
Supporting Information: Proximate quantum

spin liquid on designer lattice

Xiaoran Liu,∗,† Sobhit Singh,† Victor Drouin-Touchette,† Tomoya Asaba,‡

Jess Brewer,¶,§ Qinghua Zhang,‖ Yanwei Cao,⊥ Banabir Pal,†,# Srimanta

Middey,@ P. S. Anil Kumar,@ Mikhail Kareev,† Lin Gu,‖ D. D. Sarma,#

Padraic Shafer,4 Elke Arenholz,4 John W. Freeland,∇ Lu Li,‡ David

Vanderbilt,† and Jak Chakhalian†

†Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

‡Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

¶TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3

§Department of Physics and Astronomy, University of British Columbia, Vancouver, British

Columbia, Canada V6T 1Z1

‖Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese

Academy of Sciences, Beijing 100190, P. R. China

⊥Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences,

Ningbo, Zhejiang 315201, China

#Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India

@Department of Physics, Indian Institute of Science, Bengaluru 560012, India

4Advanced Light Source, Lawrence Berkley National Laboratory, Berkeley, California 94720,

USA

∇Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

E-mail: xiaoran.liu@rutgers.edu



Sample Fabrications

The [n QL CoCr2O4/1.3 nm Al2O3]4 (n = 1, 2, 4; 1 QL ≈ 4.8 Å) superlattices were grown on 5

× 5 mm2 Al2O3 (0001) substrates by pulsed laser deposition. Stoichiometric CoCr2O4 and Al2O3

targets were ablated using a KrF excimer laser (λ = 248 nm, energy density ∼ 2 J/cm2) with a

repetition rate of 4 Hz and 2 Hz, respectively. The depositions were carried out at a substrate tem-

perature of 700 ◦C, under oxygen partial pressure of 5 mTorr. The films were post-annealed at the

growth condition for 15 minutes and then cooled down to room temperature at 10 ◦C/min. The de-

position process was monitored by in-situ high pressure reflection-high-energy-electron-diffraction

(RHEED). Furthermore, quality of the superlattices has been verified by using a variety of ex-situ

characterization methods including synchrotron-based x-ray diffraction, x-ray reflectivity, x-ray

photoemission spectroscopy and atomic force microscopy, as published elsewhere.1,2

DC Magnetization

In order to probe the critical temperature Tc of the magnetic phase transition, we have also in-

vestigated the temperature dependence of the dc magnetization on each sample (see Supplemental

Fig. S1). The measurements were performed using the Quantum Design MPMS SQUID magne-

tometer. As shown on the graph, the para- to ferri- magnetic transition still takes place at TC ∼ 58

K on n = 4 and ∼ 40 K on n = 2, respectively, whereas no clear signature of any transition was

detected on the n = 1 sample down to 2 K.

Resonant X-ray Absorption Spectra

The local chemical states and environments of both Co and Cr cations of each sample were ex-

plored by measuring the resonant X-ray absorption Spectra (XAS). The experiments were per-

formed at the beamline 4-ID-C of the Advanced Photon Source in Argonne National Laboratory.

As shown in Supplemental Fig. S2, no signs of cation distribution disorder or variation of ion
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Figure S1: Temperature dependence of magnetization of [n QL CoCr2O4/1.3 nm Al2O3]4 (n = 1,
2, 4), together with a bare Al2O3 substrate for comparison.

valency were observed for all samples as deduced from the absorption line-shapes as well as the

absorption peak positions at each L2,3 absorption edge, which are practically identical to the bulk

references (i.e., all of the Co ions are tetrahedrally coordinated with +2 valency, while all Cr ions

are octahedrally coordinated with +3 valency). These measurements corroborate the formation of

the expected ionic layers as described in the main text.

X-ray Magnetic Circular Dichroism

X-ray magnetic circular dichroism (XMCD) spectra under 3 T external field were performed at the

beamline 4-ID-C of the Advanced Photon Source in Argonne National Laboratory. The L2,3-edge

X-ray absorption spectra of both Co and Cr were scanned with left- and right- polarized X-rays at
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Figure S2: (a) Co and (b) Cr L2,3-edges x-ray absorption spectra of the superlattices with n = 4, 2,
and 1. Data were collected in the total electron yield (TEY) mode at 10 K. The spectra taken from
measurements on bulk CoCr2O4 powders3 are plotted in dashed lines as references.

grazing incidence at 10 K. To exclude any artifact, all the measurements were conducted in both

positive and negative external field. Data were recorded simultaneously with total electron yield

(TEY), fluorescence yield (FY), and reflectivity detection modes.

The XMCD hysteresis loops were measured at the beamline 4.0.2 of the Advanced Light

Source in Lawrence Berkeley National Laboratory. Samples were cooled with zero field and main-

tained at 15 K. The circularly polarized soft X-rays were incident with an angle of 35◦ relative to

the sample surface. The luminescence detection mode was used to record the data.

Torque Magnetometry Measurements

Torque magnetometry measurements were performed with home-built cantilever setup by attach-

ing samples to a thin beryllium copper cantilever. External magnetic field was applied, and the

sample rotation by torque was measured by tracking the capacitance change between the metal-

lic cantilever and a fixed gold film underneath using an AH2700A capacitance bridge with a 14
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Figure S3: (a) Torque magnetometry curves of both the bare Al2O3 substrate (black) and the n =
1 sample (red) at 0.3 K. (b) Torque magnetometry curves of the n = 4 sample (TC ∼ 58 K) at 1.6
K, 10 K, and 65 K.

kHz driving frequency. To calibrate the spring constant of the cantilever, we tracked the angular

dependence of capacitance caused by the sample weight at zero magnetic field.

As discussed in the main text, the torque signal from the pure film is calculated by subtracting

the substrate contribution at each temperature below 30 K. Here in Supplemental Fig. S3(a), we

show one set of the representative measurement performed at 0.3 K. The geometry of the setup is

identical to that described in the main text. Note, the substrate was treated using the same thermal

process as growing the film. As clearly seen, there is no observable magnetic hysteresis and the

”bump” near zero field regime is from the substrate.

Compared to the behavior of n = 1, the torque data of n = 4 reveal remarkable distinction, as

displayed in Supplemental Fig. S3(b). Above TC ∼58 K, no hysteresis loop is seen, whereas below

TC , distinct loops are observed. These measurements are consistent with results from SQUID

and XMCD, providing another solid evidence on the establishment of long-range ferrimagnetic

ordering in n = 4, which in addition highlights the particularity of n = 1.



1.0

0.5

0.0

To
rq

ue
 (a

.u
.)

86420
μ0H (T)

 0.03 K
 0.3
 0.6
 0.9
 1.4
 2
 3
 7.5
 10
 15
 25

Figure S4: Torque magnetometry curves as a function of field of the 1 QL CoCr2O4 system
between 30 – 0.03 K.

Muon Spin Relaxation Spectra

Positive muon spin relaxation (µ+SR) experiments were carried out in both zero magnetic field

(ZF) and a 30 G weak transverse field (wTF) on the LEM (Low-Energy Muon) spectrometer at PSI

(the Paul Scherrer Institut) in Switzerland. Five identical pieces of the n = 1 samples on Al2O3

substrate were mounted on a nickel backing in order to completely depolarize any muons missing

the samples. Thanks to the momentum dispersion introduced by passage through the thin carbon

foil that produces free electrons to trigger the incoming muon counter, the time of flight from that

foil to the sample is broadened, causing a reduced time resolution and a distorted decay spectrum

over the first∼ 0.2 µs. Oscillations faster than about 10 MHz (corresponding to local fields of over

∼ 70 mT) cannot be resolved. The measurements were performed at a set of temperatures in the

range of 4 - 100 K, exhibiting similar behaviors. In particular, no oscillatory signal is observed in

any of the ZF-µ+SR spectra down to and including 4 K, while a slowly relaxing signal precessing

at the muon Larmor frequency is clearly observed in all of the wTF-µ+SR spectra. The spectra of

both ZF-µ+SR and wTF-µ+SR at each temperature with fitting are shown in Supplemental Fig. S5.

The wTF- and ZF-µ+SR time spectra were fit simultaneously with a common slowly-relaxing



4 K

5 K

10 K

12 K

6 K

8 K

15 K

20 K

30 K

40 K

70 K

Figure S5: Spectra of the time evolution of muon-spin polarization in both zero-field (ZF, yellow
stars) and 30 G transverse field (TF, red circles [real part] and blue triangles [imaginary part]) at
11 temperatures within 4 - 70 K. The spectra measured at these temperatures were fit using the
equations as discussed in the text.



asymmetry Aslow but all other parameters independent. At temperatures below 10 K, an additional

fast-relaxing component was apparent in the ZF spectra, but not in the wTF spectra. We believe

this to be due to the systematic leakage of uncorrelated beam particles, and so the fast-relaxing

asymmetry reveals no physical information about the sample. Simple exponential relaxation was

assumed throughout, as fits with more exotic relaxation shapes were not appreciably better. Thus

the ZF-µ+SR data below 10 K were fit with the sum of a fast exponential relaxation and a slow

exponential relaxation:

A0PZF(t) = Afaste
−λfastt + Aslowe

−λZFt

in which A0 is the overall initial asymmetry and PZF(t) is the muon spin-polarization relaxation

function. The asymmetries (Afast, Aslow) and the slow relaxation rate (λZF) are the important fitting

parameters. The slow terms (Aslow and λZF) are related to the actual muon spin relaxation inside

the sample, which are the subjects of interest. At the same time, the wTF-µ+SR data was fit to a

single exponentially relaxing precession at the frequency corresponding to the applied field:

A0PwTF(t) = Aslowe
−λTFt cos(ωµt+ φ)

in which ωµ is the muon Larmor frequency (ωµ = γµH , γµ = 2π × 135.54 MHz/T), and φ is

the initial phase of precession. These, the asymmetry Aslow and the relaxation rate λTF are the

important fitting parameters.

The temperature dependence of the common slow asymmetry (Aslow) and both relaxation rates

(λZF and λTF) are plotted in Fig. S6, showing a consistent trend. While the asymmetry decreases at

low temperature, both relaxation rates first increase, reaching a “peak” at around 9-10 K, followed

by a reduction again at lower temperatures. The ZF relaxation rate is consistently about twice as

fast as the TF relaxation rate at the same temperature.

In addition to runs with a muon energy of 2 keV (optimizing the muon range in the middle

of the film) a separate set of runs at 10 keV were taken to probe the Al2O3 substrate. The signal

amplitude in the latter runs was found to increase at low temperature, unlike that in the superlattice,
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Figure S6: Asymmetry and relaxation rate of both film (left) and substrate (right) as a function of
temperature.

which decreases. Moreover, the relaxation rate in Al2O3 (which also increases with decreasing T )

is more than three times as fast as in the superlattice at base temperature. The fraction of muons in

the superlattice that are not immediately depolarized at base temperature therefore cannot be just

those stopping in the Al2O3 layers, unless such thin sheets of Al2O3 behave completely differently

from bulk Al2O3.

Density-Functional Theory Calculations

Density-functional theory (DFT) based first-principles calculations were performed using the Vi-

enna ab initio simulation package (VASP)4,5 within the projected-augmented wave (PAW) frame-

work.6,7 Nine valence electrons of Co (3d74s2), twelve valence electrons of Cr (3p63d54s1), and six

valence electrons of O (2s22p4) were considered in the PAW pseudo-potentials. The generalized

gradient approximation (GGA) as parametrized by Perdew-Burke-Ernzerhof (PBE)8 was used for

the exchange-correlation functional. We use Dudarev’s approach9 to include the effects arising due

to the strongly correlated nature of 3d electrons at the mean-field level. The PBE+U scheme was



employed, where UCo = 3.3 eV and UCr = 3.7 eV were used for the on-site Hubbard interaction

terms for the 3d electrons of Co and Cr. These values of Hubbard parameter are reported to cor-

rectly describe the structural phase transitions and the magnetic ground state of bulk CoCr2O4.10–13

We used an 8× 8× 8 Monkhorst-Pack type k-mesh to sample the Brillouin zone. 600 eV was set

as the the cutoff for the kinetic energy of plane waves. 10−3 eV/Å, and 10−8 eV was used as the

convergence criteria for residual forces and total energy in the self-consistent DFT calculations,

respectively. All DFT calculations were performed in collinear magnetic setting.

The structural primitive cell of CoCr2O4 contains two formula units of CoCr2O4 with a total of

six magnetic cations (2 Co and 4 Cr), as shown in Fig. S7(a). The optimized lattice parameters of

bulk CoCr2O4 are a = b = c = 8.34 Å, with x = 0.26 as an internal structural parameter for oxygen

atoms in the cubic spinel structure (space group Fd3̄m). The Co-O, Cr-O, and Cr-Cr bond lengths

in the DFT optimized cell are ∼2.00, ∼2.03, and ∼3.00 Å, respectively. Our DFT calculations,

using the aforementioned parameters, predict a Neél-type magnetic configuration as the magnetic

ground state of bulk CoCr2O4 in which all Co atoms are in a spin-up configuration (↑ ↑) and all Cr

atoms are in a spin-down configuration (↓ ↓ ↓ ↓). The total magnetic moment of Co and Cr atoms

remained around 2.7µB and 3.0µB, respectively, in our DFT calculations.

To simulate a slab geometry corresponding to n = 1 layer, we created an epitaxial heterostruc-

tures containing 1 unit cell of CoCr2O4 sandwiched between a spacer layer of nonmagnetic and

insulating MgAl2O4, as shown in Fig. S7(b). The details of n = 2 heterostructure are given in

Ref.16 Note, since the sole purpose here is to use a nonmagnetic material which prevents the mag-

netic interactions between the periodical images of CoCr2O4 film, we have chosen MgAl2O4 as

the spacer material (in place of Al2O3) for purposes of computational simplicity and efficiency.

We ensured that the thickness of the MgAl2O4 spacer layer is sufficient to prevent the magnetic

interactions between the adjacent CoCr2O4 films. The CoCr2O4/MgAl2O4 heterostructure was op-

timized using the same convergence criteria as used for the bulk CoCr2O4, however, a relatively

smaller Monkhorst-Pack type k-mesh of size 8 × 8 × 6 was used to sample the Brillouin zone.

Mg (3s2) and Al (3s23p1) PAW pseudo-potentials were used. This slab heterostructure geometry



is similar to the one used for our experiments.

(a)

n=1

(b)

Figure S7: (a) The primitive cell of bulk CoCr2O4. Red, blue, and green colors depict oxygen,
cobalt and chromium atoms, respectively. (b) Side view of n = 1 epitaxial CoCr2O4/MgAl2O4

heterostructure.

Magnetic Exchange Interaction Parameters

In order to determine the magnetic exchange constants (Jij) between the nearest (J1
ij), and the

second-near (J2
ij) neighbors, we calculate the total energy of several different collinear magnetic

configurations, and then project the DFT+U calculated total energies onto the below classical

Heisenberg spin model,

H = E0 +
∑
〈i,j〉

J
(1)
ij Si,A · Sj,B +

∑
〈〈i,j〉〉

J
(2)
ij Si,A · Sj,B . (1)

Here, 〈i, j〉 indices refer to the nearest A (Co) and B (Cr) sublattices, whereas 〈〈i, j〉〉 indices

refer to the second-near neighbor A and B sublattices. Si,A and Sj,B denote the spins at A and B

magnetic sites. E0 represents a constant energy term. A doubled unit cell was used to extract the

second-neighbour magnetic exchange constants in bulk. However, for n = 1 CoCr2O4/MgAl2O4

heterostructure, only three relevant nearest-neighbor magnetic exchange constants were consid-

ered.

Figure S8 shows the fitting of our model spin Hamiltonian with the DFT+U calculated energies
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Figure S8: Fitting of the DFT+U data with our classical Heisenberg spin model, given in Eq. 1,
for bulk CoCr2O4, n = 2, and n = 1 slab configurations. Numerous competing magnetic ground
state spin configurations can be noticed for n = 1 case. We note that only three relevant nearest-
neighbor J (1)

ij parameters were used for fitting the n = 1 data, whereas five (J (1)
ij and J (2)

ij ) exchange
coupling parameters were used to fit the bulk and n = 2 data, as listed in Table S1.

for bulk, n = 2, and n = 1 cases. A reasonably good fitting was obtained for all three cases, which

boosts our confidence in the prediction of the fitting parameters Jij . Thus obtained values of

magnetic exchange parameters for bulk, n = 2, and n = 1 cases are listed in Table S1. In our

model, a positive Jij denotes antiferromagnetic (AFM) exchange interaction, whereas a negative

Jij denotes ferromagnetic (FM) exchange interaction. Our predicted nearest neighbor exchange

interactions J (1)
ij for bulk CoCr2O4 are in good agreement with the previous reports.10,11,13,14

For all three cases, the J (1)
AB is the most dominating exchange interaction (AFM) which is pri-

marily responsible for establishing a Neél type AFM order in the studied systems. However, the

subsequent J (1)
BB and J (1)

AA AFM terms introduce magnetic frustration at the A and B sites. We note

that a larger ratio of J (1)
BB/J

(1)
AB implies the presence of strong magnetic frustrations, as suggested

by the LKDM theory.15 Our analysis reveals that the J (1)
BB/J

(1)
AB ratio, which governs the magnetic

frustration in this system, enhances upon the dimensional reduction [J (1)
BB/J

(1)
AB = 0.43 (bulk), 0.52

(n = 2), and 0.98 (n = 1)], indicating an anomalously large enhancement in magnetic frustration

for n = 1 case. Consequently, a distinct magnetic ground state is hard to stabilize in n = 1 uc thick

film even at ultralow temperatures. This is consistent with our experimental results as well as with

our Monte-Carlo simulations results presented below.

Here, we must note that the DFT+U computed total energies for bulk, n = 2, and n = 1 cases



involve structures having different chemistry in regard to the total number of orbitals, total number

of electrons, pseudopotentials, and interface-induced effects. Moreover, only three exchange cou-

pling parameters [first neighbors: J (1)
AA, J

(1)
AB, and J (1)

BB] were used for fitting the DFT+U energy data

for n = 1 case, whereas five exchange coupling parameters [first and second neighbors: J (1)
AA, J

(1)
AB,

J
(1)
BB, J (2)

AB, and J (2)
BB] were used to fit the DFT+U data for the bulk and n = 2 cases. Therefore,

the absolute values of the extracted exchanges constants cannot be “assertively” compared on the

same footing. However, their ratio for each systems can be compared since the ratio of the different

exchange constants (e.g., J (1)
BB/J

(1)
AB) rules out the differences arising due to the numerical details

of the DFT+U calculations for the studied systems.

Table S1: The first-neighbor J (1)
ij , and the second-neighbor J (2)

ij magnetic exchange constants (in
meV units) obtained using PBE+U for bulk CoCr2O4, n = 2, and n = 1 cases. Note that only
three relevant first-neighbor J (1)

ij parameters were used for fitting the n = 1 data.

J
(N)
ij bulk n = 2 n = 1
J
(1)
AA 0.70 4.16 2.19
J
(1)
AB 4.85 12.3 4.56
J
(1)
BB 2.10 6.35 4.49
J
(2)
AB -0.61 -1.03 –
J
(2)
BB -0.04 -0.55 –

J
(1)
BB/J (1)

AB 0.43 0.52 0.98

We note that J (1)
AA is the weakest first-neighbor exchange in bulk CoCr2O4 (corresponding Co-

Co bond length = 3.66 Å), therefore, we consider the second-neighbor J (2)
AA term to be negligible

due to the large Co-Co bond length (∼6.0 Å) for the second-neighbour Co-Co interactions.

Notably, the second-neighbor exchange interaction terms, J (2)
AB and J

(2)
BB, are FM in nature,

which tend to suppress the magnetic frustration arising due to the first-neighbor AFM J
(1)
ij . Thus,

the presence of J (2)
ij terms in bulk counterbalances the magnetic frustration and facilitates a clear

magnetic order (with canted spins due to the non-zero J (1)
BB and J (1)

AA terms) in the bulk. However,

in the n = 1 slab case, the number of second-neighbor exchange interaction terms along the out-

of-plane direction of film are truncated due to the presence of the nonmagnetic spacer layer. This

scarcity of second-neighbor FM J
(2)
ij terms, required to balance the magnetic frustration, yields



strong uncompensated magnetic frustration in the n = 1 slab. Due to this reason, a distinct mag-

netic ground state is hard to stabilize in n = 1 film even at ultralow temperatures (∼30 mK in our

case).

We further verify the aforementioned arguments by performing classical Monte-Carlo (MC)

simulations for bulk and slab systems of CoCr2O4. Our Monte-Carlo simulations show that a

distinct magnetic ground state can be achieved for bulk system at low temperatures, however, there

exists plenty of competing magnetic ground states for n = 1 and n = 2 unit cell thick films of

CoCr2O4, as discussed below.

Monte-Carlo Simulations

Finite temperature thermodynamics were obtained using a combination of parallel tempering moves17–20

and adaptive Metropolis steps.21,22 The combination of these two efficient updates led us to achieve

thermalization even at very low-temperatures. Our Monte-Carlo simulations were performed using

the layered cell (see figure S7 (b)), which has 2 Co spins SA and 4 Cr spins SB, first on the bulk

system, using periodic boundary conditions in all directions, with Nx = Ny = Nz = N0 with N0

of at most 16 cells, and then for the slab systems having periodic boundary conditions only along

in-plane x and y directions.

We used a classical Heisenberg spin model with first and second nearest neighbors between A

(Co atoms) and B (Cr atoms) sites, as given by the following spin Hamiltonian:

H = J
(1)
AA

∑
〈i,j〉

Si,A · Sj,A + J
(1)
BB

∑
〈i,j〉

Si,B · Sj,B

+ J
(2)
BB

∑
〈〈i,j〉〉

Si,B · Sj,B (2)

+ J
(1)
AB

∑
〈i,j〉

Si,A · Sj,B + J
(2)
AB

∑
〈〈i,j〉〉

Si,A · Sj,B

with the magnetic exchange parameters predicted by the DFT calculations (Table S1) as an input



for our Monte-Carlo simulations. Spins were considered classical since the size of the spins is S =

3/2, hence, quantum effects are not included in our model. However, we would like to mention

that quantum effects could govern the underlying physics of this system at ultra-low temperatures.

For all simulations, 30, 000 MC updates per site were performed and discarded to achieve full

thermalization. Another 30, 000 steps were done to obtain thermodynamical observable such as

energy, magnetization and specific heat. Error on obtained averages were calculated using the

Jackknife method.17 At most, we ran 96 simulations in parallel at different temperatures, ranging

from Tlow = 0.001 J1
AB to Tlow = 3 J1

AB. For J1
AB ' 4.85 meV ' 56K, this corresponds to a

range from 56mK to 168K. Classical Monte-Carlo simulations at these low-temperatures are

only provided in an exploratory manner, as it is quite possible that strong quantum effects become

important before reaching such temperatures.

We find that the bulk system undergoes a single first-order phase transition at TC ' 85K.

The low-temperature ordered state is a canted antiferromagnet, with Si,A · Si,B = cos [θ(T )]. At

T = 0, the system goes to θ = π, and the Co and Cr spins are anti-aligned in the unit cell such

that SA = −SB, which is then repeated perfectly across the system. This result can be seen in

the behavior of the total magnetization Mtot = 1
N
|
∑

i

∑6
j=1 Si,j| with Si,j the j-th spin of the i-th

unit cell (see Fig. S9). It is also evident in the canting measure behavior. The canting measure is

defined as CAB = 1
N
|
∑

i

∑2
jA=1

∑6
jB=3 Si,jA · Si,jB | (see Fig. S9), and for a perfect AF state at

zero temperature, will converge to 8.

Simulations were also performed for two slab systems (n = 1, 2), where Nx = Ny = N0 with

N0 at most 30 cells, and slab thickness Nz = 1, 2. Periodic boundary conditions were maintained

in the x and y directions, whereas an open boundary was kept in the z direction. The unit cell was

chosen in such a way that the x, y, z axes are similar to the laboratory frame, and the orientation of

layers corresponds to the ones obtained via thin-film deposition (see Fig. S7(b)). For both n = 1, 2

slabs, we find that the canted AFM bulk state at low temperature is avoided. Although the slabs go

through a phase transition at a similar temperature as the bulk T slabC ∼ 50K, due to the activation of

dominating first-neighbor J1
AB exchange interactions, there is a big distinction between the slab and



bulk systems at low temperature. In the slab systems, a distinct magnetically ordered phase never

really sets in, as evident in Figure S10, where significant energy and magnetization fluctuations are

still present.

The following subsections present details on the Monte-Carlo algorithm used, and then specific

measurements for the bulk and slab simulations, as well as a discussion of the thermalization.

Monte-Carlo Algorithm:

We used a combination of two algorithms. Firstly, we used a local Metropolis update, albeit

modified a bit to achieve optimal sampling.21,22 In this method, one proceeds by randomly selecting

a site i and spin Si, and preparing a Gaussian flipped spin

S′i =
Si + Γσ
|Si + Γσ|

(3)

where, Γ is a randomly generated vector according to a Gaussian distribution with variance σ. This

leads to a new spin S′i that is within a solid angle of 2πσ of the initial spin. This new spin then

leads to a new energy for the system E ′i which is compared to the initial energy Ei. According to

a usual Metropolis move, this is accepted with probability p = exp{−(E ′i − Ei)/T}. This move

can be optimized at the beginning of the algorithm by calculating, for sites A and B respectively,

and at all the temperatures sampled, the acceptance rate R at which such moves lead to the new

spin being accepted. Then, the variance σ is modified using σ′ = fσ with f = 0.5
1−R . Applying

this method a few times before the thermalization allows us to obtain variance σA and σB that are

optimal since they lead to an acceptance ratio of 50%. This usually has the effect of having very

small variance at low temperature. A too large value of variance would lead to moves that depart

too much from the original spin, leading to a lot of move rejections. This is optimal when most of

the moves are efficient and accepted.

We ran our simulations for M = 96 temperatures in parallel using the parallel tempering rou-



tine. Temperatures Ti were chosen using a geometric series Ti = T1R
(i−1)
t withRt =

(
TM
T1

)1/(M−1)
and T1 = 0.001 J

(1)
AB and TM = 3 J

(1)
AB. In a parallel tempering move, one considers whether chang-

ing the assignment of a temperature to a given configuration is preferred. Let us consider two sys-

tems (Si, Ti, Ei) and (Sj, Tj, Ej) with i, j being two neighboring temperatures in the temperature

series. Both configurations Si and Sj first undergo 100 Metropolis updates per site, yielding a final

energy Ei and Ej corresponding to the configuration. One then considers exchanging Ti ↔ Tj

based on a probability Pij . One first computes ∆ij = [(Ei − Ej)( 1
Ti
− 1

Tj
)] and then the tempera-

ture switch is then accepted with probability Pij = exp{∆ij}. If such a move is accepted, the spin

configuration Si is now run at temperature Tj , and vice versa.

The use of parallel tempering in a Monte-Carlo algorithm has been shown to greatly improve

thermalization of the sample, as well as avoiding the formation of glassy phases.17–20 This is

achieved because configurations reach a great level of ergodicity, having a lot of opportunity to

explore the large phase space of the system.

For all simulations, 30, 000 MC updates per site were performed and discarded to achieve full

thermalization. Another 30, 000 steps were done to obtain thermodynamic observables. Error on

such obtained measurements were calculated using the Jackknife method.17 Measurements that

were taken were the energy per site E, the specific heat per site Cv, the sublattice and total mag-

netizations MA, MB and Mtot and its susceptinility χtot, as well as the canting measurement CAB.

Definitions of the measurement is given below, with N understood as being the total number of

supercells in the system.



E =
H

N
(4)

Cv =
〈E〉2 − 〈E2〉

NT 2
(5)

MA =
1

N

∣∣∣∣∣∑
i

2∑
jA=1

Si,jA

∣∣∣∣∣ (6)

MB =
1

N

∣∣∣∣∣∑
i

4∑
jB=1

Si,jB

∣∣∣∣∣ (7)

Mtot =
1

N

∣∣∣∣∣∑
i

(
2∑

jA=1

Si,jA +
4∑

jB=1

Si,jB

)∣∣∣∣∣ (8)

χtot =
〈Mtot〉2 − 〈M2

tot〉
NT

(9)

CAB =
1

N

∣∣∣∣∣∑
i

2∑
jA=1

4∑
jB=1

Si,jA · Si,jB

∣∣∣∣∣ (10)

Results for the Bulk System

In this section we examine the results for our bulk simulations. These were performed onNx =

Ny = Nz = L supercells, with periodic boundary conditions in each direction. Each supercell

consists of 2 A sites and 4 B sites. The results are provided in Fig. S9, where we show the specific

heat, magnetization, susceptibility and canting behavior for over two decades of temperature. The

temperature axis is obtained using the values for the J interactions in kelvin (K), and for the

specific heat and the susceptibility, we use a logarithmic axis for the temperature to accentuate the

low-temperature phase.

We see that there is a very sharp transition at TC ' 85K due to the activation of J1
AB, and

we have Cmax
v ∝ L3 behaviour. Such a scaling behaviour is a strong indicator of a first order

transition. Looking at the magnetization, it is clear that the low-temperature ordered state is a

canted antiferromagnet, with Si,A · Si,B = cos θ(T ). The low-temperature phase has a finite and

continuously varying magnetization of theA andB sublattices as well asMtot, although the change
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(b)

(c)

(d)

Figure S9: Thermodynamic results for the bulk simulations. Results for (a) specific heat per site,
(b) susceptibility, (c) magnetization, and (d) canting angle measurements for bulk CoCr2O4 system.



is mainly driven by the B sites. The canted AF state can be clearly seen in the behavior of CAB,

which jumps from 0 to a finite value at TC , and then progressively increases to reach a perfect

AFM state at T = 0. This canting measure, in a state where the B sites are tilted θ degrees away

from the A sites, can be equal to CAB ' 8| cos θ|, i.e. at T = 0 we have a perfect AFM state.

Finally, observation of the susceptibility of Mtot yields the same conclusions as the specific heat,

and we are confident in the presence of a first-order temperature driven transition at TC ' 85K to

a canted AFM state in the bulk system, which is as expected from our DFT calculations.

Results for the Slab Systems

We now shift our focus to the slab simulation results. The format of the supercell used is such

that stacking 2D layers in the z direction replicates the laboratory samples created by deposition. In

this section, we used samples with Lx = Ly = L, and Lz = 1, 2 for the two different slabs created

(mono and double layer). Periodic boundary conditions were set in the x and y directions, and

open boundary in the z. In the results presented below, we used L = 12, 16, 20, and 30. MC runs

on smaller systems were also performed but the obtained results were too sensitive to the boundary

conditions. Firstly, we present the energy and the specific heat per site for such systems in Fig. S10.

Whereas the bulk system’s internal energy tends to −28.92 per site (the energy units are J (1)
AB, the

slab systems are unable to reach such an energy, which corresponds to a pure AFM state, the T = 0

bulk ground state. What can be seen from the energy is that there is a broad feature associated with

the bulk first-order transition at roughly the same critical temperature (T slabC ∼ 50K). There is also

a very sharp downturn at extremely low temperature, where the system is still trying to establish

the T = 0 ground state. However, as it can be seen in the specific heat plots, this low-temperature

plot is permeated by a lot of energy fluctuations. Since CV = σE/T
2, where σE is the energy

fluctuations, the specific heat plots (Fig. S10) reveal that there is simply a pervasive amount of

energy fluctuations at low temperature preventing the settling of a distinct magnetic order, even in

the presence of optimal MC algorithms.
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Figure S10: Thermodynamic results for the slab simulations. In the first row, results for different
system sizes for Lz = 1 (up) and Lz = 2 (down), for (a) the energy per site, and (b) the specific
heat. In the other figures, we show the data for Lx = Ly = L = 30, while varying Lz. We have (c)
the magnetizations (A (start), B (plus) sublattices and total (circles)), (d) the canting angle, (e) the
specific heat per site, and (f) the total susceptibility data for slab systems.



These results are also consistent with the magnetization and canting CAB versus temperature

data for the slab systems, which are shown in Fig. S10. In this figure, we choose to show only

the results for our simulations on Lx = Ly = 30, our largest sample, for clarity. It is clear that

although MA is able to reach its T = 0 value where all A spins are aligned, the B spins cannot

do the same and are plagued by large amount of fluctuations. This results in a finite canting state,

but one that never really reaches the low-temperature bulk value. This is a clear indicator that the

lower dimensionality samples are much more frustrated, and hence, the bulk magnetically ordered

state cannot be realized.

An important question is whether we truly have achieved thermalization. In all our simulations,

we performed 30, 000 measurements, after each MC step, where every 100 steps we performed a

parallel tempering move. In a true thermalized sample, the average value obtained in the first

quarter of those measurements should not be drastically different from the one obtained in the last

quarter. In Fig. S11 we show the energy per site and total magnetization for the two slab samples

at L = 30, for 4 blocks of our measurements (each is in different colors). It is clear that none of

the bins show radical departure from the others and that the averages obtained above reflect the

ones of a thermalized sample. The remain large error bars are due to the computational power at

our disposal.

Figure S11: Measurements of the energy (left), and the total magnetization (right) for Lz = 1
(circles) and Lz = 2 (plus), for 4 different bins of the measurements.
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