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S1. FINITE DIFFERENCE APPROACH FOR CALCULATING BERRY CURVATURES

Here we provide some details of our density-functional theory (DFT) finite-displacement approach for calculating
the interatomic force constant (IFC) matrix C, and the adiabatic velocity-force coupling G. The IFC matrix is
calculated in the conventional way [S1, S2] by displacing each nucleus i by distance δτ =0.015 Å in each Cartesian
direction, and calculating the resulting forces. The wave functions from these displaced calculations are saved for the
following steps. The full velocity-force matrix elements [see Eq. (3) in the main text] are calculated by considering
closed paths among these displaced configurations, as discussed in Sec. S1A, while the matrix elements G under the
spin-Berry approximation [see main text Eq. (4)] are determined by calculating the canting of the Cr spins from the
same displacements, see Sec. S1B.

A. Velocity-force coupling

Stokes’ theorem equates the integral of the Berry curvature over some region in parameter space with the integral
of the Berry potential along the boundary of that region. We consider the Berry phase ϕiα,jβ corresponding to a
state evolving adiabatically along a triangular path from the ground state structure to displacement τiα, then to
displacement τjβ , and back to the ground state. Assuming δτ is small enough that the Berry curvature is constant
over the area of the path,

Giα,jβ =
2ℏϕiα,jβ

| τiα ∧ τjβ |
, (S1)

where τiα is a displacement of nucleus i in direction α. Since these displacements are chosen as orthogonal, the wedge
product is simply δτ2. For a finite system, letting ψ(τiα) be the ground state electronic wave function for the displaced
structure, we compute the three-point discrete Berry phase

ϕiα,jβ = −Im ln [⟨ψ(0) | ψ(τiα)⟩ ⟨ψ(τiα) | ψ(τjβ)⟩ ⟨ψ(τjβ) | ψ(0)⟩] , (S2)

where ψ(0) indicates the ground state without displacements. For a solid calculated within DFT, Eq. (S2) holds
for the single-band case, except that we define ψk(τiα) to be the Kohn-Sham Bloch wavefunctions for the displaced
structures, and we must average over k points in the first Brillouin zone. That is,

ϕiα,jβ = − 1

Nk

∑
k

Im ln [⟨ψk(0) | ψk(τiα)⟩ ⟨ψk(τiα) | ψk(τjβ)⟩ ⟨ψk(τjβ) | ψk(0)⟩] , (S3)

where k is the Bloch wave vector and Nk is number of k points in the Brillouin zone. The generalization of the
discrete Berry phase for multiple bands can be found in Ref. S3, and is given by

ϕiα,jβ = − 1

Nk

∑
k

Im lnDet[Mk(0, τiα)M
k(τiα, τjβ)M

k(τjβ , 0)] , (S4)

where the overlap matrices are defined as

Mk
mn(τ, τ

′) = ⟨ψmk(τ)|ψnk(τ
′)⟩ (S5)

with m and n being the band indices.
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B. Velocity-force coupling under spin-Berry approximation

To obtain the “spin-Berry approximation” of Eq. (4), we first approximate Eq. (3) as Ḡmn ≃ BIa,mGIa,JbBJb,n,
where GIa,Jb = −2ℏ Im⟨∂Iaψ|∂Jbψ⟩ is the Berry curvature of the wavefunctions in the parameter space spanned by
the Cr spins; BIa,n = ∂sIa/∂ũn is a “spin canting matrix” describing the static change in the equilibrium spin unit
vector on magnetic Cr site I in direction a resulting from phonon perturbation n; and ũn is the amplitude of mode
n such that the set of atomic displacements are given by ũnη̃n. Here a runs only over x, y directions corresponding
to the two possible tilt angles. We have assumed the total magnitude of the spin is unchanged and that tilt angles
are small so that SIx = S sin(θIx) ≈ SsIx. Under the assumption that the spin Berry curvature dominates, we can
further approximate GIa,Jb = −S δIJϵab, where spin S = 3ℏ/2 for Cr and ϵab is the antisymmetric tensor, yielding
Eq. (4) of the main text.

Within the spin-Berry approximation of Eq. (4) in the main text, the matrix elements of G are obtained from the
response of the localized spins to atomic displacements. The assumption is that for a given closed path along which
nuclear coordinates are changed, the total Berry phase is given by the sum of the Berry phases picked up by each
local spin along that path. Each spin picks up a phase equal to minus the total spin magnitude (−S = −3/2, in our
case), times the solid angle on the Bloch sphere that is swept out along the path. For small canting angles and with
all spins pointing along z in the ground state, G is then constructed using Eq. (S1) with ϕiα,jβ now given by

ϕiα,jβ = −S
2

∑
I

(sIx(τiα)sIy(τjβ)− sIy(τiα)sIx(τjβ)) . (S6)

Equivalently, G could be constructed from the derivatives of the spins with respect to atomic displacements as in
Eq. (4) in the main text.

Irrep ℏω̃ (meV) s1x s1y s2x s2y

Eg

6.9999
−0.01047 0.00416 −0.01047 0.00416
−0.00416 −0.01047 −0.00416 −0.01047

12.9287
−0.00253 −0.01356 −0.00253 −0.01356
−0.01356 0.00253 −0.01356 0.00253

13.4876
0.00521 −0.00847 0.00521 −0.00847

−0.00847 −0.00521 −0.00847 −0.00521

29.8521
0.00028 −0.00317 0.00028 −0.00317
0.00317 0.00028 0.00317 0.00028

Eu

10.7667
0.00008 −0.00095 −0.00008 0.00095
0.00095 0.00008 −0.00095 −0.00008

14.3259
0.00101 0.00142 −0.00101 −0.00142
0.00142 −0.00101 −0.00142 0.00101

27.8168
0.00251 −0.00057 −0.00251 0.00057

−0.00057 −0.00251 0.00057 0.00251

TABLE SI. Derivative of spin canting of Cr atoms 1 and 2 in Cartesian directions x and y with respect to amplitudes of
Eg and Eu modes in ferromagnetic CrI3. The units for the spin derivatives with respect to mode amplitude are

√
meV/ℏ.

Degenerate mode pairs are labeled by their unperturbed frequencies ℏω̃; the two rows for each entry correspond to the two
modes comprising the pair in a real basis.

S2. CONTRIBUTION OF SPIN CANTING TO ADIABATIC VELOCITY-FORCE COUPLING

In Table SII we compare the velocity-force coupling computed under the Mead-Truhlar (MT) approach (i.e., as-
suming adiabatic electron dynamics), using the G matrix obtained from the the full wave function Berry curvature
as in Eq. (3) of the main text (labeled “W”), with the G matrix obtained from the spin-Berry approximation of
Eq. (4) of the main text (labeled “S”). Modes are labeled by their irrep and frequency as determined only from the
IFC matrix (ω̃). For each pair we show the magnitude of the matrix element between the degenerate modes (Gij)
and frequency splitting ∆ω. Deviations between matrix elements and frequency splitting occur only when G induces
mixing between the degenerate subspaces. We see that indeed, the spin-Berry contribution accounts for the majority
of velocity-force coupling. For the three lowest-frequency Eg modes and the Eu mode near 14 meV, the agreement is
excellent, within 1%. For the highest-frequency Eg mode and the other two Eu modes, the spin-Berry contribution
has a discrepancy of 25-43%. This indicates that other terms, such as the “phonon-only Berry curvature” resulting
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from atomic displacements at fixed spins, may have a significant contribution. In any case, within the MT theory, the
splittings of the highest-frequency Eg mode and all of the Eu modes are quite small, so the error in absolute terms is
not large.

MT (W) MT (S)
Irrep ℏω̃ (meV) ℏḠij (meV) ℏ∆ω (meV) ℏḠij (meV) ℏ∆ω (meV)
Eg 6.9999 0.3825 0.3820 0.3808 0.3803

12.9287 0.5685 0.5270 0.5712 0.5293
13.4876 0.2948 0.3368 0.2968 0.3391
29.8521 0.0243 0.0244 0.0305 0.0306

Eu 10.7667 0.0043 0.0043 0.0027 0.0027
14.3259 0.0090 0.0090 0.0091 0.0091
27.8168 0.0349 0.0349 0.0199 0.0199

TABLE SII. Comparison of velocity-force matrix elements (Ḡij = η†
iGηj) and frequency splitting (∆ω) of Eu and Eg zone

center phonon modes in CrI3 computed with Berry curvatures obtained from wavefunction overlaps (W) and with Berry
curvatures obtained by the solid angle swept out by magnetic moments on the Cr sites (S). Modes are labelled by their irrep
and frequency determined only from the interatomic force constants (ℏω̃).

S3. FREQUENCIES OF ALL MODES

In the spin-phonon model (SP) of Eq. (5) the γ parameter is related to the magnitude of the Ḡ matrix elements

coupling degenerate modes i and j by γ = ωm

√
SḠij . Here the natural choice for the Ḡij value from which to

obtain γ is that of the spin-Berry approximation, as γ is really defined in terms of spin-phonon coupling. We use
experimental magnon frequencies of 0.3 (acoustic) and 17 meV (optical), from Ref. [S4]. We note that other magnon
frequencies for CrI3 are reported in the literature [S5]. In our model, choosing a different value simply corresponds to
changing ωm in Eq. (6). Though this does not change the qualitative conclusions, it may have a quantitative effect,
since the energy difference between a given degenerate phonon mode and the magnon it couples to is a significant
factor in the magnitude of the splitting (c.f., Fig. 2). It is in general possible for a system to have a nonzero MT term
even when evaluated at fixed spin, as well as a distinct γ coupling to spin degrees of freedom; this will be explored
in subsequent work. While the SP values presented here incorporate nonadiabatic effects not present in the nuclear
MT theory, they do not include any coupling of modes outside the degenerate subspace (that is, there is no mixing
between modes with distinct ω̃).

In order to present the effects of these different levels of approximation independently, we consider four possible
G matrices for MT (labeled W, w, S, and s) and two possible G matrices for SP (w and s). As above, W and S
correspond to G matrices obtained using Eq. (3) and Eq. (4) of the main text, respectively. Results labeled “w” and
“s” correspond to setting all couplings between nondegenerate ω̃ equal to zero in “W” and “S” G matrices respectively.
In Table SIII we give the frequencies of all of the optical modes (including the singly-degenerate ones), from the IFC
matrix only (ℏω̃), with adiabatic Mead-Truhlar (MT), and in the spin-phonon model (SP), for each of these cases.

S4. ANGULAR MOMENTUM OF CHIRAL PHONONS

In the main text we discussed the fact that including TRS breaking via G in the equations of motion resulted in
chiral phonons with well-defined angular momenta. From the symmetry of CrI3, specifically the three-fold rotation
axis in the out-of-plane z direction, the total angular momentum of a normal mode can only have z components. For

mode n, the angular momentum is found via l
(n)
z = 2ℏ

∑
j mjIm[η∗n(jx)ηn(jy)][S6, S7], where j runs over the atomic

sublattices and mj is the mass of nucleus j. If we neglect G in Eq. (2), then the angular momentum of modes in
a degenerate subspace spanned by (η̃1, η̃2) depends on the basis we choose. Clearly, lz vanishes in the real basis η̃n
introduced above, while a complex “circularly polarized” combination of degenerate modes of the form η′± = η̃1 ± iη̃2
will have equal and opposite lz (since we are at the Γ point [S8]), with the magnitude determined by the mode
displacement patterns. Neglecting terms in the Ḡ matrix that mix different degenerate subspaces, the chiral modes
after splitting will have exactly the eigendisplacements η′±. Such mixing is neglected in the spin-phonon model of
Eq. (6), where we are working in the context of a model that couples a single pair of degenerate phonons with the
magnon degrees of freedom. At this level, the phonon parts of the eigenvectors are also identical with their uncoupled
(circularly polarized) counterparts, so that the nuclear angular momentum is unchanged.
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FIG. S1. Schematic of chiral trajectories of selected zone-center phonon modes in a single layer of bulk CrI3. In the presence
of time-reversal symmetry breaking, such phonons occur at distinct frequencies.

Consider, for example, the green Eg mode in Fig. 1(b) of the main text with unperturbed frequency ℏω̃ = 13.5 meV.
The angular momentum of this mode mode is due to the in-plane motion of iodine atoms. Choosing the two degenerate
modes η̃x and η̃y to involve real displacements of I atoms moving in the x and y directions respectively, neither of
these modes has a non-zero angular momentum by itself. However, the complex circularly polarized combination
η′± = (η̃x ± iη̃y)/

√
2, which corresponds to the circular displacement patterns shown in Fig. S1 clearly has a finite lz.

In Fig. 1(c) of the main text, we plot the angular momentum of the modes after including the velocity-force coupling,
with the color corresponding to the mode on the right side of Fig. 1(b). For the Eg modes near 13 meV [green and
orange in Fig. 1(b)] an analysis of the displacement patterns and angular momentum of the split modes is complicated
by the fact that all four modes can mix [unlike the higher-frequency split mode and the gray Eu mode above it in
Fig. 1(b)]. Thus the angular momentum contributions seen in Fig. 1(c) are mixed between these modes.

A large velocity-force coupling does not necessarily result in a large phonon angular momenta after splitting,

ℏω̃ MT (W) MT (w) SP (w) MT (S) MT (s) SP (s)
6.9999 6.8021 6.8113 6.9996 6.8030 6.8122 6.9996
6.9999 7.1841 7.1938 7.0003 7.1832 7.1929 7.0003
8.1265 8.1265 8.1265 8.1265 8.1265 8.1265 8.1265
9.9535 9.9535 9.9535 9.9535 9.9535 9.9535 9.9535

10.7667 10.7645 10.7645 10.7575 10.7653 10.7653 10.7608
10.7667 10.7688 10.7688 10.7646 10.7680 10.7680 10.7653
11.3471 11.3471 11.3471 11.3471 11.3471 11.3471 11.3471
12.9287 12.6100 12.6475 12.9285 12.6082 12.6462 12.9285
12.9287 13.1369 13.2161 12.9288 13.1375 13.2174 12.9288
13.4876 13.3989 13.3410 13.4875 13.3983 13.3400 13.4875
13.4876 13.7357 13.6358 13.4877 13.7374 13.6368 13.4877
14.3259 14.3214 14.3214 14.2924 14.3213 14.3213 14.2919
14.3259 14.3304 14.3304 14.3230 14.3305 14.3305 14.3230
16.5013 16.5013 16.5013 16.5013 16.5013 16.5013 16.5013
16.6023 16.6023 16.6023 16.6023 16.6023 16.6023 16.6023
26.5081 26.5081 26.5081 26.5081 26.5081 26.5081 26.5081
27.8168 27.7993 27.7993 27.8127 27.8068 27.8068 27.8145
27.8168 27.8342 27.8342 27.8335 27.8267 27.8267 27.8263
29.8521 29.8407 29.8400 29.8521 29.8376 29.8369 29.8521
29.8521 29.8650 29.8643 29.8521 29.8681 29.8674 29.8521
31.7361 31.7361 31.7361 31.7361 31.7361 31.7361 31.7361

TABLE SIII. Frequencies in meV of optical phonon modes of ferromagnetic CrI3 at the zone-center computed with different
levels of theory. ℏω̃ labels frequencies computed using only the force constant matrix. MT refers to frequencies computed
within the adiabatic velocity-force, or Mead-Truhlar formalism. SP refers to frequencies computed in the spin-phonon model.
Labels W, w, S, and s refer to different couplings used in each calculation as explained in Sec. S3.
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as seen for the case the lowest two Eg modes [blue curves in Fig. 1(b) of the main text]. The relatively modest
angular momentum of these modes [see Fig. 1(c) of the main text] is a result of the fact that the motions of the
real eigendisplacements before the inclusion of the G perturbation involve out-of-plane motions of I atoms, not just
in-plane motions like those depicted in Fig. S1. This is allowed by symmetry since individual atoms may have in-plane
angular momentum components lx and ly, as long as these components sum to zero over all atoms. The resulting lz
is then significantly reduced compared to the green 13.5 meV Eg mode. Similar considerations apply to other modes;
thus the out-of-plane components in the eigenvectors of the Eg (and Eu) modes directly lead to a lower magnitude of
the total mode angular momentum. Note that even though the blue Eg mode is quite isolated in frequency compared
to the other Eg modes, the asymmetry of lz of the modes after splitting indicates significant mixing with these other
modes.

Finally, we can see in Fig. 1(c) of the main text that higher frequency modes tend to have higher angular momentum.
This is likely due to the fact that the in-plane vibrations in CrI3 tend to have higher frequency, and, as pointed out
above, only in-plane displacements contribute to lz.

S5. COMPUTATIONAL DETAILS

We perform calculations on CrI3 in the ferromagnetic ground state using the vasp code [S9–S11], the local density
approximation exchange-correlation functional [S12], and projector-augmented wave potentials [S13]. Semicore (3s,
3p) and (5s, 5p) states are included in the valence for Cr and I respectively. A 5× 5× 5 Monkhorst-Pack grid [S14] is
used to sample the Brillouin zone, and the energy cutoff for the plane-wave basis set is 520 eV. Spin-orbit coupling,
which is essential to the physics described here, is included in all calculations.

The canting of spins at localized atomic sites induced by lattice perturbations are utilized by both the spin-Berry
approximation for the adiabatic velocity-force coupling [Eq. (4) in the main text] and the non-adiabatic spin-phonon
model [Eq. (5) in the main text]. We use the procedure implemented in vasp to obtain local magnetic moments by
integrating the magnetization inside a sphere centered on each Cr site. The spin canting values used to parameterize
Eqs. (4) and (5) are approximated as the differences in these local magnetic moments. We set a sphere radius of
1.165Å, the recommended value specified in the vasp pseudopotential for Cr.

Since the velocity-force terms are dominated by canting of local magnetic moments the results are not significantly
impacted by k-mesh sampling. In Table SIV we demonstrate this by comparing the frequency splittings of two
representative modes (both in the spin-phonon and MT approach) for k-meshes of 5× 5× 5, 7× 7× 7, and 9× 9× 9.
Note that small deviation from these 5 × 5 × 5 results and those presented in Table I of the main text is due to the
fact that the k-mesh convergence test was done with a less strict criteria for convergence of the magnetic moment
direction in order to make it computationally tractable.

S6. SPIN PHONON MODEL

An effective spin-phonon model was presented in Eq. (5) of the main text with equations of motion given in Eq. (6).
The coupling between spin and phonon degrees of freedom is given as γ = ∂2E/∂x∂sx. Here we have made use of
the freedom in basis choice for the two degenerate phonon modes to simplify the presentation. Any 2 × 2 unitary
rotation on the eigenvectors of the modes leaves their frequencies unchanged; in Eq. (5) of the main text this basis
was chosen such that the eigenvectors are real and the xsy and ysx terms vanish. Note that due to C3 symmetry

ℏω (meV) 6.9999 (Eg) 14.3259 (Eu)
theory MT SP MT SP

5× 5× 5 3.779×10−1 6.918×10−4 8.328×10−3 2.912×10−2

7× 7× 7 3.779×10−1 6.911×10−4 8.321×10−3 2.886×10−2

9× 9× 9 3.777×10−1 6.912×10−4 8.273×10−3 2.880×10−2

TABLE SIV. Comparison of splitting for a single Eg and Eu mode with different k-mesh samplings of 5× 5× 5, 7× 7× 7, and
9× 9× 9. Results are presented with both the Mead-Truhlar (MT) approach and the spin-phonon (SP) model.
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∂2E/∂x∂sx = ∂2E/∂y∂sy in any basis where the phonon eigenvectors are real.

H =
1

2
(p2x + p2y) +

1

2
ω̃2(x2 + y2)

+
1

2
α(s2x + s2y) + γ(xsx + ysy).

(S7)

Semi-classical equations of motion for this coupled spin-phonon Hamiltonian can be obtained from the time dependence
of the expectation values of the spin and phonon coordinates in the Heisenberg picture, or equivalently by treating
Eq. (5)as a classical Hamiltonian with the appropriate Poisson brackets for the spin degrees of freedom [S15]. The time
dependence of an operator O expectation value in the Heisenberg picture of a Hamiltonian with no time dependence
is given by is given by d

dt ⟨O⟩ = i
ℏ [H,O]; in the following semi-classical approach we will drop the ⟨. . .⟩. Utilizing the

commutators

[x, px] = iℏ [y, py] = iℏ [sx, sy] = iℏS−1sz (S8)

we take sz ≈ 1 since we are considering small tilts of the spins from their ground state. Carrying out the commutation
relations to find the time derivative of the expectation value for each x, y, px, py, sx, sy and moving to circularly
polarized coordinates defined as

x± = x± iy p± = px ± ipy s± = sx ± isy (S9)

the following equations of motion are obtained

ẋ± = p±

ṗ± = −ω̃2x± − γs±

ṡ± = ∓iωms± ∓ iS−1γx±

(S10)

where ωm = α/S. Examining solutions where d/dtO = −iω⟨O⟩ the above equations reduce to Eq. (6) from the main
text.

In the adiabatic MT approach the strong coupling between Eg phonon modes is dominated by the spin-Berry term
associated with unrealistically large induced tilts of the spins. In the non-adiabatic theory, we have represented the
dynamic spin tilts explicitly, and neglected any direct interaction between phonon modes of different frequency. To
understand this approximation, we can consider treating the magnon-phonon interaction as a perturbation. Letting
each pair of unperturbed degenerate phonon modes be expressed in a “circularly polarized” basis, each mode will
couple directly to magnon states leading to a frequency splitting that is quadratic in the spin-phonon coupling.
Interactions between phonon modes of different frequencies occur indirectly through the magnon channel, so that
their contributions to the mode splitting come in only at fourth order in the coupling. Thus, we expect mixing
between phonon modes of different frequency to have little impact on the splittings in the non-adiabatic theory.
While we expect such mixing to be small, it can be accounted for by treating simultaneously the interaction of all
phonon modes with the magnons. A more general treatment of the problem that explicitly includes these and other
effects will be the topic of a future publication.
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