Lecturer: Professor Eva Y. Andrei

Email: eandrei@physics.rutgers.edu
My website: http://www.physics.rutgers.edu/~eandrei/
Teaching assistant: Phil Rechani
Email: zz190@scarletmail.rutgers.edu

Office hours: by appointment
Lectures: Tuesday, Thursday 3:50-5:10 p.m.
Synchronous on-line lectures via Zoom
Meeting ID: 99841802916
Password: 030852
Course website: http://www.physics.rutgers.edu/ugrad/406
User name: SS406 Password: graphene

- Lecture notes
- Links to textbooks and supplementary material
- Homework assignments and solutions
- Project suggestions

The physics of Quantum materials

> Suggested Textbooks:

- C. Kittel, Introduction to Solid State Physics, 8th edition (John Wiley \& Sons 2005).
- S.H. Simon, The Oxford Solid State Basics (Oxford University Press 2013).
- H. Ibach and H. Luth. Solid-State Physics. 4th edition (Springer 2009)
- Ashcroft and Mermin, Solid State Physics

Familiarity with basic principles of quantum mechanics (Schrödinger equation, energy quantization, tunneling, spin, operators). Knowledge of basics of statistical physics (classical statistics, BoseEinstein and Fermi-Dirac statistics).
Suggested Textbook for reviewing background material
Modern Physics for Scientists and Engineers 5th Edition, by Thornton, Rex and Hood

The physics of Quantum materials

$>$ Grading:
30\% Homework -Assignments will be due weekly at the beginning of class 10\% In class participation
10\% Projects - A reading project on a selected topic of contemporary solid state physics. An oral presentation(~ 10 slides).
20\%, 30\% Exams midterm and a final.

What I do - when not teaching 406

Experimental research in condensed matter physics

http://www.physics.rutgers.edu/~eandrei/
> Scanning tunneling microscope - visualize atoms and electronic wavefunctions in materials
Microscope

My Research

> Graphene:

- One atom thick crystal
- Carbon atoms arranged in honeycomb structure
- electrons behave like ultrarelativistic massless particles

GRAPHENE SUPERLATIVES

- Strongest material ever measured (200X Stronger than steel)
- Stiffest known material (stiffer than diamond)
- Most stretchable crystal (up to 25% elastically)
- Completely impermeable (even He atoms cannot squeeze through)
- Record thermal conductivity (outperforms diamond)
- Highest current density at room temp (million times that of copper)
- Highest intrinsic mobility (100 times more than in Si)
- Conducts electricity in the limit of no electrons

Students 406-2022

BOERSTOEL, PAUL

SUNG, SEUNG HEE

UGOLOTTI, JOHN

ZHU, YUNHAO

My tasks and yours

My tasks:

\checkmark Provide an introduction to the physics of quantum materials
\checkmark Provide a solid grounding for more advanced courses on the behavior of condensed matter
\checkmark Demonstrate the links with Quantum Mechanics, Thermal and Statistical Physics.
\checkmark Provide the background and tools to understand publications and research articles in this field
\checkmark Inspire you to delve deeper into the subject

Your tasks

\checkmark To learn about the subject.
\checkmark To maximize your performance on homework exams and projects!

How to succeed in this course

\checkmark Attend lectures

- Ask questions
- Participate
- Take notes
\checkmark Outside of class
- Go over material, asses your understanding
- Complement class learning with material from on-line resources textbooks, articles, lectures, etc
- Think about challenge questions posed in class
- Solve weekly homework problems
\checkmark Pick your project topic early
- Scour the literature for background information
- Pick your favorite article(s) to present
- Use class learning to shed light on your topic

Condensed Matter Physics (1960-

Wikipedia:
What is it?
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms.

Why study it?
$>$ Because it is the world around us

Because it is useful

Condensed Matter Physics (1960-

Because it is Deep and beautiful

Simple principles: Symmetry, topology, geometry
\mapsto phases of matter - superconductivity, magnetism, superfluidity
\mapsto fractionally charged, chiral, ultra-relativistic quasi-particles

$>$ Because it is a laboratory for realizing and studying quantum mechanics and statistical physics

Three states of solid matter as defined by electrical resistivity in the low temperature limit

Metal

Insulator

Superconductor

Three states of solid matter as defined by electrical resistivity in the low temperature limit

- Graphite is a metal, diamond an insulator and buckminster-fullerene is a superconductor
- How can this be? After all, they each contain a system of atoms and especially electrons of similar density.
- And the plot thickens: They are all just carbon - arranged in different ways!

Condensed Matter Physics (1960-

$>$ Because reductionism does not work
water \mapsto molecules \mapsto atoms
electrons and protons \mapsto quarks quarks \mapsto ????.
How does this help me windsurf??

Reductionism vs Emergence

"Squalid state physics" Murray Gell-Mann discoverer of the quark Nobel prize 1969

interior of vaucanson's automatic duck. A, clockwork; B, pump; C, mill for prineting rainin F, intestinal tubc;
"More is different"
Philip W. Anderson
Symmetry breaking and 'Anderson-Higgs' mechanism
Nobel prize 1977

Everything is made of sub-atomic particles.
Once you understand the constituent particles and the forces between them
$>$ the rest is just engineering

Large systems of smaller entities interacting through simple rules can exhibit surprising > emergent, collective properties obeying "higher organizing principles" that cannot be further simplified.

Basic scales

$k_{B} T \leftrightarrow e V \leftrightarrow \hbar \omega$
$k_{B} \approx 1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$
$e \approx 1.6 \cdot 10^{-19} \mathrm{C}$
$\hbar \approx 1.05 \cdot 10^{-34} \mathrm{Js}$
$1 \mathrm{eV} \cong 11,600 \mathrm{~K} \approx 10^{4} \mathrm{~K}$
$1 \mathrm{~K} \sim 0.1 \mathrm{meV} \sim 20 \mathrm{GHz}$
EM interactions are characterized by the fine structure constant: $\alpha=e^{2} / \hbar c=1 / 137$. ε_{0} Permitivity of free space $8.9 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \mathrm{m}$ μ_{0} Permeability of free space $4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ $c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$ Speed of light $\sim 3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Energy scales

Math you will need

You should be comfortable with

- exponential notation
- Basic calculus: derivatives, integrals
- Trigonometry
- Complex numbers
- Simple differential equations

Complex numbers

$$
\begin{aligned}
& i \equiv \sqrt{-1} \quad \mathrm{i}^{2}=-1 \\
& \mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y} \quad(\mathrm{x} \text { is real part; } \mathrm{y} \text { is imaginary part) } \\
& \mathrm{z}^{*}=\mathrm{x}-\mathrm{i} \mathrm{y} \quad \text { complex conjugate; replace " } \mathrm{i} \text { " with "- } \mathrm{i} \text { " }
\end{aligned}
$$

Magnitude of z :

$$
\begin{aligned}
|z|^{2} & =z^{*} z \\
& =(x-i y)(x+i y)=x^{2}+i x y-i x y+y^{2}=x^{2}+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Re} Z=|Z| \cos \theta \\
& \operatorname{Im} Z=|Z| \sin \theta
\end{aligned}
$$

Euler's Equation

$$
\exp (i \theta)=\cos (\theta)+i \sin (\theta)
$$

A) I know exactly what this equation means.
B) I think I know what this equation means.
C) I've seen it before but am not sure what it means.
D) I've never seen this equation before.

Follows from Taylor expansion $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

$\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
$\sin (x)=\sum_{n=0}^{\infty}(-1)^{2 n+1} \frac{x^{2 n+1}}{(2 n+1)!}$

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
\end{aligned}
$$

Gradient divergence and curl

$$
\boldsymbol{F}=F_{1} \boldsymbol{i}+F_{2} \boldsymbol{j}+F_{3} \boldsymbol{k}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle \quad \text { vector }
$$

Gradient: $\quad \nabla=\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} \boldsymbol{k}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle$ Vector
Divergence: $\quad \operatorname{Div}=\nabla \cdot \boldsymbol{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \quad$ scalar

$$
\text { Curl }=\nabla \times \boldsymbol{F}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \text { Vector }
$$

Differential equations

What is the most general solution to the differential equation:

$$
y^{\prime \prime}(x)=-k^{2} \cdot y(x)
$$

A) $y(x)=A \cos (k x)+B \sin (k x)$
B) $y(x)=A \exp (i k x)+B \exp (-i k x)$
C) $y(x)=A \exp (k x)+B \exp (-k x)$
D) $\mathrm{A} \& \mathrm{~B}$
E) $A \& B \& C$

Important integrals and derivatives

Gaussian integral :
Dirac delta:
$\int_{-\infty}^{\infty} e^{-x^{2}} d x=\quad \quad \quad \int_{-\infty}^{\infty} f(x) \delta(x) d x=?$

What function is equal to its derivative?

- e^{x} is the only function whose derivative is equal to itself:

$$
\frac{d}{d x} y(x)=y(x) \Leftrightarrow y(x)=A e^{x}
$$

Vector Identities

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b})
$$

$$
\begin{aligned}
& \nabla \cdot(\nabla \times \mathbf{A})=0 \\
& \nabla \times(\nabla \cdot \mathbf{A})=0
\end{aligned}
$$

Electromagnetic waves:

This Differential equation

- Linear
- Homogeneous
- Second order
$c=$ speed of light
Solutions: $\mathrm{E}(\mathrm{x}, \mathrm{t})$
Magnitude is non-spatial:
$=$ Strength of electric field

Wave equations

Solution to the wave equation:

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} f}{\partial t^{2}}
$$

$$
\begin{aligned}
& f(x, t)=f\left[\frac{2 \pi}{\lambda}(x-v t)\right]=f[k(x-v t)] \\
& =f(k x-\omega t)=f(k x-2 \pi v t)
\end{aligned}
$$

$$
f(x, t)=\text { displacement from equilibrium }
$$

$$
\mathrm{v}=\text { speed }
$$

$\lambda=$ wavelength; $\mathrm{k}=\frac{2 \pi}{\lambda}=$ wavenumber
$v=$ frequency; $\omega=2 \pi v=$ angular frequency

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

$$
y(x, t)=C \sin (k x-\omega t)
$$

What is the wavelength of this wave? Ask yourself ...

\rightarrow How much does x need to increase to increase kx-wt by 2π ?

$$
\begin{aligned}
& \sin (k(x+\lambda)-\omega t)=\sin (k x-\omega t+2 \pi) \\
& k(x+\lambda)=k x+2 \pi \\
& \left.k \lambda=2 \pi \rightarrow k=\underline{2 \pi / \lambda} \quad k=\text { wave number (radians }-m^{-1}\right)
\end{aligned}
$$

What is the period of this wave? Ask yourself ...
\rightarrow How much does t need to increase to increase kx-wt by 2π ?
$\sin (k x-\omega(t+T))=\sin (k x-\omega t+2 \pi)$
Speed
$\omega T=2 \pi$
$\rightarrow \omega=2 \pi / T$
$\omega=$ angular frequency
$=2 \pi v$

$$
\mathrm{v}=\frac{\lambda}{T}=\frac{\omega}{k}
$$

Differential equations

What is the most general solution to the wave equation:

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

A) $y(x, t)=A \cos (k x) \sin (\omega t)+B \sin (k x) \cos (\omega t)$
B) $y(x, t)=A e^{-k(x-v t)}+B e^{-k(x+v t)}$
C) $y(x, t)=A \cos k(x-v t)+B \sin k(x-v t)$
D) $y(x, t)=A e^{-i k(x-v t)}+B e^{-i k(x+v t)}$
E) $A, \mathrm{~B}, \mathrm{C} \& \mathrm{D}$

Boundary conditions

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

Which boundary conditions need to be satisfied?
I. $y(x, t)=0$ at $x=0$ and $x=L$

$$
y(x, t)=A \sin (k x) \cos (\omega t)+B \cos (k x) \sin (\omega t)
$$

$$
\begin{array}{ll}
\text { At } x=0: & \text { At } x=L: \\
y=B \sin (\omega t)=0 & y=A \sin (k L) \cos (\omega t)=0 \\
\rightarrow B=0 & \rightarrow \sin (k L)=0 \\
& \rightarrow k L=n \pi(n=1,2,3, \ldots) \\
& \rightarrow k=n \pi / L
\end{array}
$$

$$
y(x, t)=A \sin (n \pi x / L) \cos (\omega t)
$$

Plane Waves

Plane waves (sines, cosines, complex exponentials) extend forever in space:

$$
\begin{aligned}
& \Psi_{1}(x, t)=\exp \left[i\left(k_{1} x-\omega_{1} t\right)\right] \\
& \Psi_{2}(x, t)=\exp \left[i\left(k_{2} x-\omega_{2} t\right)\right] \\
& \Psi_{3}(x, t)=\exp \left[i\left(k_{3} x-\omega_{3} t\right)\right] \text { exp }\left[i\left(k_{4} x-\omega_{4} t\right)\right]
\end{aligned}
$$

Principle of Superposition

$>$ If $\Psi_{1}, \Psi_{2} \ldots \Psi_{n}$ are solutions of the wave equation (or any homogeneous linear differential equation) then any linear combination $\Psi=\Sigma \mathrm{A}_{i} \Psi_{i}$ is also a solution.
$>$ When two or more waves traverse the same region, they act independently of each other.

- Combining two waves yields:

$$
\Psi(x, t)=\Psi_{1}(x, t)+\Psi_{2}(x, t)=2 A \cos \left(\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t\right) \cos \left(k_{\mathrm{av}} x-\omega_{\mathrm{av}} t\right)
$$

$>$ We can construct a "wave packet" by combining many plane waves of different ω and k's.

$$
\Psi(x, t)=\sum_{n} A_{n} \exp \left[i\left(k_{n} x-\omega_{n} t\right)\right]
$$

Wave Packets

$$
\Psi(x, t)=\sum_{n} A_{n} \exp \left[i\left(k_{n} x-\omega_{n} t\right)\right]
$$

Wave Packet

- The combined wave oscillates within an envelope that denotes the maximum displacement of the combined waves.
- The wave packet moves at a group velocity:

$$
u_{\mathrm{gr}}=\frac{\Delta \omega}{\Delta k}
$$

Waves: Uncertainty Principle

small $\Delta \mathrm{k}$ - only one wavelength

medium $\Delta \mathrm{k}$ - wave packet made of several waves

$\leftarrow \Delta x \rightarrow$
large Δk - wave packet made of lots of waves - small Δx :narrow packet

$$
\Delta x \Delta k \geq 1 / 2
$$

Fourier series

- The sum of many waves that form a wave packet is called a Fourier series:

$$
\Psi(x, t)=\sum_{i} A_{i} \cos \left(k_{i} x-\omega_{i} t\right)
$$

- If k is a continuous variable, then summing the waves gives the Fourier integral:

$$
\Psi(x, t)=\int A(k) \cos (k x-\omega t) d k
$$

More later in the course

Waves and Particles

In classical mechanics wave and particle behavior is mutually exclusive.

Particles

- Well defined momentum and position $\mathrm{x}(\mathrm{t}), \mathrm{p}(\mathrm{t})$
- Motion determined by Newton's laws

Waves

- Described by a function of position and time $f(x, t)$
- Motion determined by wave equation

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{\mathrm{v}^{2}} \frac{\partial^{2} f}{\partial t^{2}}
$$

$$
f(x, t)=f(k x-\omega t)
$$

$\Delta x \Delta k \geq 1 / 2$

Waves and Particles

Example: Double slit experiment.

Particles

- Well defined momentum and position $\mathrm{x}(\mathrm{t}), \mathrm{p}(\mathrm{t})$
- Motion determined by Newton's laws

A stream of particles (small balls) is incident on a screen with two slits. The particles will hit the wall directly behind the holes in the screen.

Waves

- Described by a function of position and time $\mathrm{f}(\mathrm{x}, \mathrm{t})$
- Motion determined by wave equation

A monochromatic wave with wavelength λ is incident on two narrow slits.
Bright and dark bands (fringes), form by constructive and destructive interference of the wave passing through the two slits.
Superposition principle.
Bright $d \sin \theta=n \lambda \quad n=0, \pm 1, \pm 2 .$.

At the atomic scale both wave and particle behavior are possible for the same object.
Light "Particles"
Photoelectric Effect

Photoelectron Energy $=$ Light Energy In - Binding Energy
$\mathrm{KE}_{\text {photeelectron }}=\mathrm{h} \nu-\Phi$

> Planck Constant
> $h=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$

Matter Waves

, The wave nature of light is revealed by interference
, The particle nature by the fact that light is detected as quanta: "photons".
Photon energy and momentum :

$$
\mathrm{E}=\mathrm{h} \nu \text { and } \mathrm{p}=\mathrm{h} / \lambda
$$

Louis de Broglie (1923) proposed that particles also behave as waves; with frequency and wavelength given by :
$v=\mathrm{E} / \mathrm{h}$
$\lambda=\mathrm{h} / \mathrm{p} \quad$ De Broglie wavelength

Observation of an electron wave "in a box"

Image taken with a scanning tunneling microscope (more later) (Note: the color is not real! - it is a representation of the electrical current observed in the experiment)

Real standing waves of electron density in a "quantum corral"

IBM
Almaden

Convenient Units for Quantum Mechanics

Because most of the applications we will consider involve atoms, it is useful to use units appropriate to those objects.

We will express wavelength in nanometers (nm).
energy in electron volts (eV).
$1 \mathrm{eV}=$ energy an electron gains moving across a one volt potential difference:
$1 \mathrm{eV}=\left(1.6 \times 10^{-19}\right.$ Coulomb $)(1$ volt $)=1.6 \times 10^{-19}$ Joules.

$$
\longrightarrow \begin{aligned}
& \mathrm{h}=4.14 \times 10^{-15} \mathrm{eV}-\mathrm{s} \\
& \mathrm{hc}=1240 \mathrm{eV}-\mathrm{nm} .
\end{aligned}
$$

$$
E_{\text {photon }}=\frac{h c}{\lambda}=\frac{1240}{\lambda} e V
$$

$E_{\text {photon }}$ in electron volts
λ in nanometers

Example: A red photon with $\lambda=620 \mathrm{~nm}$ has $\mathrm{E}=$?

Exercise: Wavelengths of Various Particles

Which of these "particles" have the shortest wavelength:
a. an electron that has been accelerated from rest across a 3-Volt potential difference ($\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$).
b. A proton with the same energy $\left(m_{p}=1.67 \times 10^{-27} \mathrm{~kg}\right)$.
c. A ball with the same energy $\left(m_{\text {baseball }}=0.15 \mathrm{~kg}\right)$.

$$
p=\sqrt{2 m E} \Rightarrow \lambda=\frac{h}{\sqrt{2 m E}}
$$

E is the same.
Mass is bigger $\Rightarrow \lambda$ smaller.

Solution: Wavelengths of Various Particles

Which of these "particles" have the shortest wavelength
a. an electron that has been accelerated from rest
across a 3 -Volt potential difference ($\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$).
b. A proton with the same energy ($m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$).

$$
p=\sqrt{2 m E} \Rightarrow \lambda=\frac{h}{\sqrt{2 m E}}
$$

c. A ball with the same energy ($m_{\text {baseball }}=0.15 \mathrm{~kg}$).

$$
\begin{aligned}
\text { a. } E=e \cdot V=4.8 \times 10^{-19} \mathrm{~J} & \\
p=\sqrt{ }\left(2 m_{e} E\right)=9.35 \times 10^{-25} \mathrm{~kg} \mathrm{~m} / \mathrm{s} & \lambda=\mathrm{h} / \mathrm{p}=7.1 \times 10^{-10} \mathrm{~m}=0.7 \mathrm{~nm} \\
\text { b. } p=\sqrt{ }\left(2 m_{p} E\right)=4.00 \times 10^{-23} \mathrm{~kg} \mathrm{~m} / \mathrm{s} & \lambda=\mathrm{h} / \mathrm{p}=1.7 \times 10^{-2} \mathrm{~nm} \\
\text { c. } p=m v=3.9 \times 10^{-9} \mathrm{~kg} \mathrm{~m} / \mathrm{s} & \lambda=\mathrm{h} / \mathrm{p}=1.5 \times 10^{-16} \mathrm{~nm}
\end{aligned}
$$

E is the same.

Mass is bigger $\Rightarrow \lambda$ smaller.

QM wave effects are negligible in the motion of macroscopic objects. 10-16 nm is smaller than the size of a nucleus

Energy momentum relation

> Everything $$
\begin{array}{l}E=h v=\hbar \omega \\ p=h / \lambda\end{array}
$$

Reduced planck constant $\hbar \equiv \frac{h}{2 \pi} \sim 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Why do we use different formulas for energy-momentum relation?

$$
\begin{gathered}
\text { Photons }(\mathrm{v}=\mathrm{c}) \\
\mathrm{E}=\mathrm{pc}
\end{gathered}
$$

$$
\begin{gathered}
\text { Slow Matter }(\mathrm{v} \ll \mathrm{c}) \\
\mathrm{KE}=\mathrm{p}^{2} / 2 \mathrm{~m}
\end{gathered}
$$

Remember Special Relativity

Theory of Relativity

A stationary particle $(p=0)$ has rest energy

$$
E=m c^{2}
$$

A particle in motion is described by the relativistic dispersion relation:

Albert Einstein 1879-1955

Total energy

$$
E=\sqrt{\left(m c^{2}\right)^{2}+(c p)^{2}}
$$

Velocity momentum relation

> Velocity:

$$
\mathrm{v}=\frac{\partial E}{\partial p}=c \frac{c p}{\sqrt{\left(m c^{2}\right)^{2}+(c p)^{2}}}
$$

Remember Special Relativity

Massive Particle (e.g. electron)

$$
E=\sqrt{\left(m c^{2}\right)^{2}+(c p)^{2}}
$$

Nonrelativistic limit ($\mathrm{v} \ll \mathrm{c}$)

$$
E \approx m c^{2}+\frac{p^{2}}{2 m}+\ldots \Rightarrow K E \sim \frac{p^{2}}{2 m}
$$

Massless Particle (e.g. photon)

$$
\begin{gathered}
m=0 \\
E=c|p| \\
\mathrm{v}=c
\end{gathered}
$$

- Math background
- Particle-wave duality

Next time

- Uncertainty principle
- Quantum mechanics
- Schrodinger equation
- 3 solved problems: Particle in a well, Harmonic oscillator, hydrogen atom
- Classical statistics
- Quantum statistics

Reading assignment

- QM refresher (Thornton Ch 6, 7 or equivalent, or Ch 1.9 and 3 from website)
- Simon Ch 1, Ch 2

Homework 1 posted
Math diagnostics (course website)

Plane Waves

Plane waves (sines, cosines, complex exponentials) extend forever in space:

$$
\begin{aligned}
& \Psi_{1}(x, t)=\exp \left[i\left(k_{1} x-\omega_{1} t\right)\right] \\
& \Psi_{2}(x, t)=\exp \left[i\left(k_{2} x-\omega_{2} t\right)\right] \\
& \Psi_{3}(x, t)=\exp \left[i\left(k_{3} x-\omega_{3} t\right)\right]
\end{aligned}
$$

Different k 's correspond to different momenta

$$
p=\hbar k
$$

Different ω 's correspond to different energies
$E=\hbar \omega$

Heisenberg Uncertainty Principle

Mathematical property of waves: $\Delta \mathrm{k} \cdot \Delta \mathrm{x} \geq 1$

- A definite wavelength must extend forever.
- Finite wave packet:

A wave packet requires a spread $\Delta \mathrm{k}$ of wavelengths.
Using $p=h / \lambda=\hbar k$, we have:

$$
\hbar(\Delta k \cdot \Delta x \geq 1) \Rightarrow(\hbar \Delta k) \cdot \Delta x \geq \hbar \Rightarrow \Delta p \cdot \Delta x \geq \hbar
$$

We need a spread of wavelengths in order to get destructive interference.

The Heisenberg Uncertainty Principle limits the accuracy with which we can know the position and momentum of objects.

Plane Waves vs. Wave Packets

$$
\Psi(x, t)=A \exp [i(k x-\omega t)]
$$

$$
\Psi(x, t)=\sum_{n} A_{n} \exp \left[i\left(k_{n} x-\omega_{n} t\right)\right]
$$

For which type of wave are the position (x) and momentum (p) most well-defined?
A) x most well-defined for plane wave, p most well-defined for wave packet.
B) p most well-defined for plane wave, x most well-defined for wave packet.
C) p most well-defined for plane wave, x equally well-defined for both.
D) x most well-defined for wave packet, p equally well-defined for both.
E) p and x are equally well-defined for both.

Uncertainty Principle

- Wave packets are constructed from a series of plane waves.
- The more spatially localized the wave packet, the less uncertainty in position.
- With less uncertainty in position comes a greater uncertainty in momentum.

Energy-Time Uncertainty Principle

If we are to make a wave packet in time-ie a pulse that last for a time Δt (instead of over an infinite time as for a single wave), we must include the frequencies of many waves to have them cancel everywhere but over the time interval Δt

$$
\begin{gathered}
\Psi(x, t)=\sum_{n} A_{n} \exp \left[i\left(k_{n} x-\omega_{n} t\right)\right] \\
\Delta \omega \Delta t \geq 1 / 2
\end{gathered}
$$

combined with the energy frequency relation

$$
E=h f=\hbar \omega \Rightarrow \Delta E=\hbar \Delta \omega
$$

Heisenberg uncertainty principle for energy and time

$$
\Delta E \cdot \Delta t \geq \frac{\hbar}{2}
$$

The energy and lifetime of a particle cannot both be determined with complete precision.

Implication of uncertainty principle

Consider a particle for which the location is known within a width of $\Delta \ell$ along the axis. We then know the position of the particle to within a distance

$$
\Delta x \leq l / 2
$$

The uncertainty principle specifies that $\Delta \mathrm{p}$ is limited by

$$
\Delta p \geq \frac{\hbar}{2 \Delta x} \geq \frac{\hbar}{l}
$$

The kinetic energy (non-relativistic)

$$
K_{\min }=\frac{p_{\min }^{2}}{2 m} \geq \frac{(\Delta p)^{2}}{2 m} \geq \frac{\hbar^{2}}{2 m \ell^{2}}
$$

\mapsto if a particle is confined to a region of finite size, the particle's kinetic energy must be nonzero!!!

Quantum Mechanics: Law 1

Law 1. The state of a quantum mechanical system is completely specified by a function $\Psi(r, t)$ that depends on the coordinates of the particle(s) and on time.

```
\psi(r,t) Wave function
    |\psi(r,t)\mp@subsup{|}{}{2}=\psi(\textrm{r},t\mp@subsup{)}{}{*}\cdot\psi(\textrm{r},t)}\begin{array}{l}{\mathrm{ Probability to find particle}}\\{\mathrm{ at position r at time t. }}
        \mp@subsup{\int}{-\infty}{+\infty}|\psi(\boldsymbol{r},t)\mp@subsup{|}{}{2}dr=1
if }\mp@subsup{\psi}{1}{}\mathrm{ and }\mp@subsup{\psi}{2}{}\mathrm{ are states then:
Superposition principle
c}\mp@subsup{\textrm{c}}{1}{}\mp@subsup{\psi}{1}{}+\mp@subsup{\textrm{c}}{2}{}\mp@subsup{\psi}{2}{}\equiv\mp@subsup{\psi}{3}{}\mathrm{ is also a state
```


Schrödinger equation in 1D

the Schrödinger equation for an electron wave in one-dimension $\boldsymbol{\Psi}(\mathrm{x}, \mathrm{t})$

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x, t) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}
$$

Of course for any real system, need 3 dimensions, (just add partial derivatives of y and z, and $V(x, y, z)$ etc.
Schrödinger wrote it down, solved for hydrogen, got solutions that gave exactly the same electron energy levels as Bohr.

Time independent Schrödinger equation in 1D

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x, t) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}
$$

Most physical situations, like H atom, no time dependence in V ! Simplification \#1:V = V(x) only. (Important, will use in all Shrödinger equation problems!!)
$\Psi(x, t)$ separates into position dependent part $\psi(x)$
and time dependent part $\varphi(\mathrm{t})=\exp (-\mathrm{iEt} / \hbar) . \Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \varphi(\mathrm{t})$
Plug in, get equation for $\psi(x)$
Plug in, get equation for $\phi(x)$

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x)
$$

$$
\phi(t)=e^{-i E t / \hbar}
$$

"time independent Schrodinger equation"
the wave function can be written as:

$$
\Psi(x, t)=\psi(x) e^{-i \omega t} \quad \text { with }: \omega=E / \hbar
$$

- The probability density becomes:

$$
\begin{aligned}
& \Psi^{*} \Psi=\psi^{2}(x)\left(e^{i \omega t} e^{-i \omega t}\right) \\
& \Psi^{*} \Psi=\psi^{2}(x)
\end{aligned}
$$

- The probability distributions are constant in time. This is a standing wave phenomenon that is called the stationary state.

Properties of Valid Wave Functions

1) To avoid infinite probabilities, the wave function must be finite everywhere.
2) to avoid multiple values of the probability, the wave function must be single valued.
3) For finite potentials, the wave function and its derivative must be continuous. This is required because the second-order derivative term in the wave equation must be single valued. (There are exceptions to this rule when V is infinite.)
4) to normalize the wave functions, they must approach zero as x approaches infinity.

$$
\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1
$$

Solving Schrodinger Equation for free particle

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x)
$$

Electron in free space, no electric fields or gravity around.

1. Where does it want to be?
2. What is $V(x)$?
3. What are boundary conditions on $\psi(x)$?
4. No preference- all x the same.
5. Constant.
6. None, could be anywhere.

$$
\begin{aligned}
& \text { Smart choice of } \\
& \text { constant, } \mathrm{V}(\mathrm{x})=0 \text { ! }
\end{aligned}
$$

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}=E \psi(x)
$$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}=E \psi(x) \\
& \psi(x)=A \cos k x+B \sin k x
\end{aligned}
$$

The total energy of the electron is:
A. Quantized according to $E_{n}=$ (constant) $\times n^{2}, n=1,2,3, \ldots$
B. Quantized according to $E_{n}=$ const. $x(n)$
C. Quantized according to $E_{n}=$ const. $x\left(1 / n^{2}\right)$
D. Quantized according to some other condition but don't know what it is.
E. Not quantized, energy can take on any value.

Ans: E-No boundary, energy can take on any value.

$$
\begin{aligned}
& \psi(x)=A \cos k x \quad \frac{\hbar^{2} k^{2}}{2 m}=E \quad p=\hbar k \\
& \mathrm{k} \text { (and therefore E) can take on any value. }
\end{aligned}
$$

Almost have a solution, but remember we still have to include time dependence:

$$
\Psi(x, t)=\psi(x) \phi(t) \quad \phi(t)=e^{-i E t / \hbar}
$$

...bit of algebra, using identity: $\mathrm{e}^{\mathrm{ix}}=\cos (\mathrm{x})+\mathrm{i} \sin (\mathrm{x})$ and wave propagating in the positive x direction

$$
\Psi(x, t)=A \cos (k x-\omega t)+i A \sin (k x-\omega t)
$$

The wave function is not restricted to being real.
Only the physically measurable quantities must be real: probability, momentum and energy.

Quantum Mechanics: : Law 1

Law1. The state of a quantum mechanical system is completely specified by a function $\Psi(r, t)$.

$$
\begin{array}{ll}
\text { - Dirac notation } & \psi(x) \Rightarrow|\psi\rangle \quad \text { ket } \\
& \psi^{*}(x) \Rightarrow\langle\psi| \quad \text { bra }
\end{array}
$$

- Principle of superposition. If Ψ_{1} and Ψ_{2} are possible states of a system then any linear superposition. Ψ is also an allowed state.

$$
|\psi\rangle=a_{1}\left|\psi_{1}\right\rangle+a_{2}|\psi\rangle_{2}
$$

- Inner product

$$
\langle\phi \mid \psi\rangle=\int \phi^{*}(r) \psi(r) d \boldsymbol{r}
$$

- A wave function $\psi(x)$ corresponds to a state $|\psi\rangle$ in the \hat{x} representation
- A wave function $\psi(p)$ corresponds to a state $|\psi\rangle$ in the p representation

Quantum Mechanics

Only 3 exactly Solved Problems!

Particle in a box
$U(x)=\left\{\begin{array}{cc}0 & 0<x<L \\ \infty & x<0 ; x>L\end{array}\right.$

Hydrogen atom
$U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$

Harmonic oscillator

$$
U(r)=\frac{1}{2} m \omega^{2} x^{2}
$$

Constraints on the Form of $\psi(x)$

$|\psi(x)|^{2}$ corresponds to a physically meaningful quantity: the probability density of finding the particle near x.

To avoid unphysical behavior, $\psi(\mathrm{x})$ must satisfy :
$>\psi(x)$ must be single-valued, and finite.
$>\psi(x)$ must be continuous, with finite $d \psi / d x$. $\mathrm{d} \psi / \mathrm{dx}$ is related to the momentum.
$>\mathrm{d}^{2} \psi / \mathrm{dx}^{2}$ must be finite.
$>\quad$ To avoid infinite energies.
This also means that $\mathrm{d} \psi / \mathrm{dx}$ must be continuous.
$>$ There is no significance to the overall sign of $\psi(\mathrm{x})$.
It goes away when we take the absolute square.

To be physically acceptable, a wave function:
2. Must be smooth, continuity of the wave function and continuity of its derivative!

© 2008 Pearson Education, Inc
Acts like a 0 wavelength $\rightarrow \infty$ Momentum and KE

If the Ψ had a discontinuity, its first derivative would be infinite at the point of discontinuity \rightarrow non physical!

Introduction

- What is condensed matter physics and why do it
$>$ The power of simple models - specific heat of solids
* Boltzmann
* Einstein
* Debye

References:
Simons Chapter 2.1

Stuff is made of particles

Particle mass determines:	
response to forces	$F=d p / d t$
$\mathrm{E}(\mathrm{p})$ - dynamics	$E=\sqrt{c^{2} p^{2}+m_{0}^{2} c^{4}}$

Why Same m_{0} ?
> Lorentz invariance!
> Physics laws same in all reference frames

particle	Rest mass $\mathrm{m}_{\mathrm{o}} \mathrm{c}^{2}[\mathrm{MeV}]$
e	0.5
n, p	940
neutrino (v)	~ 0

Particles are elementary excitation out of our Universe's ground state (vacuum) $\mathrm{E}<0$ String theory: 10^{500} possible vacuums! We are 'stuck' in one.
$>$ Figure out our vacuum \mapsto predict the masses of all elementary particles (standard model)

$p \gg m_{0} c$ ultra - relativistic (photon, neutrino)

Stuff is made of particles

Particle mass determines:	
response to forces	$F=d p / d t$
$\mathrm{E}(\mathrm{p})$ - dynamics	$E=\sqrt{c^{2} p^{2}+m_{0}^{2} c^{4}}$

$$
E(p) \rightarrow \begin{cases}\approx m_{0} c^{2}+\frac{p^{2}}{2 m_{0}} & p \ll m_{0} c \text { massive slow particles } \mathrm{v} \ll \mathrm{c} \\ p c & p \gg m_{0} c \text { ultra - relativistic (photon, neutrino) }\end{cases}
$$

Condensed matter: No Lorentz invariance

Many other types of dispersions are available or can be engineered

Condensed matter vacuum

Elementary excitation out of the

 vacuum - quasi-particlesThe lattice of ions defines a preferred reference frame - no Lorentz invariance ~ 100 elements $\times 20$ arrangements $\times 10$ allotropes $\mapsto 10^{40}$ possible vacuums.
$>$ We can engineer and study many of the vacuums. No fundamental restrictions.

Condensed matter vacuum

Effective Theories

$$
\widehat{H}=\widehat{H}_{\mathrm{e}}+\widehat{H}_{\mathrm{n}}+\widehat{H}_{\mathrm{n}-\mathrm{e}}
$$

- The Hamiltonian describes the physics of electrons in a potential created by ions (on the energy scale of Hartree),
- We are interested in the measurable low-energy properties.
- Try using reduced effective (phenomenological) theories.

Low energy (long wavelength) excitations around the ground state : quasiparticles (Physics of windsurfing)

Examples:

- Quasiparticles in Fermi liquids - like free particles but different from electrons (effective mass, E-p relation, charge)
- Phonons in lattices

The power of simple models

Max Planck
1858-1947

Albert Einstein
1879, -1955,

Ludwig Boltzmann 1844-1906
$>$ Introduction

- What is condensed matter physics and why do it
> The power of simple models

Specific Heat of Solids

$$
C=\frac{\partial Q}{\partial T}
$$

Specific heat of solids

Specific Heat of Solids:Boltzmann, Einstein, and Debye

- We don't distinguish between C_{v} and C_{P} - solids, in contrast to gases, do not expand/contract much with T.

$$
C_{P}-C_{V}=V T \alpha^{2} / \beta_{T_{k}}
$$

Coefficient. of thermal expansion
Isothermal compressibility

- The electron contribution to C is typically small at $T \gtrsim 10 K$ - we'll discuss this later.

Some background: Kinetic theory of gases

The theory for ideal gases assumptions:
-The average distance between the gas particles is large compared to their size
-The number of particles is so large that statistical treatment can be applied.
-The moving particles collide among themselves and with the walls of the container in perfectly elastic collisions.
Equipartition theorem: each quadratic degree of freedom contributes $\frac{1}{2} k_{B} T$ to the average energy

Can you think of examples of quadratic degrees of freedom i.e the energy is proportional to the square of a variable?

Boltzmann - classical high T limit

Dulong-Petit Law (1819).

At High T (room temperature)

$$
C=3 N_{A} k_{B}=3 R
$$

Molar heat capacity

Material	C / R
Aluminum	2.91
Antimony	3.03
Copper	2.94
Gold	3.05
Silver	2.99
Diamond	0.735

Heat Capacities of Some Solids at Room temperature

Boltzmann (1897)

- N independent atoms trapped in potential wells formed by interactions with other atoms. The atoms/ions are in thermal equilibrium with a thermal bath.
- N atoms have 6 N degrees of freedom: 3 N for center of mass KE and 3 N for the spring potential energy $1 / 2 \mathrm{kx}^{2}, 1 / 2 \mathrm{ky}^{2}, 1 / 2 \mathrm{kz}^{2}$
- According to the equipartition theorem, each quadratic degree of freedom contributes an average energy $1 / 2 k_{B} T$.

$$
\langle E\rangle=\frac{6}{2} N_{A} k_{B} T \Rightarrow C_{\mathrm{v}}=\frac{\partial\langle E\rangle}{\partial T}=3 N_{A} k_{B}=3 R
$$

Note: This is a classical result $\left(k_{B} T \gg \hbar \omega\right)$. The low- T behavior remained a puzzle.

Einstein - quantum (low T) model

The low- T value of C is quite different from $3 R$, it approaches 0 as $T \rightarrow 0$.

Einstein (1907) replaced classical oscillators with quantum ones.

The energy of each quantum oscillator

$$
E_{n}=\hbar \omega(n+1 / 2) \quad n=0,1,2 . .
$$

Number of excited modes of energy $\hbar \omega$

In general, interactions between atoms (ions) in crystals are not harmonic. However, at low T (think small amplitude), the harmonic approximation works well.
N atoms $\Rightarrow 3 N$ normal modes.

$3 N$ identical (the same ω) quantum oscillators

Later in the course we will see that these represent lattice vibrations called - phonons

Preliminaries : Bosons and Fermions

- To calculate the average number of excited modes at a given temperature we need to use a few facts about the statistics obeyed by different types of quantum excitations.
- The type of statistics divides particles into two categories:

1. Fermions : particles that cannot be in the same energy level (eg. Electrons - that obey Pauli exclusion exclusion principle.

- Fermions have $1 / 2$ integer spin (electrons have $s=1 / 2$, for example))
- Their wavefunction is anti-symmetric under exchange of two particles

2. Bosons : particles that can be in the same energy state (eg. Photons, phonons. No exclusion principle.)

- Bosons have integer spin (photons have $S=0$, for example)
- Their wavefunction is symmetric under exchange of two particles

Therefore one can have more than one photon, or lattice vibration at the same energy.
This is not the case for electrons. (later in the course)

Preliminaries : Thermal equilibrium

Thermal Properties - Key Points

- Fundamental law a system in thermal equilibrium:

If two states of the system have total energies E_{1} and E_{2}, then the ratio of probabilities for finding the system in states 1 and 2 is:

$$
\begin{aligned}
& \mathrm{P}_{1} / \mathrm{P}_{2}=\exp \left(-\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right) \\
& \text { where } \\
& \mathrm{k}_{\mathrm{B}} \text { is the Boltzman constant }
\end{aligned}
$$

- Applies to all systems - whether treated as classical or as quantum and whether the particles are bosons (like phonons) or fermions (like electrons)
- Quantum Mechanics makes the problem easier, with final formulas for thermal energy, etc., that depend upon whether the particles are bosons or fermions

Harmonic oscillator thermally excited states

- Excitations of a harmonic oscillator are bosons. They do not obey an exclusion principle
- There can be any number n of excited states in each oscillator, ie the energy of each oscillator can take on any value in the series:

$$
E_{n}=\hbar \omega(n+1 / 2) \quad n=0,1,2 \ldots
$$

$$
\frac{P_{n+1}}{P_{n}}=\exp \left(-\left(E_{n+1}-E_{n}\right) / k_{B} T\right) \Rightarrow P_{n}=C \exp \left(-E_{n} / k_{B} T\right)
$$

C is a normalizat ion factor independen t of n

$$
\text { Usig }: \sum_{\mathrm{n}=0}^{\infty} \mathrm{P}_{\mathrm{n}}=1 \Rightarrow C=\sum_{0}^{\infty} \exp \left(-E_{n} / k_{B} T\right)
$$

- Thus the probability of finding the oscillator in the n'th excited state

$$
P_{n}=\frac{\exp \left(-E_{n} / k_{B} T\right)}{\sum_{0}^{\infty} \exp \left(-E_{n} / k_{B} T\right)}
$$

Harmonic oscillator probability of thermally excited states

- The probability of finding the oscillator in the n'th excited with energy

$$
P_{n}=\frac{\exp \left(-n \hbar \omega / k_{B} T\right)}{\sum_{0}^{\infty} \exp \left(-n \hbar \omega / k_{B} T\right)}
$$

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
$$

- What does this look like?

Note that it decays rapidly with n

Energy

Average number of excited modes at temperature T

- Average occupation number at temperature T is thus:
< > denotes thermal
average, so T is implicit in the notation

This is the expectation value of n.

$$
\langle n\rangle=\frac{\sum_{n=0}^{\infty} n \exp \left(-n \hbar \omega / k_{B} T\right)}{\sum_{n=0}^{\infty} \exp \left(-n \hbar \omega / k_{B} T\right)}
$$

How can we do this sum?

1. We know that:

DENOMINATOR
$\sum_{0}^{\infty} x^{n}=\frac{1}{1-x}$

$$
\text { replace } x \rightarrow \exp \left(-n \hbar \omega / k_{B} T\right)
$$

$$
\sum_{n=0}^{\infty} \exp \left(-n \hbar \omega / k_{B} T\right)=\frac{1}{1-e^{-\hbar \omega / k_{B} T}}
$$

Geometric series

- We can use this result, and a trick, to calculate the numerator:

Compare to Planck's model for photons

$$
\sum_{0}^{\infty} s x^{s}=\frac{\partial}{\partial x}\left(\sum_{0}^{\infty} x^{s}\right)=\frac{\partial}{\partial x}\left(\frac{1}{1-x}\right)=\frac{x}{(1-x)^{2}}
$$

$$
\square \sum_{0}^{\infty} n \exp \left(-n \hbar \omega / k_{B} T\right)=\frac{\exp \left(-\hbar \omega / k_{B} T\right)}{\left(1-\exp \left(-\hbar \omega / k_{B} T\right)\right)^{2}}
$$

Putting it all together:
$\langle n\rangle=\frac{\text { numerator }}{\text { denominator }}$
$=\frac{x /(1-x)^{2}}{1 /(1-x)}=\frac{x}{1-x}$

Note: This is different from the Bose Einstein distribution:

Planck distribution:

$$
\langle n\rangle=\frac{1}{\exp \left(\hbar \omega / k_{B} T\right)-1}
$$

$$
\langle n\rangle=\frac{1}{\exp \left(\hbar \omega / k_{B} T-\mu\right)-1}
$$

Average Kinetic energy of oscillator at temperature T

$$
\langle n\rangle=\frac{1}{\exp \left(\hbar \omega / k_{B} T\right)-1}
$$

- This is the average number of excitations in a mode with frequency ω at temperature T.
- We can therefore use this to calculate the total energy of the lattice and from this obtain the specific heat.

$$
E(T)=\hbar \omega(\langle n\rangle+1 / 2)=\hbar \omega\left(\frac{1}{\exp \left(\hbar \omega / k_{B} T\right)-1}+1 / 2\right)
$$

High T limit: :
$E(T)=\langle n\rangle \hbar \omega=\xrightarrow[T=\infty]{ } k_{B} T$

Low T limit: :
$E(T)=\langle n\rangle \hbar \omega=\xrightarrow[T=0]{ } \hbar \omega \exp \left(-\hbar \omega / k_{B} T\right)$
No excitations at $\mathrm{T}=0$
But very different from classical result

Einstein's result for the specific heat

$$
E(T)=\hbar \omega(\langle n\rangle+1 / 2)=\hbar \omega\left(\frac{1}{\exp \left(\hbar \omega / k_{B} T\right)-1}+1 / 2\right)
$$

- Heat capacity of HO

$$
C_{V}=\left.\frac{d E}{d T}\right|_{V}=k_{B} \frac{x^{2} \exp (x)}{(\exp (x)-1)^{2}} \quad x \equiv \frac{\hbar \omega}{k_{B} T}
$$

Einstein model

- The heat capacity of a system consisting of 3 N HO of frequency ω

$$
C_{V}=\sum_{1}^{3 N} k_{B} \frac{x^{2} \exp (x)}{(\exp (x)-1)^{2}}=3 N k_{B} \frac{x^{2} \exp (x)}{(\exp (x)-1)^{2}}
$$

$$
C_{V}=3 N k_{B} \frac{x^{2} \exp (x)}{(\exp (x)-1)^{2}} \quad x \equiv \frac{\hbar \omega}{k_{B} T}
$$

- High T limit:

$$
\begin{aligned}
& x \xrightarrow[T \rightarrow \infty]{ } 0 ; \quad \exp (x) \xrightarrow[T \rightarrow \infty]{ } 1+x \\
& C_{V} \xrightarrow[T \rightarrow \infty]{ } 3 N k_{B} \frac{x^{2}(1+x)}{(x)^{2}} \xrightarrow[T \rightarrow \infty]{ } 3 N k_{B}
\end{aligned}
$$

Classical (Dulong Petit) result!!

- Low T limit:

$$
\begin{array}{|l}
x \xrightarrow[T \rightarrow 0]{ } \infty ; \quad \exp (x)-1 \longrightarrow T \rightarrow 0 \\
C_{V} \xrightarrow[T \rightarrow 0]{ } 3 N k_{B} x^{2} \exp (x) \\
\hline
\end{array}
$$

Heat capacity in Einstein model compared to experiment

$$
C_{V}=3 N k_{B} \frac{(\beta \hbar \omega)^{2} e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}} \quad \beta \equiv \frac{1}{k_{B} T}
$$

$$
C_{V}=3 N k_{B} \frac{\left(T_{E} / T\right)^{2} e^{T_{E} / T}}{\left(e^{T_{E} / T}-1\right)^{2}}
$$

$$
T_{E} \equiv \frac{\hbar \omega}{k_{B}}
$$

Single parameter fit !

Experiment vs. Einstein's theory.
$T_{E}=1320 \mathrm{~K}$ - the only fitting parameter.
A. Einstein, Annalen der Physik 22, 180 (1907)

A. Einstein, Annalen der Physik 22, 180 (1907)

- Not a bad approximation to experimental data but not perfect.
- At low T heat capacity is much too low
(Experiment: $C \propto T^{3}$ rather than $C \propto e^{-\frac{\hbar \omega}{k_{B} T}}$)
- This is not that surprising- ω is not constant for most vibration modes!

But the model works reasonably well for optical modes where frequency is almost constant.

- To do this right we need to take into account multiple oscillator frequencies- Debye model .

Summary

Early models for the specific heat of solids.

Scorecard so far :

Boltzmann model - based on energy equipartition for classical particles.

- Works well at high T but fails at low T.

Einstein's model: - assumes N independent quantum oscillators (bosons) with Planck statistics

- Works well at high T
- Underestimates C at low T

Next time we will see how Debye 'fixed' the low T problem in Einstein's model by assuming harmonic oscillators with frequencies given by a linear dispersion of sound waves.

Limitations of Einstein model

Einstein's model ignores the fact that the ions are coupled together-coupled oscillators.

- For coupled oscillators, the calculation of the partition function may look rather difficult.
- But a system of N coupled 3D oscillators is equivalent to a system of 3 N independent 1 D oscillators.
- The price to be paid is that the independent oscillators are not of the same frequency; the normal modes of vibration of a solid have a wide range of frequencies.
- These modes are not related to the motion of single atoms, but to the collective motion of all atoms in the crystal - vibrational modes or sound waves.

Need to consider a broad spectrum of $\boldsymbol{\omega}$ and not a single characteristic frequency as in the Einstein's model:

$$
E(T)=\sum_{i}\left\langle n_{i}\right\rangle \hbar \omega_{i}
$$

Debye's model (1912)

- Treats the solid as a continuum, i.e., the atomic structure is ignored.
- A continuum has vibrational modes of arbitrary low frequencies, and at sufficiently low T only these low- ω modes are excited.
- The low- ω modes are simply standing sound waves, they should be quantized the same way as Planck had quantized light waves in 1900.

The continuum model works well at low T (the characteristic energy of excitations is $\sim T$), where the wavelength is much greater than the inter-atomic distance a :

$$
E=\hbar \omega=\hbar \mathrm{v} k=\mathrm{v} \frac{h}{\lambda} \approx k_{B} T
$$

$$
\lambda=\frac{h \mathrm{v}}{k_{B} T}=[T=1 K] \sim \frac{6.6 \cdot 10^{-34} \times 2 \cdot 10^{3}}{1.4 \cdot 10^{-23} \times 1} \sim 10^{-7} \mathrm{~m}=0.1 \mu \mathrm{~m} \gg a
$$

$$
\text { Assumptions: } \quad \omega=v k
$$

- all sound waves propagate with the same speed c (not the speed of light)
- 3 different modes - one longitudinal two transverse
$>$ - at low T the discreteness can be ignored!!

Continuum approximation

Isotropic medium: $\quad u_{n}=u_{n 0} e^{i(\vec{k} \cdot \vec{r}-\omega t)}$
Dispersion relation is linear $\omega=c k$

Einstein - quantum (low T) model

Energy of Einstein solid:
 $$
E=\sum_{i=1}^{3 N} \hbar \omega\left(n_{i}+\frac{1}{2}\right) \quad \begin{aligned} & n_{i} \text { - the number of energy } \\ & \text { quanta in the } i^{t h} \text { oscillator } \end{aligned}
$$

Calculate $<n_{i}>$ the mean occupation number in the n 'th level.
From statistical mechanics :
The partition function for an oscillator of frequency ω in it's the n'th energy level

Debye's Calculation Following Planck

Debye assumed that the oscillation modes were waves with frequencies $\omega(k)=v|k|$ with v the sound velocity. For each k there should be 3 oscillation modes, one for each direction of motion.
He wrote an expression analogous to Einstein's

$$
\langle E\rangle=3 \sum_{\mathbf{k}} \hbar \omega(\mathbf{k})\left(n_{B}(\beta \hbar \omega(\mathbf{k}))+\frac{1}{2}\right)
$$

Each excitation mode is a boson of frequency $\omega(k)$ and it is occupied on average $n_{B}(\beta \hbar \omega(k))$ times.

For a large enough sample the sum can be converted to an integral .
We simplify the problem by using "Born-Von-Karman" boundary conditions.
In one dimension: instead of having a sample of length L with actual ends, we imagine that the two ends are connected together making the sample into a circle.

- The periodic boundary condition means that, any wave in this sample $\mathrm{e}^{\mathrm{ikr}}$ is required to have the same value for a position r as it has for $r+L$ (we have gone all the way around the circle). This then restricts the possible values of k to:

Debye's Calculation Following Planck

Taking the continuum limit:

$$
\begin{aligned}
\langle E\rangle & =3 \sum_{\mathbf{k}} \hbar \omega(\mathbf{k})\left(n_{B}(\beta \hbar \omega(\mathbf{k}))+\frac{1}{2}\right) \\
& =3 \frac{L^{3}}{(2 \pi)^{3}} \int \mathrm{dk} \hbar \omega(\mathbf{k})\left(n_{B}(\beta \hbar \omega(\mathbf{k}))+\frac{1}{2}\right)
\end{aligned}
$$

Assuming spherical symmetry, we integrate out the angular dependence $\int \mathrm{dk} \rightarrow 4 \pi \int_{0}^{\infty} k^{2} d k$ And using $k=\omega / v$

$$
\langle E\rangle=3 \frac{4 \pi L^{3}}{(2 \pi)^{3}} \int_{0}^{\infty} \omega^{2} d \omega\left(1 / v^{3}\right)(\hbar \omega)\left(n_{B}(\beta \hbar \omega)+\frac{1}{2}\right)
$$

Rewrite ion terms of density of states $g(\omega)$: .

$$
\langle E\rangle=\int_{0}^{\infty} d \omega g(\omega)(\hbar \omega)\left(n_{B}(\beta \hbar \omega)+\frac{1}{2}\right)
$$

the number of modes with frequencies between ω and $\omega+d \omega$ is given by $g(\omega) d \omega$.

Density of States: .

$$
g(\omega)=N\left[\frac{12 \pi \omega^{2}}{(2 \pi)^{3} n v^{3}}\right]=N \frac{9 \omega^{2}}{\omega_{d}^{3}}
$$

- n is the density of atoms, and $n L^{3}=N$
- ω_{D} is the Debye frequency

$$
\omega_{d}^{3}=6 \pi^{2} n v^{3}
$$

Debye's Calculation Following Planck

$$
\langle E\rangle=\int_{0}^{\infty} d \omega g(\omega)(\hbar \omega)\left(n_{B}(\beta \hbar \omega)+\frac{1}{2}\right) \quad g(\omega)=N\left[\frac{12 \pi \omega^{2}}{(2 \pi)^{3} n v^{3}}\right]=N \frac{9 \omega^{2}}{\omega_{d}^{3}}
$$

$$
x \equiv \beta \hbar \omega \quad \Longrightarrow \quad\langle E\rangle=\frac{9 N \hbar}{\omega_{d}^{3}(\beta \hbar)^{4}} \int_{0}^{\infty} d x \frac{x^{3}}{e^{x}-1} \quad+\quad T \text { independent constant }
$$

$$
\langle E\rangle=9 N \frac{\left(k_{B} T\right)^{4}}{\left(\hbar \omega_{d}\right)^{3}} \frac{\pi^{4}}{15} \quad+\quad T \text { independent constan }
$$

$$
C=\frac{\partial\langle E\rangle}{\partial T}=N k_{B} \frac{\left(k_{B} T\right)^{3}}{\left(\hbar \omega_{d}\right)^{3}} \frac{12 \pi^{4}}{5} \sim T^{3}
$$

Gives the correct T^{3} dependence at low T !

Low T heat capacity of solid Argon plotted against T^{3} Finegold and Philips (1968)

Debye's correction for high

Because of finite distance between atoms in a crystal, it does not make sense to allow arbitrary large k (i.e. arbitrary small λ) - should be a high- $\boldsymbol{k}(\boldsymbol{\omega})$ cut-off.

Debye introduced an ad hoc cut-off: at high T the average energy $<E>$ should be $3 \mathrm{~N} k_{B} T$ (the total number of modes times the energy per mode).

$$
\omega_{D}
$$

Total number of modes (per unit volume) $n=N / L^{3}$ is the density of atoms

$$
3 n=\int_{0}^{\omega_{D}} g(\omega) d \omega
$$

- cutof
condition

$$
\text { High-T limit: } \frac{1}{e^{\beta \hbar \omega}-1} \approx(\beta \hbar \omega)^{-1}
$$

$$
\langle E\rangle=k_{B} T \int_{0}^{\omega_{D}} \frac{3}{2 \pi^{2}} \frac{\omega^{2}}{c^{3}} d \omega=\frac{1}{2 \pi^{2}} \frac{k_{B} T}{c^{3}}\left(\omega_{D}\right)^{3}=3 n k_{B} T
$$ energy of each mode (α its amplitude squared) $\approx k_{B} T$.

$$
\omega_{D}=\left(6 \pi^{2} n\right)^{1 / 3} c
$$

The cut-off value of $k=\left(6 \pi^{2} n\right)^{1 / 3}$ is on the

$$
\text { order of } \frac{\pi}{a} \sim n^{1 / 3} \text {, as it should be. }
$$

Debye's specific heat compared experiment

Low $T\left(T \ll T_{D}\right) \quad C=\frac{2}{5} \frac{\pi^{2} k_{B}{ }^{4}}{(\hbar c)^{3}} T^{3}=\frac{12 \pi^{4}}{5} R\left(\frac{T}{T_{D}}\right)^{3}$
High $T\left(T \gtrsim T_{D}\right) \quad C=3 R$
T_{D} is usually determined by fitting the exp. data on specific heat.

$$
\omega_{\text {cutoff }} \sim c \frac{\pi}{a}
$$

$c \sim 3 \mathrm{~km} / \mathrm{s}, a \sim 0.2 \mathrm{~nm}, \omega_{\text {cutoff }} \sim 5 \cdot 10^{13} \mathrm{rad}^{-1}$ Compare with the max. sound $\omega \sim 2 \pi \cdot 10^{4} \mathrm{rad}^{-1}$

The Debye Temperature

$$
T_{D}=\frac{\hbar \omega_{D}}{k_{B}}=\frac{\hbar}{k_{B}}\left(6 \pi^{2} n\right)^{1 / 3} \mathrm{v}
$$

The greater the sound speed and the density of ions, the higher the Debye temperature. If the temperature is normalized by T_{D}, the data for different materials collapse onto a universal denendence.

Aluminium	428 K
Beryllium	1440 K
Cadmium	209 K
Caesium	38 K
Carbon	2230 K
Chromium	630 K
Copper	343.5 K
Gold	170 K
Iron	470 K
Lead	105 K

T_{D} varies from $\sim 105 \mathrm{~K}$ for lead (soft, low c) to $\sim 2200 \mathrm{~K}$ for diamond (hard, high c).
T_{D} plays similar role for phonons as T_{F} plays for electrons: it separates the high- T (classical) and the low- T (quantum) regime. In the case of electrons in metals, $T_{F} \sim 10^{4} \mathrm{~K}$ so only quantum regime is encountered. For phonons $T_{D} \sim 10^{2}-10^{3} \mathrm{~K}$, and both classical and quantum behavior can be observed.

- \quad The dependence $g_{3 D}(\omega) \propto \omega^{2}$ was obtained by ignoring the discreteness of matter. In reality, $g_{3 D}(\omega) \propto \omega^{2}$ holds only for low $\omega(\lambda \gg a)$. At $\omega^{\sim} \omega_{D}$ we will need to modify the dispersion relation and the corresponding density of states. - The speed of sound is assumed to be the same for all polarizations of acoustic waves, which is not true.

The real phonon spectra are very complicated, and T_{D} is treated as an experimental fitting parameter.
Our goal will be to (qualitatively) understand the spectra.

Summary

$>$ Boltzmann: classical approach (no energy quantization), works well at $k_{B} T \gg \omega_{D}$;
$>$ Einstein: quantum $\left(k_{B} T \gtrless \hbar \omega_{D}\right)$, independent oscillators, oversimplified DoS (just one ω_{E}) and, as a result, underestimation of E and C at low T;
$>$ Debye: quantum, coupled oscillators = broad range of ω, DoS is more realistic but still not quite right because discreteness is not treated consistently.

Density of States: important concept that we will extensively in the course.

Einstein - quantum (low T) model

Energy of Einstein solid:
 $$
E=\sum_{i=1}^{3 N} \hbar \omega\left(n_{i}+\frac{1}{2}\right) \quad \begin{aligned} & n_{i} \text { - the number of energy } \\ & \text { quanta in the } i^{t h} \text { oscillator } \end{aligned}
$$

Calculate $<n_{i}>$ the mean occupation number in the n 'th level.
From statistical mechanics :
The partition function for an oscillator of frequency ω in it's the n 'th energy level

Condensed matter vacuum
 mass-energies $E=m$ c-squared) are shown, in units of a GeV , which is a few pe the mass-energy of the lightest atom (hydrogen). Neutrino masses haven't yet been nalled down. To avoid clutter, the gravitational force (and its carrier the presumed graviton) is not shown.

P. W. Anderson's principles

The description of the properties of materials rests on two principles:

- Adiabatic continuity. Complicated systems may be replaced by simpler systems that have the same essential properties in the sense that the two systems may be adiabatically deformed into each other without changing qualitative properties.
Example: Landau's Fermi liquid theory. The low-energy properties of strongly interacting electrons are the same as those of non-interacting fermions with renormalized parameters.
- Spontaneously broken symmetry. Phase transitions into states with qualitatively different properties can often be characterized by broken symmetries.
Example: Crystal versus Liquid - broken translation and rotation symmetries; Ferromagnet versus paramegnet broken rotational symmetry and time-reversal
- Topological order - recently added to the list - Lifshitz transitions change in number of Fermi surfaces

$$
\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \theta
$$

Cross (vector) product

$$
\vec{a} \times \vec{b}=\hat{n}|\vec{a}| \cdot|\vec{b}| \sin \theta
$$

$$
\begin{aligned}
& \mathbf{c}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\mathbf{a}_{1} & a_{2} & a_{3} \\
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}
\end{array}\right| \\
& \begin{array}{ll}
\mathbf{c}= & \left.\left[\left(\mathbf{a}_{2} \times \mathbf{b}_{3}\right)-\left(\mathbf{a}_{3} \times \mathbf{a}_{3} \times \mathbf{b}_{2}\right)\right]-\left(\mathbf{a}_{1} \times \mathbf{b}_{3}\right)\right] j+ \\
& {\left[\left(\mathbf{a}_{1} \times \mathbf{b}_{2}\right)-\left(\mathbf{a}_{2} \times \mathbf{b}_{1}\right)\right] k}
\end{array}
\end{aligned}
$$

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

Functional form of solution?
$y(x, t)=A \sin (k x) \cos (\omega t)+B \cos (k x) \sin (\omega t)$
Boundary conditions?

$$
\text { I. } y(x, t)=0 \quad \text { at } x=0 \text { and } x=L
$$

At $x=0: y(x, t)=B \sin (\omega t)=0 \quad \rightarrow$ only works if $B=0$ $y(x, t)=A \sin (k x) \cos (\omega t)$

Evaluate $y(x, t)=0$ at $x=L$. What are possible values for k ?
a. k can have any positive or negative value
b. $\pi /(2 L), \pi / L, 3 \pi /(2 L), 2 \pi / L \ldots \quad$ Answer is $d: k=n \pi / L$
c. π / L

Boundary conditions put constraints
d. $\pi / L, 2 \pi / L, 3 \pi / L, 4 \pi / L$... on k...
e. $2 \mathrm{~L}, 2 \mathrm{~L} / 2,2 \mathrm{~L} / 3,2 \mathrm{~L} / 4, \ldots$.

Dispersion

- The group velocity is $u_{\mathrm{gr}}=\frac{d \omega}{d k}$
- For a de Broglie wave:

$$
\begin{aligned}
& E=h f=\hbar(2 \pi f)=\hbar \omega \\
& p=\hbar k
\end{aligned}
$$

- The group velocity of a de Broglie wave packet is thus:

$$
u_{g r}=\frac{d \omega}{d k}=\frac{d E}{d p}
$$

Using: $\quad E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}$

$$
\longmapsto u_{\mathrm{gr}}=\frac{d E}{d p}=\frac{p c^{2}}{E}
$$

Group velocity and phase velocity

- The group velocity is $u_{\mathrm{gr}}=\frac{d \omega}{d k}$
- The relationship between the phase velocity and the group velocity is

$$
u_{\mathrm{gr}}=\frac{d \omega}{d k}=\frac{d}{d k}\left(v_{\mathrm{ph}} k\right)=v_{\mathrm{ph}}+k \frac{d v_{\mathrm{ph}}}{d k}
$$

- Hence the group velocity may be greater or less than the phase velocity. A medium is called nondispersive when the phase velocity is the same for all frequencies and equal to the group velocity.

Plane Waves vs. Wave Packets

$$
\Psi(x, t)=A \exp [i(k x-\omega t)]
$$

Which one looks more like a particle?

Gaussian Function

- A Gaussian wave packet describes the envelope of a pulse wave.

$$
\Psi(x, 0)=\Psi(x)=A e^{-\Delta k^{2} x^{2}} \cos \left(k_{0} x\right)
$$

(a)

(b)

- The localization of the wave packet over a small region to describe a particle requires a large range of wave numbers. Conversely, a small range of wave numbers cannot produce a wave packet localized within a small distance.

$$
\Delta k \Delta x=\frac{1}{2} \quad \Delta \omega \Delta t=\frac{1}{2}
$$

- The probability $P(x) d x$ of a particle being between x and $x+d x$:

$$
P(x) d x=\Psi^{*}(x, t) \Psi(x, t) d x
$$

here Ψ^{*} denotes the complex conjugate of Ψ

- The probability of the particle being between x_{1} and x_{2} is given by

$$
P=\int_{x_{1}}^{x_{2}} \Psi^{*} \Psi d x
$$

- The wave function must also be normalized so that the probability of the particle being somewhere on the x axis is 1 .

$$
\int_{-\infty}^{\infty} \Psi^{*}(x, t) \Psi(x, t) d x=1
$$

