
Supplementary Material for

“Molecular Mott states in deficient spinel GaV4S8”

Heung-Sik Kim,1, 2 Kristjan Haule,1 and David Vanderbilt1

1Department of Physics and Astronomy,

Rutgers University, Piscataway, NJ 08854, USA
2Department of Physics, Kangwon National University, Chuncheon 24341, Korea

1



A. Density functional theory calculations

For unit cell optimizations (cell volume and shape) and relaxations of initial internal coordi-

nates, the Vienna ab-initio Simulation Package (VASP), which employs the projector-augmented

wave (PAW) basis set [1, 2], was used for density functional theory (DFT) calculations in

this work. 330 eV of plane-wave energy cutoff (PREC=high) and 15×15×15 Γ-centered k-

grid sampling were employed. For the treatment of electron correlations within DFT, several

exchange-correlation functional were employed, including Ceperley-Alder (CA) parametrization

of local density approximation [3], Perdew-Burke-Ernzerhof generalized gradient approximation

(PBE) [4] and its revision for crystalline solids (PBEsol) [5], SCAN meta-GGA functional [6],

DFT+U [7] on top of LDA, PBE, and PBEsol, and HSE06 hybrid functional [8, 9]. 10−4 eV/Å of

force criterion was employed for structural optimizations.

B. Cluster dynamical mean-field theory calculations

A fully charge-self-consistent dynamical mean-field method[10], implemented in DFT + Em-

bedded DMFT (eDMFT) Functional code (http://hauleweb.rutgers.edu/tutorials/) which is com-

bined with WIEN2K code[11], is employed for computations of electronic properties and opti-

mizations of internal coordinates[12]. At the DFT level the Perdew-Wang (PW) local density

approximation is employed, which was argued to yield the best agreement of lattice properties

when combined with DMFT[13]. 15×15×15 Γ-centered k-grid was used to sample the first Bril-

louin zone with RKmax = 7.0. A force criterion of 10−4 Ry/Bohr was adopted for optimizations of

internal coordinates. The cubic lattice parameter was fixed to be the experimental value reported

in Ref. 14.

A continuous-time quantum Monte Carlo method in the hybridization-expansion limit (CT-

HYB) was used to solve the auxiliary quantum impurity problem[15]. For the CT-HYB calcula-

tions, up to 3 × 1010 Monte Carlo steps were employed for each Monte Carlo run. In most runs

temperature was set to be 232K, but in calculations with 8 molecular orbitals (MOs) (T 2⊕E⊕T 1
a

in Fig. 1 in the main text) as the correlated subspace it was increased up to 1160K because of the

increased computational cost. -10 to +10 eV of hybridization window (with respect to the Fermi

level) was chosen, and the on-site Coulomb interaction parameters U and JH for V t2g orbitals

were varied within the range of 6 ∼ 8 eV and 0 ∼ 1.5 eV, respectively. A simplified Ising-type
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(density-density terms only) Coulomb interaction was employed in this work, and it was tested

that the use of full Coulomb interaction yields only quantitative difference in results with MO-T 2

and T 2 ⊕ E (not tested for MO-T 2 ⊕ E ⊕ T 1
a case due to the high cost, see Sec. D). A nominal

double counting scheme was used, with the MO occupations for double counting corrections for

the V4 cluster were chosen to be 1 or 5, depending on the choice of correlated subspace; 1 for

MO-T 2 and T 2 ⊕ T 1
a , and 5 for other cases with including E in the correlated subspace.

In the CT-HYB calculations of the T 2 ⊕ E ⊕ T 1
a MO subspace, MO multiplet states with the

occupancy n ≤ 7 were kept (26,333 states out of 48 = 65,536 states in the 8 orbital Fock space)

to reduce the computational cost, where the average impurity occupancy was ∼ 5. It was checked

that the sum of probabilities for n ≥ 8 configurations are less than 1 percent. The high-frequency

tail of the Green’s function was calculated via the Hubbard-I approximation.

We comment that, due to the quite small intercluster hybridization, the perturbation order is

small in our CT-HYB formalism, with the average perturbation order being less than 80 for the

case of the largest correlated subspace (T 2 ⊕ E ⊕ T 1
a ). In addition, it is shown below that the

cubic symmetry of the V4 cluster enforces the form of Coulomb interaction matrix between the

molecular orbitals to be identical to that of atomic orbitals, at least for the T 2 molecular orbital.

Hence the negative sign problem in our CT-HYB formalism is suppressed, which greatly facilitates

the computation in addition to the small perturbation order.

For the computational resources, we used 8 Intel Xeon E5-2680 v4 CPUs (2.4 GHz, total

112 CPU cores) and about 400GB of memory for the case of the largest correlated subspace

(T 2 ⊕E ⊕ T 1
a ). Even with the use of a high temperature T = 1160K and truncation of superstates

in the CT-HYB stage, employing the full Coulomb interaction or a lower temperature such as T =

780K requires allocation of a memory size that exceeds the limitation of our hardware (512 GB).

For the continuation of this study, either larger computational resources or more efficient ways to

treat the less-occupied T 1
a orbital would be necessary.

As for possible inter-site, intra-cluster Coulomb repulsion terms, the screened Coulomb repul-

sion in solid state compounds can be fitted to a Yukawa-like form V (r) ' e−λr/εr, and by com-

paring the unscreened and screened Coulomb parameters (U and J), one can obtain the screening

length λ and electric permeability ε for a given system [16]. The values of unscreened U and

J can be directly computed by using the local orbital projectors, and it was shown in a recent

study that reasonable values of the screened U and J for the 3d transition metal elements in our

DFT+DMFT implementation are 10 and 1 eV respectively [17]. With these we get λ ' 0.52 and
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ε ' 1.09, which yields
∫
dr
∫
dr′ρ(r)ρ(r′) e

−λ|r−r′−R|

ε|r−r′−R| ' 0.15 eV (|R| being the intra-cluster V-V

distance). This value is an order of magnitude smaller than the intra-cluster hybridization and

on-site Coulomb interaction, so we conclude that the effect of intra-cluster, inter-site Coulomb

repulsion is insignificant.

C. Projecting the on-site Coulomb interactions onto the MO subspace

Note that the U and JH are parameters defined for the atomic orbitals, which should be unitary

transformed and projected onto the MOs for the impurity solver. More generally, the Coulomb

repulsion matrix elements Um1,m2,m′1,m
′
2

at an atomic site have the form,

Um1,m2,m′1,m
′
2

=
∑
m,k

4

2π + 1
〈Ylm1|Ykm|Ylm′1〉〈Ylm2|Y ∗km|Ylm′2〉F

k, (1)

where F k are nonzero only for k = 0, 2, 4 for d-orbitals (l = 2) and 〈Ylm1|Ykm|Ylm′1〉 are Clebsch-

Gordan coefficients. We introduce the MO states

|Dα〉 =
∑
im

(Q†)imα |Y i
lm〉, (2)

where Q is the unitary transform between the MO and the atomic orbitals, and α and i = 1, · · · , 4

are the MO orbital and atomic site indices respectively. Then the Coulomb repulsion matrix ele-

ments for the MO states Uα1,α2,α′1,α
′
2

can be written as

Uα1,α2,α′1,α
′
2

=
∑
i,m,k

4

2π + 1
〈Dα1 |Y i

km|Dα′1
〉〈Dα2|Y i∗

km|Dα′2
〉F k (3)

∼ (QQQ†Q†)
i{m}
{α} U

i
{m}. (4)

Note that the inter-site Coulomb interactions were ignored here, which can be considered insignif-

icant in 3d transition metal compounds.

Below we show explicitly how the on-site Coulomb interactions projected onto the T 2 triplet

subspace should look like. As shown in Fig. 1 in the main text, electronic structure near the Fermi

level ([-1eV, 1eV] window with respect to the Fermi level) is dominated by the atomic t2g orbitals

of V due to the distorted but prevalent cubic VS6 octahedral environment. Therefore choosing 12

t2g orbitals as our main interest is a reasonable choice. For simplicity we chose the Kanamori form
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of the Coulomb interaction, which is written in a normal-ordered form as follows;

ĤK = −
∑
i

[
(U − 2J)

∑
mm′

d̂†im↑d̂
†
im′↓d̂im↑d̂im′↓

+2J
∑
m

d̂†im↑d̂
†
im↓d̂im↑d̂im↓

+
U − 3J

2

∑
m6=m′,σ

d̂†imσd̂
†
im′σd̂imσd̂im′σ

−J
∑
m6=m′

d̂†im↑d̂
†
im′↓d̂im↓d̂im′↑

−J
∑
m6=m′

d̂†im↑d̂
†
im↓d̂im′↓d̂im′↑

]
. (5)

Here i, σ, and m, m′ are site, spin, and orbital indices for Cartesian t2g orbitals (dxz,yz,xy) respec-

tively.

Now we introduce the MO creation/annihilation operators;

d̂imσ =
∑
α

Qα
imD̂ασ (6)

d̂†imσ =
∑
α

(Q†)imα D̂
†
ασ (7)

where α runs over the 12 molecular orbitals and we are ignoring spin-orbit coupling (SOC) at this

stage. Qα
im is the 12×12 transformation matrix from the atomic t2g to the MO spaces. In terms of

global coordinates (using the same cartesian coordinates for all V sites) it is tabulated in Table I.

Note that in actual calculations, since the four V sites are equivalent to each other up to a symmetry

operation, Q should be unitarily transformed to a local coordinate system at each V site.

Plugging them into ĤK yields,

ĤK = −
∑
αβγδ

[
(U − 2J)

∑
i

{∑
mm′

(Q†)imα (Q†)im
′

β Qγ
imQ

δ
im′

}
D̂†α↑D̂

†
β↓D̂γ↑D̂δ↓

+2J
∑
i

{∑
m

(Q†)imα (Q†)imβ Q
γ
imQ

δ
im

}
D̂†α↑D̂

†
β↓D̂γ↑D̂δ↓

+
U − 3J

2

∑
i

{∑
m6=m′

(Q†)imα (Q†)im
′

β Qγ
imQ

δ
im′

}∑
σ

D̂†ασD̂
†
βσD̂γσD̂δσ

−J
∑
i

{∑
m6=m′

(Q†)imα (Q†)im
′

β Qγ
imQ

δ
im′

}
D̂†α↑D̂

†
β↓D̂γ↓D̂δ↑

−J
∑
i

{∑
m6=m′

(Q†)imα (Q†)imβ Q
γ
im′Q

δ
im′

}
D̂†α↑D̂

†
β↓D̂γ↓D̂δ↑

]
. (8)
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Irreps No. Coeff.

V1 (0.4,0.4,0.4) V2 (0.4,0.6,0.6) V3 (0.6,0.6,0.4) V4 (0.6,0.4,0.6)

dxy dyz dxz dxy dyz dxz dxy dyz dxz dxy dyz dxz

A 1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1

E 1 +1 +w1 +w2 -1 +w1 -w2 +1 -w1 -w2 -1 -w1 +w2

2 +1 +w2 +w1 -1 +w2 -w1 +1 -w2 -w1 -1 -w2 +w1

T 2 1 +1 0 0 +1 0 0 +1 0 0 +1 0 0

2 0 +1 0 0 +1 0 0 +1 0 0 +1 0

3 0 0 +1 0 0 +1 0 0 +1 0 0 +1

T 1
a 1 0 +1 -1 0 -1 -1 0 -1 +1 0 +1 +1

2 +1 0 -1 -1 0 +1 -1 0 -1 +1 0 +1

3 +1 -1 0 +1 +1 0 -1 -1 0 -1 +1 0

T 1
b 1 0 +1 +1 0 -1 +1 0 -1 -1 0 +1 -1

2 +1 0 +1 -1 0 -1 -1 0 +1 +1 0 -1

3 +1 +1 0 +1 -1 0 -1 +1 0 -1 -1 0

TABLE I. Transformation matrix Qα
im from atomic t2g to molecular orbital basis before normalization,

where w = e2πi/3.

In the above expression, product of Qs can be rewritten as(
Q† ⊗Q†

)imm′
αβ

≡ (Q†)imα (Q†)im
′

β (9)

(Q⊗Q)γδimm′ ≡ Qγ
imQ

δ
im′ , (10)

and, since we are considering local Coulomb interactions, we are taking direct products of i-

subsections (i=1,· · · ,4) of Q and Q† matrices, so that Q ⊗ Q (and Q† ⊗ Q†) has dimension of

9×144 for each i when we are considering the full 12-dimensional molecular orbital space.

Since we don’t include SOC and the transformation matrices does not have spin indices,

all (Q† ⊗ Q†) · (Q ⊗ Q) terms are free of spin components and can be classified into four

different kinds; i)
∑

mm′

(
Q† ⊗Q†

)imm′
αβ

(Q⊗Q)γδimm′ , ii)
∑

m

(
Q† ⊗Q†

)imm
αβ

(Q⊗Q)γδimm, iii)∑
m 6=m′

(
Q† ⊗Q†

)imm′
αβ

(Q⊗Q)γδimm′ , and iv)
∑

m6=m′
(
Q† ⊗Q†

)imm
αβ

(Q⊗Q)γδim′m′ . Here case
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iii) is just the subtraction of ii) from i).

Computation of the transformation matrix is straightforward, but now all different molecular

orbitals can mix even in a simple density-density interaction form (the first three terms in ĤK).

However, things become much simpler in the most basic case of considering only the T 2 irrep

as the correlated subspace. In that case, all Qi (and Q†,i) become 3×3 identity matrix (with

normalization factor 1/2), so that all Q ⊗ Q and Q† ⊗ Q† become 9×9 identity matrix with a

prefactor 1/4, so that

i)
∑
imm′

(
Q† ⊗Q†

)imm′
αβ

(Q⊗Q)γδimm′ →
1

4
δαγδβδ, (11)

ii)
∑
im

(
Q† ⊗Q†

)imm
αβ

(Q⊗Q)γδimm →
1

4
δαγδβδδαβ, (12)

iii)
∑

i,m 6=m′

(
Q† ⊗Q†

)imm′
αβ

(Q⊗Q)γδimm′ →
1

4
δαγδβδ(1− δαβ), (13)

iv)
∑
m 6=m′

(
Q† ⊗Q†

)imm
αβ

(Q⊗Q)γδim′m′ →
1

4
δαβδγδ(1− δαγ). (14)

Hence ĤK , projected onto the MO-T 2 subspace, becomes

ĤMO
K = −1

4

[
(U − 2J)

∑
mm′

D̂†m↑D̂
†
m′↓D̂m↑D̂m′↓

+2J
∑
m

D̂†m↑D̂
†
m↓D̂m↑D̂m↓

+
U − 3J

2

∑
m6=m′,σ

D̂†mσD̂
†
m′σD̂mσD̂m′σ

−J
∑
m6=m′

D̂†m↑D̂
†
m′↓D̂m↓D̂m′↑

−J
∑
m6=m′

D̂†m↑D̂
†
m↓D̂m′↓D̂m′↑

]
. (15)

Note that ĤMO
K has the exactly same form with the atomic ĤK , except the prefactor 1/4 because

of the equidistribution of the MO-T 2 wavefunctions all over the four V sites.

D. Choice of Coulomb interactions and V4 clustering

To check the reliability of employing Ising-like (density-density type) Coulomb interactions in

our study, we compare our results presented in the main text with those employing full Coulomb
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FIG. S1. dVint/d
V
ic from different choices (Ising-like and full Coulomb) of on-site Coulomb interactions as

a function of JH, where MO-{T 2 ⊕ E} is employed as the correlated orbitals. Note that two results show

similar dVint/d
V
ic values and same tendency with respect to the increasing JH.

interactions. For the comparison we chose the MO-{T 2 ⊕ E} as our correlated subspace because

computational costs using full Coulomb interactions in the MO-{T 2 ⊕ E ⊕ T 1
a } configuration

exceeds our hardware limit. We would like to argue that, if the tendency of dVint/d
V
ic as a function

of JH is consistent across both choices of Coulomb interactions in the MO-{T 2⊕E} configuration,

then it should be so in the MO-{T 2 ⊕ E ⊕ T 1
a } setup as well. This is because effects of Hund’s

coupling are most dominant within the MO-{T 2⊕E} subspace, and although the inclusion of the

T 1
a orbital is crucial in obtaining realistic value of dVint/d

V
ic, electron occupation in the T 1

a orbital

remains small (< 0.1) even in the case of JH > 1 eV.

Figure S1 shows the comparison of calculated dVint/d
V
ic between two choices of Coulomb inter-

actions: Ising-like and full. It can be seen that the choice of Coulomb interactions does not make

any qualitative differences. While the choice of Ising-like interactions breaks rotational symmetry

in the magnetic sector and may affect magnetic properties and metal-insulator transition behaviors,

its effects on structural degrees of freedom in our case seems less significant.

E. On-site and inter-site self-energies

In this section the role of the Hund’s coupling is discussed in terms of the real space represen-

tation of the self-energy. Here we focus on the T 2 ⊕ E subspaces and their self-energies. Similar

analysis can be done with other MO subspaces, however, for the purpose of discussing the role of

JH it seems that T 2 ⊕ E should suffice.

8



In our calculations the cluster self-energies are diagonalized within the MO representation.

When back-transformed into the atomic orbital basis representation, on-site (local) and inter-site

(non-local) self-energies within the V4 tetrahedron can be obtained. In the simplest case with the

correlated MO-T 2 triplet only, the form of the self-energy in the atomic representation becomes

simple; Namely, in the four-site real-space representation (four sites ⊗ atomic t2g), all the on-site

and inter-site blocks are enforced to be identical due to the choice of the T 2 correlated orbitals

when the cubic and time-reversal symmetries are present, so that

Σ
[
T 2
]

(ω) ≡ 1

4
Σ̂T 2

(ω)


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 , (16)

where each 3 × 3 block Σ̂T 2
= ΣT 2 × Î3×3 in the atomic t2g space (dxy, dyz, and dxz), Î3×3 is an

identity matrix of dimension 3, and the frequency ω can be either real or imaginary. Note that ΣT 2

is the diagonal self-energy in the T 2-MO representation, and that the prefactor 1
4

in Eq. (16) is the

one appearing in Eq. (15). Here we choose the same global coordinate in defining the t2g orbitals

at all sites, and proper coordinate transforms should be applied to each block when represented in

local coordinates (Σ̂T 2

ij → (Q†)giΣ̂
T 2

ij Qjg, where the transformation Qig is made from the global to

the site-i local coordinates). Fig. S2 plots the real and imaginary parts of ΣT 2 in the real frequency

space, showing a pole in the imaginary part inside the Mott gap.

From this real-space representation of the self-energy, the implication of choosing only the T 2

MO as correlated orbitals becomes clearer; i) it introduces the inter-site self-energy in addition to

the on-site counterpart, and ii) it prevents the correlations from becoming more local by enforcing

the on-site and inter-site self-energies to be identical. The latter, especially, can be a serious issue

when the size of the correlations that favor the formation of the local moments, e.g. the Hund’s

coupling, becomes comparable to that of inter-site hopping.

Next, the form of self-energy in the T 2 ⊕ E is as presented below:

Σ
[
T 2 ⊕ E

]
(ω) = Σ

[
T 2
]

(ω) + Σ [E] (ω), (17)
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FIG. S2. Real (blue) and imaginary (red) part of ΣT 2
(ω) after the analytic continuation from the imaginary

frequency space.

where the T 2-part of the self-energy is shown in Eq. (16). Σ [E] (ω) is as follows;

Σ [E] (ω) ≡


Σ̂11 Σ̂12 Σ̂13 Σ̂14

Σ̂T
12 Σ̂22 Σ̂23 Σ̂24

Σ̂T
13 Σ̂T

23 Σ̂33 Σ̂34

Σ̂T
14 Σ̂T

24 Σ̂T
34 Σ̂44

 . (18)

Here the on-site parts Σ̂ii are

Σ̂ii ≡ ΣE(ω)

(
1

6
Î3×3 +

1

12
∆̂ii

)
, (19)

where ΣE(ω) is the self-energy for the E doublet in the MO representation, and ∆̂ii determines

the direction of the “trigonal crystal fields” to t2g orbitals at each V site, exerted by 1
12

ΣE(ω)∆̂ii.

Namely, if the VS6 octahedron surrounding site 1 is trigonally distorted along the cubic [111]

direction with respect to the global Cartesian coordinate (i.e., if the site 1 and the center of the V4

cluster are on the same [111] line), then

∆̂11 =


0 −1 −1

−1 0 −1

−1 −1 0

 . (20)
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Energy (eV)

Re
 Σ

(ω
) (

eV
)

Im
 Σ

(ω
) (

eV
)

Re ΣT2

Re ΣE

Im ΣT2

Im ΣE

JH = 0 eV JH = 0.5 eV JH = 1.0 eV JH = 1.1 eV

JH = 0 eV JH = 0.5 eV JH = 1.0 eV JH = 1.1 eV

FIG. S3. Real and imaginary part of ΣT 2,E(ω) after the analytic continuation from the imaginary frequency

space. Top and bottom panels depict real and imaginary parts, respectively. From left to right, size of the

Hund’s coupling JH is enhanced (JH = 0, 0.5, 1.0, 1.1 eV). Note that the high-spin configuration is stabilized

at JH = 1.1 eV.

Other ∆̂ii, for a coordinate choice, should be as follows,

∆̂22 =


0 +1 −1

+1 0 +1

−1 +1 0

 , ∆̂33 =


0 +1 +1

+1 0 −1

+1 −1 0

 , ∆̂44 =


0 −1 +1

−1 0 +1

+1 +1 0

 . (21)

Note that this is the coordinate choice that was adopted in this work.
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The inter-site component Σ̂ij has a similar form; Σ̂ij ≡ 1
12

ΣE(ω)Ôij , where

Ô12 =


−2 −1 +1

+1 +2 +1

+1 −1 −2

 , Ô13 =


+2 +1 +1

−1 −2 +1

−1 +1 −2

 , Ô23 =


−2 +1 −1

+1 −2 −1

+1 +1 +2

 ,

Ô23 =


−2 −1 −1

−1 −2 +1

+1 −1 +2

 , Ô24 =


+2 −1 +1

+1 −2 −1

−1 −1 −2

 , Ô34 =


−2 +1 −1

−1 +2 +1

−1 −1 −2

 . (22)

Combining (16-22), the site-orbital resolved self-energies in the T 2 ⊕ E case is as follows.

i) On-site (diagonal blocks), between same orbitals:
[
1
4
ΣT 2

(ω) + 1
6
ΣE(ω)

]
Î3×3,

ii) On-site (diagonal blocks), between different orbitals: 1
12

ΣE(ω)∆̂ii,

iii) Inter-site (i 6= j blocks): 1
4
ΣT 2

(ω)Î3×3 + 1
12

ΣE(ω)Ôij .

Here, we note in passing that 1
12

ΣE is small compared to other terms when JH is not large (< 1 eV),

so that terms i) and iii) are dominant contributions, and that the balance between the terms i) and

iii) determines whether it is locally (on-site) or non-locally (inter-site) correlated. Plugging (22)

into the case iii) above yields an explicit expression of the ij-block of Σ [T 2 ⊕ E]. For example,

the block between the site 1 and 2 is as follows,

Σ
[
T 2 ⊕ E

]
12

=


1
4
ΣT 2−1

6
ΣE − 1

12
ΣE + 1

12
ΣE

+ 1
12

ΣE 1
4
ΣT 2

+1
6
ΣE + 1

12
ΣE

+ 1
12

ΣE − 1
12

ΣE 1
4
ΣT 2−1

6
ΣE

 , (23)

where the plus and minus signs in the diagonal components are colored in blue and red to empha-

size terms where ΣT 2 and ΣE are adding up and cancelling out, respectively. Among the three

diagonal components, the central term (1
4
ΣT 2

+1
6
ΣE) is between the dyz orbitals at V site 1 and 2,

which are forming a strong σ-type direct overlap, while the other two 1
4
ΣT 2−1

6
ΣE are contributing

to the δ-like weak overlap between the dxy,xz orbitals. Interestingly, the inclusion of ΣE (and JH)

affects the inter-site self-energies in an opposite way depending on the orbitals; while the imag-

inary part of 1
4
ΣT 2

+1
6
ΣE is enhanced by the nonzero ΣE (because causal self-energies should

always have negative imaginary parts), it is canceled out in 1
4
ΣT 2−1

6
ΣE . This implies that the

presence of ΣE selectively enhances the singlet moment formation within the stronger σ-bonding,
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while reducing inter-site correlations in other bondings. In addition, depending on the sign of the

real parts of ΣT 2 and ΣE , one can either enhance or suppress the real part of the self-energy.

Fig. S3 show the evolution of ΣT 2,E(ω) as a function of the Hund’s coupling JH. Note that the

relative signs of the real part of ΣT 2,E(ω) tend to be opposite when JH is small, but increasing JH

drives them to be the same. Just after the crossover to the high-spin state happens (JH = 1.1 eV),

both the ReΣT 2,E(ω) show very similar behavior. This is because of the development of the pole

in ΣE , signaling the formation of the E local moments, as shown in the lower panels of Fig. S3.

As the system goes into the high-spin configuration, both the ImΣT 2,E should similarly show a

well-defined pole, then the shapes of ReΣT 2,E(ω) should become similar to each other because

of the Kramers-Kronig relation. Hence 1
4
ΣT 2−1

6
ΣE within Σ [T 2 ⊕ E]ij tends to cancel better

as JH becomes larger. Since the diagonal parts of the inter-site self energies are most dominant

contributions, and we have two 1
4
ΣT 2−1

6
ΣE terms compared to just one 1

4
ΣT 2

+1
6
ΣE , the overall

self-energy correction to the inter-site hopping terms becomes weaker as the Hund’s coupling

becomes enhanced. This is consistent with the observation in the main text that increasing JH

suppresses the degree of V4 clustering, and that while U enhanced the inter-site correlation via

ΣT 2 , JH reduces it by introducing ΣE that cancels ΣT 2 out.
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