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Simple Derivatives and integrals 

Using the following two equations, eliminate v and solve for r in terms of n, h, 0, m & e: 
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What are the solutions to the following differential equations? (k is a real constant) 

)()( 2 xykxy   

)()( 2 xykxy   

Take the following derivatives: 
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2xe
dx

d   

Compute the following integrals: 


L

dxLx
0

)/sin(  


L

dxLxLx
0

)/cos()/sin(   

Can you rewrite the following expression in terms of sines and cosines? 

ikxe  

What is the real part of the above expression?  the imaginary part?  (k and x are real) 
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COMPLEX NUMBERS 

A complex number z has both a real and an imaginary part: 

z x iy   

where x and y are real numbers.  x is the real part of z, and y is the imaginary part of z. 

We can think of z in the same way as a 2-D vector (ordered pair): 

( , )r x y  

( , )z x iy x y    

 

The complex conjugate (z*) of z is defined as: 

* ( , )z x iy x y     

z and z* both have the same magnitude (length), but z* is the reflection of z across the x-axis. 

z* is found from z by changing i to –i (in other words, i* = -i). 

We define i as: 

1i    

so that 

2 1i   , 
3i i  , 

4 1i   , etc… 

 

i 
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The length (magnitude) of a vector is found (via the Pythagorean Theorem) by summing the 

squares of the legs of the triangle with the vector as the hypotenuse: 

 

 

2
* ( )( )z z z x iy x iy     

2 2 2x ixy ixy i y     

2 2x y   

OR 

   cos sinz x iy z i        

        
2

* cos sin (cos sinz z z z i z i         

           
2 2 2 2cos cos sin cos sin sinz i i i            

   
2 22 2cos sinz z    
 

  

Note that the magnitude (length) of a complex number is always a positive real number. 
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EXPONENTIALS 

0 1e   

x y x ye e e    
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     

If we use the identity: 

   cos sinie i     

then any complex number can be written as: 

     cos sin expiz x iy z i z e z i           

 expz z i  

 * expz z i   

   
2

* exp expz z z z i z i      

   
2 2 2

exp exp 0z i i z z       

     exp cos sinikx kx i kx   represents a wave that oscillates in both the real and imaginary 

directions: 
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nn  ...321!
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n
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and n! denotes the factorial of n:  

. 

 In the more compact sigma notation, this can be written as 

e
x
 = 

. 

 Example: f(x)=e
x  

; if a =0   f(a)=e
0
=1 

1!0 

TAYLOR EXAPNASION 

Taylor expansion- powerful tool  for approximations 

If x-a= <<1 then all higher powers:  


2
,
 


3


4
,… are negligibly small and can be ignored!  (note - x is 

dimensionless) Examples:   

 

 
 

 
1.0...

2

1.0
1.0~

2
01.0 ee

radrad 1.0...1.0)0cos()0sin(~)1.0sin( 

f(x)= 

n

n
n

dx

fd
f

dx

fd
f

dx

df
fwhere  ;'';':

2

2

https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/Summation
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Examples:  

  

 sincos' iesequationEuler i 
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Vectors 
  

Dot (Scalar) product 

Also:  

Cross (vector) product  

cosbaba




zzyyxx babababa 


 along zunit vecorzk

 along yunit vecoryj

 along xunit vecorxi

ˆ

ˆ

ˆ







k

j

i






kjiF 321 FFFF 



sinˆ banba



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Scalar and Vector fields, Gradient, Divergence   

kjiF 321),,(),,( FFFzyxzyxF 


Vector field : Associates a vector with every point in space  

Scalar field : Associates a number with every point in space  

),,( zyxF

Gradient: Turns a scalar field into a vector field  

Vector field   

Gives the "direction and rate of increase" of a function 

kji
dz

dF

dy

dF

dx

dF
F 

Divergence: Turns a vector field into a scalar field  

Scalar field 

Gives the extent to which the vector field behaves like a source at a 
given point- the extent to which there are more of the field vectors 
exiting from a point than entering it.  

Gauss law:  
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Suppose F is the velocity field of a fluid flowing past a small ball making it 
rotate. The rotation axis points in the direction of the curl and the angular 
speed of the rotation is half the magnitude of the curl.  

Faraday’s law 

Curl: Measures tendency of a vector field to rotate,  gives axis 
and rate of rotation 
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Vector Identities 

  

  0 A

https://en.wikipedia.org/wiki/Vector_calculus_identities 
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Divergence (Gauss) theorem   

Volume integral Closed Surface integral = 
flux through the surface 

Example – Gauss law in E&M 

The surface integral of a vector field over a closed surface- called the "flux" through the 

surface-  is equal to the volume integral of the divergence over the region enclosed by the 

surface.  

Intuitively, it states that "the sum of all sources of the field in a region (with sinks regarded 

as negative sources) gives the net flux out of the region".  

Electric flux through a surface is proportional to the total charge 
enclosed by the surface. 
 
Integral form:  
 

dVr
Q

dVESdE

V

in

VS









)(
0








0
in

S

Q
SdE 



0


 E


Differential form 

 is the Charge density  

https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Volume_integral


12 

 

Stokes theorem  

SdEldE
S


  )(  

 

     

Line integral Surface integral 

The line integral of a vector field A around any closed curve is equal to the 
surface integral of the curl of A taken over any surface S of which the curve is 
a bounding edge.  

Example – Faraday’s law in E&M 

The electromotive force around a closed path is equal to the negative of the time 
rate of change of the magnetic flux enclosed by the path 
 
Integral form:  

dt

d
ldE B




  
SC

SdEldE


 



S

B SdB
dt

d

dt

d  dt

Bd
E




 Differential form 
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DIFFERENTIAL EQUATIONS 

 

 ex is the only function whose derivative is equal to itself:  
 

( ) ( )    ( ) xd
y x y x y x Ae

dx
    

 

(  exp( ))  exp( ) =  exp( )  ( ) =  exp( )
d d d

A kx A kx A kx kx k A kx
dx dx dx

          

 
2

2 2 2

2
(  exp( ))  =  (  exp( )) =  exp( ) = -  exp( )

d d
A ikx ik A ikx i k A ikx k A ikx

dx dx
   

 

 
2

2

2

d
( ) ( )

dx
y x k y x   has two independent solutions: 

 

( ) cos( )y x A kx   &  ( ) cos( )y x B kx  

 

The most general solution is a superposition (linear combination) of the two 

independent solutions: 

 
( ) cos( )  sin( )y x A kx B kx   

 

The same equation has for solutions ( )  exp( )y x C ikx   & ( )  exp(- )y x D ikx  

or, more generally, a linear combination of the two: 

 
( )  exp( )   exp(- )y x C ikx D ikx    

 

These two “different” solutions are equivalent, via the relations: 

 

exp( ) cos( ) sin( )ikx kx i kx     &  exp( ) cos( ) - sin( )ikx kx i kx   

 
-

cos( )  
2

ikx ikxe e
kx


   &  

--  
sin( )  

2

ikx ikxe e
kx

i
  

 

The minus sign in front of k2 indicates the independent solutions will be 

oscillatory.  This should make sense since the second derivative tells us about 
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the curvature of the function.  When sine (or cosine) is positive, it has negative 

curvature; when negative, the function has positive curvature, so it is always 

curving back on itself, hence oscillatory solutions like sine or cosine. 

 

 
2

2

2

d
( ) k ( )

dx
y x y x   has for solutions ( ) A exp(+kx)y x   &  ( ) B exp(-kx)y x   

 

The most general solution is a superposition: ( ) A exp(+kx) + B exp(-kx)y x   

 

The plus sign in front of k2 indicates the independent solutions are going to be 

either exponentially growing or exponentially decaying – the curvature is 

always positive, the functions are always either monotonically increasing or 

monotonically decreasing. 
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Gaussian Integrals 
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Delta functions  
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Dirac Delta Function 
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