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Simple Derivatives and integrals

Using the following two equations, eliminate v and solve for r in terms of n, h, &, m & e:

mv2 1 e2

r 4rgy r2
nh
mvr = —
27

What are the solutions to the following differential equations? (k is a real constant)
y"(x) =—k*y(x)

y"(x) =+k*y(x)

Take the following derivatives:
d .

—sin( ax

o Sh(ax)

d

_eO!X

dx

ieikx
dx

g gme
dx

Compute the following integrals:

jSiﬂ(ﬂX/ L)dx

0
L
I sin( zx/ L) cos(zx / L)dx
0

Can you rewrite the following expression in terms of sines and cosines?
ikx

e

What is the real part of the above expression? the imaginary part? (k and x are real)



COMPLEX NUMBERS

A complex number z has both a real and an imaginary part:
Z=X+ly
where x and y are real numbers. X is the real part of z, and y is the imaginary part of z.

We can think of z in the same way as a 2-D vector (ordered pair):

r=(x,y)
Z=Xx+iy=(X,Y)
iy A
z=(x,y)
€]
X
Z* = (x,-y)

The complex conjugate (z*) of z is defined as:

z*=x-1y=(X,~-y)

z and z* both have the same magnitude (length), but z* is the reflection of z across the x-axis.
z* is found from z by changing i to —i (in other words, i* = -i).

We define i as:

i=V-1

so that

i=-1,=-i, i =41, etc...



The length (magnitude) of a vector is found (via the Pythagorean Theorem) by summing the
squares of the legs of the triangle with the vector as the hypotenuse:

|2 = 2%z = (x=iy)(x+iy)

= X% +ixy —ixy —i%y?

=x2 4y

OR

z=x+iy =|z|[ cos (@) +isin(6)]

2f = 2%2Je|(cos(0)-isin (6)){2|cos(6) + sin(0)

=|7’ [cos2 (0)+icos(8)sin(8)—icos(0)sin(H)—i*sin? (9)]
=[2"| cos(6)+sin’ () | =2

Note that the magnitude (length) of a complex number is always a positive real number.



EXPONENTIALS

e’ =1
e*.e¥ ="
X
€ etV =g
ey

If we use the identity:

e’ =cos(8)+isin(0)

then any complex number can be written as:
z=x+iy =|z|[ cos(6)+isin(6) | =|z|e” =|z|exp(i®)
z=|z|exp(i6)

7*=|z|exp(-i6)

|z|2 =z*7=|z|exp(-i0)-|z|exp(iQ)
=|z|2exp(—i9+i6’)=|z|2exp(0)=|z|2

exp(ikx) = cos(kx)+isin(kx) represents a wave that oscillates in both the real and imaginary
directions:



TAYLOR EXAPNASION

fIH (ﬂ.)

_ f(a) f(a) 2 :
f(x) fla) + T (z —a) + 51 (x —a)” + T (z —a)® +---
2 n
where: f'sﬂ; f"su; f”sd f
dx dx? dx"
and n! denotes the factorial of n: N=1x2x3x...xN Ol=1

In the more compact sigma notation, this can be written as

o £(n) (g
Zf ( )(x_a)na

|
n—0 n.

’ n
Example: f(x)=" ; if a =0 > f(a)=e’=1 ™ (a=0)= d (eXi =1
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Taylor expansion- powerful tool for approximations

If x-a=¢ <<1 then all higher powers:

2 3 4
€ ,€ ,¢& ,..arenegligibly small and can be ignored! (note - x s

dimensionless) Examples:

2
ell —g° +O.1+%+... ~ 0.1

sin(0.1rad) ~ sin(0) + cos(0) x0.1+... = 0.1rad


https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/Summation

Examples:

P
cosxy=1- + — +an
AT LY Y
. ‘l:'-!' .Tz X !
SN Y = x— + — -+
3! L fi

0

Euler'sequation = e'” =cos@+isin 6



Vectors

F=F=Ri+Fj+Fk

—
-

| =X unitvecor along x K
)7 unit vecor along y 7 ’

unit vecor along z

—
Il

J
K

~|
If

Dot (Scalar) product

a-Bz\é\-‘B‘cose

Also = . h —
a-b=a,b, +a,b, +a,b,
Cross (vector) product
éxﬁzﬁéwﬁﬂne
— =
ik
- =
_{ = B - {| {1} {
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Scalar and Vector fields, Gradient, Divergence

Scalar field : Associates a number with every point in space

F(x,y,2)

Vector field : Associates a vector with every point in space

F(x,y,2)=F(xY,2) = FRi+Fpj+Fk

Gradient: Turns a scalar field into a vector field

VF = dF i 4 dF j+d—Fk Vector field
dx dy dz

Gives the "direction and rate of increase" of a function

Divergence: Turns a vector field into a scalar field s
oF, O0F, O0F;
V- F=—+4+—+4 — Scalar field
Oz dy 0z megurctenten ] Taowrcenon

Gives the extent to which the vector field behaves like a source at a
given point- the extent to which there are more of the field vectors
exiting from a point than entering it.

Gauss law: V-E = P

oo



Curl: Measures tendency of a vector field to rotate, gives axis

and rate of rotation //‘; :‘\\\\
’///;/T’t:\\\\ T T
1\1'.,',”
1 \ \\“:;//////‘
NN
F,  OF F F, OF, F.\ -
VxF:(a"— y)i+(a‘r—8*)j+( y—a‘r)k
dy 0z 0z Ox Oz dy
i i k
9 90 9
VxF=\5; dy Oz
F. F, F.

Suppose F is the velocity field of a fluid flowing past a small ball making it
rotate. The rotation axis points in the direction of the curl and the angular
speed of the rotation is half the magnitude of the curl.

- . OB
Faraday’s law VXF=——
ot



Vector ldentities

ax(bxc)=b(a-c)—c(a-b)

V- (VxA)=0

Vx(V-A)zO

https://en.wikipedia.org/wiki/Vector_calculus_identities
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Divergence (Gauss) theorem

‘HLIV-F)dV==¢hF-dS

Volume integral Closed Surface integral =
flux through the surface

The surface integral of a vector field over a closed surface- called the "flux" through the
surface- is equal to the volume integral of the divergence over the region enclosed by the
surface.

Intuitively, it states that “the sum of all sources of the field in a region (with sinks regarded
as negative sources) gives the net flux out of the region”.

Example — Gauss law in E&M

<4

Electric flux through a surface is proportional to the total charge q )
enclosed by the surface. /‘\
= < _ Qin
Integral form: ﬁE -dS ==+
S €0

HE-dS =[[[V-EdV

S V N 0

Qin —-V. E = — Differential form

<IN Ji{ p(F)V &0

& V¢

p is the Charge density

11


https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Volume_integral

Stokes theorem

Line integral Surface integral

The line integral of a vector field A around any closed curve is equal to the
surface integral of the curl of A taken over any surface S of which the curve is
a bounding edge.

Example — Faraday’s law in E&M

The electromotive force around a closed path is equal to the negative of the time
rate of change of the magnetic flux enclosed by the path

~ - do
Integral form: :f E . dl — __B
dt
JE-dl =[[(V=E)-dS . . 4B
C S memm) V XE =———Dpifferential form
_dbp__d g e at

—~ [[B-dS
dt dtg
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DIFFERENTIAL EQUATIONS

e* is the only function whose derivative is equal to itself:

diy(x):y(x) o y(x)=Ae
X

i(A exp(+kx)) Aiexp(+kx) = A exp(+kx) - i(+kx) = +k- A exp(+kx)
dx dx dx

;—):Z(A exp(ikx)) %(ik-A exp(ikx)) = i’k*- A exp(ikx) = -k*A exp(ikx)

2

% y(x) = —k?y(x) has two independent solutions:
X

y(x) = Acos(kx) & y(x) = B cos(kx)

The most general solution is a superposition (linear combination) of the two
independent solutions:

y(x) = Acos(kx) + Bsin(kx)

The same equation has for solutions y(x) =C exp(+ikx) & y(x)=D exp(-ikx)
or, more generally, a linear combination of the two:

y(x) =C exp(+ikx) + D exp(-ikx)

These two “different” solutions are equivalent, via the relations:

exp(+ikx) = cos(kx) +isin(kx) & exp(—ikx) = cos(kx) - isin(kx)
ikx -ikx ikx -ikx
cos(k) = = ¢ &  sin(g = & _F
2 2

The minus sign in front of k? indicates the independent solutions will be
oscillatory. This should make sense since the second derivative tells us about

13



the curvature of the function. When sine (or cosine) is positive, it has negative
curvature; when negative, the function has positive curvature, so it is always
curving back on itself, hence oscillatory solutions like sine or cosine.

2

. % y(x)=+k?y(x) has for solutions y(x) = A exp(+kx) & y(x) =B exp(-kx)

The most general solution is a superposition: y(x) = A exp(+kx) + B exp(-kx)
The plus sign in front of k? indicates the independent solutions are going to be
either exponentially growing or exponentially decaying — the curvature is

always positive, the functions are always either monotonically increasing or
monotonically decreasing.

14



Gaussian Integrals

An apocryphal story is told of a math major showing a psy-
chology major the formula for the infamous bell-shaped curve
or gaussian, which purports to represent the distribution of
intelligence and such:

IQ DISTRIBUTION
LS ¢ T

02| AR
0.015 | / \
: 4 )

/ \
_ _

Gl B0 100 130 14

The formula for a normalized gaussian looks like this:

1 - .'I:E_.l"'ln:ri

plx) = -I'J"\.-""EE

The psvchology student, unable to fathom the fact that this
formula contained 7. the ratio between the circumference and
diameter of a circle, asked “Whatever does 7 have to do with
intelligence?” The math student is supposed to have replied,
“If your 10) were high enough, yvou would understand!” The

following derivation shows where the 7 comes from.
Laplace (1778) proved that

Ez e dr — /7 (1)

15



This remarkable result can be obtained as follows. Denoting
the integral by I, we can write

L m] ‘3 ] [ ]
I? = U E-I*dr) =f E-Iid:f e¥dy (2

where the dummy variable y has been substituted for  in the

last integral. The product of two integrals can be expressed as
a double integral:

I? = [E [E e~ (=" +v") dr dy

The differential dr dy represents an elementof area in cartesian
coordinates, with the domain of integration extending over the
entire ry-plane. An alternative representation of the last inte-
gral can be expressed in plane polar coordinates v, #. The two
coordinate systems are related by

T =rcosfl y = rsinfd (3)

=0 that
R (4)

The element of area in polar coordinates iz given by rdr dff, =o
that the double integral becomes

F=f [ e~ rdrdf (5)
o 0

Integration over # gives a factor 2m. The integral over r can be
done after the substitution u = r*, du = 2r dr:

f e rdr = %f e “du =3 (6)
1] 0

16



Therefore 1% = 27 % % and Laplace’s result (1) is proven.
A slightly more general result is

[ewem@® o

oo

obtained by scaling the variable r to /az.
We require definite integrals of the type

f " e=aT dr, n=123... (8]

for computations involving harmonic oscillator wavefunctions.
For odd n, the integrals (8) are all zero since the contributions
from {—o0. 0} exactly cancel those from
10,00}, The following stratagem produces successive integrals

for even n. Differentiate each side of (7) wrt the parameter o
and cancel minus signs to obtain

o .ﬂ.l_.l"'i
f e dr = P (9)

— 0

Differentiation under an integral sign is valid provided that the
integrand is a continuous function. Differentiating again, we

obtain »
T4 —ad? 3w
The general result is
e n o — 1-3-5--.{n_+]_}i.r1.."2
'/:m:[' £ dr = TYEPNCESYYE , n=0,24

(11)
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Delta functions

The Eronecosr d-HI:.{mm:d after Leopold l:runa:l::rﬂ s & funchon of two l.ruriuhlu_.usuul'r'ju:t ni -
nEEuI:i'l.'e 'l1|:=E'=rr-.TI1= function is 1 if the variablss srs equal, and 0 pEheraise:

5.={” if i # j.
YUl ifi =

Amngthar useful r|:|:r-=5-|:n'|a1:i|:-|1 is the ‘I'I:III:I'I'I-I'I:E form:

| =

| =

=

N
= rav—[n—iu}
£||||| - LE ;
k=]

Thiis can be derived LEinE the formivils for the fnite Emmetril: sErjms

Dirsc deita fumction,
https/en wikipedia.org wikif/Dirac_delta_function

Darac defin distrioution [-5 distrihuﬁ-:n]. isa E'l:nerui'ud functicn or distibution over the real rumbers,
whose vakue is 2an0 everywhere except st zero, and whuml'rrtzﬁruluuzrth: errbire real Bne is equal to
one.

i) - {&_m' i;g J(: #lx) e = L., j a=1/8
Sivan ary contiruous function 'I'[:ll:|: o
x &
| ity ae = 50
e z

f £(0)8(x—,)dx = fix,) 0

= Tk [hrmes ol 50 i E 0w
i 8 Dl e
FLEEE SN EIE S R LITLLIEE §
g pminig] reroeal dishipdaig

K] = g e

|||,'-'r|
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The oOclta function satishes the taliowing scaling property 107 @ Non-2ero scalar ¢

" g iy W S
/..x. il Lo ) = o
and 50
é(aax) = @
Jex]
Convolution Property

Convolution of 4 function f with a delta function at x, is equivalent to shifiing by ..

SJx1élx—=x,)= fix—x,)

Identity |
A nascent delta function is the sine function as the width of the sinc goes to zero:
i SRE) _ y SINAY 53y
“N  RX b= mX
Identity 2
I cos(2nvx)de = &v)
Identity 3

The Founer transform of one is the delta function;

Identity 4 - the Dirac Comb

The following identity is useful in the derivation of the diffraction pattern for a
periodic pattern with paich p.

L o= 29(-3)

The function on the nght-hand sile o 1s called a Dirac comb of peniod p.

19



Dirac Delta Function

The Danec delia function {also called the wait impalse fanckion) is 2 mathematical absirac-
lon which 1s ofwen used wo describe (Lo, spprovama) some prvsical paenomenca. The
main reason il = wed has o do with some very comeneni mathemaiscal peoperses
which will be described below. In optics, sn idealized point source of light can be
described using the delin funcaon. 'OF course, real poinis of light will have finie wadh,
but if the point is mmow enough, approximetng € with o delia function can be very
useful.

C.l Defimition

The Dirac dela fenction & in {eci nof 2 fonction at ell, bt 2 disinbaion (2 genersl-
ized fenction, sech o5 2 probabibty dednbution) et is aso o measure (e, i scagns
s valee o 2 function) - iems that come fmom probability and set theory, However,
for our purposes € wall suffice i cossider it 2 special fenction with infiniie height, rem
width and an anea of 1. E can be comsidered the denvative of the Heavisde siep
Function.

To help thank about the Dhmc delin funcon, comsader 2 recangle with one sde wlong
the 1-axis cenizred pbout 1 = 1 such that the wea of the ecangle is 1 (his is squavalent
b 2 unafonm probabi Bty distnibugon). (hviousd y there are many such recinngles, w shown
im Fagure (C.1. 'We can construct 2 Darec delin funcison by starting with o square of height
and wadth of 1. If we balve the wadih and double the height, the area wall remain constant.
We can repeal this process a5 many imes as we wish. As the wadlh poes Ip 2, the
hesghi will bepome infiniie bui the area will mmam 1. Any unstl area mciangle, ceniesed
i 1, can he expeeceed as

20



| Ll
Xg

Agare C.1  Coomerical oomsmocton of the Dhac daka Amoson

s T<X -5
FE S . -l. I.—£-.'I-EI.+I—--LI'E-I.'I'[I_ I'] (Lo )
£ i 1l £
£
i, 13L+E

whese rect is the common reciangle function. The Dinc delia function, locaied sl 1 =1,
cun be defined a5 the limiSng case = r poes o zEm.

F L I.]-Il.i;l:ﬁl-d'.{:l:— Tl [

Although o reclangle is used heee, in peneral the Darec delia fencton is any pulse
the limil of zeo width and it sea. This, the Dimc delis function can be defined by
IwD properimes:

M= when xwi C.3

I-d{:l:!u:l:l:-l (C.d)

Any fenction which has these fwo properties is the Dhirac delia funcison. A conssquence
of Exquations (C.3) and (C.4) is thet ) = =,

The function §1) is colled o “nascent” delma function, becomang 2 wue delin fenction
in the limit a5 £ goes i0 zem. There are mavy mascent dela functions, for example, the

21



(Gaussan pulse (& normal probabdity disinbuison, letting the sisndon devistion go o

zemml.
gl ELE’""" C.5)
=l
Exiending this form o two dmersos,
l ] n
Myl iIIIE_I 3 Sy (.6}

(Genenfratos 0 more dimensions are simightforeen]. Otber nascent delia funcions
include the Ay disk funcison, the sinc fencon (see secon C 2.4, and the Besee] func-
tsom of order Lir. In peseml, any probabality density function with a smale parameter ¢ is
 nascent dela function = £ goes 1o 2em.

CI Properties and Theorems

The following sections will sigie some imporient identties and properties of the Dirac
delta function, providing proot for some of them

C.L1 Sifting Property
For any function {1} comtsnuons af 1,

:[ Flrddir—x dr= fiz) 0.7

It is the sifiing property of the Dhirac delia function thai gives it the seese of 2 measore - it
measures the value of 11} of the point x

Frood

since the dela function is zero everywhere exoept of 1 = 1, the moge of e iniegration
can be changed o some infinitesimall y =mall mnge r amund 1,

[ fixiie- = | fixiiz-z i CH

Civer this very small mnge of x, the fenction Az} cun he thought to be consiant end can
be taken cut of the inlegral.

J fixdiz— rode= fiz) [ Sx-x)dx iCm

From the definition of the Dhmc dela function, the integral on the nght-hand side will
equal 1, thus proving e theorem. In fect, Foguation C.7) an be wsed as an aliensts
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definition of e Diec delia funcion. Awy fenction &i1-1) which satisfies the sifting
property is the Direc delia function.

C.22 Scaling Properiy

dia:l']--H (108

i

C.13 Coavoletion Property
Comvolution of a function " with a dela function o 1, is sguivalent o shafting by 1

Jix)ediz— 1 b= flz—x} I 1Th
C.14  [ldentity |
Another mascent delin funciion is e sinc function as the width of the snc goes o 2em:
i S0 i IO 1D
=l o =

Tio prowve adentity 1, it is sufficient ip show thai this expresaon for the Dinc delia fonction
satisfies sifting poperty:
.- sinar

Eif&ﬁ?d.r- Sy 13
Ereaking the inéegral into three sections, the ouier two of which svoid the problem of
dinading by zem al x= (I,

- sinar TG

lﬂ:]?d:-l-r_l -r! {14y

‘The firsi and |as miegral on the Oghi-band side are zee by the Remasn-| shesgue lemma
{mn smportant theorem of the Fourer iniegrl thet will not be discussed here). The center

integral cun be evalusted by @king rio be very small (hut not zem}. Chver this very small
runge, fx} will he ahowi constani:
[ o —dz= jim | ——dz iC15)
- "I 5, mI
Taking the limil as 0 poss o infinity,

tim [ S0 gy o fim | 2R gy [EOL e 16
=" EX = KI 2 mx
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fm | fU0 e 0)
C25 Ideatity 2
§ cost2mvnide - 8iv)
Proof

The proof simply performs (e integratica and then spplies identity 1.

IMthh-Eimﬂm)dt-'iEid::")-&(v)

C26  ldeatity 3 - F(1)
The Founes tnasform of one is the delta function:

j el = Slv)

Proof
Changing the exponential inlo 2 sine and cosine,

ie""‘\h- 1m2m)d:- iisin(hvx)th

AN

.18

«C.19

20

€2

Since the sine is an odd fusction, the sine mtegral will vamish. Applying adentity 2 to the

C.27  ldestity 4 - the Dirac Comb

The following idertity is useful i e derivatica of the diffraction patiem for a periodic

lznefspace mask patiem with pilch p.
P e

€22

The function oo the nght-hand sde of Fguation (C.22) is called 2 Dirac comb of penod
p- This idestity can be proved by recognizang that the Dirac comsb = 2 periodic functaca
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thai can he ecwaly represenied by o Founer senes. Dhrect caboulstion of the Founer
coefficents of the compley Founer szries produces Fqubon 0C. 23]

C.LE Helatienship 1o the Heaviside Step Function

The Heaviside siep function is defined o

z=l
W)= 23
{[IL =l {I:

The siep function is relaisd to the Thac delin funcBon By

d .
ﬂ:I:I-EH{I:I and u:::l-lﬁ{rh:l.l C24)
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