The physics of Quantum materials

Lecturer: Professor Eva Y. Andrei
Email: eandrei@physics.rutgers.edu
My website: http://www.physics.rutgers.edu/~eandrei/

Teaching assistant: Phil Rechani
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Office hours: by appointment
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Password: 030852
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User name: SS406 Password: graphene

* Lecture notes

* Links to textbooks and supplementary material
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* Project suggestions



https://rutgers.zoom.us/j/99841802916?pwd=UVRrMkFuWGtSckU4QUpQWTlYSGdnQT09
mailto:eandrei@physics.rutgers.edu
http://www.physics.rutgers.edu/~eandrei/
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The physics of Quantum materials

» Suggested Textbooks:
» C. Kittel, Introduction to Solid State Physics, 8th edition (John Wiley & Sons 2005).
e S.H. Simon, The Oxford Solid State Basics (Oxford University Press 2013).
* H. Ibach and H. Luth. Solid-State Physics. 4th edition (Springer 2009)
e Ashcroft and Mermin, Solid State Physics
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» Pre-requisites:
Familiarity with basic principles of qguantum mechanics (Schrédinger equation, energy quantization,
tunneling, spin, operators). Knowledge of basics of statistical physics (classical statistics, Bose-
Einstein and Fermi-Dirac statistics).

» Suggested Textbook for reviewing background material

Modern Physics for Scientists and Engineers 5th Edition, by Thornton, Rex and Hood




The physics of Quantum materials

» Grading:
30% Homework -Assignments will be due weekly at the beginning of class
10% In class participation
10% Projects - A reading project on a selected topic of contemporary solid state

physics. An oral presentation(~10slides).
20%, 30% Exams midterm and a final.




What | do — when not teaching 406

Experimental research in condensed matter physics

> Scanning tunneling microscope — visualize atoms and electronic wavefunctions in materials



http://www.physics.rutgers.edu/~eandrei/

My Research

GRAPHENE SUPERLATIVES

Graphene . Strongest material ever measured (200X Stronger than steel)
One atom thick crystal Stiffest known material (stiffer than diamond)

Carbon atoms arranged N Most stretchable crystal (up to 25% elastically)

honeycomb structure Completely impermeable (even He atoms cannot squeeze through)
electrons behave like ultra- Record thermal conductivity (outperforms diamond)

relativistic massless particles Highest current density at room temp (million times that of copper)
Highest intrinsic mobility (100 times more than in Si)

Conducts electricity in the limit of no electrons

In 5~50 years:
The birth of innovative products

hovat i Now~ in 5 years: RN
through sophistication of materials High performance of :

existing products

Nano Machine

e

J Composites
Space Elevator & coatings

pebble bed nuclear

Biomedical ' Mile high Building

Desalinate Sea Water

$100s Billions market




Students 406-2022

BOERSTOEL, PAUL SUNG, SEUNG HEE UGOLOTTI, JOHN ZHU, YUNHAO



My tasks and yours

My tasks:

v’ Provide an introduction to the physics of quantum materials

v" Provide a solid grounding for more advanced courses on the
behavior of condensed matter

v" Demonstrate the links with Quantum Mechanics, Thermal and
Statistical Physics.

v Provide the background and tools to understand publications
and research articles in this field

v’ Inspire you to delve deeper into the subject

Your tasks
v To learn about the subject.
v To maximize your performance on homework exams and
projects!



How to succeed in this course

v' Attend lectures
* Ask questions
* Participate
 Take notes

v Outside of class
* Go over material, asses your understanding
 Complement class learning with material from on-line resources —
textbooks, articles, lectures, etc
* Think about challenge questions posed in class
* Solve weekly homework problems

v’ Pick your project topic early
e Scour the literature for background information
* Pick your favorite article(s) to present
e Use class learning to shed light on your topic



Condensed Matter Physics (1960-

What is it?
Wikipedia:

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties
of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms.

Why study it?

> Because it is the world around us

> Because it is useful




Condensed Matter Physics (1960-

Simple principles: Symmetry, topology, geometry
> phases of matter — superconductivity, magnetism, superfluidity
> fractionally charged, chiral, ultra-relativistic quasi-particles

» Because it is Deep and beautiful
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» Because it is a laboratory for realizing and studying quantum mechanics and statistical physics



Three states ot solid matter as defined by electrica

resistivity in the low temperature limit

(arb. units)
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ree states of solid matfer as defined by electrica

in the low temperature limit
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e Graphite is a metal, diamond an insulator and buckminster-fullerene is a superconductor

* How can this be? After all, they each contain a system of atoms and especially electrons of similar density.

* And the plot thickens: They are all just carbon — arranged in different ways!



Condensed Matter Physics (1960-
- water — molecules > atoms
qguarks > ??7?7?.

How does this help me windsurf??




Reductionism vs Emergence

“More is different”
Philip W. Anderson
Symmetry breaking and ‘Anderson-Higgs’ mechanism
Nobel prize 1977

"Squalid state physics”
Murray Gell-Mann
discoverer of the quark
Nobel prize 1969

INTERIOR OF VAUCANSON'S AUTOMATIC DUCK.

A, clockwork; B, pump; €, mill for grinsing grain; F, intestinal tubv;
J, bill; H, head; M, feet.

Large systems of smaller entities interacting

Everything is made of sub-atomic particles. through simple rules can exhibit surprising

Once you understand the constituent » emergent, collective properties

particles and the forces between them obeying "higher organizing principles" that
» the rest is just engineering cannot be further simplified.




TT 1

T T T T TT[TT[TT[T1

Basic scales
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Electron

EM interactions are characterized by
the fine structure constant:
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Energy scales

high-energy physics

. astrophysics and cosmology
Atomic Nuclear b —

10 meV 1 MeV 101% GeV

metals lectrons, cores phenomenological GUT

semiconductors particle physics . ,
magnets atom - string t-]'.lEDI'}'
superconductors standard model M-theory
ferroelectrics

EEeCtleL - - most fundamental
ot theory
he ) v N
EPlanck = CE /; Y IDLQGE‘.ME "IPlanck — V _d ~ 16 4 ID—JJI_H

G = 6.673 x 10~ 'm3kg—1s—? is the gravitational constant



Questions3

»

. Toady: Background material overview

-

*“some math

* Particles wave duality
* Uncertainty principle
* Quantum mechanics




Math you will need

You should be comfortable with

exponential notation

Basic calculus: derivatives, integrals
Trigonometry

Complex numbers

Simple differential equations

18



Complex numbers

. 2 — _
[ =—1 =1
Z =X+ Y (xisreal part;yis imaginary part)
Zz* =x-iy complex conjugate; replace “i” with “-i”
Magnitude of z:
z|> = 2*z
= (X - 1Y)(X +iy) = X2 + IXy — IXy + Y2 = X% + y?
Im
b 8
e, z=(xy)

N
Ve % ReZ =|Z|cosd

= Re ImZ =(Z|sin 6

*
Leet 2 =(xy)



Euler’s Equation

exp(iB) =cos(0)+isin(6)
A) | know exactly what this equation means.

B) | think | know what this equation means.

C) I've seen it before but am not sure what it means.
D) I’'ve never seen this equation before.

o0

, X
Follows from Taylor expansion €~ =

Z
A A Ij
er =1+Z+—++...
1 2 3l
T A
cosy=1]-— — +...
24 6l
. oy oy
SINY=x— il — L
| I L



Gradient divergence and curl

F=Fi+Fj+Fk= <F1,F2,F3> Vector

9, d 0 0 0O
Gradient: V= e i+ 5,; 92 k = <d.'r 62/ dz> Vector

OFy 0F; 0F3

Divergence: Div=V - F = — + scalar
; oz Oy Oz
t 7 k y
- el A -8 ) ector
Curl=Vx F = | 5 = =
F, F, F;




Differential equations

What Is the most general solution to the differential equation:

y"(x) =~k y(x)

A) y(x)= Acos(kx)+ Bsin(kx)

B) y(x)= Aexp(ikx)+ B exp(—ikx)
C) y(x)=Aexp(kx)+ Bexp(—kx)
D) A&B

E) A&RB&C




hortant integrals and derivatives

Gaussian integral : Dirac delta:
=) .' 2 ~
/ e~ dr= 7 / flz)dlz)de = 2

What function is equal to its derivative?

e ¢*1s the only function whose derivative 1s equal to itself:

d
—y(x)=y(x) < y(x)=4de"
X



Vector Ildentities

ax(bxc)=Db(a-c)—c(a-b)

‘?+(?>¢A):{]‘

VX(V-A):O

https://en.wikipedia.org/wiki/Vector_calculus_identities



Wave equations

Electromagnetic waves:

LALAD
vV YU

This Differential equation

82 E 1 82 E * Linear
— * Homogeneous
8X2 Cz atz  Second order

c=speed of light
Solutions: E(x,t)

Magnitude is non-spatial:
= Strength of electric field



Wave equations

Solution to the wave equation:
o°f 1 o°f

ox:  v? ot?

f(x,1) = f[%”(x—vt)]: FIK(X=Vt)]
— f(kx—t) = f (kx—271)

f (x,t) = displacement from equilibrium
vV =speed

A =wavelength; k= ZTE = wavenumber

v = frequency; o =2zv =angular frequency



2 2
g 1 0% y(X,t)=Csin(kx-wt)

x> V2 ot
N\ YN\ S
J/ S X

What is the wavelength of this wave? Ask yourself ...
—->How much does x need to increase to increase kx-wt by 2117?

sin(k(x+A) — wt) = sin(kx — wt + 21m)
K(X+A)=kx+21T
kKA=21T = k=271/ A k=wave number (radians-m-1)

What is the period of this wave? Ask yourself ...
—->How much does t need to increase to increase kx-wt by 21?

sin(kx-w (t+T)) = sin(kx — wt + 217 Speed
oT=2T = w=21/T w= angular frequency v A o
= 2TV T kK




Differential equations

What Is the most general solution to the wave equation:

A)
B)
C)
D)

o’y 1 0%

ox2  v? ot?

y(x,t) = Acos(kx)sin(wt )+ Bsin(kx) cos(wt)

y(X,t) = Ae—k(X_Vt) + Be—k(X+Vt)

y(x,1) = Acosk(x—vt)+ Bsink(x—vt)

Y(X,t) — Ae—ik(x_vt) n Be—ik(x+vt)

E)

AB,C&D




Boundary conditions

Py _1dy |,
OX> V¢ ot?

Which boundary conditions need to be satisfied?
l. y(x,t) = 0 at x=0 and x=L

v(x,t) = Asin(kx)cos(wt) +Bcos(kx)sin(wt)

At x=0: At x=L:
y = Bsin(wt) =0 y= Asin(kL)cos(wt)=0
- B=0 - sin(kL)=0
-2 kL=nm (n=1,2,3, ...)
-2 k=nm/L

v(x,t) = Asin(nmix/L)cos(wt)

Increasing Frequency

29



Plane Waves

Plane waves (sines, cosines, complex exponentials) extend forever in space:

¥ K
0meollte ol N TN N g o

W, (x,t) =exp| i(k,x -, )}\/\/\/\/ T

phase velocity v, ... = %

phase

\P(Xt) exp|:| kX 0)3 }\/\/\/\/\/\/
R A VAVAVAVAVAVAVAVAVAYA



Principle of Superposition

> 1f¥Y,, ¥,... ¥,are solutions of the wave equation (or any homogeneous linear
differential equation) then any linear combination W= ZA; ¥; Is also a solution.

» When two or more waves traverse the same region, they act independently of
each other.

Combining two waves yields:

xp(x,t):wl(x,t)wz(x,t):2Acos(%kx_%”tjcos(kavx_wavt)

» We can construct a “wave packet” by combining many plane waves of different ® and k’s.

Y(xt) =D Aexpli(kx-ayt)]




Wave Packets

Y(xt) =D Aexp|i(kx—apt)

consfuctive |
destructive



Ax
« The combined wave oscillates within an envelope that denotes the
maximum displacement of the combined waves.

 The wave packet moves at a group velocity:

_Aa)

u =—
v Ak

33



Waves: Uncertainty Principle

\VAVAVAVAVAVAVAVAVAVA

< AX >
small Ak — only one wavelength

< AX >
medium Ak — wave packet made of several waves

i

<«AX»>
large Ak — wave packet made of lots of waves — small Ax :narrow packet

AXAK >1/2




Fourier series

« The sum of many waves that form a wave packet is called a Fourier series:

Y (x,t)= ZA cos(k;x— )

« If kis a continuous variable, then summing the waves gives the Fourier
integral:

Y(ix,t) = JA(k) cos(kx — wt) dk

More later in the course

35



 Next: Particle Wave duality




Waves and Particles

In classical mechanics wave and particle behavior is mutually exclusive.

WWEVES
Described by a function of position and time f(x,t)
Motion determined by wave equation

Particles
*  Well defined momentum and position

x(t),p(t)

* Motion determined by Newton’s laws

x(1),p(t)

Lecture 2, p.37



Waves and Particles

Example: Double slit experiment.

Particles
Well defined momentum and position
X(t),p(t)

Motion determined by Newton’s laws

A stream of particles (small balls) is
incident on a screen with two slits.

The particles will hit the wall directly
behind the holes in the screen.

Waves
* Described by a function of position and time
f(x,t)
* Motion determined by wave equation

Interference
fringes

A monochromatic wave with wavelength A is
incident on two narrow slits.

Bright and dark bands (fringes), form by
constructive and destructive interference of the
wave passing through the two slits.

Superposition principle.

Seamdsind=ni n=0,xt1%2.

Lecture 2, p.38



PHOTON: Particle manifestation of electromagnetic wave

At the atomic scale both wave and particle behavior are possible for the same object.

Light “Particles”

Photoelectric Effect

Energy in = hv Photo-
Light Electrons
Energy Out
= Kinetic Energy
Metal S
Binding E“e'QY e electrons near
the surface

Photoelectron Energy = Light Energy In — Binding Energy

Planck Constant
h=6626x103%J-s




Matter Waves

> The wave nature of light is revealed by interference
» The particle nature by the fact that light is detected as quanta: “photons”.

Photon energy and momentum :

E=hv and p=h/A

Louis de Broglie (1923) proposed that particles also behave as waves;

with frequency and wavelength given by :

v = E/h
h/p | De Broglie wavelength e




Observation of an electron wave “in a box"

Image taken with a scanning tunneling microscope (more later)
(Note: the color is not reall - it is a representation of the
electrical current observed in the experiment)

Real standing waves of electron
density in a "quantum coxral”

Cu

IBM
Almaden
Single
atoms (Fe)




Convenient Units for Quantum Mechanics

Because most of the applications we will consider involve atoms,
It is useful to use units appropriate to those objects.

We will express wavelength in nanometers (nm).
energy in electron volts (eV).

1 eV = energy an electron gains moving across a one volt potential difference:
1 eV =(1.6 x 10*° Coulomb)(1 volt) = 1.6 x 10-*° Joules.

h=4.14 x 101° eV-s,
=== hc = 1240 eV-nm.

= _hc 1240 Ry Eohoton in electron volts
photon 2 A L in nanometers

Example: Ared photon with A = 620 nm has E =?



Exercise: Wavelengths of Various Particles

Which of these “particles” have the shortest wavelength:

a. an electron that has been accelerated from rest
across a 3-Volt potential difference (m, = 9.11x10-3! kg).

b. A proton with the same energy (m, = 1.67x10%" kg).

@A ball with the same energy (M, ccpar = 0-15 KkQ).

D= [9ME = 1 = h E is the same.
v 2mE Mass is bigger = A smaller.




Solution: Wavelengths of Various Particles

Which of these “particles” have the shortest wavelength
a. an electron that has been accelerated from rest
across a 3-Volt potential difference (m, = 9.11x10-3! kg). h

P=+2ME = A=

b. A proton with the same energy (m, = 1.67x10?7 kg). 2mE

c. A ball with the same energy (Mg qepa = 0-15 kQ).
a. EzeV =4.8x1019]
p = V(2mE) = 9.35x1025 kg m/s AL =h/p=7.1x1010m = 0.7nm
b. p=+(2m,E) = 4.00x102 kg m/s % =h/p = 1.7x102 nm
c. p=mv = 3.9x10° kg m/s A =h/p =1.5x101 nm

E is the same.
Mass is bigger = A smaller.

QM wave effects are negligible in the motion of macroscopic objects. 10-1°
nm is smaller than the size of a nucleus




Energy momentum relation

Everything
E=hv=/n
P = h/A

Reduced planck constant 7 = 21 ~107*J s
T

Why do we use different formulas for energy-momentum relation?

Photons (v=c) Slow Matter (v << c)
E =pc KE = p%/2m




Remember Special Relativit
Theory of Relativity

A stationary particle (p=0) has rest energy
. 2
E =mc

A particle in motion is described by the
relativistic dispersion relation:

Albert Einstein 1879-1955

Total energy E = \/(ﬁ?c:)z +(cp)’

Velocity momentum relation

/pfrn

oOF cp ¢
V=—-=cC = _
a}} \/(}'Hfl)' _I_(Cp}g K
>

Velocity: WV




Massive Particle (e.g. electron)

E = \/(}”{,z)z +(cp)’ 4E
Nonrelativistic limit (v<<c)
2 2
E=m*+¥ +.. — KE ~ P
2m 2m P
>
Massless Particle (e.g. photon)
4+E
m=10
E=c|p
v=c D




Summary of L1

Math background
Particle-wave duality

Next time

e Uncertainty principle

* Quantum mechanics

* Schrodinger equation

* 3 solved problems: Particle in a well, Harmonic oscillator, hydrogen atom
e Classical statistics

* Quantum statistics

Reading assignment

* QM refresher (Thornton Ch 6, 7 or equivalent, or Ch 1.9 and 3 from website)
e SimonCh1,Ch?2

Homework 1 posted

Math diagnostics (course website)



* Next: Heisenberg Uncertainty principle




Plane Waves

Plane waves (sines, cosines, complex exponentials) extend forever in space:

¥ K
0meollte ol N TN N g o

W, (x,t) =exp| i(k,x -, )}\/\/\/\/ T

phase velocity v, ... = %

phase

\P(Xt) exp|:| kX 0)3 }\/\/\/\/\/\/
R A VAVAVAVAVAVAVAVAVAYA

Different k’s correspond to different momenta P = fik

Different @'s correspond to different energies E=low



Heisenberg Uncertainty Principle

Mathematical property of waves: AK-AX > 1

:. A definite wavelength must extend forever. /\/\/\/\/\/\/\/\/\/\/

¢ Finite wave packet:

A wave packet requires a spread Ak of wavelengths. ’\/\/\/\/\/\/\/\’
k |

Using p = h/A = hk, we have: \ /

We need a spread of wavelengths in

h (Ak-Ax >1) = (hAk)-Ax >h :>| Ap-AX >h order to get destructive interference.

The Heisenberg Uncertainty Principle limits the accuracy with which we
can know the position and momentum of objects.




Plane Waves vs. Wave Packets

W(x,t) = Aexp|i(kx—at) |

\VAVAVAVAVAVAVAVAVAVA

Y(xt)=> Aexp|i(kx—at)

For which type of wave are the position (x) and momentum (p) most
well-defined?
A) xmost well-defined for plane wave, p most well-defined for wave packet.
| B) p most well-defined for plane wave, x most well-defined for wave packet. |
C) p most well-defined for plane wave, x equally well-defined for both.

D) x most well-defined for wave packet, p equally well-defined for both.
E) pand x are equally well-defined for both.




A Wave
Interpretation:

Uncertainty Principle

Superposition

+

Heisenberg Uncertainty Principle

NN NN

mf\n/\vf\mxfwvf\/\f\/\
VVVVVVVVVVVV

NVVVVVVVVVV
AANANNANANNAA

Ax
small Ap - only one wavelength

W~

4

< Ax >
medium Ap — wave packet made of several waves

|

<Ay

AN

large Ap — wave packet made of lots of waves

* Wave packets are constructed from a series of plane waves.

* The more spatially localized the wave packet, the less uncertainty
in position.

e With less uncertainty in position comes a greater uncertainty in
momentum.



Energy-Time Uncertainty Principle

If we are to make a wave packet in time—ie a pulse that last for a time At (instead of over
an infinite time as for a single wave), we must include the frequencies of many waves to
have them cancel everywhere but over the time interval At

Y(xt)=> Aexp|i(kx—apt)
AwAt >1/2

combined with the energy frequency relation

E=hf =hew= AE =TAw

Heisenberg uncertainty principle for energy and time

The energy and lifetime of a particle
cannot both be determined with
complete precision.




Implication of uncertainty principle

Consider a particle for which the location is known within a width of A¢ along the
axis. We then know the position of the particle to within a distance

AX<I/2
The uncertainty principle specifies that Ap is limited by

ApZ—E—zﬁ
2AX |
The kinetic energy (non-relativistic)
2 2 P
- A h .
Koin = Proin > (Ap) > Zero point energy
2m 2m 2mi?

> if a particle is confined to a region of finite size, the particle’s kinetic energy must be non-
zero!!l



e Next: Quantum mechanics




Quantum Mechanics: Law 1

Law 1. The state of a quantum mechanical system is completely specified by a
function Y(r, t) that depends on the coordinates of the particle(s) and on time.

w(r,t) Wave function

2 * " ) )
r.t) =w(r,t) -w(r,t Probability to find particle
‘W( )‘ W( ) W( ) at position r at time t.

+00

[ly(r,t)dr=1

—a0

Normalization.

If w, and i, are states then:

Superposition principle

c,\, +C,\v, =, Isalso a state

E.Y. Andrei



Schrodinger equation in 1D

the Schrodinger equation for an electron wave in one-dimension W(x,t)

2 2
0 \P(Z(’t) +V (X, )W (x,t) =i OFxY
2m  OX ot

Of course for any real system, need 3 dimensions,
\ just add partial derivatives of y and z, and V(x,y,z) etc.

Schrodinger wrote it down, solved for hydrogen,
got solutions that gave exactly the same electron energy levels as Bohr.



Time independent Schrodinger equation in 1D

- n® 0°P(x,t)
2m  oX°

Most physical situations, like H atom, no time dependence in V!
Simplification #1:V = V(x) only. (Important, will us_e in all
Shrodinger equation problems!!)
W(x,t) separates into position dependent part (x)

and time dependent part ¢(t) =exp(-iEt/h). W(x,t)= P(x)p(t)

oV (x,1)

+V (X, D)WY (x,t)=1#x

Plug in, get equation for Y (x)
Plug in, get equation for ¢(x)

- Oy (x)
2m  ox°

HV ()w(x) = Ep(X) p(t) ="

“time independent Schrodinger equation”

59



Stationary states

the wave function can be written as:

Y (xt)=yp(x)e™ ‘With:a)zE/h

* The probability density becomes:
Py — Wz (X)(eiwte—ia)t)
Y =y’ (X)

« The probability distributions are constant in time. This is a standing wave
phenomenon that is called the stationary state.



1)
2)
3)

4)

Properties of Valid Wave Functions

To avoid infinite probabilities, the wave function must be finite everywhere.
to avoid multiple values of the probability, the wave function must be single valued.

For finite potentials, the wave function and its derivative must be continuous. This is
required because the second-order derivative term in the wave equation must be single
valued. (There are exceptions to this rule when V is infinite.)

to normalize the wave functions, they must approach zero as x approaches infinity.

f WP =1



Solving Schrodinger Equation for free particle

2 2
n°~ 0y(x)
2V (p(X) = Ey(x)
2m OX
Electron in free space, no electric fields or gravity around.
1. Where does it want to be? 1. No preference- all x the same.
2. What is V(x)? 2. Constant.
3. What are boundary conditions on {(x)? 3. None, could be anywhere.
Smart choice of hZ 2
X
constant, V(x) = 0! 0 W( ) — EW(X)

2m  OX°

62



. 2 2
I Oy (Xx) _ Ew(x)

2m  OX°

w (X) = Acos kx+ Bsinkx

The total energy of the electron is:

Quantized according to E,, = (constant) x n?, n=1,2, 3,...

Quantized according to E = const. x (n)

Quantized according to E,, = const. x (1/n?)

Quantized according to some other condition but don’t know what it is.
Not quantized, energy can take on any value.

moO®P

Ans: E - No boundary, energy can take on any value.



w(x) = Acoskx 7K _ o 5k
2m
k (and therefore E) can take on any value.

Almost have a solution, but remember we still have to include
time dependence:

Y(x,t) =y (X)st) |d(t) = a-iEU/7

...bit of algebra, using identity: e =cos(x) + i sin(x) and wave
propagating in the positive x direction

Y (x,t) = Acos(kx — wt) + 1 Asin(kx — wt)
The wave function is not restricted to being real.

Only the physically measurable quantities must be real: probability, momentum
and energy.
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Quantum Mechanics: : Law 1

Lawl. The state of a guantum mechanical system is completely
specified by a function ‘Y(r, t).
= Dirac notation W(X) — ‘W> ket

w*(X)=(y| bra

= Principle of superposition. If ¥, and ¥, are possible states of a
system then any linear superposition. ¥ is also an allowed state.

) =aly)+a|y),

= |nner product

(Blw)=[¢*(r)w(r)dr

= Awave function y7(X) corresponds to a state‘w> in the X representation

= Awave functiony/(p) corresponds to a state‘l,u> in the P representation



Quantum Mechanics

Only 3 exactly Solved Problems!

+

Particle in a box Hydrogen atom Harmonic oscillator

U(x)={O exst U(n-—3

Are, 1

U (r):%ma)zx2

Patential enargy
of b

o X<0:x>L

Internuclear saparation

Skip examples E.Y. Andrei



Constraints on the Form of y(x)

lw(X)|? corresponds to a physically meaningful quantity:
the probability density of finding the particle near x.

To avoid unphysical behavior, y(x) must satisfy :
» y(X) must be single-valued, and finite.

» y(X) must be continuous, with finite dy/dx.
dy/dx is related to the momentum.

» d?y/dx? must be finite.

> To avoid infinite energies.
This also means that dy/dx must be continuous.

» There is no significance to the overall sign of y(x).
It goes away when we take the absolute square.




Properties of Valid Wave Functions

To be physically acceptable, a wave function:

00
. Wave function must be finite everywhere

2 — ’

1. Must be normalizable! J |L|J(X)| dx =1 and approach zero at infinity.

2. Must be smooth, continuity of the wave function and
continuity of its derivative!

If the W had a discontinuity, its
first derivative would be infinite at the
point of discontinuity-> non physical!

© 2008 Pearson Education, Inc

2

Acts like a 0 wavelength
-2 « Momentum and KE
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Ludwig Boltz
1844-1906

» Introduction
 What is condensed matter physics and why do it
» The power of simple models — specific heat of solids
s Boltzmann
s Einstein
s Debye

References: Supplementary reading ~ Anderson
Morisson


http://www.physics.rutgers.edu/ugrad/406/syllabus/Anderson%20More%20is%20different.pdf
http://www.physics.rutgers.edu/ugrad/406/syllabus/Coleman%20Reductionalism%20Nature%202007.pdf
http://www.physics.rutgers.edu/ugrad/406_2018/syllabus/Morrison%20Emergence%20Reduction%20Fundamentalism.pdf

varticles as vacuum excitations

Stuff is made of particles

Particle mass determines:

response to forces

F =—dp/dt

E(p) - dynamics

E = ./c?p?+mic”

Why Same m, ?

Lorentz invariance!
Physics laws same in all
reference frames

particle Rest mass g
m,c? [MeV] w

e 0.5

n, p 940

neutrino (v) ~0

|/

, p> p<<myc massiveslow particlesv <<c

2 0
pc f p >> myc ultra - relativistic (photon, neutrino)

» Particles are elementary excitation out of
our Universe’s ground state (vacuum) E< O

» String theory: 10°%° possible vacuums!
We are ‘stuck’ in one.

» Figure out our vacuum > predict the
masses of all elementary particles
(standard model)

d’E
m0= d—p2

p [MeVic]

T

m

l

e

electron’

0.002

Virtual Particles...
Q)

AE At < E . l
2




varticles as vacuum excitations

Stuff is made of particles

Particle mass determines:

response to forces F = dp / dt

E(p) - dynamics

E = ./c?p?+mic”

( ,  p? p<<m,c massiveslow particlesv << ¢
~mc’+——
E(p) — 1 ° 2m,

| pc p >> myc ultra - relativistic (photon, neutrino)

Condensed matter: No Lorentz invariance

p

]
E(p)7A+2r;*\

Spectral gap (Insulators) Dispersion curvature
independent of A

Many other types of dispersions are available or can be
engineered

Condensed matter vacuum

» Elementary excitation out of the
vacuum — quasi-particles

» The lattice of ions defines a preferred
reference frame — no Lorentz invariance

» ~ 100 elements x 20 arrangements x 10
allotropes — 10%° possible vacuums.

» We can engineer and study many of the
vacuums. No fundamental restrictions.




Condensed matter vacuum

Building blocks: electrons and nuclei

» Electrons moving in a crystal (lattice of atoms)

» E(p) determined by crystal geometry: Energy bands

» Ground state(vacuum) occupied states E < E. Fermi energy )
» Low energy Excitations: ‘dressed electrons’ with effective mass m* O°E

= aaaamanaaaaﬂuug op°

~10°° Ground states

Bilayer graphene: Twisted Bilayer graphene:

Chiral massive fermions Flat band m* - large
m*=0.03me QP velocity - small

Graphite: Graphene :
QP masses ~ 0.043m, Chiral massless fermions
Ultra-relativistic

energy (eV)

Momentum along crystal
directions

diamond unit cell




Effective Theories

-~ -~ -~ -~  The Hamiltonian describes the physics of electrons in a potential created
H=H.+H,+ Hy e, by ions (on the energy scale of Hartree),

 We are interested in the measurable low-energy properties.
* Try using reduced effective ( phenomenological) theories.

» Low energy (long wavelength) excitations around the ground state : quasiparticles
(Physics of windsurfing)

Examples:

e Quasiparticles in Fermi liquids — like free particles but different from electrons
(effective mass, E-p relation, charge )

* Phonons in lattices




rower of simple models

Max Planck Albert Einstein
1858 -1947 1879, -1955, 1844-1906

Ludwig Boltzmann

» The power of simple models



Specific Heat of Solids

1819 ~<;% one hundred year ofd Jauzzfe

C:@ 25 | ! ! | | I I
oT

20

15

Cy, joules/mole.K

diamond

0 1 il Y N S
0 50 100 150 200 250 300

temperature, K

Specific heat of solids



Specific Heat of Solids:Boltzmann, Einstein, and Debye

aQ Co D B B S N S i e — e
_@—T 20+ Pb . . _~
at highT: C~ 3R = 25 J/K-mol
5 15| o | | Unsurprising - like monoatomic gas
E
%;10‘ Si u
§
Sk el
diamond
C(T) T-0 0 % 50 700 750 200 250 300
temperature, K
. We don’t distinguish between C, and C; - solids, in contrast to gases, do not
expand/contract much with T.
Co—Cy =VIa*/ B
Coefficient. of thermal expansion Isothermal compressibility

. The electron contribution to C is typically small at T = 10K — we’ll discuss this later.



Some background: Kinetic theory of gases

The theory for ideal gases assumptions: ) >
*The average distance between the gas particles is large compared to their size 7 J
*The number of particles is so large that statistical treatment can be applied. e \ \ 07
*The moving particles collide among themselves and with the walls of the container | \ f o o
in perfectly elastic collisions. ” AN
1 — YV
Equipartition theorem: each quadratic degree of freedom contributes E kBT to the f
average energy : s muclocale m..::i..e.-

Can you think of examples of quadratic degrees of freedom
i.e the energy is proportional to the square of a variable?



Boltzmann - classical high T limit

Material | C/R
Aluminum | 2.91
Antimony | 3.03
: Copper 2.94

At High T (room temperature)
Gold 3.05
) Silver 2.99 .

C =3N,k; =3R Ludwig Bolt‘n

. - Diamond | 0.735
. diamond _
Molar heat capacity 0 AA/ 1844-1906

e e =,  Heat Capacities of Some Solids at Room temperature

temperature, K

Boltzmann (1897)

n
wn

Dulong-Petit Law (1819).

n
o
T

-
L5l
I

Cy, joules/mole.K
=
T

N independent atoms trapped in potential wells formed by interactions with other atoms.
The atoms/ions are in thermal equilibrium with a thermal bath.

N atoms have 6N degrees of freedom: 3N for center of mass KE and 3N for the spring
potential energy % kx? , % ky?, % kz?

* According to the equipartition theorem, each quadratic degree of freedom contributes an

o(E
average energy Y2k T . <E> _ g N, k,T =C, = éT> =3N,k, =3R

Note: This is a classical result (kzT > hw). The low-T behavior remained a puzzle.



‘wwrrK urab e

Einstein - quantum (low T) model

The low-T value of C is quite different from 3R, it approachesOas T - 0.

AtBERT EINSTEIN =3

C i~ i 13VYSI

Einstein (1907) replaced classical oscillators with guantum ones.

In general, interactions between atoms (ions) in crystals are not
harmonic. However, at low T (think small amplitude), the harmonic
approximation works well.

N atoms = 3N normal modes.

ESACAC RS

3N identical (the same w) quantum oscillators

V(x)

The energy of each quantum oscillator

Fnergy

E, = ha)gn +1/2) n=012..

Number o/excited modes of energy 7i®

Later in the course we will see that these represent lattice vibrations called - phonons



Preliminaries : Bosons and Fermions

» To calculate the average number of excited modes at a given temperature we need to use a few
facts about the statistics obeyed by different types of quantum excitations.

* The type of statistics divides particles into two categories:

1. Fermions : particles that cannot be in the same energy level (eg. Electrons — that
obey Pauli exclusion exclusion principle.

 Fermions have Y integer spin (electrons have s = %2, for example))
« Their wavefunction is anti-symmetric under exchange of two particles

2. Bosons : particles that can be in the same energy state (eg. Photons, phonons. No
exclusion principle.)

« Bosons have integer spin (photons have S = 0, for example)
« Their wavefunction is symmetric under exchange of two particles

Therefore one can have more than one photon, or lattice vibration at the same energy.
This is not the case for electrons. (later in the course)



Preliminaries : Thermal equilibrium

Thermal Properties - Key Points

« Fundamental law a system in thermal equilibrium:

If two states of the system have total energies E, and
E,, then the ratio of probabilities for finding the system
in states 1 and 2 is:

Pi/ Py =exp(-(Ei-E)/kgT)

where

Ks is the Boltzman constant

Applies to all systems - whether treated as classical
or as quantum and whether the particles are bosons
(like phonons) or fermions (like electrons)

Quantum Mechanics makes the problem easier,
with final formulas for thermal energy, etc., that

depend upon whether the particles are bosons or
fermions



Harmonic oscillator thermally excited states

« Excitations of a harmonic oscillator are bosons. They do not obey an exclusion principle

« There can be any number n of excited states in each oscillator, ie the energy of each oscillator

can take on any value in the series:
E =hw(n+1/2) n=012..

Pl
= =exp(—(E
5 p(—(

n

Cis a normalizat ion factor independent of n

Usig : > P, =1=C=> exp(-E, /kgT)
n=0 0

« Thus the probability of finding the oscillator in the n’'th excited state

exp(—E, /kgT)

—E. )/k;T)= P, =Cexp(-E, /k;T)

n+1

P =—
> exp(-E, /kgT)
0




Harmonic oscillator

orobability of thermall

* The probability of finding the oscillator in the n’th excited with energy

P_

n

exp(—naw/K,T)

> exp(-nhawlk,T)
0

What does this look like?

Prob of
being “occupied’

Note that it decays rapidly with n

Energy

excited states

\ f

\ ] 4
’ N\ //.f 3
{ -~ 2

A —A 01




Average number of excited modes at temperature T

* Average occupation number at temperature T is thus:

o0
<> denotes thermal n) = Pn This is the expectation value of n.
average, so T is implicit in — n

0

the notation

> nexp(-nhw/kyT)
n=0

> exp(-nhwlk,T)

)=

How can we do this sum?

1. We know that: DENOMINATOR

1

ix” = % replace x — exp(-naa/keT) >~ exp(—nhw/K;T) = .
0 —X n= _

e—ha)/kBT

Geometric series




*  We can use this result, and a trick, to calculate the numerator:

Average humber of excited modes at temperature T

Compare to Planck’s

¢ 0 [ | J X model for photons
X |= =
Ox (1-x)°

[—x

exp(—fw/K,T)
(1—exp(-hw/kgT))

——> Z nexp(—niw/k;T) =
0

Putting it all together: Planck distribution:

_ numerator |
)= denominator (n) = 1 ﬁ = 1
— X/(l_ X) = L eXp(ha)/ kBT) _1 ETViax PIanék

1/(1-x) 1-x 1858 -1947

Note: This is different from the <n> _ 1
Bose Einstein distribution: exp(ficw/ kBT —1)-1

1 Chemical potential




Average Kinetic energy of oscillator at temperature T

)= exp(heo k. T) -1

1

e Thisis the average number of excitations in a mode with frequency ® at temperature T.
 We can therefore use this to calculate the total energy of the lattice and from this obtain the specific heat.

E(T) =hao((n)+1/2) = ha)[ - 1/2]

_|_
exp(ho /K T) -1

High T limit: :

E(T) =(n)he=

Low T limit: :

T =00

Same as classical result!!

>ke T E(T) =(n)ho =

>hawexp(—hwlk,T)

T=0

No excitations at T=0
But very different from classical result




Einstein's result for the specific heat

1
E(T) =hw((n)+1/2) :hw[exp(ha)/k T)—1+1/2j
 Heat capacity of HO c _d—E K X2 eXp(X)  ho
CodTl T (ep0-1)7 [k

Einstein model
® The heat capacity of a system consisting of 3N HO of frequency

c :ik x* exp(X) _ 3Nk x* exp(X)
T (exp(x) —1)3 ? (exp(x) —1)2




Einstein's model predictions

 High T limit:

e Low T limit:

c, =3k, X exPX) x= 12
YT (exp(x) -1)° KoT
X———0; exp(X)———1+X
X2 (1+ X) lassical (Dulong Petit) result!!
> 3Nk > 3Nk
CV T oo B (X)Z T oo BrE
X————>0; exp(X)—1———>exp(x)
_ho
C, ———>3Nkyx* exp(—x) oc & ‘'




in Einstein model com

nared to experiment

(To/TYe™T

Cy =3Nks S
ho
T =—
E kB

Single parameter fit |

calimaol - K

C.,

5]
5| Diamond @ S .
4 —
|:.'-'
3_
=]
E_ I::_'.:'
o
1 B a
—_— | I I I I

01 02 03 04 05 06 07 08 09 1.0
TiTe

Experiment vs. Einstein’s theory.
Tz = 1320K —the only fitting
parameter.

A. Einstein, Annalen der Physik 22, 180 (1907)



Limitations of Einstein.s model

B
#] 10 [ /"I"
el o 2 g  Dulong-Petit Value
£ ]
% 4 = 1o
= [ 7
g .l % ER
E 5 % 0.1 <
B . L
g 2 &/ 3
: < 00 5
_/_n\ = ;
: - . :
L | — — Einstein
4 04 05 06 07 0B 09 1.0 ]
TI‘ITE | ] |1r|||[ T 1T 711 LILI
“] g A 436 “][] F 4 & 36 '||:|r|:|[:| F
temperature, T (K)
A, Einstein, Annalen der Physik 22, 180 (1907)
Not a bad approximation to experimental data but not perfect.
At low T heat capacity is much too low .
[F}

(Experiment: C o T rather than C oc e ¥BT)
This is not that surprising- ® is not constant for most vibration modes!

But the model works reasonably well for optical modes where frequency is almost constant.
To do this right we need to take into account multiple oscillator frequencies— Debye model .




Early models for the specific heat of solids.

Scorecard so far :

» Boltzmann model — based on energy equipartition for classical particles.
= Works well at high T but fails at low T.

» Einstein’s model: - assumes N independent quantum oscillators (bosons) with Planck statistics
= Works well at high T
= UnderestimatesCatlow T

Next time we will see how Debye ‘fixed’ the low T problem in Einstein’s model by assuming
harmonic oscillators with frequencies given by a linear dispersion of sound waves.



Limitations of Einstein model

Einstein’s model ignores the fact that the ions are coupled
together —coupled oscillators.

e For coupled oscillators, the calculation of the partition function may look rather difficult.
e But a system of N coupled 3D oscillators is equivalent to a system of 3N independent 1D oscillators.
* The price to be paid is that the independent oscillators are not of the same frequency; the normal modes of

vibration of a solid have a wide range of frequencies.

 These modes are not related to the motion of single atoms, but to the collective motion of all atoms in the

crystal — vibrational modes or sound waves.

Need to consider a broad spectrum of w and not a single characteristic frequency as in the Einstein’s model:

E(T) :Z<ni>ha)i




A

B B = T S~ T G~ S

€ Nobelprljs scheikunde 1936

9N

2
o
>

Debye’s model (1912)
e Treats the solid as a continuum, i.e., the atomic structure is ignored.

« A continuum has vibrational modes of arbitrary low frequencies, and at sufficiently low T only
these low-w modes are excited.

* The low-w modes are simply standing sound waves, they should be quantized the same way

as Planck had quantized light waves in 1900. e

The continuum model works well at low T (the characteristic i /\/

energy of excitations is ~T), where the wavelength is much

greater than the inter-atomic distance a: n=3 /\/\

o o | pUE[Uap
SIS

Assumptions: @ = VK
h e all sound waves propagate with the same
E=hw=hvk=v—=Kk,T speed ¢ (not the speed of light)
A e 3 different modes — one longitudinal two
transverse
—34 3
= ﬂ = [T = IK] _ 6610 _};2'10 ~107"m=0.1um >> a
KgT 1.4-1077 %1

I » -atlow T the discreteness can be ignored!!




Continuum approximation

Isotropic medium: W, = u,ge kT—wt)
F 3 m
Dispersion relation is linear w = ck
—_— X
- C
G=Grmrmy Ay SR R AN R =

L J

I‘ . One longitudinal mode: 1, Ik k
I oeall, Il_mnl

- —
Two transverse modes: 1, 1 k

We neglect the difference in the speed of propagation of longitudinal and
transverse modes. In reality the phase velocity of traverse vibrations is always
smaller than that for longitudinal ones - smaller restoring force (in many metals
the longitudinal waves travel approx. twice as fast as the transverse ones).

In anisotropic lattices, elastic waves are combinations of longitudinal and
transverse oscillations (except for a few directions of k, such as [100] in simple

cubic lattice)



Einstein - quantum (low T) model

quanta in the i

Energy of Einstein i 1 n; - the number of energy
solid: E= Z hw | n; "‘E it oscillator
i=1

Calculate <n,> the mean occupation number in the n’th level.

From statistical mechanics :
The partition function for an oscillator of frequency o in it’s the n’th energy level

Recall:

5.
E‘I’L
/= Z(}}:p (— ) = c :_8InZ e :( " +£ha))
i kT Y B =-"5 (E)=| (m+3
kT
3
Bose Einstein statistics \’\Omei
ot
exp(ralk,T)—-1




e's Calculation Following

Debye assumed that the oscillation modes were waves with frequencies w(k) = v| k| with v the sound velocity.
For each k there should be 3 oscillation modes, one for each direction of motion.
He wrote an expression analogous to Einstein’s

{ T v !
(E) = Jzk: hw (k) (?!-E{_Shw{k” + 5)

Each excitation mode is a boson of frequency w(k) and it is occupied on average ny(BZw(k)) times.

For a large enough sample the sum can be converted to an integral .

We simplify the problem by using “Born-Von-Karman” boundary conditions.

In one dimension: instead of having a sample of length L with actual ends, we imagine that the two ends are connected

together making the sample into a circle.

* The periodic boundary condition means that, any wave in this sample e is required to have the same value for a
position r as it has for r + L (we have gone all the way around the circle). This then restricts the possible values of k to:

27 1D L = 3D L3
k:Tn ——> ZAE] dk —) Zﬁf?fﬂj dk
k / ! — 30 k f /
/ /

Each k point occupies a segment of length L/2w Each k point occupies a volume (L/2r)?



Taking the continuum limit: (E) =

Szk: hiw(K) (n.g{_ﬁhw{k}} + %)

L?
3ﬁfdkm;[k} (n.g{_ﬁhw{k}}

L1
2

Assuming spherical symmetry, we integrate out the angular dependence /dk — 4"/ k2 dk

And using k=w/v

ArL?
[2’”}3 0

(E) =3

Rewrite ion terms of density of states g(w): .

flx wrdw(1/v?) (w)

(HB (Bhw) + %)

(E) :/ dw g(w)(hw) (ng[ﬁfmﬂ +
0

:)

0

the number of modes with frequencies
between w and w + dw is given by
g(w)dw.

Density of States: .
) 12ﬂ.£ _9“2
Q'I:w} — N 1 ;ﬁ 7| = N LJ
(2m)*nv w3

n is the density of atoms, and nL3=N

@, is the Debye frequency

w3 = 6minv?




ONh
) = f dﬂ: +

wd{ﬁﬁ)4 —1

T independent constant

E)

= ON ({ hw)? 15 — T independent constan
Wd

kBT}4 'Il'iL

ﬁ

By . (kgTP 120t
C=%r ~ NG s T

Gives the correct T2 dependence at low T!!

-
T
2
=t
B
-
&
&
g
E
=

Low T heat capacity of solid Argon plotted against
T3 Finegold and Philips (1968)




Debye's correction for high T

Because of finite distance between atoms in a crystal, it does not make sense to allow arbitrary large k (i.e.
arbitrary small A) — should be a high-k (w) cut-off.

Debye introduced an ad hoc cut-off: at high T the average energy <E> should be 3Nk T (the total number of
modes times the energy per mode).

2 g ] ky Total number of modes (per unit volume)
}f’ Y| ~ | n = N/L? is the density of atoms
I\ 3
Ja b7 g i
7 iy g, &= - cutof
\ / 3n = w) dw .
kx A oo 9(@) condition
—N i)
y, —mjc 0
(1)
kr'\- — wp
1
= | - a1t N W -1
(E) f (@) ho g(@) do  HghTlimit. —o—~ (Bha)
0
“D w2 1 R’HT All 3N modes are excited, the
(E) = RBTJ‘ ——dw =—F— (MD)B = 3nkgT energy of each mode (o its
2me ¢3 2me 3 I N
rd amplitude squared) & kgT.
wp = (6m?n)3¢c The cut-off value of k = (6m2n)*/? is on the

- the Debye frequency, wp

order of = ~ n1/3, as it should be.
a



hared experiment

2 m2ky* 127 [T\
Low T (T L T - — 3 =
( D) C ACDE T = R( )

HighT (T =Tp) C=3R

Tp is usually determined by fitting the exp. data on specific heat.

7 T 1 .. e & I % 71 1
6 - mw
VA oYX 0
<5 -
." u
-l 1
T

Xl 1 esors ~ €7
< a Cu
S, v KCI o

L EE‘:G | ¢ ~3km/s, a~0.2 NM, Weyeops~5 + 102 rad ="

l ! I | | | | | \ \ | | I Compare with the max. sound w~2m - 10* rad e
0n 02 04 06 08 10 12 14 16 18 20 22 24 26 28
T/Tp




The Debye Temperature

The greater the sound speed and the density

T, = hay _ h (672'2n)1/3V of ions, the higher the Debye temperature. If
kB kB the temperature is normalized by Tp, the data
for different materials collapse onto a
universal dependence.
oxle .. *.D.t.’.‘TD.z..?OSK ............ 25} Dulong-Petit, 2494 Fuminlim A8 K

Beryllium | 1440 K

Ag, Th= 225K Cadmium | 209 K

Caesium 38 K

Scaled to their

F‘.([/rrx()l K)
Cy(J/mol K)

Al, Tp= 428 K Debye temperatures T 2230 K
Diamond .
T =2230K Chromium | 630 K
(N T 0 i Copper | 3435K
I'emperature (K) /Ty =
Gold 170 K
Ty varies from ~105K for lead (soft, low c) to Iron 470 K
~2200K for diamond (hard, high c) . Lead 105 K

T, plays similar role for phonons as T plays for electrons: it separates the high-T (classical) and the low-T
(quantum) regime. In the case of electrons in metals, T;~10%K so only quantum regime is encountered. For
phonons T(,~10% - 103K , and both classical and quantum behavior can be observed.



. The dependence g, (w) « w? was obtained by
ignoring the discreteness of matter. In reality, g, (w) & w?
holds only for low w (1 > a). At w~w[ we will need to modify
the dispersion relation and the corresponding density of states.
. The speed of sound is assumed to be the same for all
polarizations of acoustic waves, which is not true.

0 Wg @Wp  w

The real phonon spectra are very complicated, and T is
treated as an experimental fitting parameter.
Our goal will be to (qualitatively) understand the spectra.

Dansity of states

Debye . H ‘
approximation e ||
[, |
| = | |
4 a

|
12 16
Fragquincy » (1 Qe B'II




» Boltzmann: classical approach (no energy quantization), works well at kzT > hw);

» Einstein: quantum (kzT 2 hw)p), independent oscillators, oversimplified DoS (just one wg) and, as a
result, underestimation of E and C at low T;

» Debye: quantum, coupled oscillators = broad range of w, DoS is more realistic but still not quite right

because discreteness is not treated consistently.

Density of States: important concept that we will extensively in the course.



Einstein - quantum (low T) model

quanta in the i

Energy of Einstein i 1 n; - the number of energy
solid: E= Z hw | n; "‘E it oscillator
i=1

Calculate <n,> the mean occupation number in the n’th level.

From statistical mechanics :
The partition function for an oscillator of frequency o in it’s the n’th energy level

Recall:

gy__0Inz :(<n>+ihwj
0B 2

!

Bose Einstein statistics Fermi Dirac statistics

1 1
= n)=
<n> exp(fio/k;T) -1 < > exp(fiwo/k,T)+1







Particle charged neutral
Partii LEPTONS nal forces
-
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Condensed matter vacuum



The Particles of the Standard Model
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. Fig, 1:The names and masses of the known elementary particles, along with the

The universe's non-zero Higgs field is evoked by the green sea. Particle masse

mass-energies E = m c-squared) are shown, in units of a GeV, which is a few pe

the mass-energy of the lightest atom (hydrogen). Neutrino masses haven't yet been nalled down.
To avoid clutter, the gravitational force (and its carner the presumed graviton} is not shown.



P. W. Anderson’s principles

The description of the properties of materials rests on two principles:

* Adiabatic continuity. Complicated systems may be replaced by simpler systems that have the same essential
properties in the sense that the two systems may be adiabatically deformed into each other without
changing qualitative properties.

Example: Landau's Fermi liquid theory. The low-energy properties of strongly interacting electrons are the

same as those of non-interacting fermions with renormalized parameters.

e Spontaneously broken symmetry. Phase transitions into states with qualitatively different properties can
often be characterized by broken symmetries.

Example: Crystal versus Liquid — broken translation and rotation symmetries; Ferromagnet versus paramegnet

broken rotational symmetry and time-reversal

* Topological order — recently added to the list — Lifshitz transitions change in number of Fermi surfaces

solid liquid
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Dot (Scalar) product
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Cross (vector) product
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Functional form of solution?
y(x,t) = Asin(kx)cos(wt) + Bcos(kx)sin(wt)
Boundary conditions?
l. y(x,t) =0 at x=0 and x=L

At x=0: y(x,T) = Bsin(wt) =0 - only works if B=0
y(x,t) = Asin(kx)cos(wt)

Evaluate y(x,t)=0 at x=L. What are possible values for k?
a. k can have any positive or negative value
b. /(2L), n/L, 3n/(2L), 2r/L...  Answer is d: k=nm/L
c. /L Boundary conditions put constraints
d. /L, 2ri/L, 3m/L, 4m/L ... onk..
e. 2L, 2L/2,2L/3, 2L/4, .... causes quantization of k and A!!! 113




Dispersion

dw

* The group velocity is Uy = dk

* For a de Broglie wave: E=hf =024 =ho
p =7k

« The group velocity of a de Broglie wave packet is thus:

_do dE

T dk dp
Using:  E=(pef +(me?
2
——> |y = dE _ Ppc

Y dp E
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Group velocity and phase velocity

* The group velocity is Uy =

« The relationship between the phase velocity and the group velocity is

do d dv

u, = T (vphk):vph +k

ph

* Hence the group velocity may be greater or less than the phase velocity. A
medium is called nondispersive when the phase velocity is the same for all
frequencies and equal to the group velocity.
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Plane Waves vs.

Wave Packets

W(x,t) = Aexp|i(kx—at) |
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Which one looks more like a particle?



Gaussian Function

« A Gaussian wave packet describes the envelope of a pulse wave.
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* The localization of the wave packet over a small region to describe a particle
requires a large range of wave numbers. Conversely, a small range of wave
numbers cannot produce a wave packet localized within a small distance.
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Normalization and Probability

The probability P(x) dx of a particle being between x and x + dx :

P(x)dx=""(xt)¥(xt)dx

here W™ denotes the complex conjugate of W

The probabillity of the particle being between x, and X, is given by

P=[ ¥ "y dx

X

The wave function must also be normalized so that the probability of the
particle being somewhere on the x axis is 1.

.[:LP*(X,t)‘I’(x,t) dx=1



