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I. BAND REPRESENTATION ANALYSES FOR LAYERED AND BUCKLED

HONEYCOMB STRUCTURES

A. An introduction to band representation analysis

Here we denote nodal rings touching each other as intersecting nodal rings (INRs), rings

winding each other as Hopf links, and those with neither intersecting nor forming Hopf links

as separate nodal rings. In the INR case, the point where the two nodal line cross will be

denoted as the nodal intersecting point. Also, we use ‘IRREP’ as a shorthand notation for

‘irreducible representation.’

In the manuscript we showed that INRs can exist when there are two (or more) mirror

planes intersecting each other, so that the nodal intersecting point exists on the mirror-

intersecting line. This suggests that we may also have additional INRs with nodal intersect-

ing points located on the other mirror-intersecting line Γ-Y (see Fig. 3(d-f) in the manuscript

for the special points notation), which were not found in the tight-binding and ab-initio cal-

culations. It can be seen that, by employing a band representation (BR) analysis, nodal

intersecting points can exist only on the Z-T line when we are considering only the pz-

orbitals at sp2-bonded sites, so that our listing of INR structures in Fig. 3 covers all possible

INR cases. This is because the symmetries of the local orbitals underlying the band structure

determines the kind and number of IRREPs in the entire momentum space.

Before describing these results, we describe below what a BR analysis is in a hand-

waving manner. For a mathematically rigorous presentation please refer to Refs. 1–4 and

references therein.5 Basically, it is a momentum-space representation of a space group. We

know well about the representation theory of little co-groups (which are point groups) at

high-symmetry k-points, which tells us how many different kinds of degenerate states (i.e.,

IRREPs) we can have for each k-point. On the other hand, from the number of local orbitals

and number of sites in our choice of unit cell, we know how many bands we will have in

our tight-binding model. BR theory is, roughly speaking, the combination of these two

ideas; choosing our set of sites and local orbitals from which we will construct our model,

we can explicitly write the the representation of each space group operation in terms of a

local-orbital basis in real space (which becomes an infinite-dimensional unitary matrix) and

then do the Fourier transform to obtain a k-space representation. Among the original space-
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FIG. S1. (color online) Crystal structrue of buckled honeycomb SiC with Amm2 space group.

pz-like orbitals at Si1 and C2 sites, highlighted with green (Wyckoff position 4e) and pink (4d)

circles respectively, contributes to the bands near the Fermi level.

group operations, we can choose a little group of a lower-symmetry k-point (i.e., ‘subducing’

the representation) and find which kind of IRREPs we have at that point. Furthermore,

for any high-symmetry lines connecting two points with even higher symmetry, we can find

‘compatibility relations’ telling us about how each IRREP on one higher-symmetry point is

connected to IRREPs on another point through the line connecting the two points. From

this analysis the connectivity of high-symmetry IRREPs to form a band structure can be

obtained, and the nodal ring structure can also be deduced.

B. Choice of local orbitals in buckled honeycomb SiC (space group Amm2)

Below we apply the BR theory to a simple example, the buckled honeycomb SiC with

the Amm2 space group symmetry discussed in the manuscript. Note that the BR analysis

employed in this Amm2 example can be applied to the layered honeycomb structure with

the Cmmm symmetry to yield the same conclusion as presented in Sec. I E. Here we do

not consider the effect of SOC, which gaps out all nodal lines and drives the system either

to a weak or strong topological insulator.6 Fig. S1 shows the crystal structure of SiC with

Amm2 symmetry in a conventional setting, where there are two mirror planes perpendicular

to a (denoted mA) and to b (mB). In the primitive cell there are four different symmetry-
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Tables generated by BANDREP in Bilbao Crystallographic Server

(b) from C2 (WP 4d) (c) from Si1 (WP 4e)

FIG. S2. (color online) (a) Brillouin zone and high-symmetry planes of Amm2 structure, where

mA and mB are perpendicular to the a and b axes in Fig. 1 respectively. Note that B0, G0, ∆0,

and F0 has only mA symmetry. (b,c) Tables of BRs generated from Wyckoff position 4d (b) and

4e (c). Note that C2 (shown in Fig. 1) and Si1 are located at 4d and 4e sites respectively. In both

tables, grey rectangles highlight BRs induced from pz-like orbitals (A′ IRREP of Cs site symmetry,

symmetric upon mA operation, at both 4d and 4e sites).

inequivalent sites: C1 and Si2 with C2v site symmetry, and C2 and Si1 with lower Cs

symmetry associated with mA only. Since C1 and Si2 sites are sp3-bonded, we choose

instead to explore the bands induced from the pz-like orbitals at the C2 and Si1 sites, which

are nearer to the Fermi level.

To construct the BRs, we start from the pz-like orbitals (A′ IRREP, symmetric upon mA)
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at C2 and Si1 sites with Cs point group symmetry. Using the bandrep program recently

implemented in the Bilbao Crystallographic Server,7,8 we can generate BRs as shown in

Fig. S2(b) and (c). In the tables, the first row shows which local IRREP we chose to

construct the BR. Here we are interested in bands consisting of A′ IRREP (pz-like orbitals)

at 4d (b) and 4e (c) Wyckoff sites. The ‘composite’ band-type in the second row means that

the two bands generated can be separated into two ‘elementary’ sets of BRs with a constant

energy shift of each subband, where elementary BRs (EBRs) are defined as BRs induced

from IRREPs at Wyckoff positions with maximal site symmetry. In spinless systems it has

been shown that EBRs are indecomposable,9,10 i.e. an EBR cannot be decomposed into

two sets of smaller BRs separated by a band gap. Note that Amm2 symmetry allows only

one-dimensional EBRs in the absence of spin. Lastly, the third and subsequent rows in the

tables show which IRREPs exist at six high-symmetry points (Z, T, R, S, T, and Γ), where

the BZ and high-symmetry k-points are shown in Fig. S2(a). Note that the Z-T and Γ-Y

lines are mirror-intersecting lines with C2v symmetry, so they can host four one-dimensional

IRREPs {Z,T,Y,Γ}1,··· ,4, while points R and S have only two IRREPs {R,S}1,2 from their

Cs symmetry. Also note that, in Fig. S2(a), point R (S) has the same symmetry with B0

and G0 (∆0 and F0).

C. Compatibility relation between high-symmetry k-points

Since we know how many different IRREPs we have in our system, we now need to

connect them to form the band structures. bandrep provides the information about the

connectivity (i.e., the compatibility relations), so that one can simply use them, but here we

want to be a bit more illustrative. The compatibility relations between different IRREPs is

determined by how IRREPs at higher-symmetry points are reduced into IRREPs with lower

symmetries, deduced from their symmetry eigenvalues. Eigenvalues of mA and mB for each

5



IRREP at different k-points are as follows;

mA mB

{Z, T, Y,Γ}1 + +

{Z, T, Y,Γ}2 − −
{Z, T, Y,Γ}3 − +

{Z, T, Y,Γ}4 + −
{B0, G0,∆0, F0}1 + ·
{B0, G0,∆0, F0}2 − ·
Λ1 · +

Λ2 · −

(S1)

where Λ denotes a generic point on the mB plane in Fig. S2(a). From this, we know that

{Z,T,Y,Γ}1,4 are connected to {B0,G0,∆0,F0}1 and {Z,T,Y,Γ}2,3 to {B0,G0,∆0,F0}2 when we

deviate from the mirror-intersecting line but stay in the mA plane. Similarly, {Z,T,Y,Γ}1,3
and {Z,T,Y,Γ}2,4 are connected to Λ1 and Λ2, respectively, in the mB plane.

D. Possible band structures and nodal lines in SiC

Now we are ready to generate possible set of band structures from the sp2-bonded sites

in buckled SiC. A couple of remarks are worth mentioning for further simplification of our

analysis; i) Unlike other high-symmetry points, the points on the mA plane with kx = 0

(represented by S) host only a single IRREP S1 as shown in Fig. S2(b) and (c), implying

we do not have any protected band crossing on the plane. ii) From the symmetry argument

in the manuscript, we know that nodal intersecting points can only happen on the mirror-

intersecting lines and when two IRREPs with two opposite eigenvalues cross each other.

Denoting the IRREPs at generic k-points on the mirror-intersecting Z-T and Γ-Y lines as

ZT1,··· ,4 and ΓY1,··· ,4, respectively, we can have nodal intersecting points when {ZT,ΓY}1 and

{ZT,ΓY}2 (or {ZT,ΓY}3 and {ZT,ΓY}4) cross on the mirror-intersecting lines. While we

have all four IRREPs on the Z-T line, on the contrary, we have only two IRREPs ΓY1,4 on

the Γ-Y line, implying that we cannot have nodal intersecting points on the Γ-Y line. This

is a crucial distinction between the two mirror-intersecting lines that will have important

6



consequences shortly.

With the IRREPs at high-symmetry points in Fig. S2 and the compatibility relations in

Table (S1), the qualitative nature of the band dispersion is determined by the energy ordering

of IRREPs. Assuming for simplicity that the dispersions are monotonic along a line segment

connecting two high-symmetry points in the BZ, the band structure is determined by energy

ordering of IRREPs at six k-points, Z, T, Y, Γ, B0, and G0 (since no crossing can exist on

the mA plane with ka, the plane containing the S point). Because there are four 1D IRREPs

at Z and T, two 1D IRREPs at Y, Γ, B0, and G0, and four bands in total, the number of all

possible band structures are (4!)2
(
4!
22

)4
= 746496, so generating all of the bands is neither

possible nor necessary. Hence, below we will discuss a few illustrative examples about how

different kinds of nodal ring structures (separated, INR, and Hopf link) can be generated

from our 4-band model. Note that similar but more elaborate analysis was done by Bouhon

and Black-Schaffer for space group Pna21 (SG #33),11 where the number of possible band

structures is greatly reduced by the degeneracy enforced by the three perpendicular screw

axes.

1. NLs involving two bands

First we consider situations with only two bands crossing at the Fermi level. For simplic-

ity, here we assume that the other two bands are away from the Fermi level (one occupied,

another unoccupied) and do not cross with others as shown in Fig. S3. Hereafter we con-

sider half-filling (2 bands occupied), and because we have time-reversal (TR) symmetry, only

high-symmetry planes and lines in the TR-irreducible section in the BZ will be depicted.12

Fig. S3(a) shows bands with NL crossing on the mB plane. Here we are depicting bands

contributing and not contributing to the NLs as solid and dotted lines, respectively. In

Fig. S3(a), we chose that only bands induced from the 4d Wyckoff position (C2) are crossing

near the Fermi level, while the bands from the 4e sites (Si1) are away from the Fermi level.

Note that when we are making only the solid bands cross, we may have NLs only on the

mB plane since {ZT,ΓY}1,4 have the same mA eigenvalue. Since no degeneracy is enforced

at any k-points, the open NL can be freely deformed into a closed nodal ring or even be

removed without any symmetry breaking. Similarly, it is easy to see that we get an identical

result when we have two bands from the 4e sites near the Fermi level.
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FIG. S3. (color online) Three examples of band structures with two bands contributing to the NLs,

where (a) shows the bands induced from 4d (C2) sites near the Fermi level with an open NL on

the mB plane as shown in the right panel, while in (b) one band from 4d and another from 4e (Si1)

is crossing to form a NL on the mB plane. Note that the NLs can be closed to form nodal rings

by inverting bands on the mirror planes. (c) shows the β-type INR, which can be transformed

to α-type, or crossing of two open NLs. Note that the nodal intersecting point is marked with

grey circle. In the left panels, numbers represent IRREPs at each k-points, and dotted lines depict

bands not contributing to the NLs. Band crossings, giving rise to the NLs in the right panels (blue

and orange lines), are marked with blue triangles and orange stars.
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FIG. S4. (color online) Two examples of NLs with three bands, where the two NLs are not sharing

the mirror-intersecting Z-T line. (a) Two open NLs, and (b) two nodal rings.

Fig. S3(b) and (c) show the band crossings, choosing one 4d-induced band and another

from 4e-induced ones. Fig. S3(b) shows bands with a NL only on the mA plane, while

Fig. S3(c) shows the β-type INR. By comparing Fig. S3(a-c), we can see that the mir-

ror eigenvalues of the IRREPs crossing on the mirror-intersecting Z-T line determines the

presence of NLs on each mirror plane, as discussed above and in the manuscript.

2. NLs involving three bands

Now we discuss the band crossings involving three bands. As shown in Fig. S4, we can

introduce two separate NLs without sharing the mirror-intersecting Z-T line by combining

band crossings depicted in Fig. S3(a) and (b). On the contrary, when we want to make the

two NLs share the mirror intersecting line to form INR or Hopf link, as shown in Fig. S5,

then we need to cross IRREPs with two opposite eigenvalues on the Z-T line (ZT1 and ZT2,

or ZT3 and ZT4). We mention that, this condition is similar with the one presented in Ref.
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FIG. S5. (color online) Three examples of 3-band-NLs sharing the mirror-intersecting line, where

one can have (a) INR, (b) two separate nodal rings, and (c) Hopf link. Note that (a) is actually

equivalent to the INR depicted in Fig. S3(c), except the band inversion between Z1,3 and T2,3 in

the unoccupied bands. The nodal intersecting point splits into two separate nodal lines as the

{Z,T}3 band moves down and is occupied, as shown in (b). (c) shows an example of Hopf link

from crossings of three bands. Note that unlike the transition from (a) and (b), transition from

(a) (or from (b)) to (c) requires global change of band ordering in the k-space.

13, where the transformation of two separate nodal rings into a Hopf link is shown in a

four-band model with three distinct IRREPs on the mirror-intersecting line. Unlike their

model, however, in Fig. S5 we are considering situations with only three bands with distinct
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FIG. S6. (color online) Two examples of NLs involving four bands. (a) shows bands with two

nodal intersecting points on the Z-T line, which corresponds to the γ-type INR in the manuscript.

(b) shows two nodal lines on the mA-plane. Note that we can also have two nodal rings on the

mA-plane by exchanging IRREPs on the Z-T line.

IRREPs are crossing on the mirror-intersecting line. Because of this, it is not possible to

transform two separate NLs into a Hopf link by inverting bands only on the Z-T line, which

is evident by comparing Fig. S5 (b) and (c).

3. NLs involving four bands

Finally we discuss situations where all the 4 bands are contributing to the NL crossings.

Fig. S6(a) shows the γ-type nodal intersecting points, while Fig. S6(b) depicting two NLs

on the mA plane. Note that both in Fig. S6(a) and (b), by shifting the NL crossing points

on the Z-T line, they can overlap at a same point so that all the NLs (4 in (a), 2 in (b))

are connected. However this is just an accidental crossing by a fine-tuning of parameters so

may not be physically relevant.
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E. Band representations for layered honeycomb (space group Cmmm)

In the manuscript, we discuss the layered honeycomb structures with the Cmmm space

group in addition to the buckled honeycomb structures. Because the inversion symmetry

is present in Cmmm in addition to all the operations in Amm2, it has three mirror planes

perpendicular to each other. Since there exist more mirror-intersecting lines in the momen-

tum space compared to the Amm2 structure, we might have additional nodal intersecting

points on different mirror-intersecting lines to form even more complicated nodal structures.

Inducing the band representation from the pz orbitals at each site and looking into the al-

lowed IRREPs on the lines, however, it turns out that there is only one line, the Z-T line,

accommodating IRREPs which can form the nodal intersecting points. Hence the presence

of the additional mirror plane in the Cmmm structure (compared to the Amm2 one) does

not change our conclusion that the three types of INR (α-, β-, and γ-type) exhaust all

possible kind of INRs in our layered and buckled honeycomb structures.

II. A k · p MODEL FOR THE THREE TYPES OF INRS

Comparing the four-band TB model in Eq. (1) in the manuscript, we can construct a two-

band k · p model to further compare the INRs. All the three types of INRs have a common

nodal ring centered on the point T (see Figs. 3(d-f) in the manuscript). Constrained by the

symmetries and the time reversal symmetry for a spinless system, one obtains a model up

to quadratic order in k around T as

H(q) =

 A1q
2
x +B1q

2
y + C1q

2
z −iDqxqy

iDqxqy ∆ + A2q
2
x +B2q

2
y + C2q

2
z


where qi = ki − ki0 (i = x, y, z) and (kx0, ky0, kz0) is the momentum coordinate at point

T. The parameters ∆, {A,B,C}{1,2}, and D are determined by fitting DFT or TB results.

When {A,B,C}1 > 0 and {A,B,C}2 < 0, it produces an α-type INR; when A1, B2, C1 > 0

and A2, B1C2 < 0, a β-type-like INR is produced, in which a nodal ring linked two curved

nodal lines; when A1, C1 > 0, A2, C2 < 0 and B1, B2 = 0, a γ-type-like INR is produced,

where a nodal ring linked two straight nodal lines. Note that we need a find-tuning of B1 and

B2 parameters to realize the γ-type INR in this two-band model since it generally requires

12



4 bands.

III. COMPUTATIONAL DETAILS

Our first-principles calculations were based on the density functional theory (DFT) as

implemented in the Vienna Ab-initio Simulation Package.14 The core-valence interactions

were described by projector augmented-wave (PAW) potentials within the Perdew-Burke-

Ernzerhof (PBE) approximation for the exchange-correlation energy.15 Plane waves with a

kinetic energy cutoff of 500 eV were used as the basis set. We used the conjugate gradient

method to optimize the atomic positions, and the energy convergence criterion between two

consecutive steps was 10−5 eV. The maximum allowed force on the atoms is 10−3 eV/Å.
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IV. ADDITIONAL SUPPLEMENTARY TABLES AND FIGURES

θ (Å) a (Å) c (Å)
Bond length

(Å)
Cohesive energy

(eV/atom)

Layered
honeycomb
structures
(Cmmm)

BN 64.0 4.424 2.495 1.43-1.70 6.270

AlP 68.6 6.224 3.926 2.16-2.55 3.303

GaP 87.9 4.942 3.978 2.10-2.42 2.903

Buckled
honeycomb
structures
(Amm2)

SiC 88.9 5.321 3.086 1.77-1.91 6.072

BP 88.2 5.537 3.193 1.84-1.96 3.606

BAs 88.1 5.861 3.378 1.95-2.08 2.941

TABLE S1. Structural parameters of the layered and buckled layered structures, consisting of IV

or III/V elements. All these structures have topological linked nodal rings.

θ (deg) ε1,2 ε3,4 t1 t2 t3 t4 t5 t6 t7

BN 64 1.80 -0.90 -1.10 -0.70 -1.50 -0.05 -0.10 0.45 0.10

SiC

89 1.70 -0.90 -1.00 -0.50 -1.20 0.00 0.00 0.45 0.25

80 (He) 1.70 -0.90 -1.65 -1.00 -1.00 0.15 0.20 0.12 0.10

108 1.70 -0.90 -0.20 -0.10 -1.40 0.00 0.00 1.10 0.60

TABLE S2. Tight binding parameters (in eV) in Eq. (1) for fitting the DFT band structures in

Figs. 4(b-e) in the manuscript.
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Figure S1. Band structures for (a) single-layer AlP, (b) layered 3D AlP, (c) single-layer 

GaP (d) layered 3D GaP, (e) “hidden” layered 3D BP and (f) “hidden” layered 3D 

BAs. 

 

 

 

FIG. S7. (color online) Band structures for (a) single-layer AlP, (b) layered 3D AlP, (c) single-layer

GaP (d) layered 3D GaP, (e) buckled layered 3D BP and (f) buckled layered 3D BAs.
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Figure S2. Phonon dispersions for (a) “hidden” layered 3D SiC structure, (b) layered 

3D BN structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. S8. Phonon dispersions for (a) the buckled layered 3D SiC structure, (b) layered 3D BN

structure.
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