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The physics of Quantum materials
➢ Suggested Textbooks:

• C. Kittel, Introduction to Solid State Physics, 8th edition (John Wiley & Sons 2005).
• S.H. Simon, The Oxford Solid State Basics (Oxford University Press 2013).
• H. Ibach and H. Luth. Solid-State Physics. 4th edition (Springer 2009)
• Ashcroft and Mermin, Solid State Physics 

➢ Pre-requisites:
Familiarity with basic principles of quantum mechanics (Schrödinger equation, energy quantization,
tunneling, spin, operators). Knowledge of basics of statistical physics (classical statistics, Bose-

Einstein and Fermi-Dirac statistics).

➢ Suggested Textbook for reviewing background material
Modern Physics for Scientists and Engineers 5th Edition, by Thornton, Rex and Hood



The physics of Quantum materials

➢ Grading:
30% Homework -Assignments will be due weekly at the beginning of class
10% In class participation
10% Projects - A  reading project on a selected topic of contemporary solid state
physics. An oral presentation(~10slides).
20%, 30% Exams midterm and a final.



➢ Scanning tunneling microscope – visualize atoms and electronic wavefunctions in materials

What I do – when not teaching 406

Experimental research in condensed matter  physics

http://www.physics.rutgers.edu/~eandrei/

Microscope

Angela

Graphene

http://www.physics.rutgers.edu/~eandrei/


➢ Graphene :

▪ One atom thick crystal 

▪ Carbon atoms arranged in 

honeycomb structure  

▪ electrons behave like ultra-

relativistic massless particles 

My Research

GRAPHENE SUPERLATIVES

• Strongest material ever measured (200X Stronger than steel)

• Stiffest known material (stiffer than diamond)

• Most stretchable crystal (up to 25% elastically)

• Completely impermeable (even He atoms cannot squeeze through)

• Record thermal conductivity (outperforms diamond)

• Highest current density at room temp (million times that of copper)

• Highest intrinsic mobility (100 times more than in Si)

• Conducts electricity in the limit of no electrons

Biomedical

Composites 

& coatings

Sensors

Energy 

storage

Membranes



Students 406-2022



My tasks and yours

My tasks:
✓ Provide an introduction to the physics of quantum materials
✓ Provide a solid grounding for more advanced  courses on the 

behavior of condensed matter
✓ Demonstrate the links with Quantum Mechanics, Thermal and 

Statistical Physics.
✓ Provide the background and  tools to understand publications 

and research articles in this field
✓ Inspire you to delve deeper into the subject

Your tasks
✓ To learn about the subject.
✓ To maximize your performance on homework exams and 

projects!



How to succeed in this course

✓ Attend lectures
• Ask questions
• Participate
• Take notes

✓ Outside of class
• Go over material, asses your understanding
• Complement class learning with material from on-line resources –

textbooks, articles, lectures, etc
• Think about challenge questions posed  in class
• Solve weekly homework problems 

✓ Pick your project topic early 
• Scour the literature for background information
• Pick your favorite article(s) to present
• Use class learning to shed light on your topic  



Condensed Matter Physics (1960-

Wikipedia:
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties 
of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. 

What is it? 

Why study it?

➢ Because it is the world around us

➢ Because it is useful 



Condensed Matter Physics (1960-

➢ Because it is Deep and beautiful
Simple principles: Symmetry, topology, geometry 
a phases of matter – superconductivity, magnetism, superfluidity
a fractionally charged, chiral, ultra-relativistic  quasi-particles

➢ Because it is a laboratory for realizing and studying quantum mechanics and statistical physics

➢ Because reductionism does not work



Three states of solid matter as defined by electrical 
resistivity in the low temperature limit



Three states of solid matter as defined by electrical 
resistivity in the low temperature limit

• How can this be? After all, they each contain a system of atoms and especially electrons of similar density.

• And the plot thickens: They are all just carbon – arranged in different ways!

Graphite Diamond Fullerine

• Graphite is a metal, diamond an insulator and buckminster-fullerene is a superconductor



Condensed Matter Physics (1960-

➢ Because it is Deep and beautiful

➢ Because reductionism does not work
water a molecules a atoms  
electrons and protons a quarks
quarks a ????. 
How does this help me windsurf?? 



"Squalid state physics”
Murray Gell-Mann 

discoverer of the quark 
Nobel prize 1969

Everything is made of sub-atomic particles. 
Once you understand the constituent 
particles and the forces between them 

➢ the rest is just engineering  

“More is different”
Philip W. Anderson 

Symmetry breaking  and  ‘Anderson-Higgs’ mechanism
Nobel prize 1977

Large systems of smaller entities interacting 
through simple rules can exhibit surprising 
➢ emergent, collective properties 
obeying "higher organizing principles" that 
cannot be further simplified.

Reductionism vs Emergence



Basic scales

Bohr radius

EM interactions are characterized by 
the fine structure constant: 

e0
Permitivity of free 
space

8.9x10-12 C2/ N m2

m0
Permeability  of free 
space

4π×10−7 H/m 

Speed of light ~3x108m/s
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Energy scales

1019 GeV

Atomic Nuclear
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Toady: Background material overview

• some math

• Particles wave duality

• Uncertainty principle

• Quantum mechanics
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Math you will need  

You should be comfortable with 

• exponential  notation

• Basic calculus: derivatives, integrals

• Trigonometry

• Complex numbers 

• Simple differential equations



Complex numbers
i2 = -1

z  = x + i y   (x is real part; y is imaginary part)

z*  = x - i y   complex conjugate; replace “i” with “-i”

Magnitude of z: 

|z|2 = z*z 

= (x - iy)(x + iy) = x2 + ixy – ixy + y2 = x2 + y2

 

i  −1
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Im


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sinIm

cosRe
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( ) ( )exp( ) cos sini i =  + 

A) I know exactly what this equation means.
B) I think I know what this equation means.
C) I’ve seen it before but am not sure what it means.
D) I’ve never seen this equation before.

Euler’s Equation

Follows from Taylor expansion 
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Gradient divergence and curl

Divergence: 

Gradient: Vector 

scalar 

Vector 

Vector 



Differential equations

What is the most general solution to the differential equation:



Important integrals and derivatives

Gaussian integral : Dirac delta: 

? ?

What function is equal to its derivative? 



Vector Identities

https://en.wikipedia.org/wiki/Vector_calculus_identities

( ) 0= A



Wave equations

25
25

Vibrations on a string: Electromagnetic waves: 
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c=speed of light

x

yE

x

Magnitude is non-spatial:

= Strength of electric field

Magnitude is spatial:

= Vertical displacement of string

Solutions: E(x,t) Solutions: y(x,t)

This Differential equation
• Linear
• Homogeneous
• Second order 



Wave  equations
Solution to the wave equation:
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y(x,t)=Csin(kx-ωt)

kT


==v

What is the wavelength of this wave? Ask yourself … 

→How much does x need to increase to increase kx-ωt by 2π?

sin(k(x+λ) – ωt) = sin(kx – ωt + 2π)

k(x+λ)=kx+2π

kλ=2π ➔ k=2/  k=wave number (radians-m-1)

x

yt=0

What is the period of this wave?  Ask yourself …

→How much does t need to increase to increase kx-ωt by 2π?

sin(kx-ω (t+T)) = sin(kx – ωt + 2π )

T=2π ➔ ω=2π/T 

= 2π

ω= angular frequency

Speed 
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Differential equations

What is the most general solution to the wave equation:
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Which boundary conditions need to be satisfied? 
I. y(x,t) = 0 at x=0 and x=L

2

2
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=
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

y(x,t) = Asin(kx)cos(ωt) +Bcos(kx)sin(ωt)

At x=L:
y= Asin(kL)cos(ωt)= 0    
→ sin(kL)=0
→ kL = nπ (n=1,2,3, … )
→ k=nπ/L

y(x,t) = Asin(nπx/L)cos(ωt)

n=1

n=2

n=3

At x=0: 
y = Bsin(ωt) = 0    
→ B=0

Boundary conditions



Plane Waves
Plane waves (sines, cosines, complex exponentials) extend forever in space:

( )1 1 1( , ) expx t i k x t = −  

( )4 4 4( , ) expx t i k x t = −  

( )3 3 3( , ) expx t i k x t = −  

( )2 2 2( , ) expx t i k x t = −  

k


=phasev velocity phase
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Principle of Superposition

➢ If 1 ,  2 … n are solutions of the wave equation (or any homogeneous linear

differential equation) then any linear combination = SAi i is also a solution.

➢ When two or more waves traverse the same region, they act independently of 

each other. 

• Combining two waves yields:

( ) ( ) ( ) ( )1 2 a a, , , 2 cos cos
2 2

v v

k
x t x t x t A x t k x t




  
 =  +  = − − 

 

➢ We can construct a “wave packet” by combining many plane waves of different  and  k’s.

( )( , ) expn n n

n

x t A i k x t = −  
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Wave Packets
( )( , ) expn n n

n

x t A i k x t = −  

destructive
constructive
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Wave Packet

• The combined wave oscillates within an envelope that denotes the 

maximum displacement of the combined waves.

• The wave packet moves at a group velocity:                

gru
k


=





Waves: Uncertainty Principle

Δx

Δx
small Δk – only one wavelength

Δx
medium Δk – wave packet made of several waves

large Δk – wave packet made of lots of waves – small x :narrow packet 

2/1 kx



Fourier series

35

• The sum of many waves that form a wave packet is called a Fourier series:

( ) ( ), cosi i i

i

x t A k x t = −

• If k is a continuous variable, then summing the waves gives the Fourier 

integral:

Ψ 𝑥, 𝑡 = න𝐴 𝑘 cos 𝑘𝑥 − 𝜔𝑡 𝑑𝑘

More  later in the course 
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• Next: Particle Wave duality



Lecture 2, p.37

Waves and Particles 

Particles

• Well defined momentum and position 

x(t),p(t)

• Motion determined by Newton’s laws

In classical mechanics wave and particle behavior is mutually exclusive.  

Waves

• Described by a  function of position and time f(x,t)  

• Motion determined by wave equation
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Lecture 2, p.38

Waves and Particles 

Particles

• Well defined momentum and position 

x(t),p(t)

• Motion determined by Newton’s laws

Example: Double slit experiment.  

Waves

• Described by a  function of position and time 

f(x,t)  

• Motion determined by wave equation

A monochromatic wave with wavelength  is 
incident on two narrow slits.

Bright and dark bands (fringes), form by 
constructive and destructive interference of the 
wave passing through the two slits.

Superposition principle. 

A stream of particles (small balls) is 
incident  on a screen with two slits.

The particles will hit the wall  directly 

behind the holes in the screen. 

Interference 

fringes

..2,1,0sin == nnd Bright 
:  



E.Y. Andrei

PHOTON: Particle manifestation  of electromagnetic wave

Light “Particles”

At the atomic scale both wave and particle behavior are possible for the same object.  

Planck Constant
h = 6.626 x 10-34 J-s

E = h = hc/

Photon behaves like a particle with energy:

From relativity we know that  the 

energy-momentum relation for a photon is: 

E = p c

p = h/c  = h/ 

ck ==  c

Dispersion relation



E.Y. Andrei

Matter Waves

➢ The wave nature of light is revealed by interference 

➢ The particle nature by the fact that light is detected as quanta: “photons”.  

Photon energy and momentum :

E = h and  p = h/

Louis de Broglie (1923) proposed that particles also behave as waves; 

with frequency and wavelength given by :

 = E/h  

 = h/p De Broglie wavelength



Lecture 2, p.41

Real standing waves of electron
density in a “quantum corral”

IBM
Almaden

Single 
atoms (Fe)

Cu

Observation of an electron wave “in a box” 
Image taken with a scanning tunneling microscope (more later)

(Note: the color is not real! – it is a representation of the
electrical current observed in the experiment)  



Lecture 2, p.42

Convenient Units for Quantum Mechanics
Because most of the applications we will consider involve atoms, 
it is useful to use units appropriate to those objects.

We will express wavelength in nanometers (nm).

energy in electron volts (eV).

1 eV = energy an electron gains moving across a one volt potential difference: 

1 eV = (1.6 x 10-19 Coulomb)(1 volt) = 1.6 x 10-19 Joules.

Ephoton in electron volts

 in nanometers

Example:  A red photon with  = 620 nm has E =?  2 eV. 

eV
hc

Ephoton


1240
==

h = 4.14 x 10-15 eV-s, 

hc = 1240 eV-nm.



Lecture 2, p.43

Exercise: Wavelengths of Various Particles

Which of these “particles” have the shortest wavelength:

a. an electron that has been accelerated from rest 

across a 3-Volt potential difference (me = 9.1110-31 kg).

b. A proton with the same energy  (mp = 1.6710-27 kg).

c. A ball with the same energy (mbaseball = 0.15 kg).

E is the same.

Mass is bigger   smaller.mE

h
mEp

2
2 == 



Lecture 2, p.44

Solution: Wavelengths of Various Particles
Which of these “particles” have the shortest wavelength 

a. an electron that has been accelerated from rest 

across a 3-Volt potential difference (me = 9.1110-31 kg).

b. A proton with the same energy  (mp = 1.6710-27 kg).

c. A ball with the same energy (mbaseball = 0.15 kg).

a. E = e.V = 4.810-19 J

p = (2meE) = 9.3510-25 kg m/s  = h/p = 7.110-10 m = 0.7nm

b. p = (2mpE) = 4.0010-23 kg m/s  = h/p = 1.710-2 nm

c. p = mv = 3.910-9 kg m/s  = h/p = 1.510-16 nm

QM wave effects are negligible in the motion of macroscopic objects.  10-16

nm is smaller than the size of a nucleus

E is the same.

Mass is bigger   smaller.

mE

h
mEp

2
2 == 



Lecture 2, p.45

Energy momentum relation

Photons (v=c)

E = pc

Slow Matter (v << c)

KE = p2/2m

Everything

E = h = 

p = h/

Why do we use different formulas for energy-momentum relation?

sJ
h

 −3410~
2

  constantplanck  Reduced






Lecture 2, p.46

Remember Special Relativity

Total energy

Velocity momentum relation



Lecture 2, p.47

Remember Special Relativity

m

p
KE

2
~

2





• Math background
• Particle-wave duality

Next time 
• Uncertainty principle

• Quantum mechanics

• Schrodinger equation

• 3 solved problems: Particle in a well, Harmonic oscillator, hydrogen atom

• Classical statistics

• Quantum statistics

Reading assignment
• QM refresher (Thornton Ch 6, 7 or equivalent, or Ch 1.9 and 3 from website) 

• Simon Ch 1, Ch 2

Homework 1 posted
Math diagnostics (course website)

Summary of L1
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• Next: Heisenberg Uncertainty principle



Plane Waves
Plane waves (sines, cosines, complex exponentials) extend forever in space:

( )1 1 1( , ) expx t i k x t = −  

( )4 4 4( , ) expx t i k x t = −  

( )3 3 3( , ) expx t i k x t = −  

( )2 2 2( , ) expx t i k x t = −  

Different k’s correspond to different momenta kp =

=EDifferent ’s correspond to different energies

k


=phasev velocity phase

2 2
andk

T

 



 =



E.Y. Andrei

Heisenberg Uncertainty Principle

Mathematical property of waves: k·x  1
:

• A definite wavelength must extend forever.

• Finite wave packet:

A wave packet requires a spread k of wavelengths.

Using p = h/ = ħk, we have: 

ħ (k·x  1)    (ħk)·x  ħ   p·x  ħ

The Heisenberg Uncertainty Principle limits the accuracy with which we 

can know the position and momentum of objects.

x

We need a spread of wavelengths in 

order to get destructive interference.



Plane Waves vs. Wave Packets

( )( , ) expx t A i kx t = −  

( )( , ) expn n n

n

x t A i k x t = −  

For which type of wave are the position (x) and momentum (p) most 
well-defined?

A) x most well-defined for plane wave, p most well-defined for wave packet.
B) p most well-defined for plane wave, x most well-defined for wave packet.
C) p most well-defined for plane wave, x equally well-defined for both.
D) x most well-defined for wave packet, p equally well-defined for both.
E) p and x are equally well-defined for both.

ICLICKER



• Wave packets are constructed from a series of plane waves.

• The more spatially localized the wave packet, the less uncertainty 
in position.

• With less uncertainty in position comes a greater uncertainty in 
momentum.

Uncertainty Principle

A Wave
Interpretation:



Energy-Time  Uncertainty Principle
If we are to make a wave packet in  time– ie a pulse that last for a time  t (instead of over 
an infinite time as for a single wave), we must include the frequencies of many waves to 
have them cancel everywhere but over the time interval t

( )( , ) expn n n

n

x t A i k x t = −  

2


 tE

Heisenberg uncertainty principle for energy and time

 ===  EhfE

2/1 t

combined with the energy  frequency relation

The energy and lifetime of a particle 
cannot both be determined with 
complete precision.  



Consider a particle for which the location is known within a width of l along the 
axis. We then know the position of the particle to within a distance  

The uncertainty principle specifies that p is limited by 

Implication of uncertainty principle

55

The kinetic energy (non-relativistic)

2/lx 

lx
p







2

a if a particle is confined to a region of finite size, the particle’s kinetic energy must be non-
zero!!!

Zero point energy
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• Next: Quantum mechanics



E.Y. Andrei

Quantum Mechanics: Law 1

Law 1. The state of a quantum mechanical system is completely specified by a 

function (r, t) that depends on the coordinates of the particle(s) and on time.

Energy  total of Operator   -nHamiltonia

ttime  at r position atparticle  find toy Probabilitr
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Probability to find particle 

at position r at time t.



Schrödinger equation in 1D

the Schrödinger equation for an electron wave in one-dimension Ψ(x,t)

Of course for any real system, need 3 dimensions,
 just add partial derivatives of y and z, and V(x,y,z) etc. 

Schrödinger wrote it down, solved for hydrogen,
got solutions that gave exactly the same electron energy levels as Bohr. 
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Simplification #1:V = V(x) only.  

Ψ(x,t) separates into position dependent part ψ(x) 
and time dependent part ϕ(t) =exp(-iEt/ħ).  Ψ(x,t)= ψ(x)ϕ(t)

Plug in, get equation for ψ(x) 

“time independent Schrodinger equation”

Most physical situations, like H atom, no time dependence in V!
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2 2
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Time independent Schrödinger equation in 1D

(Important, will use in all 
Shrödinger equation problems!!)

/)( iEtet −=

Plug in, get equation for (x) 



Stationary states

the wave function can be written as:

( ) ( ), i tx t x e  − =

• The probability density becomes:
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

  =
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• The probability distributions are constant in time. This is a standing wave 

phenomenon that is called the stationary state.

/ :with E=



Properties of Valid Wave Functions

1) To avoid infinite probabilities, the wave function must be finite everywhere.

2) to avoid multiple values of the probability, the wave function must be single valued.

3) For finite potentials, the wave function and its derivative must be continuous. This is 
required because the second-order derivative term in the wave equation must be single 
valued. (There are exceptions to this rule when V is infinite.)

4) to normalize the wave functions, they must approach zero as x approaches infinity.

|ψ(x)|2dx =1

-∞

∞



Electron in free space, no electric fields or gravity around.  
1. Where does it want to be?
2. What is V(x)?    
3. What are boundary conditions on ψ(x)?
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1. No preference- all x the same.
2. Constant. 
3. None, could be anywhere.

Smart choice of
constant, V(x) = 0!

Solving Schrodinger  Equation for free particle 
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The total energy of the electron is:
A. Quantized according to En = (constant) x n2,  n= 1,2, 3,…
B. Quantized according to En = const. x (n)
C. Quantized according to En = const. x (1/n2)
D. Quantized according to some other condition but don’t know what it is.
E. Not quantized, energy can take on any value.

Ans: E - No boundary, energy can take on any value.

I-Clicker

kxBkxAx sincos)( +=
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kxAx cos)( =
2k2

2m
= E kp =

Almost have a solution, but remember we still have to include
time dependence:  

)()(),( txtx = /)( iEtet −=

…bit of algebra, using identity: eix =cos(x) + i sin(x) and wave 
propagating in the positive x direction 

k (and therefore E) can take on any value.

(x,t) = Acos(kx − t) + i Asin(kx − t)
The wave function is not restricted to being real. 
Only the physically measurable quantities must be real: probability, momentum 
and energy.



E.Y. Andrei

▪ Inner product

Quantum Mechanics: : Law 1

Law1. The state of a quantum mechanical system is completely 

specified by a function (r, t).

▪ Dirac notation

▪ Principle of superposition. If 1 and 2 are possible states of a 

system then any linear superposition.  is also an allowed state.

= rdrr )()(* 

2211  aa +=

brax

ketx









)(*

)(

▪ A wave function             corresponds to a state         in the     representation)(x  x̂

▪ A wave function             corresponds to a state         in the     representation)( p  p



E.Y. Andrei

Quantum Mechanics

Only 3 exactly Solved Problems! 

Particle in a box Harmonic oscillatorHydrogen atom
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Skip examples



E.Y. Andrei

Constraints on the Form of (x)

(x)2 corresponds to a physically meaningful quantity: 

the probability density of finding the particle near x. 

To avoid unphysical behavior, (x) must satisfy :

➢ (x) must be single-valued, and finite.

➢ (x) must be continuous, with finite d/dx.

d/dx is related to the momentum.

➢ d2/dx2 must be finite.  

➢ To avoid infinite energies.
This also means that d/dx must be continuous.

➢ There is no significance to the overall sign of (x).

It goes away when we take the absolute square.



1. Must be normalizable!

2. Must be smooth, continuity of the wave function and 

continuity of its derivative!   

Properties of Valid Wave Functions

Acts like a 0 wavelength 

→ ∞ Momentum and KE 



If the Ψ had a discontinuity, its 

first derivative would be infinite at the 

point of discontinuity→ non physical! 

To be physically acceptable, a wave function: 

|ψ(x)|2dx =1

-∞

∞ Wave function must be finite everywhere, 
and approach zero at infinity.
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Lecture 1

➢ Introduction
• What is condensed matter physics and why do it

➢ The power of simple models – specific heat of solids
❖ Boltzmann
❖ Einstein
❖ Debye

References:
Simons Chapter 2.1

Anderson
Coleman
Morisson

Supplementary reading
(Course website links) 

http://www.physics.rutgers.edu/ugrad/406/syllabus/Anderson%20More%20is%20different.pdf
http://www.physics.rutgers.edu/ugrad/406/syllabus/Coleman%20Reductionalism%20Nature%202007.pdf
http://www.physics.rutgers.edu/ugrad/406_2018/syllabus/Morrison%20Emergence%20Reduction%20Fundamentalism.pdf


Elementary particles as vacuum excitations
Stuff is made of particles
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➢ Particles are  elementary excitation out of 
our Universe’s ground state (vacuum) E< 0

➢ String theory: 10500 possible vacuums! 
We are ‘stuck’ in one.

➢ Figure out our vacuum a predict the 
masses of all elementary particles 
(standard model)
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Why Same m0 ?
➢ Lorentz invariance!
➢ Physics laws same in all 

reference frames



Elementary particles as vacuum excitations
Stuff is made of particles

Particle mass  determines: 

response to forces

E(p) - dynamics

dtdpF /=

42

0

22 cmpcE +=

*2
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m

p
pE +

Spectral gap (Insulators) Dispersion curvature 
independent of 

➢ Elementary excitation out of the 
vacuum – quasi-particles

➢ The lattice of ions defines a preferred 
reference frame – no Lorentz invariance

➢ ~ 100 elements x 20 arrangements x 10 
allotropes a 1040 possible vacuums. 

➢ We can engineer and study many of the 
vacuums. No fundamental restrictions. 

Condensed matter vacuum
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Condensed matter: No Lorentz invariance

Many other types of dispersions are available  or can be 
engineered



Condensed matter vacuum
Building blocks: electrons and nuclei

➢ Electrons moving in a crystal (lattice of atoms)
➢ E(p) determined by crystal geometry: Energy bands
➢ Ground state(vacuum) occupied states E <  EF Fermi energy 
➢ Low energy Excitations: ‘dressed electrons’ with effective mass
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
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





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=

p

E
m

Momentum along crystal 
directions

Diamond:
QP mass ~1.13me

Graphite:
QP masses ~ 0.043me

Graphene :
Chiral massless fermions

Ultra-relativistic

Bilayer graphene:
Chiral massive fermions 

m*=0.03me

Twisted Bilayer graphene:
Flat band m* - large
QP velocity  - small

~1050 Ground states



Effective Theories

• The Hamiltonian describes the physics of electrons in a potential created 
by ions (on the energy scale of Hartree), 

• We are interested in the measurable low-energy properties.
• Try  using reduced effective ( phenomenological) theories.

➢ Low energy (long wavelength) excitations around the ground state : quasiparticles
(Physics of windsurfing)

Examples: 
• Quasiparticles in Fermi liquids – like free particles but different from electrons 

(effective mass, E-p relation, charge )
• Phonons in lattices



The power of simple models

➢ Introduction
• What is condensed matter physics and why do it

➢ The power of simple models

Ludwig Boltzmann
1844-1906

Albert Einstein 
1879, -1955,



Specific Heat of Solids
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Specific heat of solids

1819 -A one hundred year old puzzle



Specific Heat of Solids:Boltzmann, Einstein, and Debye

at high 𝑇: C~ 3𝑅 ≈ 25 𝐽/𝐾-mol

Unsurprising – like monoatomic gas 
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→T

TC

• We don’t distinguish between 𝐶v and 𝐶P - solids, in contrast to gases, do not 

expand/contract much with 𝑇.

• The electron contribution to 𝐶 is typically small at 𝑇 ≳ 10𝐾 – we’ll discuss this later.

TVP VTCC  /2=−

Coefficient. of thermal expansion Isothermal compressibility



Some background: Kinetic theory of gases 

Since the motion of the particles is random and there is no bias applied in any direction, 

the average squared speed in each of the three direction is identical: 

The theory for ideal gases assumptions: 
•The average distance between the gas particles is large compared to their size
•The number of particles is so large that statistical treatment can be applied.
•The moving particles collide among themselves and with the walls of the container  
in perfectly elastic collisions.
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Equipartition theorem: each quadratic degree of freedom contributes               to the 

average energy               . 
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.Since there are 3 quadratic degrees of freedom for the center of mass motion  the average KE per 

molecule is 

Can you think of examples of quadratic degrees of freedom 
i.e the energy is proportional to the square of a variable? 



Boltzmann – classical high T limit

At High T (room temperature)

Dulong-Petit Law (1819).

Boltzmann (1897) 

• 𝑁 independent atoms trapped in potential wells formed by interactions with other atoms. 

The atoms/ions are in thermal equilibrium with a thermal bath. 

• 𝑁 atoms have 6N degrees of freedom: 3N for center of mass KE and 3N for the spring  

potential energy ½ kx2  , ½ ky2, ½ kz2

• According to the equipartition theorem, each quadratic degree of freedom contributes an 

average energy ½𝑘𝐵𝑇.

Note: This is a classical result (𝑘𝐵𝑇≫ ℏ𝜔). The low-𝑇 behavior remained a puzzle.

RkNC BA 33 ==
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Ludwig Boltzmann
1844-1906
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Molar heat capacity



Einstein – quantum  (low T) model
The low-𝑇 value of 𝐶 is quite different from 3𝑅, it approaches 0 as 𝑇 → 0. 

Einstein (1907) replaced classical oscillators with quantum ones.

In general, interactions between atoms (ions) in crystals are not 
harmonic. However, at low 𝑇 (think small amplitude), the harmonic 
approximation works well.

𝑁 atoms ⇒ 3𝑁 normal modes.

The energy of each quantum oscillator

..2,1,0)2/1( =+= nnEn 

Later in the course we will see that these represent lattice vibrations called - phonons

Number of excited modes of energy 



Preliminaries : Bosons and Fermions

• To calculate the average number of excited modes  at a given temperature we need to use a few 
facts about the statistics obeyed by different types of quantum excitations.

• The type of statistics divides particles into two categories:

1. Fermions : particles that cannot be in the same energy level (eg. Electrons – that 

obey  Pauli exclusion exclusion principle. 

• Fermions have ½ integer spin (electrons have s = ½, for example))

• Their wavefunction is anti-symmetric under exchange of two particles

2. Bosons : particles that can be in the same energy state (eg. Photons, phonons. No 

exclusion principle.) 

• Bosons have integer spin (photons have S = 0, for example)

• Their wavefunction is symmetric under exchange of two particles 

Therefore one can have more than one photon, or lattice vibration at the same energy. 

This is not the case for electrons. (later in the course)



Preliminaries : Thermal equilibrium



Harmonic oscillator thermally excited states

• Thus the probability of finding the oscillator in the n’th excited state 
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• Excitations of a harmonic oscillator are  bosons. They  do not obey an exclusion principle

• There can be any number n of  excited states in each oscillator, ie the energy of each oscillator 

can take on any value in the series:  
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Harmonic oscillator probability of thermally excited states
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• The probability of finding the oscillator in the n’th excited with energy
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Average number of excited modes at temperature T
• Average occupation number at temperature T is thus:





0

nPn n

< > denotes thermal 
average, so T is implicit in 
the notation
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Average number of excited modes at temperature T
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Average Kinetic energy of oscillator at temperature T 
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• This is the average number of excitations in a mode with frequency  at temperature T.
• We can therefore use this to calculate the total energy of the lattice and from this obtain the specific heat. 
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Same as classical result!! No excitations at T=0
But very different from classical result



Einstein’s result for the specific heat 

• Heat capacity of HO  
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• The heat capacity of  a system consisting of 3N HO of frequency 
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Einstein’s model predictions

• High T limit: 
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Heat capacity in Einstein model compared to experiment
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Limitations of Einstein.s model

• Not a  bad approximation to experimental data but not perfect.

• At low T heat capacity is much too low 

• This is not that surprising-  is not constant for most vibration modes!

But the model works reasonably well for optical modes where frequency is almost constant. 
• To do this right we need to take into account multiple oscillator frequencies– Debye model . 



Summary

➢ Boltzmann model – based on energy  equipartition for classical particles. 
▪ Works well at high T but fails at low T. 

➢ Einstein’s model:  - assumes N independent quantum oscillators (bosons) with Planck statistics
▪ Works well at high T 
▪ Underestimates C at low T

Early models for the specific heat of solids.

Scorecard so far : 

Next time we will see how Debye ‘fixed’ the low T problem in Einstein’s model by assuming  
harmonic oscillators  with frequencies given by a linear dispersion of sound waves. 



Limitations of Einstein model

Einstein’s model ignores the fact that the ions are coupled 
together –coupled oscillators.

• For coupled oscillators, the calculation of the partition function may look rather difficult. 

• But a system of N coupled 3D oscillators is equivalent to a system of 3N independent 1D oscillators.

• The price to be paid is that the independent oscillators are not of the same frequency; the normal modes of 

vibration of a solid have a wide range of frequencies. 

• These modes are not related to the motion of single atoms, but to the collective motion of all atoms in the 

crystal – vibrational modes or sound waves.

Need to consider a broad spectrum of 𝝎 and not a single characteristic frequency as in the Einstein’s model:
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Debye’s theory of Heat capacity 

Debye’s model (1912) 
• Treats the solid as a continuum, i.e., the atomic structure is ignored.
• A continuum has vibrational modes of arbitrary low frequencies, and at sufficiently low T only 

these low-𝜔 modes are excited. 
• The low-𝜔 modes are simply standing sound waves, they should be quantized the same way 

as Planck had quantized light waves in 1900.

The continuum model works well at low 𝑇 (the characteristic 
energy of excitations is ~𝑇), where the wavelength is much 
greater than the inter-atomic distance 𝑎:

Assumptions: 
• all sound waves propagate with the same 

speed 𝑐 (not the speed of light)
• 3 different modes – one longitudinal two 

transverse
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Continuum approximation

cubic lattice)



Einstein – quantum  (low T) model

Calculate <ni > the mean occupation number in the n’th level. 

From statistical mechanics : 
The partition function for an oscillator of frequency  in it’s the n’th energy level
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Debye’s Calculation Following Planck
Debye assumed that the oscillation modes were waves with frequencies ω(k) = v|k| with v the sound velocity.
For each k there should be 3 oscillation modes, one for each direction of motion. 
He wrote an expression analogous to Einstein’s

Each excitation mode is a boson of frequency ω(k) and it is occupied on average nB(βω(k)) times.

For a large enough sample the sum can be converted to an integral . 
We simplify the problem by using  “Born-Von-Karman” boundary conditions. 
In one dimension:   instead of having a sample of length L with actual ends, we imagine that the two ends are connected 
together making the sample into a circle. 
• The periodic boundary condition means that, any wave in this sample eikr is required to have the same value for a 

position r as it has for r + L (we have gone all the way around the circle). This then restricts the possible values of k to:

n
L

k
2

=

Each k point occupies a segment of length L/2

3D 1D 

Each k point occupies a volume (L/2)3



Debye’s Calculation Following Planck

• n is the density of atoms, and nL3=N

• D is the Debye frequency 

Assuming spherical symmetry, we integrate out the angular dependence
And using  k=/v

Rewrite ion terms of density of states g(): .

Density of States: .

Taking the continuum limit: 

the number of modes with frequencies 
between ω and ω + dω is given by 
g(ω)dω.



Debye’s Calculation Following Planck

x

Gives the correct T3 dependence at low T!!

Low T heat capacity of solid Argon plotted against 
T3 Finegold and Philips (1968) 



Debye’s correction for high  T 
Because of finite distance between atoms in a crystal, it does not make sense to allow arbitrary large 𝑘 (i.e. 
arbitrary small 𝜆) – should be a high-𝒌 (𝝎) cut-off.

Debye introduced an ad hoc cut-off: at high 𝑇 the average energy <𝐸> should be 3N𝑘𝐵𝑇 (the total number of 
modes times the energy per mode). 



Debye’s specific heat compared experiment



The Debye Temperature

𝑇𝐷 plays similar role for phonons as 𝑇𝐹 plays for electrons: it separates the high-𝑇 (classical) and the low-𝑇
(quantum) regime. In the case of electrons in metals, 𝑇𝐹~104𝐾 so only quantum regime is encountered. For 
phonons 𝑇𝐷~102 − 103𝐾 , and both classical and quantum behavior can be observed.
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Limitations of the Debye Theory

• The dependence 𝑔3𝐷 (𝜔) ∝ 𝜔2 was obtained by 
ignoring the discreteness of matter. In reality, 𝑔3𝐷 (𝜔) ∝ 𝜔2

holds only for low 𝜔 (𝜆≫ 𝑎). At 𝜔~𝜔𝐷 we will need to modify 
the dispersion relation and the corresponding density of states.
• The speed of sound is assumed to be the same for all 
polarizations of acoustic waves, which is not true.

The real phonon spectra are very complicated, and 𝑇𝐷 is 
treated as an experimental fitting parameter.
Our goal will be to (qualitatively) understand the spectra.



Summary

Density of States: important concept that we will extensively in the course.

➢ Boltzmann: classical approach (no energy quantization), works well at 𝑘𝐵𝑇 ≫ ℏ𝜔𝐷;

➢ Einstein: quantum (𝑘𝐵𝑇 ≷ ℏ𝜔𝐷), independent oscillators, oversimplified DoS (just one 𝜔𝐸) and, as a 

result, underestimation of 𝐸 and 𝐶 at low 𝑇;

➢ Debye: quantum, coupled oscillators = broad range of 𝜔, DoS is more realistic but still not quite right 

because discreteness is not treated consistently.



Einstein – quantum  (low T) model

Calculate <ni > the mean occupation number in the n’th level. 

From statistical mechanics : 
The partition function for an oscillator of frequency  in it’s the n’th energy level

TkB
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Particle mass controls its response to external forces

maF =



Condensed matter vacuum





P. W. Anderson’s principles

The description of the properties of materials rests on two principles:
• Adiabatic continuity. Complicated systems may be replaced by simpler systems that have the same essential 

properties in the sense that the two systems may be adiabatically deformed into each other without 
changing qualitative properties. 

Example:  Landau's Fermi liquid theory. The low-energy properties of strongly interacting electrons are the 
same as those of non-interacting fermions with renormalized parameters. 
• Spontaneously broken symmetry.  Phase transitions into states with qualitatively different properties can 

often be characterized by broken symmetries.
Example: Crystal versus Liquid – broken translation and rotation symmetries;  Ferromagnet versus paramegnet
broken rotational symmetry and time-reversal 
• Topological order – recently added to the list – Lifshitz transitions change in number of Fermi surfaces



Dot (Scalar) product
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cosbaba


=



Cross (vector) product
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n̂

sinˆ banba


=
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Boundary conditions? 
l. y(x,t) = 0                at x=0 and x=L  

2

2

22

2 1

t

y

vx

y




=




0 L

y(x,t) = Asin(kx)cos(ωt) + Bcos(kx)sin(ωt)

Evaluate y(x,t)=0 at x=L. What are possible values for k?
a. k can have any positive or negative value 
b. π/(2L), π/L, 3π/(2L), 2π/L … 
c. π/L
d. π/L, 2π/L, 3π/L, 4π/L … 
e. 2L, 2L/2, 2L/3, 2L/4, …. 

Answer is d: k=nπ/L
Boundary conditions put constraints 
on k … 
causes quantization of k and λ!!! 

Functional form of solution? 

At x=0: y(x,t) = Bsin(ωt) = 0
y(x,t) = Asin(kx)cos(ωt) 

→ only works if B=0



Dispersion
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• The group velocity is gr

d
u

dk


=

• The group velocity of a de Broglie wave packet is thus:

2

gr

dE pc
u

dp E
= =

• For a de Broglie wave: 
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Group velocity and phase velocity
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• The relationship between the phase velocity and the group velocity is

( ) ph

gr ph ph

dd d
u k k

dk dk dk


 = = = +

• Hence the group velocity may be greater or less than the phase velocity. A 

medium is called nondispersive when the phase velocity is the same for all 

frequencies and equal to the group velocity.

• The group velocity is gr

d
u

dk


=



Plane Waves vs. Wave Packets

( )( , ) expx t A i kx t = −  

( )( , ) expn n n

n

x t A i k x t = −  

Which one looks more like a particle?



Gaussian Function
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• A Gaussian wave packet describes the envelope of a pulse wave.

• The localization of the wave packet over a small region to describe a particle 

requires a large range of wave numbers. Conversely, a small range of wave 

numbers cannot produce a wave packet localized within a small distance. 

( ) ( ) ( )
2 2

0,0 cosk xx x Ae k x− =  =

1 1
  

2 2
k x t  =   =



Normalization and Probability

• The probability P(x) dx of a particle being between x and x + dx :

( ) ( ) ( ), ,

here   denotes the complex conjugate of  

P x dx x t x t dx




=  

 

• The probability of the particle being between x1 and x2 is given by

2

1

 
x

x
P dx=  

• The wave function must also be normalized so that the probability of the 

particle being somewhere on the x axis is 1.

( ) ( ), ,  1x t x t dx =




−
 


