the geometry of Fig. 2.   To this end we have a number of metallic foils soldered to 

specially constructed circuit boards. Figure 4 shows our aluminum sample obtained from 

a piece of kitchen foil (burnished to thin it as much as possible): 

 

 
Fig. 4:  Hall-effect sample mounted on its board.  The sample is about 25mm square with 

a thickness of 0.02 mm. 

 

A foil current is passed through the sample (left to right in the photo) via the 5-wire 

harnesses.  This arrangement keeps the current flow in the foil spatially uniform.  The 

transverse Hall voltage is measured on the twin red/black leads.  

 The measured voltage will be small.  Our magnet attains a field strength of about 

10 kG.  For a foil thickness δ = 0.02mm then we expect a Hall voltage on the order of 20 

μV.   This is a very small potential to measure and we employ a very good DVM (Fluke 

model 45) on its most sensitive scale (resolution of 1 μV). 



In measuring the potential difference between points a and b (Fig. 2) the voltage 

probes will not be precisely aligned vertically.  The actual situation will be more like that 

of figure 4: 

 

 
Fig. 5:  Horizontal offset (γ) of Hall voltage measurement points. 

 

The resistance of the area between a and b is δργ hR /= , so that a potential difference 

IR exists along the strip.  Thus, an offset voltage (proportional to the current) occurs in 

our Hall measurement: 

 

RIBIRV H
ba +=Δ

δ, . 

 

Using again our Al example, if there was an effective mismatch of the probes by 0.5 mm, 

the resistance would be 27 μΩ causing an offset 270 μV at 10 A foil current.  This offset 

is large compared to the actual Hall voltage.  Our scheme will be to fix the foil current I, 

and scan the magnetic field.  A linear fit of baV ,Δ  vs. B will then have a slope δ/IRH . 

 



Procedure 
 

1.  Read appendices B and C, which will give you an overview of how the magnet and 

scan are controlled.  

 

2.    Choose a metal-foil sample, and attach it to the aluminum sample holder by two or 

three nylon screws.   Attach the five-wire current leads to the circuit board (copper side to 

copper side) as in Fig. 3 (also with the nylon screws provided).  Be sure to maintain the 

proper red/black polarity.  Each sample board comes with attached red/black leads for the 

Hall voltage measurement.  Place the sample and holder between the pole faces of the 

magnet — make sure the sample doesn’t interfere with the B-field probe located to the 

rear of the space.  The holder rides on the optical mount running beneath the magnet.  

When you get the sample placed, tighten the base down securely. 

The Hall voltage is measured by the Fluke 45 multimeter.  A specially-made test 

lead is needed to connect to the sample board’s Hall leads: it has red/black banana plugs 

on one end (connecting to the Fluke), and a female micro adapter on the other which 

mates with the male plug of the board leads.  Using this lead, connect the Board to the 

meter as shown in Fig. 6: 

 
Fig. 6:  Setup wiring for metal-foil samples. 

 



Using banana-jack cables connect the Pasco power supply which will provide the foil 

current (Fig. 6 again).  With the sample board orientation and electrical polarities 

indicated (and the magnet current in the ‘Normal’ setting), the experiment will have the 

same geometry as in Figs. 2 and 3.  You should satisfy yourself that this is so. 

 

3.  Next, connect the USB cables to your PC:  There are two (see Fig. B5), one from the 

Gaussmeter A/D box, and one shared by the magnet power supply and the Fluke meter.  

Turn on these instruments and deal with the usual Windows problem of finding ‘new’ 

USB devices.   

The Sorensen magnet power supply is disabled until the magnet cooling water is 

turned on.  This is accomplished by opening the ball valve on the copper plumbing on the 

wall behind the magnet.    

 

4.  Now, you must establish a constant current through the foil:  On the Pasco power 

supply, zero the voltage- and current-limit knobs (counterclockwise all the way).  Turn 

on the supply and turn the voltage adjust all the way up – you should still see zero current 

on the indicator.  Next carefully turn up the current limit knob until the current meter 

reads your desired current.  (You should take scans for at least three different currents: 

e.g. 6, 7.5 and 9 Amps or some similar values.)  The supply should now maintain a 

constant current through the foil while the Hall scan is underway. 

 

5.  You are ready to take a scan (have you read appendix C yet?)!  Run the HallScan 

program (which may or may not be on your desktop).  After initiation the code sits idle 

until you run a scan.   Mostly, the default scan parameters (2 to 10 kG ) are reasonable 

however, it’s best to increase the number of points to perhaps 10.  For the nickel sample, 

even more points are preferable.  Click the scan button and relax.   

 Currently, we have metal-foil samples mounted of Cu, Al, Fe, Ni, and Mo.  You 

should do them all (with a variety of foil currents for each).  Be careful to always 

maintain the standard setup geometry, and also make sure you have an adequate naming 

scheme for your output files. 

 



Analysis 
 

1.  Each scan, when baV ,Δ  is plotted against Bmeas , should result in a straight line with a 

slope of δ/IRH and an offset RI.  The nickel sample will be an exception, see part 4 

below.   

So, perform a linear fit to all your to data files.  The easiest way to accomplish 

this is simply to import them into Excel, plot them, and add a linear trend line.  This will 

give you a fitted slope and y-intercept.  Using the foil current I and the thickness δ  (listed 

on each sample) compute the Hall constant HR  and offset resistance R.  For a given 

sample, each data file should give a similar result – do you find any trend in HR  as a 

function of I?   

 

2.  Your final ‘measured’ value of HR  for a given metal can be taken as the average 

value of the HR  for each foil current.  Which samples conduct via electron and which via 

hole currents?  Compare your results of HR  to the values listed at the end of section 2 (be 

careful of your units!).  

 

3.  For each metal, calculate from HR  the measured carrier density n.  Look up each 

sample’s density, mass number, and valence structure and estimate what you think n 

should be (as we did for Ag at the end of section 2).  Compare. 

 

4.  Ni and Fe are ferromagnetic!  This means that within the foil are many crystal 

domains with oriented magnetic moments.  When an external field (what we’ve been 

calling B) is applied, domains aligned with the external field grow and a net 

magnetization M results.  The actual B inside the sample is thus a sum of the external 

field and that of the induced magnetization.  Notice that Fe’s Hall voltage shows a fairly 

linear dependence on B, but that Ni begins to curve over.  These differing behaviors are 

due to the fact that the magnetization saturates at a much lower field in Ni (6 kG) than in 

Fe (21 kG). 



4. Measuring the Hall Coefficient in Semiconductors. 
 

 The metal samples we’ve been dealing with up until now are (for obvious 

reasons) called conductors.  According to the band theory of solids, conductors are 

substances which have partially filled valance bands.  In such bands the electrons are free 

to respond to external forces, and a macroscopic current is easily established.  If the band 

is almost empty we have electron-like conduction, whereas if it is almost full we see 

hole-like conduction (appendix A).  Recall that the resistance of metals is determined by 

thermal scattering of the carriers, and the resistance of a metal thus increases with 

temperature. 

 In contrast, insulators have completely filled valance bands.  A filled band cannot 

support any macroscopic current since the electrons are ‘frozen’ in their individual 

orbitals by Pauli’s exclusion principle.  However, at temperatures greater than zero 

thermal agitation can promote electrons from a filled band into any empty bands, so that 

an insulator can have some free current carriers5.  What determines the degree to which 

conduction is possible is the energy gap between the filled valance band and the empty 

(conduction) band.  If this band gap is small compared with kT there will be a lot of 

promoted electrons available for conduction.  For band gaps much larger than kT there 

will be very few conduction electrons, and we have a very good insulator.  

 Semiconductors are insulators with intermediate energy gaps.  Silicon, for 

example, has a band gap of about 1.1 eV.  At zero temperature pure Si would be a perfect 

insulator.  At room temperature there is enough thermal excitation to promote about 1010 

conduction electrons/cm3.  This sounds like a lot, but recall there are on the order of 1022 

atoms/cm3 in the solid, so there is a conduction electron for every 1012 atoms!  In fact 

pure Si at room temperature is a pretty good insulator.  At higher temperatures more and 

more valance-band electrons are promoted, e.g. at 200 °C the carrier concentration has 

risen to 1014 cm-3.  This increase in carrier concentration with temperature generally 

overshadows the increased carrier scattering, so semi-conductors have the reverse 

behavior of metals: their resistance decreases with temperature. 

                                                 
5 Both holes and electrons. 



 Notice in the proceeding discussion that the word pure has been emphasized.  In 

practice we can never attain a purity anywhere near the intrinsic carrier concentration of 

one part in 1012.  In fact, even a tiny impurity concentration completely alters the (room 

temperature) electrical characteristics of semiconductors from their intrinsic behavior.  In 

the early days of semiconductor research, this fact caused a lot of conflicting results and 

confusion.   

Impurity atoms (of the right type) act as sources of free charge carriers:  When 

introduced into the semiconductor crystal, they form energy states only eV10 2−≈  

removed from either the conduction or valance band.   A donor impurity is located just 

below the conduction band and can be easily ionized thermally, donating electrons to the 

conduction band (n-type semiconductors).  Likewise, acceptor impurities lie just above 

the valence band and provide a place for valence electrons to go.  Acceptor impurities 

thus provide a way of introducing hole carriers (p-type semiconductors).  By carefully 

controlling the concentration and type of impurities, engineers can fabricate crystals with 

desired electrical properties.  As an example, Fig. 7 displays the resistivity of Si as a 

function of impurity concentration: 

 

 
 

Fig. 7:  Room temperature Si resistivity as a function of n- or p-type impurity 

concentration, over a range of 1 in 1010 up to 1 in 10.  For comparison, recall the intrinsic 

carrier density is on the order of 1010 cm-3, and a metal’s resistivity is cm10 6 Ω≈ − . 



 

Because the density of charge carriers (n) can change so readily with temperature, 

it’s customary in discussing semiconductors to factorize the conductance as 

 

nμσ = , 

 

where μ  is the mobility6.  The mobility is an important property of the semiconductor, 

which we will not be concerned with — except to point out the following:  By measuring 

both the hall constant (giving n) and the conductivity (or resistively) the mobility can be 

determined.  These pairs of measurements form an important and very common 

diagnostic procedure in both research and industry7. 

Our measurement of the Hall effect in semiconductors is similar to our procedure 

for metals, with only a few changes. Firstly, the samples are more crudely mounted: 

 

 
 

Fig. 8:  Typical semiconductor sample. 

                                                 
6 Actually, since the current is can be comprised of both hole and electron movement, there is a hole and 
electron mobility to consider and the hall constant becomes a little more complicated to interpret.  In this 
lab we will consider only materials which are doped with either donor or acceptor impurities—so the 
samples will only conduct via a single carrier type. 
7 See for example the NIST website http://www.eeel.nist.gov/812/hall.html for a lot more detail. 



Our samples are Si or Ge crystals soldiered (using Indium soldier) to copper tape 

strips.  An epoxy coating is applied for protection.  Since the semiconductor samples are 

much more resistive than the metal samples we can only pass a small current through 

them.  For this purpose we use the 0-20 mA constant current source instead of the Pasco 

power supply to provide ‘foil’ current.  For the same reason the resistance is high (i.e. 

low n), we will be measuring much larger Hall voltages, however the Fluke meter will 

handle this automatically.  

 

Procedure and Analysis 
 

The Fluke voltmeter and the current source hook to the samples using different 

leads than before.  They are banana connectors on the instrument end and gator clips on 

the sample end.  Figure 9 shows the hook-up scheme corresponding to our standard 

geometry. 

 

 
 

Fig. 9:  Setup wiring for semiconductor samples. 

 

While the wire colors are standardized on all the samples (so far) it’s best to think about 

what you’re doing with each setup. 



 Now the procedure and analysis goes exactly the same as for the metals.  For each 

semiconductor sample, you should do a Hall scan for a relatively wider range of currents; 

perhaps 10, 5, 1, 0.5, and 0.1 mA.  With semiconductors it’s often important to make 

measurements at as low a current as is possible (because of thermal considerations).  See 

how low you can go in current and still get a reasonable measurement. 

 



APPENDIX A:  Electron and hole conduction. 
 

We are all well aware (nowadays) that electrical conduction in solids is due solely 

to the movement of electrons.  A major catastrophe for the free-electron model of solids 

was the observation of positive Hall constants: how can there apparently be a motion of 

positive charge carriers in a metal?  The mystery is resolved by application of quantum 

theory to the problem, leading to the idea of electron ‘holes’.  Holes are a way of 

describing the collective behavior of many electrons by introducing fictitious particles. 

 The concept of an electron hole is, in fact, a subtle one.  Here, we explore the 

idea with the aim of comforting ourselves with a little fuller understanding.  To do so, we 

must first outline some of the most salient features of the quantum approach. 

When we solve for electron wave functions in a periodic potential we find energy 

eigenstates )(knε  which belong to various bands—each labeled by an index n.  Each 

band has a maximum and minimum possible energy.  For each band the wave vector k 

varies continuously over a K-space.  However, the spatial structure of the problem’s 

periodic potential dictates that the energies )(knε  are periodic in the ‘reciprocal’  lattice 

of K-space.  Hence, only wave vectors k that are confined to a so-called primitive cell 

(the 1st Brillion zone) of this lattice are needed to identify a unique state of the nth band. 

Now, let’s examine how electrons occupying the various states of a given band 

respond when external electric and magnetic fields E and B are applied.  To do so, we 

construct wave packets localized in space near r(t), and in wave vector near k(t).  The 

velocity of such a localized wave function is given by the group velocity.  The result is a 

semi-classical orbit [r(t), v(t)]n associated with energy )(knε and wave vector k at time t.  

The band index n is a constant of the motion.  The wave-packet’s equation of motion is 

 

nnt
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d εkkvvr

∇===
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Note that k , the so-called crystal momentum, is not the actual momentum of an 

electron following the orbit since its time-rate-of-change is dictated only by the external 

force Fext.  Effects due to internal forces (i.e. the periodic potential) have already been 

accounted for in solving the band structure )(knε .  

 Now we can ask “How do electrons near either the top or bottom of a band 

behave when an external electromagnetic field is applied?” 

First, consider the response of electrons occupying orbitals with energies near to 

the maximum of the band, maxε .  Near such a maximum, the energy can be estimated by 

the leading term of a Taylor expansion 

 

( )2
2
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where km is the wave vector at which the band energy is maximum.  The quadratic 

expansion coefficient is written in terms of the (positive) parameter m*, called the 

electron effective mass8.  How does a semi-classical orbit with k near km evolve in the 

presence of an external electro-magnetic force?  The velocity becomes 

 

*
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and so the acceleration is  

 

dt
d
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d n kkv

a
*
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For orbits near the top of the band, the acceleration is opposite in direction to the wave 

vector’s change.  From the semi-classical equations of motion, we have 

 

                                                 
8 More generally, the energy surface need not be symmetric, in which case the Taylor expansion is written 
in terms of an inverse effective mass tensor M-1. 
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Thus, the time evolution of the orbit can be viewed as the motion of an electron with a 

negative mass or better yet: as a positive particle of positive mass m*.   

 Now consider the behavior of orbits with energies near the band minimum.  Now 

the dispersion relation is approximated by 
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with some possibly different (but still positive) effective mass ◊m .  Orbits at the bottom 

of the band thus behave in an electron-like way: 

 

[ ]BkvEa ×+−≈+ ◊ )()()( nem . 

 

To summarize:   

 

Fact I:  Electrons occupying orbitals near the band minimum respond to external fields 

like particles of charge –e and mass ◊m .   Electrons occupying orbitals near the band 

maximum respond to external fields like particles of charge +e and mass m*. 

 

We can now construct the electronic structure of the solid by filling orbitals with 

the available number of electrons using Fermi-Dirac statistics; an orbital (quantum 

numbers n, k, and spin s = ↑ or ↓) is either occupied or unoccupied at time t by an 

electron.  The total number of occupied orbitals must be constant.   

The contribution to the current density associated with an electron occupying such 

a state is simply )()( kvne− .  The finite contribution to J due to a totally occupied region 

Ω of K-space in the nth band is 
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The factor 1/8π3 is a density of K-space states which appears when making a continuum 

approximation, and need not worry us.  The integral implicitly includes a sum over the 

spin quantum states.   

Now, it is not too difficult to show (using the time-reversal symmetry of the wave 

equation) that for every wave vector k in the 1st Brillion zone,  ),(),( ↓−=↑− kvkv .   The 

immediate corollary is that the current density due to an entirely occupied band is zero: 
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For a band which is only partially occupied, we can use this fact to write Fact II: 
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Hence, the current density associated with a group of electrons occupying certain orbitals 

of a band is the same as if there were positively charged electrons (holes) occupying the 

unoccupied electron orbitals.   Furthermore, in normal circumstances where the holes 

are near the band maximum, these hole orbitals respond to external fields like positively-

charged particles (Fact I).  It’s in this way that nearly-filled bands exhibit hole-like 

current densities. 



APPENDIX B:  Our lab magnet 

 

Specifications for the large Bell-Labs electromagnet in our modern physics 

laboratory have been lost long ago, however something is known about it in its present 

configuration.   

The magnet coils are separated into four sub-coils on each side.  To minimize 

voltage requirements these have been connected in parallel as shown below: 

 

 
Fig. B1:  Magnet coil configuration 

 

There are N (unknown) turns per sub-coil with total DC resistance of 129 Ω.  For a 

supply current I  – the current supplied by the power supply — there is a current of 

8/Ii =  flowing in each sub-coil.   

Our new Sorensen power supply can provide a current of up to 10 A at 200 VDC.  

Note that on the magnet’s rear there’s a reversing switch if you want the current (and thus 

the field) to go the other way.  Never switch the current direction unless the current is 

zero.  There is also an interlock which disables the power supply unless the magnet 

cooling water valve is on. 

 Now, consider the magnet in cross section as sketched in Fig. B2: 



 
 

Fig. B2:  Magnet cross section showing integration path Γ. 

 

The sense of current flow through the coils is indicated by dots or arrow tails in the usual 

way.  The spacing between the pole faces is cm3.4≈d .  We can gain some insight into 

the magnet’s characteristics by applying Ampere’s law around the closed loop  Γ.  

 

enclosedId =⋅∫
Γ

sH  

 

 Recall that the magnetic field strength H and the magnetic induction B are related 

at a point in a material by the local magnetization M,   

 

)(0 MHB += μ . 

 

The physical significance of the field strength is that H0μ  would be the induction 

produced using the same external arrangement of currents, but with the magnetic material 

absent.  Thus, B is a sum of two terms: H0μ , the induction due to external current 

sources and M0μ , the induction due to the local concentration of atomic dipoles.  It’s the 

H-field that we have direct control over in the laboratory via the free currents enclosedI  of 

Ampere’s law.   



For simplicity, let’s assume that all fields are constant around the integration path.  

In the air gap 0/ μBH = , so that we can write 
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where dL +  is the total length of the path Γ.  The enclosed current is NINi =8  so that 
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We see that the B-field within the gap is increased by the magnetization of the iron 

magnet core — in fact the magnetization is the dominant contribution (which is why the 

heavy core is used):   

 

MB 0μ≈ . 

 

Recall that M is dependent on H and to the past history (hysteresis) of the sample.  

For ‘hard’ ferromagnetic materials like our magnet iron, the hysteresis effects are small 

but noticeable.  In this case we can roughly consider M to depend only on the present 

value of H.  Since H is proportional to I, we can also regard M as a function of I, 

however M(I) is not a linear function:  

For ‘small’ H (and I) the susceptibility HM /=χ is large and constant so that the 

induction IB ∝ .  However as H (and I) is increased further, all the permanent atomic 

dipoles eventually align and M approaches a constant ‘saturation magnetization’ Ms.  For 

iron the 6107.1 ×≈sM A/m and the maximum contribution to B from the core 

magnetization is 1.20 ≈sMμ  T or 21 kG. 

So, we expect that the induction B in the magnet’s air gap is linear for small coil 

currents I, but then begins to flatten out as the core begins to saturate—somewhere on the 

order of a Tesla.  In fact this is what happens:   
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Fig. B3:  Average magnet field verses coil current. 

 

The figure A1 shows the plot of the induction (measured with a Hall probe) as a function 

of I.   Note the turn over at larger fields. 

At currents A 60 ≤≤ I  the field is quite linear with 

 

kG 107.)kG/A 381.1( +≈ IB . 

 

Note that there is a residual magnetization (and thus B) when the current is zero.  As the 

magnet is used more and more with only positive currents we can expect this to grow. 

For A 6>I  a good fit to the data is 

 

kG 68.3)kG/A 587.2()kG/A 0982.0( 22 −+−≈ IIB . 

 

These data points are the average of measurements taken while ramping the 

current up and then down.  For any given coil current I, B is a little stronger on the way 

back down.   

This hysteresis can best be described by considering the percent difference in the 

field between ramping down and up: 
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Fig. B4:  Typical magnet hysteresis upon ramping current up and down. 

 

The point of all this is that there is no exact relationship between the coil current we have 

control over, and the actual field produced between the pole faces.  However, in 

controlling an experiment it would be preferable to work in terms of B.  To this end we 

define a nominal magnetic field, dependent on I  by the above fitted equations.   

 In setting the magnet to a nominal B field, the necessary coil current is calculated 

by inverting the fits.  The controlling computer then sets the coil current  via interface 

with the Sorensen power supply.  In this way we have a rough control over the desired 

field, which is accurate to perhaps 5% depending on the past history of the magnet.   

The actual field is measured using a solid-state hall probe located between the 

pole faces at the rear.  The probe we use is a little cheap and non-linear, so that the Gauss 

meter’s LCD reading (based on linear electronics) is only accurate to about 1%.  

However, this analog reading is in turn interfaced to the computer via a USB A/D unit, 

and the computer can deal with the non-linearity problem.  Using our Bell Gauss meter as 

calibration, the computer outputs the measured B to about 0.1% accuracy. 

 



 
 

Fig. B5:  Schematic plan for setting a nominal B and reading actual B. 

 



APPENDIX C:  The HallScan Program 
 

This section briefly describes our LabView program for performing a Hall scan, 

i.e. measuring a sample’s Hall voltage as a function of applied magnetic field.  After 

startup and initialization you’ll have the following window to control the experiment: 

 

While initializing, an overlay window will briefly appear.  This window informs you that 

the program is reading some calibration data about the magnet.  (The file and path name 

is C:\Magnetdata\BIcalibration.txt, and contains parameters enabling the code to convert 

between nominal B-field and the magnet’s coil current.) 

The lower-left panel is all there is to adjust:  Simply set the start and stop values 

of the magnetic field, and the number of points.  For example, a scan from 2.0 to 10.0 kG 

with 9 points will take data at B = 2, 3, 4, 5, 6, 7, 8, 9, and 10 kG (nominal).  At each of 

these B settings, the program samples the hall voltage a number of times determined by 

the samples/point parameter.  The auto-reset toggle tells the computer whether or not to 

reset B to the starting value after the current scan is complete. 

Once you have selected your desired scan parameters, simply click the start-scan 

button.  A window will appear asking you to enter the sample’s foil current; all this is 



used for is to appended to the scan’s output file.  The scan status window gives you 

information about the progress of the scan, i.e. which point it’s on and the measurements 

that have been completed so far (red indicators lighted).  At the end of a scan, a window 

appears prompting you for an output filename; once entered, the data is written to disk 

and the program goes back to idle.   

When you’re finished taking scans, be sure to click the power down button and 

wait until the program ends before exiting.  This ensures the coil current is ramped slowly 

down to zero. 

The upper left panel deals with serial communication ID’s for the various 

instruments used in the scan.  In theory these will never need adjustment. 

 

Here’s an example of a typical output file: 

 

Icoil                 Bnom             VHall               stddev              Bmeas  
1.3700E+0 1.9990E+0 2.9314E+0 5.4772E-4 1.8060E+0 
2.0900E+0 2.9932E+0 2.9400E+0 0.0000E+0 2.7974E+0 
2.8200E+0 4.0012E+0 2.9492E+0 4.4721E-4 3.8041E+0 
3.5400E+0 4.9953E+0 2.9576E+0 5.4772E-4 4.7874E+0 
4.2700E+0 6.0033E+0 2.9660E+0 0.0000E+0 5.7834E+0 
4.9900E+0 6.9975E+0 2.9738E+0 4.4721E-4 6.7579E+0 
5.7200E+0 8.0055E+0 2.9820E+0 0.0000E+0 7.7343E+0 
6.5100E+0 9.0013E+0 2.9900E+0 0.0000E+0 8.7568E+0 
7.3200E+0 9.9966E+0 2.9976E+0 5.4772E-4 9.7651E+0 
8.2700E+0 1.1000E+1 3.0054E+0 5.4772E-4 1.0851E+1 
foil current was 7.870000 
 

 

This can be imported to an Excel worksheet for analysis.  The 1st and 2nd columns give 

the magnet coil-current (A) and nominal B-field (kG).  The Hall voltage’s average (of the 

samples taken) is given in column 3 (mV), and its standard deviation in column 4 (mV).  

Finally, the last column gives the ‘actual’ magnetic field (kG) measured using the hall 

probe. 

 

 


