Homework 1- Lectures 1-3 Early models of Specific Heat in Solids Due: 1/30/2023

Problem 1

Classical Einstein Solid: Consider a three dimensional simple harmonic oscillator with mass m and spring constant k (i.e., the mass is attracted to the origin with the same spring constant in all three directions). The Hamiltonian is given in the usual way by

$$H = \frac{\mathbf{p}^2}{2m} + \frac{k}{2}\mathbf{x}^2$$

a) Calculate the classical partition function

$$Z = \int \frac{\mathrm{d}\mathbf{p}}{(2\pi\hbar)^3} \int \mathrm{d}\mathbf{x} \, e^{-\beta H(\mathbf{p},\mathbf{x})}$$

Here $\beta = 1/(k_BT)$. Note: in this problem p and x are three dimensional vectors.

b) Using the partition function, calculate the energy expectation value as a function of temperature:

$$\left\langle E(T)\right\rangle = -\frac{1}{Z}\frac{\partial Z}{\partial \beta}$$

c) Calculate the heat capacity:

$$C == \frac{\partial \langle E \rangle}{\partial T}$$

d) Show that if you can consider a solid to consist of N atoms all in harmonic wells, then the heat capacity should be $3Nk_B = 3R$, in agreement with the law of Dulong and Petit.

Problem 2

Quantum Einstein Solid: Now consider the same Hamiltonian as in problem 2 quantum mechanically.

- a) Express the energy eigenvalues, E_i in terms of k and m.
- b) Calculate the quantum partition function

$$Z = \sum_{j} e^{-\beta E_j}$$

where the sum over j is a sum over all eigenstates.

- c) Explain the relationship with Bose statistics
- d) Find an expression for the heat capacity.
- e) Show that the high temperature limit agrees with the law of Dulong and Petit.
- f) Sketch the heat capacity as a function of temperature.

Problem 3

Debye model.

- a) State the assumptions of the Debye model for the heat capacity of a solid.
- b) Guess the element with the highest Debye temperature and the one with the lowest. Explain your reasoning.
- c) The following table gives the heat capacity C for potassium iodide as a function of temperature.

$T(\mathbf{K})$	$C(\mathrm{J}~\mathrm{K}^{-1}\mathrm{mol}^{-1})$
0.1	$8.5 imes 10^{-7}$
1.0	8.6×10^{-4}
5	.12
8	.59
10	1.1
15	2.8
20	6.3

Discuss, with reference to the Debye theory, and make an estimate of the Debye temperature.

Problem 4

Use the Debye approximation to determine the heat capacity of a two dimensional solid as a function of temperature.

- a) State your assumptions. Leave your answer in terms of an integral that one cannot do analytically.
- b) At high T, show the heat capacity goes to a constant and find that constant.
- c) At low T, show that $C_v = KT^n$. What is the value of n? Express K in terms of a definite integral.