
Handout 2

The quantum mechanics of particles
in a periodic potential: Bloch’s
theorem

2.1 Introduction and health warning

We are going to set up the formalism for dealing with a periodic potential; this is known as Bloch’s
theorem. The next two-three lectures are going to appear to be hard work from a conceptual point of
view. However, although the algebra looks complicated, the underlying ideas are really quite simple;
you should be able to reproduce the various derivations yourself (make good notes!).

I am going to justify the Bloch theorem fairly rigorously. This formalism will then be used to treat
two opposite limits, a very weak periodic potential and a potential which is so strong that the electrons
can hardly move. You will see that both limits give qualitatively similar answers, i.e. reality, which lies
somewhere in between, must also be like this!

For this part of the course these notes provide a slightly different (Fourier) approach to the results
that I will derive in the lectures. I recommend that you work through and understand both methods,
as the Bloch theorem forms the foundation on which the rest of the course is based.

2.2 Introducing the periodic potential

We have been treating the electrons as totally free. We now introduce a periodic potential V (r). The
underlying translational periodicity of the lattice is defined by the primitive lattice translation vectors

T = n1a1 + n2a2 + n3a3, (2.1)

where n1, n2 and n3 are integers and a1, a2 and a3 are three noncoplanar vectors. 1 Now V (r) must
be periodic, i.e.

V (r + T) = V (r). (2.2)

The periodic nature of V (r) also implies that the potential may be expressed as a Fourier series

V (r) =
∑
G

VGeiG.r, (2.3)

where the G are a set of vectors and the VG are Fourier coefficients.2

Equations 2.2 and 2.3 imply that

eiG.T = 1, i .e. G.T = 2pπ, (2.4)
1See Introduction to Solid State Physics, by Charles Kittel, seventh edition (Wiley, New York 1996) pages 4-7.
2Notice that the units of G are the same as those of the wavevector k of a particle; |k| = 2π/λ, where λ is the de

Broglie wavelength. The G are vectors in k-space.
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Figure 2.1: The effect of introducing the reciprocal lattice; instead of dealing with just one electron
dispersion relationship (left) we have an infinite number of copies (right).

where p is an integer. As T = n1a1 + n2a2 + n3a3, this implies that

G = m1A1 +m2A2 +m3A3, (2.5)

where the mj are integers, and the Aj are three noncoplanar vectors defined by

aj .Al = 2πδjl. (2.6)

Take a few moments to convince yourself that this is the only way of defining G which can satisfy
Equation 2.4 for all possible T.

Using very simple reasoning, we have shown that the existence of a lattice in r-space automatically
implies the existence of a lattice in k-space. The vectors G define the reciprocal lattice; the Aj are its
primitive translation vectors.

The reciprocal lattice has extraordinary consequences for the electronic motion, even before we
“switch on” the lattice potential. Instead of dealing with just one electron dispersion relationship
E(k) there must be an infinite number of equivalent dispersion relationships (see Figure 2.1) such that
E(k) = E(k + G) for all G (c.f. Equation 2.2). However, the k-space periodicity also implies that
all information will be contained in the primitive unit cell of the reciprocal lattice, known as the first
Brillouin zone.3 The first Brillouin zone has a k-space volume

Vk3 = A1.A2 ×A3. (2.7)

2.3 Born–von Karman boundary conditions

We need to derive a suitable set of functions with which we can describe the motion of the electrons
through the periodic potential; “motion” implies that we do not want standing waves. The functions
should reflect the translational symmetry properties of the lattice; to do this we use Born–von Karman
periodic boundary conditions.

We choose a plane wave
φ(r) = ei(k.r−ωt) (2.8)

subject to boundary conditions which include the symmetry of the crystal

φ(r +Njaj) = φ(r), (2.9)

where j = 1, 2, 3 and N = N1N2N3 is the number of primitive unit cells in the crystal; Nj is the
number of unit cells in the jth direction.

The boundary condition (Equation 2.9) implies that

eiNjk.aj = 1 (2.10)

for j = 1, 2, 3. Comparing this with Equation 2.4 (and the discussion that follows it) suggests that
the allowed wavevectors are

k =
3∑

j=1

mj

Nj
Aj . (2.11)

3The first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal lattice.See Solid State Physics, by G. Burns
(Academic Press, Boston, 1995) Section 10.6 or Introduction to Solid State Physics, by Charles Kittel, seventh edition
(Wiley, New York 1996) Chapter 2.
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Each time that all of the mj change by one we generate a new state; therefore the volume of k-space
occupied by one state is

A1

N1
.
A2

N2
× A3

N3
=

1
N

A1.A2 ×A3. (2.12)

Comparing this with Equation 2.7 shows that the Brillouin zone always contains the same number of
k-states as the number of primitive unit cells in the crystal. This fact will be of immense importance
later on (remember it!); it will be a key factor in determining whether a material is an insulator,
semiconductor or metal.

2.4 The Schrödinger equation in a periodic potential.

The Schrödinger equation for a particle4 of mass m in the periodic potential V (r) may be written

Hψ = {− h̄
2∇2

2m
+ V (r)}ψ = Eψ. (2.13)

As before (see Equation 2.3), we write the potential as a Fourier series

V (r) =
∑
G

VGeiG.r, (2.14)

where the G are the reciprocal lattice vectors. We are at liberty to set the origin of potential energy
wherever we like; as a convenience for later derivations we set the uniform background potential to be
zero, i.e.

V0 ≡ 0. (2.15)

We can write the wavefunction ψ as a sum of plane waves obeying the Born–von Karman boundary
conditions,5

ψ(r) =
∑
k

Ckeik.r. (2.16)

This ensures that ψ also obeys the Born-von Karman boundary conditions.
We now substitute the wavefunction (Equation 2.16) and the potential (Equation 2.14) into the

Schrödinger equation (Equation 2.13) to give∑
k

h̄2k2

2m
Ckeik.r + {

∑
G

VGeiG.r}{
∑
k

Ckeik.r} = E
∑
k

Ckeik.r. (2.17)

The potential energy term can be rewritten

V (r)ψ =
∑
G,k

VGCkei(G+k).r, (2.18)

where the sum on the right-hand side is over all G and k. As the sum is over all possible values of G
and k, it can be rewritten as6

V (r)ψ =
∑
G,k

VGCk−Geik.r. (2.19)

Therefore the Schrödinger equation (Equation 2.17) becomes∑
k

eik.r{( h̄
2k2

2m
− E)Ck +

∑
G

VGCk−G} = 0. (2.20)

4Note that I have written “a particle”; in the proof of Bloch’s theorem that follows, I do not assume any specific form
for the energy of the particles in the potential. The derivation will be equally true for photons with ω = ck, electrons
with E = h̄2k2/2me etc., etc.. Thus, the conclusions will be seen to be true for any particle in any periodic potential.

5That is, the k in Equation 2.16 are given by Equation 2.11.
6Notice that the G also obey the Born–von Karman boundary conditions; this may be easily seen if values of mj that

are integer multiples of Nj are substituted in Equation 2.11. As the sum in Equation 2.16 is over all k that obey the
Born–von Karmann boundary conditions, it automatically encompasses all k−G.
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As the Born-von Karman plane waves are an orthogonal set of functions, the coefficient of each term
in the sum must vanish (one can prove this by multiplying by a plane wave and integrating), i.e.(

h̄2k2

2m
− E

)
Ck +

∑
G

VGCk−G = 0. (2.21)

(Note that we get the Sommerfeld result if we set VG = 0.)
It is going to be convenient to deal just with solutions in the first Brillouin zone (we have already

seen that this contains all useful information about k-space). So, we write k = (q −G′), where q lies
in the first Brillouin zone and G′ is a reciprocal lattice vector. Equation 2.21 can then be rewritten(

h̄2(q−G′)2

2m
− E

)
Cq−G′ +

∑
G

VGCq−G′−G = 0. (2.22)

Finally, we change variables so that G′′ → G + G′, leaving the equation of coefficients in the form(
h̄2(q−G′)2

2m
− E

)
Cq−G′ +

∑
G′′

VG′′−G′Cq−G′′ = 0. (2.23)

This equation of coefficients is very important, in that it specifies the Ck which are used to make up
the wavefunction ψ in Equation 2.16.

2.5 Bloch’s theorem

Equation 2.23 only involves coefficients Ck in which k = q−G, with the G being general reciprocal
lattice vectors. In other words, if we choose a particular value of q, then the only Ck that feature in
Equation 2.23 are of the form Cq−G; these coefficients specify the form that the the wavefunction ψ
will take (see Equation 2.16).

Therefore, for each distinct value of q, there is a wavefunction ψq(r) that takes the form

ψq(r) =
∑
G

Cq−Gei(q−G).r, (2.24)

where we have obtained the equation by substituting k = q−G into Equation 2.16. Equation 2.24 can
be rewritten

ψq(r) = eiq.r
∑
G

Cq−Ge−iG.r = eiq.ruj,q, (2.25)

i.e. (a plane wave with wavevector within the first Brillouin zone)×(a function uj,q with the periodicity
of the lattice).7

This leads us to Bloch’s theorem. “The eigenstates ψ of a one-electron Hamiltonian H = − h̄2∇2

2m +
V (r), where V (r + T) = V (r) for all Bravais lattice translation vectors T can be chosen to be a plane
wave times a function with the periodicity of the Bravais lattice.”

Note that Bloch’s theorem

• is true for any particle propagating in a lattice (even though Bloch’s theorem is traditionally
stated in terms of electron states (as above), in the derivation we made no assumptions about
what the particle was);

• makes no assumptions about the strength of the potential.

7You can check that uj,q (i.e. the sum in Equation 2.25) has the periodicity of the lattice by making the substitution
r → r + T (see Equations 2.2, 2.3 and 2.4 if stuck).
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2.6 Electronic bandstructure.

Equation 2.25 hints at the idea of electronic bandstructure. Each set of uj,q will result in a set of electron
states with a particular character (e.g. whose energies lie on a particular dispersion relationship8); this
is the basis of our idea of an electronic band. The number of possible wavefunctions in this band is just
going to be given by the number of distinct q, i.e. the number of Born-von Karman wavevectors in
the first Brillouin zone. Therefore the number of electron states in each band is just 2×(the number
of primitive cells in the crystal), where the factor two has come from spin-degeneracy. This is going
to be very important in our ideas about band filling, and the classification of materials into metals,
semimetals, semiconductors and insulators.

We are now going to consider two tractable limits of Bloch’s theorem, a very weak periodic potential
and a very strong periodic potential (so strong that the electrons can hardly move from atom to atom).
We shall see that both extreme limits give rise to bands, with band gaps between them. In both extreme
cases, the bands are qualitatively very similar; i.e. real potentials, which must lie somewhere between
the two extremes, must also give rise to qualitatively similar bands and band gaps.

2.7 Reading.

This topic is treated with some expansion in Chapter 2 of Band theory and electronic properties of
solids, by John Singleton (Oxford University Press, 2001). A simple justification of the Bloch theorem
is given in Introduction to Solid State Physics, by Charles Kittel, seventh edition (Wiley, New York
1996) in the first few pages of Chapter 7 and in Solid State Physics, by G. Burns (Academic Press,
Boston, 1995) Section 10.4; an even more elementary one is found in Electricity and Magnetism, by
B.I. Bleaney and B. Bleaney, revised third/fourth editions (Oxford University Press, Oxford) Section
12.3. More rigorous and general proofs are available in Solid State Physics, by N.W Ashcroft and N.D.
Mermin (Holt, Rinehart and Winston, New York 1976) pages 133-140.

8A dispersion relationship is the function E = E(q).


