0.0
0.5 ]
—
£ -10f A
£
®)
E 15 \row 1
o HIIPIlc
< -20f T=4K .
B =0
-2.5F ——-320 kV/m i
+320 kV/m
-3.0 ! ! ! ! ! !
0 10 20 30 40 50 60
Magnetic field (T)
FIG. S1. Magnetic field-dependence of electric polarization of

Ni3TeOs under different poling electric field. Sample was poled
with an applied electric field at zero magnetic field at 60 K and then
cooled down to 4 K. Electric field was kept on (+320 kV/m) during
the measurement. Virtually, no electric field dependence is observed
demonstrating that NTO is pyroelectric, not ferroelectric.

Details of the experiment

Single crystals of NigTeOg (NTO) were grown by chem-
ical vapor transport method [1]. Magnetization (M) above
13 T was measured in a pulse magnet by recording the in-
duced voltage in a triply-compensated coil [2] and calibrated
by vibrating sample magnetometry measurements in a super-
conducting magnet (PPMS-14, Quantum Design). Magne-
tostriction (AL/L) was measured up to 92 T along the c-axis
using an optical fiber grating technique [3]. During the mag-
netostriction measurement, the ab-plane of the sample was at-
tached to a platform for mechanical stabilization during the
rapid magnetic field pulse. The absolute value of magne-
tostriction was checked and calibrated against a capacitive
dilatometer measurement in a superconducting magnet up to
13 T [4]. Hexagonal shaped platelet-like crystals (typically
0.5 mm? in area and 90 um thick) were used for dielectric con-
stant (¢) and P measurements along the c-axis. Electric po-
larization was obtained under pulsed-field conditions by mea-
suring the magnetoelectric current and integrating it over time
[S, 6]. Prior to the measurement, samples were poled by cool-
ing from 75 K to measurement temperature in a static pol-
ing electric field (o) up to 320 kV/m. However, we find
no F,,.-dependence of P in our measurements as shown in
Fig. S1. High magnetic fields were generated using either a
capacitor-driven pulse magnet up to 65 T or a hybrid pulse
magnet (combination of generator- and capacitor-driven mag-
nets) up to 92 T at NHMFL in Los Alamos. Specific heat
was measured by using a relaxation method in a PPMS-14
(Fig. S2).
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FIG. S2. Specific heat of Ni3TeOg under different magnetic field
applied along the c axis. Inset shows the enlarged view to show the
SF transition.
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FIG. S3. Magnetoelectric coefficient o as a function of magnetic
field for (a) H||c and (b) H||ab. Inset in (a) shows a expanded plot
of « at the high-field transition.

Linear magnetoelectric coefficient

To visualize the giant response of P to the external mag-
netic field, we plot the ME coefficient a(= dP/dH) of NTO
as a function of magnetic field (Fig. S3). In the case of c-axis
magnetic field, one can immediately see that the ME coeffi-
cient value at H.o is almost four times greater than that at
H,., (Fig. S3(a)) and reaches up to 6,000 ps/m which is one of
very high « value observed among the ME materials to date
[7-9].



Details of the first-principles calculations

In order to model the magnetism in NTO it is essential to
know the exchange constants. They were calculated using
DFT previously [10], but, unfortunately, the minimization of
the energy Eq. 1 of the main text within the 6-atom magnetic
unit cell using those values gives a non-collinear state at a
moderate Ko, while experiments suggest a collinear ground
state [11]. We have found that the collinear state could be sta-
bilized by reducing the exchange constant J; by 30%. Since
Ni ions are centered in similar oxygen octahedra, we assumed
the anisotropy constants to be equal, K5 ; = K>, and chose
their value to match the spin flop field measured experimen-
tally. The calculated M (H) curve is very different from the
experimentally observed one - the magnetization jump at the
spin flop transition is overestimated, and the second transition
is absent. In order to improve the model we calculated the ex-
change constants using the PBEO hybrid density functional,
which is known to give better estimates for exchange con-
stants in some compounds [12]. We used the VASP code with
the supplied PAW-PBE atomic files [13-20], with the plane
wave cutoff of 500 eV; spin-orbit coupling was neglected; en-
ergy convergence threshold was set to 10~° eV; total energy
was evaluated using I'-centered 4 x 4 x 4 k-point grid. The
PBEO calculation was seeded with the wavefunctions, calcu-
lated using PBE+U with U = 8 eV applied on Ni d-orbitals.
The PBEO total energies for 10 different spin arrangements
within the magnetic unit cell were fitted to the model Eq. 1 of
the main text using a least-square fit. The choice of trial mag-
netic states ensured that the system is overdetermined. The
relative error for J; ... Js; was estimated below 12 %, for J;
—37 %. Fig. S5 compares the energies of the used spin states,
calculated using PBEOQ [21] and from the fit.

The obtained exchange constants result in the experimen-
tally observed ground state and the appearance of the second
transition without any additional tuning, as shown in Fig. S6.
The critical field H_.o of the second transition is not sensitive
to K. The magnetization change at H ., is much smaller than
that observed in the experiment. Starting from these values,
we tuned the exchange constants to improve the agreement be-
tween the calculated and measured M along the c-axis. The
final result is presented on Fig. 2(g), and the values of ex-
change constants are summarized in Table 1 of the main text.

Due to a frustration in NTO the ground state could be sen-
sitive to small variations of exchange constants, therefore hy-
brid functional calculations were required to reproduce the
correct ground state. However, these calculations are com-
putationally expensive, therefore we used a faster GGA + U
as implemented in VASP to estimate the polarization varia-
tions in response to changes of spin arrangement, encoded
in a,,. Hubbard U = 4.5 eV was applied to Ni d orbitals in
these calculations. The 20-atom rhombohedral unit cell, con-
taining 2 formula units, were relaxed with the magnetic mo-
ments of Ni initialized to be in 10 trial configurations, and we
have checked that the directions of magnetic moments didn’t

E(meV)

0 10 20 30 40 50 60 70
H(T)

FIG. S4. Contributions to the total energy from different exchanges
Ji...Js, single-ion anisotropy (marked a) and Zeeman energy
(marked h), calculated using the model Eq. 1 of the main text, as
functions of the applied magnetic field H..

change during the procedure. Total energies and Berry-phase
polarizations were then calculated, and the exchange-striction
coefficients «,,, shown in Table 1 of the main text, were ob-
tained by a least-square fit of Eq. 2 to the DFT results.
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FIG. S5. The energies of trial magnetic states calculated using PBEO
and from the fit Eq. 1.
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