# Supplemental Material: Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe 

Daniel Gosálbez-Martínez, ${ }^{1,2}$ Ivo Souza, ${ }^{1,3}$ and David Vanderbilt ${ }^{4}$<br>${ }^{1}$ Centro de Física de Materiales, Universidad del País Vasco, 20018 San Sebastián, Spain<br>${ }^{2}$ Donostia International Physics Center, 20018 San Sebastián, Spain<br>${ }^{3}$ Ikerbasque Foundation, 48013 Bilbao, Spain<br>${ }^{4}$ Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

Note: This PDF document contains a large number of pages and figures, and is best viewed electronically. By flipping pages in single-page (or fullscreen) mode a simple animation effect is obtained for each sequence of snapshots.

## I. CHIRAL TOUCHING BETWEEN FERMI SHEETS INDUCED BY MAGNETIZATION PRECESSION

Figure S1 shows the Fermi contours of bands nine and ten of bcc Fe on the $\Gamma \mathrm{NH}\left(k_{z}=0\right)$ plane in Fig. 3, calculated with the magnetization pointing along [001]. The blow-up on the right shows the gluing-together of sheets 9 and $10_{2}$ at two separate points along a degeneracy loop protected by mirror symmetry, see Sec. VI.B.1. The gluings with sheet 9 render ill-defined the Chern numbers of the low-symmetry pockets $\left(10_{2}, 10_{3}, 10_{4}, 10_{5}\right)$, as discussed in Sec. VI.B.3.


FIG. S1. Left: Fermi contours of bands nine and ten on the $\Gamma$ NH Brillouin-zone slice at $k_{z}=0$, with the magnetization pointing along [001] (polar angle $\theta=0$ ). Right: Detail showing the gluing points between sheets 9 and $10_{2}$ along a nodal ring. The solid-line portion of the nodal ring is below the Fermi level, and the dashed-line portions are above.

In Fig. S2 the magnetization has been tilted by $20^{\circ}$ towards the [100] axis, breaking the mirror symmetry. As a result the nodal rings have been reduced to a few Weyl points, and the previously glued-together Fermi sheets became isolated, with well-defined Chern numbers given by the enclosed chiral charges (Sec. VI.B.3). For example, pocket $10_{2}$ has Chern number +1 , because it encloses a single touching point of negative chirality with the band below.


FIG. S2. Left: Fermi contours of bands nine and ten on the $\Gamma$ NH Brillouin-zone slice at $k_{z}=0$, with the magnetization tilted by $20^{\circ}$ towards the [100] axis. Right: Detail showing the now-detached sheets 9 and $10_{2}$. The nodal ring has evaporated, leaving behind a few remnant Weyl points represented by the colored disks, with chiralities $\chi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S3. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S4. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S5. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S6. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S7. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S8. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S9. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S10. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S11. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S12. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S13. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S14. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S15. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S16. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S17. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S18. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

The series of snapshots in Figs. S3-S19 depict the evolution of sheets 9 and $10_{2}$, and the motion of nearby remanant Weyl points (WPs), as the tilted magnetization precesses around [001] ( $\phi$ is the azimuthal precession angle). In order to see clearly the touching event between the two sheets at $\phi \simeq 46^{\circ}$, the Fermi contours are not drawn at exactly $k_{z}=0$ : in each snapshot the $k_{z}$ coordinate of the contours is pinned to the WP that joins the two sheets at the critical angle (in practice $k_{z}$ varies only slightly from one snapshot to the next, never deviating by more than $0.004 \times 2 \pi / a$ from $k_{z}=0$ ). The touching event at $\phi \simeq 46^{\circ}$ leads to a transfer of Chern number between the two sheets, after which the Chern number of pocket $10_{2}$ vanishes as it now encloses two WPs of opposite chirality. The two WPs merge together and annihilate at $\phi \simeq 50^{\circ}$.


FIG. S19. Upper panel: Fermi contours of bands nine and ten, calculated with the magnetization tilted by $20^{\circ}$ (the azimuthal angle $\phi$ is indicated by the dashed red line in the lower panel). The remnant Weyl points are displayed as colored disks, and the evaporated nodal ring is shown as a guide to the eye. Lower panel: Chern number of pocket $10_{2}$ versus $\phi$.

## II. CHIRAL TOUCHING BETWEEN FERMI SHEETS UPON VARYING THE FERMI LEVEL

All the calculations presented in this section were done with the magnetization pointing along the easy axis [001]. Figure S20 shows the Fermi contours of bands nine and ten on the $\Gamma$ NP ( $k_{x}=k_{y}$ ) plane in Fig. 3. Pockets 9 and $10_{1}$ have zero Chern number, and pockets $10_{6}$ and $10_{7}$ have Chern numbers -1 and +1 (see Table III). The series of snapshots in Figs. S21-S25 depict the touching event between sheets 9 and $10_{7}$ upon increasing the Fermi level, leading to a transfer of Chern number between them (Sec. VI.C.2).


FIG. S20. Left: Fermi contours of bands nine and ten on the $\Gamma$ NP Brillouin-zone slice at $k_{x}=k_{y}$, evaluated for the true (unshifted) Fermi level. Right: Detail showing the region of closest approach between sheets 9 and $10_{7}$.


FIG. S21. Upper-left panel: Energy bands along the line $\Delta$ in Fig. 3, close to the electron pocket $10_{7}$ [see also Fig. 13(a)]. Energies are measured from the true Fermi level. Upper-right panel: Chern number of pocket $10_{7}$ versus the Fermi-level shift. Lower panel: Fermi contours inside the red square in Fig. S 20 for $\Delta E_{F}=0.000 \mathrm{eV}$ (the dashed red line in the upper panels). The red and green disks represent Weyl nodes between bands nine and ten, and $\chi$ is the chiral charge.


FIG. S22. Upper-left panel: Energy bands along the line $\Delta$ in Fig. 3, close to the electron pocket $10_{7}$ [see also Fig. 13(a)]. Energies are measured from the true Fermi level. Upper-right panel: Chern number of pocket $10_{7}$ versus the Fermi-level shift. Lower panel: Fermi contours inside the red square in Fig. S 20 for $\Delta E_{F}=0.035 \mathrm{eV}$ (the dashed red line in the upper panels). The red and green disks represent Weyl nodes between bands nine and ten, and $\chi$ is the chiral charge.


FIG. S23. Upper-left panel: Energy bands along the line $\Delta$ in Fig. 3, close to the electron pocket $10_{7}$ [see also Fig. 13(a)]. Energies are measured from the true Fermi level. Upper-right panel: Chern number of pocket $10_{7}$ versus the Fermi-level shift. Lower panel: Fermi contours inside the red square in Fig. S 20 for $\Delta E_{F}=0.070 \mathrm{eV}$ (the dashed red line in the upper panels). The red and green disks represent Weyl nodes between bands nine and ten, and $\chi$ is the chiral charge.


FIG. S24. Upper-left panel: Energy bands along the line $\Delta$ in Fig. 3, close to the electron pocket $10_{7}$ [see also Fig. 13(a)]. Energies are measured from the true Fermi level. Upper-right panel: Chern number of pocket $10_{7}$ versus the Fermi-level shift. Lower panel: Fermi contours inside the red square in Fig. S 20 for $\Delta E_{F}=0.105 \mathrm{eV}$ (the dashed red line in the upper panels). The red and green disks represent Weyl nodes between bands nine and ten, and $\chi$ is the chiral charge.


FIG. S25. Upper-left panel: Energy bands along the line $\Delta$ in Fig. 3, close to the electron pocket $10_{7}$ [see also Fig. 13(a)]. Energies are measured from the true Fermi level. Upper-right panel: Chern number of pocket $10_{7}$ versus the Fermi-level shift. Lower panel: Fermi contours inside the red square in Fig. S 20 for $\Delta E_{F}=0.140 \mathrm{eV}$ (the dashed red line in the upper panels). The red and green disks represent Weyl nodes between bands nine and ten, and $\chi$ is the chiral charge.

