MATHEMATICS DIAGNOSTIC

Simple derivatives and integrals	$\mathbf{1}$
Complex numbers	$\mathbf{2}$
Exponentials	$\mathbf{4}$
Taylor expansion	$\mathbf{5}$
Vectors	$\mathbf{7}$
Vector fields, gradient, curl	$\mathbf{8}$
Vector identities	$\mathbf{9}$
Divergence (Gauss) Theorem	$\mathbf{1 1}$
Stokes theorem	$\mathbf{1 2}$
Differential equations	$\mathbf{1 3}$
Gaussian integrals	$\mathbf{1 5}$
Kronecker and Dirac Delta	$\mathbf{1 8}$

Simple Derivatives and integrals

Using the following two equations, eliminate v and solve for r in terms of $n, h, \varepsilon_{0}, m \& e$:

$$
\begin{aligned}
& \frac{m v^{2}}{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}} \\
& m v r=\frac{n h}{2 \pi}
\end{aligned}
$$

What are the solutions to the following differential equations? (k is a real constant)
$y^{\prime \prime}(x)=-k^{2} y(x)$
$y^{\prime \prime}(x)=+k^{2} y(x)$
Take the following derivatives:
$\frac{d}{d x} \sin (a x)$
$\frac{d}{d x} e^{\alpha x}$
$\frac{d}{d x} e^{i k x}$
$\frac{d}{d x} e^{-\beta x^{2}}$
Compute the following integrals:
$\int_{0}^{L} \sin (\pi x / L) d x$
$\int_{0}^{L} \sin (\pi x / L) \cos (\pi x / L) d x$
Can you rewrite the following expression in terms of sines and cosines?
$e^{i k x}$
What is the real part of the above expression? the imaginary part? (k and x are real)

COMPLEX NUMBERS

A complex number \mathbf{z} has both a real and an imaginary part:
$z=x+i y$
where \mathbf{x} and \mathbf{y} are real numbers. \mathbf{x} is the real part of \mathbf{z}, and \mathbf{y} is the imaginary part of \mathbf{z}.
We can think of \mathbf{z} in the same way as a 2-D vector (ordered pair):
$\vec{r}=(x, y)$
$z=x+i y=(x, y)$

The complex conjugate $\left(\mathbf{z}^{*}\right)$ of \mathbf{z} is defined as:
$z^{*}=x-i y=(x,-y)$
\mathbf{z} and \mathbf{z}^{*} both have the same magnitude (length), but \mathbf{z}^{*} is the reflection of \mathbf{z} across the \mathbf{x}-axis.
\mathbf{z}^{*} is found from \mathbf{z} by changing \mathbf{i} to $\mathbf{- i}$ (in other words, $\mathbf{i}^{*}=\mathbf{- i}$).
We define \mathbf{i} as:
$i \equiv \sqrt{-1}$
so that
$i^{2}=-1, i^{3}=-i, i^{4}=+1$, etc \ldots

The length (magnitude) of a vector is found (via the Pythagorean Theorem) by summing the squares of the legs of the triangle with the vector as the hypotenuse:

$|z|^{2}=z^{*} z=(x-i y)(x+i y)$
$=x^{2}+i x y-i x y-i^{2} y^{2}$
$=x^{2}+y^{2}$
OR

$$
\begin{aligned}
& z=x+i y=|z|[\cos (\theta)+i \sin (\theta)] \\
& |z|^{2}=z^{*} z=|z|(\cos (\theta)-i \sin (\theta)) \cdot|z|(\cos (\theta)+i \sin (\theta) \\
& =|z|^{2}\left[\cos ^{2}(\theta)+i \cos (\theta) \sin (\theta)-i \cos (\theta) \sin (\theta)-i^{2} \sin ^{2}(\theta)\right] \\
& =|z|^{2}\left[\cos ^{2}(\theta)+\sin ^{2}(\theta)\right]=|z|^{2}
\end{aligned}
$$

Note that the magnitude (length) of a complex number is always a positive real number.

EXPONENTIALS

$$
\begin{aligned}
& e^{0}=1 \\
& e^{x} \cdot e^{y}=e^{x+y} \\
& \frac{e^{x}}{e^{y}}=e^{x} \cdot e^{-y}=e^{x-y}
\end{aligned}
$$

If we use the identity:
$e^{i \theta} \equiv \cos (\theta)+i \sin (\theta)$
then any complex number can be written as:

$$
\begin{aligned}
& z=x+i y=|z|[\cos (\theta)+i \sin (\theta)]=|z| e^{i \theta}=|z| \exp (i \theta) \\
& z=|z| \exp (i \theta) \\
& z^{*}=|z| \exp (-i \theta) \\
& |z|^{2}=z^{*} z=|z| \exp (-i \theta) \cdot|z| \exp (i \theta) \\
& =|z|^{2} \exp (-i \theta+i \theta)=|z|^{2} \exp (0)=|z|^{2}
\end{aligned}
$$

$\exp (i k x)=\cos (k x)+i \sin (k x)$ represents a wave that oscillates in both the real and imaginary directions:

TAYLOR EXAPNASION

$f(\mathrm{x})=\quad f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots$,
where: $\quad f^{\prime} \equiv \frac{d f}{d x} ; \quad f^{\prime \prime} \equiv \frac{d^{2} f}{d x^{2}} ; \quad f^{n} \equiv \frac{d^{n} f}{d x^{n}}$
and $n!$ denotes the factorial of $n: \quad n!=1 \times 2 \times 3 \times \ldots \times n \quad 0!\equiv 1$
In the more compact sigma notation, this can be written as

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Example: $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$; if $\left.\mathrm{a}=0 \mapsto \mathrm{f}(\mathrm{a})=\mathrm{e}^{0}=1 \quad \mathrm{f}^{(\mathrm{n})}(\mathrm{a}=0)=\frac{d^{n}}{d x^{n}}\left(\mathrm{e}^{x}\right) \right\rvert\,=1$

$$
\begin{aligned}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} & =\frac{x^{0}}{0!}+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots \\
& =1+x+\frac{x^{2}}{9}+\frac{x^{3}}{\kappa}+\frac{x^{4}}{9 \wedge}+\frac{x^{5}}{120}+\cdots
\end{aligned}
$$

Taylor expansion- powerful tool for approximations

If $x-a=\varepsilon \ll 1$ then all higher powers:
$\varepsilon^{2}, \varepsilon^{3}, \varepsilon^{4}, \ldots$ are negligibly small and can be ignored! (note -x is dimensionless) Examples:
$e^{0.1} \sim e^{0}+0.1+\frac{(0.1)^{2}}{2}+\ldots \approx 0.1$
$\sin (0.1 \mathrm{rad}) \sim \sin (0)+\cos (0) \times 0.1+\ldots \approx 0.1 \mathrm{rad}$

Examples:

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
\end{aligned}
$$

Euler' sequation $\Rightarrow e^{i \theta}=\cos \theta+i \sin \theta$

Vectors

$$
\begin{aligned}
\vec{F} & \equiv \boldsymbol{F}=F_{1} \boldsymbol{i}+F_{2} \boldsymbol{j}+F_{3} \boldsymbol{k} \\
\vec{i} \equiv \boldsymbol{i} \equiv \hat{x} & \text { unit vecor along } x \\
\vec{j} \equiv \boldsymbol{j}=\hat{y} & \text { unit vecor along } y \\
\vec{k} \equiv \boldsymbol{k} \equiv \hat{z} & \text { unit vecor along } z
\end{aligned}
$$

Dot (Scalar) product

$$
\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \theta
$$

Also:

$$
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

Cross (vector) product
$\vec{a} \times \vec{b}=\hat{n}|\vec{a}| \cdot|\vec{b}| \sin \theta$

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

$=\left(A_{y} B_{z}-A_{z} B_{y}\right) \vec{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \vec{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \vec{k}$

Scalar and Vector fields, Gradient, Divergence

Scalar field: Associates a number with every point in space

$$
F(x, y, z)
$$

Vector field : Associates a vector with every point in space

$$
\vec{F}(x, y, z) \equiv \boldsymbol{F}(x, y, z)=F_{1} \boldsymbol{i}+F_{2} \boldsymbol{j}+F_{3} \boldsymbol{k}
$$

Gradient: Turns a scalar field into a vector field

$$
\bar{\nabla} F=\frac{d F}{d x} \boldsymbol{i}+\frac{d F}{d y} \boldsymbol{j}+\frac{d F}{d z} \boldsymbol{k} \quad \text { Vector field }
$$

Gives the "direction and rate of increase" of a function

Divergence: Turns a vector field into a scalar field

$$
\nabla \cdot \boldsymbol{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \quad \text { Scalar field }
$$

Gives the extent to which the vector field behaves like a source at a given point- the extent to which there are more of the field vectors exiting from a point than entering it.

$$
\text { Gauss law: } \quad \vec{\nabla} \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\varepsilon_{0}}
$$

Curl: Measures tendency of a vector field to rotate, gives axis and rate of rotation

$\nabla \times \mathbf{F}=\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \hat{\boldsymbol{\imath}}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \hat{\boldsymbol{\jmath}}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \hat{\boldsymbol{k}}$

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\boldsymbol{\jmath}} & \hat{\boldsymbol{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

Suppose \boldsymbol{F} is the velocity field of a fluid flowing past a small ball making it rotate. The rotation axis points in the direction of the curl and the angular speed of the rotation is half the magnitude of the curl.

Faraday's law

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

Vector Identities

$$
\begin{gathered}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b}) \\
\nabla \cdot(\nabla \times \mathbf{A})=0 \\
\nabla \times(\nabla \cdot \mathbf{A})=0
\end{gathered}
$$

https://en.wikipedia.org/wiki/Vector_calculus_identities

Divergence (Gauss) theorem

$$
\iiint_{V}(\mathrm{\nabla} \cdot \mathbf{F}) d V=\oint_{s} \mathbf{F} \cdot d \mathbf{S}
$$

Volume integral

Closed Surface integral =
flux through the surface

The surface integral of a vector field over a closed surface- called the "flux" through the surface- is equal to the volume integral of the divergence over the region enclosed by the surface.
Intuitively, it states that "the sum of all sources of the field in a region (with sinks regarded as negative sources) gives the net flux out of the region".

Example - Gauss law in E\&M

Electric flux through a surface is proportional to the total charge enclosed by the surface.

Integral form:

$$
\oint_{S} \vec{E} \cdot d \vec{S}=\frac{Q_{i n}}{\varepsilon_{0}}
$$

$$
\Rightarrow \vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}} \quad \text { Differential form }
$$

$$
\begin{array}{|l}
\$ \vec{E} \cdot d \vec{S}=\iiint_{V} \vec{\nabla} \cdot \vec{E} d V \\
\frac{Q_{i n}}{\varepsilon_{0}}=\iiint_{V} \rho(\vec{r}) d V \\
\\
\rho \text { is the Charge density }
\end{array}
$$

Stokes theorem

$$
\oint_{C} \vec{A} \cdot \overrightarrow{d l}=\iint_{S}(\vec{\nabla} \times \overrightarrow{\mathrm{A}}) \cdot d \vec{S}
$$

Line integral Surface integral

The line integral of a vector field \mathbf{A} around any closed curve is equal to the surface integral of the curl of \mathbf{A} taken over any surface \mathbf{S} of which the curve is a bounding edge.

Example - Faraday's law in E\&M
The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path

Integral form:

$$
\oint \vec{E} \cdot d \vec{l}=-\frac{d \Phi_{B}}{d t}
$$

$$
\begin{aligned}
& \oint \vec{E} \cdot d \vec{l}=\iint_{S}(\vec{\nabla} \times \vec{E}) \cdot d \vec{S} \\
& -\frac{d \Phi_{B}}{d t}=-\frac{d}{d t} \iint_{S} \vec{B} \cdot d \vec{S}
\end{aligned}
$$

DIFFERENTIAL EQUATIONS

- e^{x} is the only function whose derivative is equal to itself:

$$
\begin{aligned}
& \frac{d}{d x} y(x)=y(x) \Leftrightarrow y(x)=A e^{x} \\
& \frac{d}{d x}(A \exp (+k x))=A \frac{d}{d x} \exp (+k x)=A \exp (+k x) \cdot \frac{d}{d x}(+k x)=+k \cdot A \exp (+k x) \\
& \frac{d^{2}}{d x^{2}}(A \exp (i k x))=\frac{d}{d x}(i k \cdot A \exp (i k x))=i^{2} k^{2} \cdot A \exp (i k x)=-k^{2} A \exp (i k x)
\end{aligned}
$$

- $\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} y(x)=-k^{2} y(x)$ has two independent solutions:

$$
y(x)=A \cos (k x) \quad \& \quad y(x)=B \cos (k x)
$$

The most general solution is a superposition (linear combination) of the two independent solutions:
$y(x)=A \cos (k x)+B \sin (k x)$

The same equation has for solutions $y(x)=C \exp (+i k x) \& y(x)=D \exp (-i k x)$ or, more generally, a linear combination of the two:
$y(x)=C \exp (+i k x)+D \exp (-i k x)$

These two "different" solutions are equivalent, via the relations:
$\exp (+i k x)=\cos (k x)+i \sin (k x) \quad \& \quad \exp (-i k x)=\cos (k x)-i \sin (k x)$
$\cos (k x)=\frac{e^{i k x}+e^{-i k x}}{2} \quad \& \quad \sin (k x)=\frac{e^{i k x}-e^{-i k x}}{2 i}$

The minus sign in front of k^{2} indicates the independent solutions will be oscillatory. This should make sense since the second derivative tells us about
the curvature of the function. When sine (or cosine) is positive, it has negative curvature; when negative, the function has positive curvature, so it is always curving back on itself, hence oscillatory solutions like sine or cosine.

- $\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} y(x)=+\mathrm{k}^{2} y(x)$ has for solutions $y(x)=\mathrm{A} \exp (+\mathrm{kx}) \& y(x)=\mathrm{B} \exp (-\mathrm{kx})$

The most general solution is a superposition: $y(x)=\mathrm{A} \exp (+\mathrm{kx})+\mathrm{B} \exp (-\mathrm{kx})$
The plus sign in front of k^{2} indicates the independent solutions are going to be either exponentially growing or exponentially decaying - the curvature is always positive, the functions are always either monotonically increasing or monotonically decreasing.

Gaussian Integrals

An apocryphal story is told of a math major showing a psychology major the formula for the infamous bell-shaped curve or gaussian, which purports to represent the distribution of intelligence and such:

The formula for a normalized gaussian looks like this:

$$
\rho(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-x^{2} / 2 \sigma^{2}}
$$

The psychology student, unable to fathom the fact that this formula contained π, the ratio between the circumference and diameter of a circle, asked "Whatever does π have to do with intelligence?" The math student is supposed to have replied, "If your IQ were high enough, you would understand!" The following derivation shows where the π comes from.

Laplace (1778) proved that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \tag{1}
\end{equation*}
$$

This remarkable result can be obtained as follows. Denoting the integral by I, we can write

$$
\begin{equation*}
I^{2}=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2}=\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y \tag{2}
\end{equation*}
$$

where the dummy variable y has been substituted for x in the last integral. The product of two integrals can be expressed as a double integral:

$$
I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

The differential $d x d y$ represents an elementof area in cartesian coordinates, with the domain of integration extending over the entire $x y$-plane. An alternative representation of the last integral can be expressed in plane polar coordinates r, θ. The two coordinate systems are related by

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
r^{2}=x^{2}+y^{2} \tag{4}
\end{equation*}
$$

The element of area in polar coordinates is given by $r d r d \theta$, so that the double integral becomes

$$
\begin{equation*}
I^{2}=\int_{0}^{\infty} \int_{0}^{2 \pi} e^{-r^{2}} r d r d \theta \tag{5}
\end{equation*}
$$

Integration over θ gives a factor 2π. The integral over r can be done after the substitution $u=r^{2}, d u=2 r d r$:

$$
\begin{equation*}
\int_{0}^{\infty} e^{-r^{2}} r d r=\frac{1}{2} \int_{0}^{\infty} e^{-u} d u=\frac{1}{2} \tag{6}
\end{equation*}
$$

Therefore $I^{2}=2 \pi \times \frac{1}{2}$ and Laplace's result (1) is proven.
A slightly more general result is

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=\left(\frac{\pi}{\alpha}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

obtained by scaling the variable x to $\sqrt{\alpha} x$.
We require definite integrals of the type

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{n} e^{-\alpha x^{2}} d x, \quad n=1,2,3 \ldots \tag{8}
\end{equation*}
$$

for computations involving harmonic oscillator wavefunctions. For odd n, the integrals (8) are all zero since the contributions from $\{-\infty, 0\}$ exactly cancel those from $\{0, \infty\}$. The following stratagem produces successive integrals for even n. Differentiate each side of (7) wrt the parameter α and cancel minus signs to obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}} d x=\frac{\pi^{1 / 2}}{2 \alpha^{3 / 2}} \tag{9}
\end{equation*}
$$

Differentiation under an integral sign is valid provided that the integrand is a continuous function. Differentiating again, we obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{4} e^{-\alpha x^{2}} d x=\frac{3 \pi^{1 / 2}}{4 \alpha^{5 / 2}} \tag{10}
\end{equation*}
$$

The general result is

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{n} e^{-\alpha x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots(n+1) \pi^{1 / 2}}{2^{n / 2} \alpha^{(n+1) / 2}}, \quad n=0,2,4 \ldots \tag{11}
\end{equation*}
$$

Delta functions

The Kronecker delta (named after Leapold Kronecker) is a function of two variables usually just nonnegative integers. The function is 1 if the variables are equal, and 0 atherwise:

$$
\delta_{0}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { ifi } i=j\end{cases}
$$

Anather useful representation is the following form:

$$
S_{\mathrm{nm}}=\frac{1}{N} \sum_{i=1}^{\frac{N}{2}} e^{2 \pi i \frac{b}{M}(n-m)}
$$

This can be derived using the formula for the finite geometric series

Dirac delta function,
httpe://en.wikipedia.arg/wiki/Dirac_delta_function
Dirac delta distribution [0 distribution], is a gereralized function or distribution over the real rumbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one

$$
\Delta x]=\left\{\begin{array}{cc}
+\infty, & x=0 \\
0, & x \neq 0
\end{array} \quad \int_{-\infty}^{\infty} d(x) d x=1\right.
$$

Given ary continuaus function $+[x]$:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) h(x) d x=f(0) \\
& \int_{-\infty}^{\infty} f(x) \phi\left(x-x_{0}\right) d x=f\left(x_{0}\right)
\end{aligned}
$$

The delta function satisfies the following scaling property for a non-zero scalar orl

$$
\int_{-\infty}^{\infty} \delta(\alpha x) d x=\int_{-\infty}^{\infty} \delta(u) \frac{d u}{|\alpha|}=\frac{1}{|\alpha|}
$$

and $s 0$

$$
\delta(\alpha x)=\frac{\delta(x)}{|\alpha|}
$$

Convolution Property

Convolution of a fuaction f with a delta function at x_{0} is equivalent to shifting f by x_{2}.

$$
f(x) * \delta\left(x-x_{0}\right)=f\left(x-x_{v}\right)
$$

Identity 1

A nascent delta function is the sinc function as the width of the sine goes to zero:

$$
\lim _{x \rightarrow 0} \frac{\sin (x \partial z)}{\pi x}=\lim _{k \rightarrow \infty} \frac{\sin a x}{\pi x}=\delta(x)
$$

Identity 2

$$
\int_{-}^{\infty} \cos (2 \pi v x) d x=\delta(v)
$$

Identity 3

The Fourier transform of one is the delta function:

Identity 4 - the Dirac Comb
The following identity is useful in the derivation of the diffraction pattern for a periodic pattern with pitch p.

The function on the right-hand side o is called a Dirac comb of period p.

Dirac Delta Function

The Dine delta function (also called the weit infulse fortion) is a mathematical abstraction ehich is offen used to describe (ine. approximate) some physical phenomeron. The main reason it is used has io do with sume very converient mathematical properties which will be described below. In optics, an idealizad point source of light cun be descriked using the delta function of course, real points of light will have firite with but if the point is namuw enough, approximating it with a dela function can be very useful.

C.l Definition

The Dirac della function is in fact not a function at all, but a distrikution (a generalized furction, such as a probability didribution) that is also a meseure (ie. it magise a value in a function) - terms that come from probahility and set theory. However, for our purposes it will suffice to consider it a special furction with infinite height, zem width and an area of 1 . It can be considerod the derivative of the Heaviente step function.

To help think about the Dirac delta function, consider a rectangle with one side alore the x-axis centered about $x=x$ such that the wea of the reatangle is If (this is equivent to a uniform probability distributori). Obviousy there are many such rectungles, we shoun in Figure C.1. We cun constuct a Dirre delta function by starting with a square of height and with of 1 . If we halve the with and double the height, the anea will remain constant. We can repeat this process as many times is we wish. As the widh goes in zro, the height will becone infinite but the area will remain 1. Any unit area rectangle, centered at x, can be eqporsed as

Fgare C. 1 Ceomatial consinuction of the Dras dota function

$$
S_{i}(x-x)=\left\{\begin{array}{ll}
0 & x<x-\frac{x}{2} \tag{C.D}\\
\frac{1}{x}, & x-\frac{c}{2}<x<x+\frac{x}{2} \\
0 & x>x_{n}+\frac{x}{2}
\end{array}\right\}=\frac{1}{x} \operatorname{rec}\left[\frac{x-x}{x}\right]
$$

where rect is the common rectangle furction. The Dirac delte function, localed at $x=I$ can be defined as the limiting case os is goes io zero.

$$
\begin{equation*}
\Delta\left(x-x_{j}\right)=\lim _{x \rightarrow 0} b_{i}(x-x) \tag{C.2}
\end{equation*}
$$

Alhough a rectangle is used here, in genenal the Dince delta function is any pulse in the limit of sero width and unit area. Thes the Dina delta function can be defined by tuo popperties:

$$
\begin{gather*}
\Delta(x)=0 \text { when } x \neq 0 \\
{[\tilde{f}(x) d r=1} \tag{C.4}
\end{gather*}
$$

Any function which has these ter properties is the Dirac delta function. A consequence of Equations (C. 3) and (C.4) is that $5(0)=-$.

The function $5(x)$ is callad a "rusernt" dela function, becoming a liue delta furction in the limit as e goes in zero. Thare are many nuscent dela functions, for example, the

Gaussim pulse (a normal probability distribution, leding the standerd deviation go in zem).

$$
\delta(x)=\lim _{k \rightarrow 0} \frac{1}{x} e^{-x^{4} k^{n}}
$$

Extenting this form to two dimencons,

$$
\delta(x, y)=\lim _{y \rightarrow a} \frac{1}{2^{1}} e^{-x w^{2}+y^{n} w^{n}}=\Delta(x) s(y)
$$

Genenlifabions in more fimensions are straighforemer. Ohter nascent delta functions include the Airy disk function, the sinc function (see section C24) and the Reseel furction of arder lie In genemil, any probability density function with a scale parameter c is a nascent dela function we ic goes to zero.

C2 Properties and Theorems

The following seations will state same important identitis and properties of the Dirac delta function, providing prools for seme of them.

C.21 Sifting Property

For any function fit continuous al x_{1}

$$
\begin{equation*}
\int f(x) d(x-x) d x=f(x) \tag{C.7}
\end{equation*}
$$

It is the siftine propery of the Diracdelta function that gives it the sence of a measure- it measures the value of fiti at the point x.

Proof

Since the dela function is sero everyutere except at $x=x$, the range of the iniegration can be changed io some infinitesimally small nange $e x$ aruund x_{-}

Over this wery small range of x, the furction $f(x)$ can be thought to be constant and can be taken out of the iniegral.

$$
\left.\int_{x=0}^{+\infty} \int(x) d x-x\right) d x=\int(x) \int_{x=0}^{+\infty} d(x-x) d x
$$

From the definition of the Dirac dela function, the integral on the right-hand side will equal 1 , thes proving the theorem. In fact, Equation (C.7) can be used es an aliernate
definition of the Dirse delta function Any furction $E(x-x)$ which sutisfies the sifting property is the Dirre dela function.

C. 22 Scaling Properity

$$
\begin{equation*}
\Delta(a x)=\frac{d(x)}{|a|} \tag{C 10}
\end{equation*}
$$

C. 23 Convolution Property

$$
f(x)=s(x-x)=f(x-x)
$$

C. 24 Identity 1

Another nuscent delt function is the sine function as the width of the sine goes to era:

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{\sin (x / x)}{\pi x}=\lim _{x \rightarrow 1} \frac{\sin a x}{\pi x}=\delta(x) \tag{C12}
\end{equation*}
$$

Proof

To prove identity \mathbb{I}_{n} it is sufficient in show that this expresion for the Dirse delta furrtion salisfies sifting property:

$$
\begin{equation*}
\lim _{x \rightarrow-} \int_{-}^{-} f(x) \frac{\sin a x}{\pi \pi} d x=\int(0) \tag{C13}
\end{equation*}
$$

Breaking the intrgal into three seations, the ruter two of which rovid the problem of dividing by xem at $x=0$

$$
\left.\int_{-}^{\pi} f(x) \frac{\sin a x}{\pi x} d r=\int_{=}^{-\pi}+\right]_{0}^{\pi}
$$

The first and last integral on the right-hand side are zaro by the Diemann- Lebesque lemma (mimportant theorem of the Fourier integral that will not be discused here). The center integral can be evaluad by bling ato be very small (but not zero). Over the very small range $f(x)$ will be about constani:

$$
\begin{equation*}
\int_{\pi}^{\infty} f(x) \frac{\sin x}{\pi x} d x=f(0) \int_{\square}^{\infty} \frac{\sin x}{\pi x} d x \tag{C15}
\end{equation*}
$$

Taking the limit as a goes fo infinity.

$$
\begin{equation*}
\lim _{x \rightarrow-} \int_{\pi}^{b} \frac{\sin u x}{\pi x} d x=\lim _{x+1} \int_{-1}^{n} \frac{\sin x^{\prime}}{\pi x^{r}} d x^{\prime}=\int_{-}^{\int} \frac{\sin x^{\prime}}{\pi x^{r}} d x^{\prime}=1 \tag{C16}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\lim _{-\infty}^{\pi} f(x) \frac{\sin a x}{\pi x} d x-f(0) \tag{C.17}
\end{equation*}
$$

C. 25 Identity 2

$$
\begin{equation*}
\int \cos (2 \pi v x) d x=\delta(v) \tag{C.18}
\end{equation*}
$$

Proof

The proof simply performs the inkgration and then applies identity I.

$$
\begin{equation*}
\int_{-}^{-} \cos (2 \pi v x) d x=\lim _{\sim}^{n} \cos (2 \pi v x) d \tau=\lim \frac{\sin (2 \pi v a)}{\pi v}=\delta(v) \tag{C.19}
\end{equation*}
$$

C. 26 Identity $3-F(1)$

The Fourier tansform of one is the dela function:

$$
\int e^{-a x} \cdot d x=\delta(v)
$$

Proof

Changing the exponential inio a sine and cosine,

$$
\begin{equation*}
\bar{\int} e^{-a v} d x=\left[\int \cos (2 \pi x) d x-i \int \sin (2 \pi v x) d x\right. \tag{C.21}
\end{equation*}
$$

Since the sine is an odd function, the sine integral will vanish. Applying identity 2 to the cosine integnal completes the peroof.

C. 27 Identity 4 - the Dirac Comb

The following identity is useful in the derivation of the diffnction paltem for a periodic linelspace mask pallem with pitch p.

$$
\begin{equation*}
P \dot{\bar{\Sigma}} \mathrm{e}^{-a x=v}-\dot{\bar{\Sigma}} \delta\left(v-\frac{m}{P}\right) \tag{C.22}
\end{equation*}
$$

The function on the right-hand side of Equation (C.22) is called a Dirac comb of period p. This idertity can be proved by recognizing that the Dirac comb is a periodic function
that can be ensily represented by a Founia series. Direat culaulation of the Fourier coefficients of the complex Fiourier seriss produces Equation (C.27).

C. 28 Relationship to the Heaviside Step Function

The Heaviside step function is defined as

$$
w(x)= \begin{cases}0 & x<0 \tag{C 23}\\ 1 & x \geq 1\end{cases}
$$

The step function is relaled io the Dirac delte function by

$$
\begin{equation*}
\Delta(x)=\frac{d}{d x}(x) \text { and } x(x)=\int_{\underline{3}}^{d}(0) d t \tag{C 24}
\end{equation*}
$$

