Supplemental Material: Engineering Weyl phases and nonlinear Hall effects in T_d -MoTe₂

Sobhit Singh, Jinwoong Kim, Karin M. Rabe, and David Vanderbilt

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

This Supplemental Material contains information regarding computational details, potential energy profile of the T_0 phase as a function of the cell angle β showing two ferroelastic variants of 1T' phase, the calculated phonon spectra and elastic constants for T_0 , T_d and 1T' phases. Details related to the Berry curvature dipole moment (BCDM), coordinate of Weyl points, and electronic band structure calculated with and without spin-orbit coupling (SOC) as a function of the polar distortion parameter $\frac{\lambda}{\lambda_0}$, where $\lambda_0 = 0.50$ Å, are also provided. An animation showing the evolution of Weyl points (WPs) as a function of $\frac{\lambda}{\lambda_0}$ is provided as supplemental material in a separate file.

I. COMPUTATIONAL DETAILS

We use Vienna *ab-initio* simulation package (VASP) to perform all the first-principles density-functional theory (DFT) calculations.^{1,2} We consider six valence electrons of Mo $(4d^55s^1)$ and six valence electrons of Te $(5s^25p^4)$ within the projected-augmented wave (PAW) framework.^{3,4} We employ the revised Perdew-Burke-Ernzerhof generalized gradient approximation for solids (PBEsol) to treat exchange and correlation effects.⁵ In order to include the on-site Coulomb interaction effects, we use U = 2.8 eV and $J = 0.4 \text{ eV}^6$ to simulate Mo 4d electrons within the DFT+U scheme (Dudarev approach⁷) at the mean-field level. A plane wave energy cutoff of 600 eV along with a Monkhorst-Pack type k-mesh of size $8 \times 12 \times 4$ are used for electronic convergence. For structural optimization, we use $10^{-4} \,\mathrm{eV/\AA}$ for force convergence, and 10^{-9} eV for energy convergence criteria for electronic self-consistent calculations. Thus optimized cell parameters are a = 6.329, b = 3.450, c = 13.485 Å for the T_d and 1T' phases. Note that the cell angles for T_d phase are $\alpha = \beta = \gamma = 90^{\circ}$, whereas the β angle for twin 1T' phases is 86.4° (I) and 93.6° (II). These values are in good agreement with the previous reports .^{6,8–12} The phonon dispersions are computed using the PHONOPY code¹³ for a supercell of size $2 \times 2 \times 1$. Two unstable phonon modes, Γ_2^- and Γ_4^+ , are observed in the T_0 phase. The phonon modulated structures were fully optimized in all directions except for the direction of the modulation vector. Using Wannier functions based tight-binding Hamiltonians for Mo-4d and Te-5p orbitals, we employ the WANNIER_TOOLS package¹⁴ for analysis of Weyl phase and topological nature of electronic bands. The PYPROCAR code¹⁵ was used to analyze the electronic band structure.

FIG. 1. The double-well potential energy profile of T_0 phase as a function of the cell angle β . The two local minima correspond to two nonpolar ferroelastic phases of 1T'.

The elastic instability (Γ_4^+ mode) causes a shear distortion of the unit cell, making the \vec{a} and \vec{c} lattice vectors nonorthogonal. By modulating the T_0 phase along the Γ_4^+ mode, we obtain a double-well potential energy profile, as shown in Fig. 1, with two local minima at cell angles $\beta = 93.6^{\circ}$ and $\beta = 87.4^{\circ}$. These two local minima mark the two ferroelastic twin phases, 1T'-I and 1T'-II, of the monoclinic 1T' phase. The obtained value of β is in excellent agreement with previous reports.^{6,8,16–26} The corresponding interlayer displacement pattern of Mo-Te triple layers in the 1T'-I and 1T'-II phases is: $+ + + + \dots$ and $- - - \dots$, respectively. An electron beam induced tunable reversible structural phase transition among these phases has recently been experimentally realized.²⁷

FIG. 2. The phonon spectrum for (a) T_0 , (b) T_d , and (c) 1T' phases calculated using finite-difference approach for a supercell of size $2 \times 2 \times 1$. (d) Comparison of the soft phonon modes in all three phases near the Γ point. Note that the observed elastic instabilities in the T_d and 1T' phases near Γ point are only due to the poor numerical convergence at $k \to 0$. These, purely numerical, instabilities do not lead to negative elastic constants in the T_d and 1T' phases. Our elastic constant calculations verify the elastic and mechanical stability of T_d and 1T' phases, as shown in Table I. However, the unstable phonon mode in the T_0 phase represents a real instability, which yields negative elastic constants and mechanical instability in the structure.

IV. ELASTIC CONSTANTS

TABLE I. This table contains the PBEsol+U calculated elastic constants (C_{ij} , in GPa units) of T₀, T_d, and 1T' phases together with the eigen values of C_{ij} matrix and result of the mechanical stability test. The elastic constants were calculated without inclusion of SOC and were converged better than 1 GPa by increasing the size of k-mesh. Inclusion of SOC causes less than 1 GPa difference in the C_{ij} values. The Born-Huang mechanical stability test performed using the MechElastic code²⁸ proves the elastic instability of the T₀ phase.

Phase	$C_{11}, C_{12}, C_{13}, C_{22}, C_{23}, C_{33}, C_{44}, C_{55}, C_{66}$	Eigen values of C_{ij} matrix	Mechanical stability test
T_0	-31.8, -50.3, -216.8, 56.2, -152.1, -390.1, 94.1, 47.8, 65.1	$\{-545.7, 41.4, 111.0, 75.6, 94.1, 65.1\}$	Fail
\mathbf{T}_{d}	154.9, 42.0, 21.6, 127.8, 26.0, 23.8, 27.7, 3.9, 51.9	$\{191.9, 98.0, 51.9, 16.6, 4.0, 27.7\}$	Pass
1T'	$151.0, \ 36.7, \ 21.7, \ 126.4, \ 28.0, \ 23.2, \ 27.1, \ 2.9, \ 51.4$	$\{184.7, 101.1, 2.8, 14.9, 26.8, 51.7\}$	Pass

V. BERRY CURVATURE DIPOLE MOMENT CALCULATED AT DIFFERENT VALUES OF POLAR DISTORTION PARAMETERS

FIG. 3. The non-zero components of Berry curvature dipole moment (BCDM) in bulk MoTe₂ computed as a function of the chemical potential for different distorted structures along the polarity reversal path, *i.e.*, for different values of polar distortion parameter $\frac{\lambda}{\lambda_0}$. We use a dense k-mesh of size 278 × 510 × 130 to achieve better convergence of BCDM. Different colors correspond to BCDM data for different values of $\frac{\lambda}{\lambda_0}$. Note that for inversion-symmetric T₀ phase ($\frac{\lambda}{\lambda_0} = 0$), the BCDM is zero. We do not notice any striking enhancement in the BCDM with varying $\frac{\lambda}{\lambda_0}$, except for the slight variations due to the creation/annihilation of new Weyl points with relatively smaller and/or no tilts of Weyl cones and shifting of the Weyl points in the energy-momentum space as we tune $\frac{\lambda}{\lambda_0}$ (see main text for discussion).

VI. BERRY CURVATURE, FERMI-VELOCITY AND THEIR PRODUCT PROJECTED ON THE FERMI-SURFACE

FIG. 4. This figure shows the x and y components of Fermi-velocity (v_x, v_y) , Berry curvature (Ω_x, Ω_y) , and their product $(v_x\Omega_y, v_y\Omega_x)$ projected on the Fermi-surface of MoTe₂ in T_d-A phase. The $v_x\Omega_y$ and $v_y\Omega_x$ terms relate to the D_{xy} and D_{yx} components of the Berry curvature dipole moment tensor, respectively (see main text for discussion).

VII. COORDINATES OF WEYL POINTS AS A FUNCTION OF POLAR DISTORTION

Table II contains the coordinates of all WPs in the energy and momentum space (units: $k_1\left(\frac{2\pi}{a}\right)$, $k_2\left(\frac{2\pi}{b}\right)$, $k_3\left(\frac{2\pi}{c}\right)$) as a function of the polar distortion parameter $\frac{\lambda}{\lambda_0}$, where $\lambda_0 = 0.50$ Å. The coordinates are listed only for those $\frac{\lambda}{\lambda_0}$ values at which creation/annihilation of WPs event occurs, *i.e.*, the total number of WPs (N_{WP}) is distinct. An animation showing the evolution of WPs as a function of $\frac{\lambda}{\lambda_0}$ is provided in a separate file.

$\frac{\lambda}{\lambda_0}$	(k_1, k_2, k_3)	Chirality	$E-E_F \text{ (meV)}$	N_{WP}
0.00	_	_	_	0
	(-0.204, 0.127, -0.225)	-1	39	
	(0.204, 0.127, 0.225)	1	39	
	(-0.204, -0.127, -0.225)	1	39	
	(0.204, -0.127, 0.225)	$^{-1}$	39	
	(-0.203, -0.123, 0.229)	1	47	
	(-0.203, 0.123, 0.229)	$^{-1}$	47	
	(0.203, -0.123, -0.229)	$^{-1}$	47	
0.29	(0.203, 0.123, -0.229)	1	47	16
0.32	(0.190, 0.111, -0.243)	$^{-1}$	63	10
	(-0.190, 0.112, 0.243)	1	63	
	(-0.190, -0.111, 0.243)	$^{-1}$	63	
	(0.190, -0.112, -0.243)	1	63	
	(0.182, 0.107, 0.248)	$^{-1}$	64	
	(-0.182, -0.107, -0.248)	$^{-1}$	64	
	(-0.182, 0.107, -0.248)	1	64	
	(0.182, -0.107, 0.248)	1	64	
	(0.209, 0.158, 0.160)	1	-18	
	(-0.209, -0.158, -0.160)	1	-18	
	(-0.209, 0.158, -0.160)	-1	-18	
	(0.209, -0.158, 0.160)	-1	-18	
	(0.211, 0.159, -0.154)	1	-19	
	(-0.211, -0.159, 0.154)	1	-19	
	(-0.211, 0.159, 0.154)	-1	-19	
	(-0.211, 0.159, 0.154)	-1	-19	
	(0.096, 0.086, -0.256)	-1	53	
	(-0.096, -0.086, 0.256)	-1	53	
	(0.104, 0.087, 0.257)	-1	54	
	(-0.104, -0.087, -0.257)	-1	54	
	(-0.107, 0.088, -0.256)	1	54	
	(-0.100, 0.087, 0.255)	1	54	
	(0.107, -0.088, 0.256)	1	54	
0.63	(0.100, -0.087, -0.255)	1	54	30

TABLE II: Coordinates of all WPs calculated at different values of $\frac{\lambda}{\lambda_0}$

0.63

TABLE II: Continued on next page

$\frac{\lambda}{\lambda_0}$	(k_1, k_2, k_3)	Chirality	E - E_F (meV)	N_{WP}
	(-0.029, -0.071, -0.195)	1	78	
	(0.029, 0.071, 0.195)	1	78	
	(-0.030, -0.071, 0.194)	1	78	
	(0.030, 0.071, -0.194)	1	78	
	(0.029, -0.070, -0.189)	-1	81	
	(-0.029, 0.070, 0.189)	-1	81	
	(-0.027, 0.070, -0.186)	-1	82	
	(0.027, -0.070, 0.186)	-1	82	
	(-0.018, -0.066, 0.129)	$^{-1}$	102	
	(0.018, 0.066, -0.129)	$^{-1}$	102	
	(-0.017, 0.066, 0.124)	1	103	
	(0.017, -0.066, -0.124)	1	103	
	(-0.013, -0.066, -0.105)	-1	105	
	(0.013, 0.066, 0.105)	-1	105	
	(-0.013, 0.066, -0.105)	1	105	
	(0.013, 0.066, 0.105)	$^{-1}$	105	
	(0.210, 0.163, -0.139)	1	-29	
	(0.208, 0.162, 0.145)	1	-29	
	(-0.208, -0.162, -0.145)	1	-29	
	(-0.210, -0.163, 0.139)	1	-29	
	(-0.210, 0.163, 0.139)	$^{-1}$	-29	
	(-0.208, 0.162, -0.145)	$^{-1}$	-29	
	(0.208, -0.162, 0.145)	$^{-1}$	-29	
	(0.210, -0.163, -0.139)	$^{-1}$	-29	
	(-0.078, -0.085, 0.250)	$^{-1}$	41	
	(0.078, 0.085, -0.250)	$^{-1}$	41	
	(0.087, 0.086, 0.253)	$^{-1}$	42	
	(-0.087, -0.086, -0.253)	$^{-1}$	42	
	(-0.091, 0.087, -0.252)	1	43	
	(-0.084, 0.086, 0.250)	1	43	
).72	(0.091, -0.087, 0.252)	1	43	28
	(0.084, -0.086, -0.250)	1	43	
	(-0.040, -0.076, 0.216)	1	55	
	(0.040, 0.076, -0.216)	1	55	
	(0.035, 0.074, 0.212)	1	59	
	(-0.035 - 0.074 - 0.212)	1	59	
	(-0.037, 0.075, 0.209)	-1	60	
	(0.037, -0.075, -0.209)	_1	60	
	(-0.033, 0.073, -0.200)	_1	63	
	(0.033, 0.073, 0.200)	_1	63	
	(0.000, 0.010, 0.200)	1	106	
	(0.012, 0.000, -0.000)	T	100	

TABLE II: Continued on next page

TABLE II: continued from previous page

$\frac{\lambda}{\lambda_0}$	(k_1, k_2, k_3)	Chirality	E - E_F (meV)	N_{WP}
	(-0.012, -0.066, 0.073)	-1	106	
	(0.012, 0.066, -0.073)	-1	106	
	(0.209, 0.165, -0.129)	1	-41	
	(-0.209, 0.165, 0.129)	-1	-41	
	(-0.209, -0.165, 0.129)	1	-41	
	(0.209, -0.165, -0.129)	-1	-41	
	(0.207, 0.165, 0.136)	1	-40	
	(-0.207, -0.165, -0.136)	1	-40	
	(-0.207, 0.165, -0.136)	-1	-40	
	(0.207, -0.165, 0.136)	-1	-40	
	(0.077, 0.085, 0.250)	-1	29	
	(-0.077, -0.085, -0.250)	-1	29	
	(-0.071, 0.084, 0.244)	1	29	
0.70	(0.071, -0.084, -0.244)	1	29	94
0.19	(-0.082, 0.086, -0.249)	1	30	24
	(0.082, -0.086, 0.249)	1	30	
	(-0.044, 0.078, 0.220)	-1	40	
	(0.044, -0.078, -0.220)	-1	40	
	(0.039, 0.077, 0.218)	1	42	
	(-0.039, -0.077, -0.218)	1	42	
	(-0.036, 0.076, -0.212)	-1	47	
	(0.036, -0.076, 0.212)	-1	47	
	(-0.011, 0.066, 0.030)	1	99	
	(0.011, -0.066, -0.030)	1	99	
	(-0.010, -0.066, 0.024)	-1	100	
	(0.010, 0.066, -0.024)	-1	100	
	(0.208, 0.167, -0.121)	1	-40	
	(0.206, 0.166, 0.128)	1	-40	
	(-0.206, -0.166, -0.128)	1	-40	
	(-0.208, 0.167, 0.121)	-1	-40	
	(-0.208, -0.167, 0.121)	1	-40	
	(0.208, -0.167, -0.121)	-1	-40	
	(-0.206, 0.166, -0.128)	-1	-39	
	(0.206, -0.166, 0.128)	-1	-39	
	(-0.066, -0.085, -0.244)	-1	26	
0.85	(0.066, 0.085, 0.244)	-1	26	20
0.00	(-0.073, 0.086, -0.245)	1	27	20
	(0.073, -0.086, 0.245)	1	27	
	(-0.044, -0.080, -0.225)	1	34	
	(0.044, 0.080, 0.225)	1	34	
	(0.040, -0.078, 0.217)	$^{-1}$	40	
	(-0.040, 0.078, -0.217)	-1	40	

TABLE II: Continued on next page

TABLE II: continued from previous page

$\frac{\lambda}{\lambda_0}$	(k_1, k_2, k_3)	Chirality	E - E_F (meV)	N_{WP}
	(-0.014, 0.066, 0.013)	1	103	
	(0.014, -0.066, -0.013)	1	103	
	(-0.014, -0.066, 0.009)	-1	103	
	(0.014, 0.066, -0.009)	-1	103	
	(0.207, 0.169, -0.113)	1	-44	
	(-0.207, -0.169, 0.113)	1	-44	
	(0.205, 0.168, 0.122)	1	-44	
	(0.206, -0.169, -0.113)	$^{-1}$	-44	
	(-0.206, 0.169, 0.113)	$^{-1}$	-44	
	(-0.205, -0.168, -0.122)	1	-44	
	(-0.205, 0.168, -0.122)	$^{-1}$	-44	
0.00	(0.205, -0.168, 0.122)	$^{-1}$	-44	10
0.92	(0.063, -0.085, 0.239)	1	20	16
	(-0.063, 0.085, -0.239)	1	20	
	(-0.045, 0.081, -0.223)	-1	27	
	(0.045, -0.081, 0.223)	-1	27	
	(-0.017, 0.067, 0.000)	1	101	
	(0.017, -0.067, -0.000)	1	101	
	(-0.017, -0.067, 0.000)	$^{-1}$	101	
	(0.017, 0.067, -0.000)	$^{-1}$	101	
	(0.205, -0.170, -0.105)	-1	-38	
	(0.205, 0.170, -0.105)	1	-38	
	(-0.205, -0.170, 0.105)	1	-38	
	(-0.205, 0.170, 0.105)	-1	-38	
	(0.203, 0.170, 0.114)	1	-38	
1.00	(-0.203, 0.170, -0.114)	$^{-1}$	-38	10
1.00	(-0.203, -0.170, -0.114)	1	-38	12
	(0.203, -0.170, 0.114)	$^{-1}$	-38	
	(-0.020, -0.068, 0.000)	$^{-1}$	108	
	(-0.021, 0.068, 0.000)	1	108	
	(0.021, -0.068, 0.000)	1	108	
	(0.020, 0.068, 0.000)	-1	108	

TABLE II: This table ends here.

VIII. TOPOLOGICAL CLASSIFICATION OF T_0 AND 1T' PHASES

Using vasp2trace code,²⁹ we check the topological behavior of the nonpolar T_0 and 1T' phases. We find that both nonpolar phases have $z_4=2$, and both belong to a strong topological class 20 as defined in Ref. [29]. This finding verifies the presence of a second-order topological insulating phase in T_0 and 1T' MoTe₂. Due to the presence of gapless Weyl points, the T_d phase cannot exhibit a higher-order (> 1) topological character although it satisfies all the other conditions to be a second-order topological insulator.^{29,30} When all Weyl points annihilate each other and a direct bandgap opens in the T_0 phase, the system enters into a second-order topological phase.

FIG. 5. The electronic band structure calculated along the Γ -Y direction of Brillouin zone for different values of λ/λ_0 parameters, and with- (right panel) and without- (left panel) inclusion of SOC. Note the band gap (SOC) at $\lambda/\lambda_0 = 0.00$, *i.e.*, for the T₀ phase.

IX. DISPERSION OF BANDS NEAR WEYL POINTS IN THE T_d PHASE

FIG. 6. The electronic band structure calculated in the vicinity of WPs (with SOC) along different directions in the momentum space of T_d -MoTe₂. Shaded circles mark the position of a WP. Dotted horizontal line represents the Fermi energy. Top panel shows the band dispersions near a type-II W1 Weyl node located above the Fermi level. The direct coordinates of the W1, k_x^{W1} , k_y^{W1} , k_z^{W1} , k_z^{W2} , $k_$

X. DISTRIBUTION OF ALL WEYL POINTS IN THE BRILLOUIN ZONE

FIG. 7. Distribution of all Weyl points in the Brillouin zone for the T_d -A phase, shown from the top and the side views. Red/blue dots depict +/- chiralities of the WPs. Chiralities of all WPs switches in the T_d -B phase.

- ¹ G. Kresse and J. Furthmüller, Phys. Rev. B **54**, 11169 (1996).
- ² G. Kresse and J. Furthmüller, Computational Materials Science 6, 15 (1996).
- ³ P. E. Blöchl, Phys. Rev. B **50**, 17953 (1994).
- ⁴ G. Kresse and D. Joubert, Phys. Rev. B **59**, 1758 (1999).
- ⁵ J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. **100**, 136406 (2008).
- ⁶ N. Xu, Z. W. Wang, A. Magrez, P. Bugnon, H. Berger, C. E. Matt, V. N. Strocov, N. C. Plumb, M. Radovic, E. Pomjakushina, K. Conder, J. H. Dil, J. Mesot, R. Yu, H. Ding, and M. Shi, Phys. Rev. Lett. **121**, 136401 (2018).
- ⁷ S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
- ⁸ R. Clarke, E. Marseglia, and H. P. Hughes, Philosophical Magazine B **38**, 121 (1978).
- ⁹ S.-Y. Chen, T. Goldstein, D. Venkataraman, A. Ramasubramaniam, and J. Yan, *Nano Letters*, Nano Letters **16**, 5852 (2016).
- ¹⁰ X.-J. Yan, Y.-Y. Lv, L. Li, X. Li, S.-H. Yao, Y.-B. Chen, X.-P. Liu, H. Lu, M.-H. Lu, and Y.-F. Chen, npj Quantum Materials 2, 31 (2017).
- ¹¹ A. N. Berger, E. Andrade, A. Kerelsky, D. Edelberg, J. Li, Z. Wang, L. Zhang, J. Kim, N. Zaki, J. Avila, C. Chen, M. C. Asensio, S.-W. Cheong, B. A. Bernevig, and A. N. Pasupathy, npj Quantum Materials 3, 2 (2018).
- ¹² N. Aryal and E. Manousakis, Phys. Rev. B **99**, 035123 (2019).
- ¹³ A. Togo and I. Tanaka, Scr. Mater. **108**, 1 (2015).
- ¹⁴ Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov, Computer Physics Communications 224, 405 (2018).
- ¹⁵ U. Herath, P. Tavadze, X. He, E. Bousquet, S. Singh, F. Muoz, and A. H. Romero, Computer Physics Communications, 107080 (2019).
- ¹⁶ Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, and B. Yan, Phys. Rev. B **92**, 161107 (2015).
- ¹⁷ A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature **527**, 495 (2015).
- ¹⁸ Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfland, S.-C. Wu, C. Shekhar, Y. Sun, V. Süß, M. Schmidt, U. Schwarz, E. Pippel, P. Werner, R. Hillebrand, T. Förster, E. Kampert, S. Parkin, R. J. Cava, C. Felser, B. Yan, and S. A. Medvedev, Nature Communications 7, 11038 (2016).
- ¹⁹ L. Huang, T. M. McCormick, M. Ochi, Z. Zhao, M.-T. Suzuki, R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, N. Trivedi, and A. Kaminski, Nature Materials 15, 1155 (2016).
- ²⁰ Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, Phys. Rev. Lett. **117**, 056805 (2016).
- ²¹ A. Tamai, Q. S. Wu, I. Cucchi, F. Y. Bruno, S. Riccò, T. K. Kim, M. Hoesch, C. Barreteau, E. Giannini, C. Besnard, A. A. Soluyanov, and F. Baumberger, Phys. Rev. X 6, 031021 (2016).
- ²² H.-J. Kim, S.-H. Kang, I. Hamada, and Y.-W. Son, Phys. Rev. B **95**, 180101 (2017).
- ²³ D. Rhodes, R. Schönemann, N. Aryal, Q. Zhou, Q. R. Zhang, E. Kampert, Y.-C. Chiu, Y. Lai, Y. Shimura, G. T. McCandless, J. Y. Chan, D. W. Paley, J. Lee, A. D. Finke, J. P. C. Ruff, S. Das, E. Manousakis, and L. Balicas, Phys. Rev. B 96, 165134 (2017).
- ²⁴ A. Crepaldi, G. Autès, G. Gatti, S. Roth, A. Sterzi, G. Manzoni, M. Zacchigna, C. Cacho, R. T. Chapman, E. Springate, E. A. Seddon, P. Bugnon, A. Magrez, H. Berger, I. Vobornik, M. Kalläne, A. Quer, K. Rossnagel, F. Parmigiani, O. V. Yazyev, and M. Grioni, Phys. Rev. B **96**, 241408 (2017).
- ²⁵ H. Takahashi, T. Akiba, K. Imura, T. Shiino, K. Deguchi, N. K. Sato, H. Sakai, M. S. Bahramy, and S. Ishiwata, Phys. Rev. B **95**, 100501 (2017).
- ²⁶ C. Heikes, I.-L. Liu, T. Metz, C. Eckberg, P. Neves, Y. Wu, L. Hung, P. Piccoli, H. Cao, J. Leao, J. Paglione, T. Yildirim, N. P. Butch, and W. Ratcliff, Phys. Rev. Materials 2, 074202 (2018).
- ²⁷ F.-T. Huang, S. Joon Lim, S. Singh, J. Kim, L. Zhang, J.-W. Kim, M.-W. Chu, K. M. Rabe, D. Vanderbilt, and S.-W. Cheong, Nature Communications 10, 4211 (2019).
- ²⁸ S. Singh, I. Valencia-Jaime, O. Pavlic, and A. H. Romero, Phys. Rev. B **97**, 054108 (2018).
- ²⁹ M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, Nature 566, 480 (2019).
- ³⁰ Z. Wang, B. J. Wieder, J. Li, B. Yan, and B. A. Bernevig, Phys. Rev. Lett. **123**, 186401 (2019).