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Using path-integral Monte Carlo simulations and anab initio effective Hamiltonian, we study the effects of
quantum fluctuations on structural phase transitions in the cubic perovskite compounds SrTiO3 and
BaTiO3 . We find quantum fluctuations affect ferroelectric~FE! transitions more strongly than antiferrodistor-
tive ~AFD! ones, even though the effective mass of a single FE local mode is larger. For SrTiO3 we find that
the quantum fluctuations suppress the FE transition completely, and reduce the AFD transition temperature
from 130 to 110 K. For BaTiO3 , quantum fluctuations do not affect the order of the transition, but do reduce
the transition temperature by 35–50 K. The implications of the calculations are discussed.

Quantum fluctuations typically have a very important ef-
fect on the structural and thermodynamic properties of ma-
terials consisting of light atoms like hydrogen and helium.
For example, quantum effects introduce large corrections to
the calculated hydrogen density distribution in the Nb:H
system.1 For materials with heavier atoms, however, the
quantum fluctuation can have only a small effect on the dis-
tribution of atomic displacements, and thus typically do not
have a noticeable effect on the structural and thermodynamic
properties of the material. However, exceptions may occur.
As we shall see, the cubic perovskites can exhibit decisive
quantum-fluctuation effects, despite the fact that the lightest
constituent is oxygen. This can occur because these materials
have several competing structures with very small structural
and energetic differences.2

A good example is SrTiO3 . While it has the simple cubic
perovskite structure at high temperature, SrTiO3 goes
through an antiferrodistortive~AFD! transition at 105 K to a
tetragonal phase in which the oxygen octahedra have rotated
in opposite senses in neighboring unit cells. The observed
softening of the ferroelectric~FE! polar phonons with further
reduction of temperature in the range 50–100 K would ap-
pear to extrapolate to a FE transition close to 20 K, but
instead the softening saturates and no such transition is
observed.3 The absence of a true FE transition is suggested to
be suppressed by quantum fluctuations, giving rise to a
‘‘quantum paraelectric’’ phase at very low temperature.4

Some experiments appear to suggest a sharp transition to this
low-temperature phase at about 40 K, perhaps indicating the
formation of some kind quantum coherent state.5,6 However,
until a plausible candidate for the order parameter of the
low-temperature phase is put forward, these ideas must re-
main highly speculative.

These developments have stimulated many theoretical ef-
forts to understand the quantum effects in SrTiO3 .

4,7–9How-
ever, the previous work has all been qualitative or empirical
in approach. Although it was shown that quantum zero-point
motion is capable of suppressing phase transitions,9 a de-
tailed microscopic approach is needed to gain a quantitative
and detailed understanding of the quantum effects at finite
temperature. Recently, anab initio effective-Hamiltonian
scheme has been developed to study structural phase transi-
tions of cubic perovskites. It has been successfully applied to

BaTiO3 ~Refs. 10 and 11! and SrTiO3 ,
12,13 giving good

agreement with experimental observations. Treating atomic
motion classically, it predicted FE phase transitions for
SrTiO3 at low temperature, thus giving indirect support for
the notion that quantum fluctuations~not included in the
theory! must be responsible for the observed absence of a
low-temperature FE phase.

In the present work, we have extended the previous treat-
ment of the first-principles based effective Hamiltonian to
include quantum fluctuations. In particular, we use path-
integral ~PI! quantum Monte Carlo simulations to study the
effect of quantum fluctuations on the structural phase transi-
tions in SrTiO3 and BaTiO3 . For SrTiO3 , we find that the
quantum fluctuations have only a modest effect on the AFD
transition temperature, while the FE transition is suppressed
entirely. We discuss the relative importance of AFD and FE
quantum fluctuations in some detail, and examine the poten-
tial implications of our results for understanding the low-
temperature behavior of the material. For BaTiO3 , in which
the FE transitions occur at higher temperature, we find that
the quantum effects are less dramatic.

We start by reviewing the effective Hamiltonian and its
construction. Two approximations are involved. First, since
both the FE and AFD transitions involve only small struc-
tural distortions, we represent the energy surface by a Taylor
expansion around the high-symmetry cubic perovskite struc-
ture, including up to fourth-order anharmonic terms. Second,
because only low-energy distortions are important to the
structural properties, we include only three such distortions
in our expansion: the soft FE mode, the AFD mode, and an
elastic mode. These are represented, respectively, by local-
mode amplitudesf i , ai , andui , wherei is a cell index. The
local modes are constructed in such a way that a uniform~or,
for AFD, a uniformly staggered! arrangement of the mode
vectors represents the desired low-energy excitation.11 Thus,
we work with local-mode vectors instead of atomic displace-
ments. This reduces the number of degrees of freedom from
15 to 9 per cell and greatly reduces the complexity of the
Taylor expansion. The Hamiltonian is specified by a set of
expansion parameters determined using highly accurate first-
principles calculations with Vanderbilt ultrasoft
pseudopotentials.14 The details of the Hamiltonian, the first-
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principles calculations, and the values of the expansion pa-
rameters have been reported elsewhere.10–13

In our previous work, we have used this effective Hamil-
tonian by applying Monte Carlo simulation techniques to
study the thermodynamics of the system in the classical
limit. Assuming the ionic motions are classical is usually a
good approximation for systems such as cubic perovskites
containing atoms no less massive than oxygen. However, the
structural differences and energy barriers between the cubic
structure and the possible~rhombohedral or tetragonal! dis-
torted structures are very small. A rough estimate of the im-
portance of quantum fluctuations can be obtained from the
Heisenberg uncertainty principleDp•Dq>\/2, or equiva-
lently,

DE>\2/~8mDq2!. ~1!

Here,Dq denotes the uncertainty in the structural coordinate,
which is related to the structural difference between phases.
DE is the energy uncertainty, or zero-point energy, which
may prevent the occurrence of the distorted phase if it is
larger than the classical free-energy reduction. So if the
structural and energetic differences between phases are small
enough, quantum suppression may occur even for fairly mas-
sive ions. For a quantitative understanding, we need to per-
form statistical simulations that treat the ionic motion quan-
tum mechanically.

Here, we adopt the path-integral~PI! technique15 of quan-
tum simulations, which has proven to be a very successful
method for studying H- and He-related systems.1,16 The
method is based on Feynman’s PI formulation of quantum
mechanics.17 This formulation states that the partition func-
tion of the original quantum-statistical systems of particles
can be approximated by the partition function ofP sub-
systems of classical particles with each quantum particle re-
placed by a cyclic chain ofP beads coupled by harmonic
springs. Each subsystem~comprising one bead from each
chain! has internal interactions identical to the reference clas-
sical system, except for a reduction in strength by a factor
1/P. The spring constant of the harmonic springs coupling
the beads inside a certain cyclic chain ismP/\2b2, wherem
is the mass of the quantum particle andb the inverse tem-
perature (kBT)

21. This approximation becomes exact when
the number of beadsP→`, but in practice almost exact
results can be obtained with a finiteP depending on the
system of interest. This way, thermodynamic properties of
the N-particle quantum system can be obtained from the
study of a (P3N)-particle classical system.

The only extra inputs we need are the masses of all the
‘‘particles’’ in our system. The degrees of freedom in our
Hamiltonian are the three local-mode amplitude vectorsf i ,
ai , andui associated with each unit celli . Each local mode
involves displacements of several ions. If we regard each
local vector as representing the displacement of some
‘‘pseudoparticle,’’ the mass of each such pseudoparticle can
be determined from all the ionic displacements involved.
Since two local-mode vectors may involve the same ion, we
actually have a nondiagonal mass matrix. For example, the
mass matrix elements between local modesf i and f j , or
equivalently,f ia and f jb , can be constructed through

mia, jb5j~ ia!•M•j~ jb!. ~2!

Here, i and j are the cell indices, whilea and b denote
Cartesian components.j( ia) is the eigenvector describing
atomic displacements associated with local modef ia , andM
is a ~diagonal! mass matrix in the 15L3-dimensional space of
atomic displacements of ourL3L3L supercell. Similarly,
mass matrix elements connecting different kinds of local
vectors, such as those betweenf i andai , are also included.
The entire mass matrix can be calculated once and for all,
and the extension of the PI technique to handle a nondiago-
nal mass matrix is straightforward.

The study of the thermodynamic properties of the classi-
cal system is performed using Monte Carlo~MC!
simulations.18 The original simulation cell is anL3L3L
cube, with three vectorsf i , ai , andui at each lattice pointi .
Periodic boundary conditions are used, and homogeneous
strains of the entire supercell are included. Each local vector
is converted to a string ofP beads, so that we have 9PL3

degrees of freedom per simulation supercell. We use a
single-flip algorithm, making trial moves of the vectors at
each site in turn and testing acceptance after each move. We
say that one Monte Carlo sweep~MCS! has been completed
when all vectors on all sites have been tried once. Because of
the 1% lattice-constant error in our local-density approxima-
tion ~LDA ! calculations and the strong sensitivity of the
structural transitions to the lattice constant, all our simula-
tions are performed at a negative pressure to restore the ex-
periment lattice constant, as in our previous work.10–13

The Trotter numberP should be large enough to ensure
that the quantum effects are correctly accounted for. On the
other hand, the computational load increases rapidly with
increasingP, because of both larger system size and longer
correlation time with largerP. In our simulation, the proper
Trotter number for each temperature is chosen empirically.
For a certain temperature, we simulate systems with increas-
ing Trotter numberP51, 2, 4, 8, 16, . . . . Weequilibrate
systems with eachP and monitor their order parameters. We
determine that theP is large enough if the monitored quan-
tities converge. If a certain quantity is sensitive toP, its
value atP5` can be extrapolated following the formula
a01a1 /P1a2 /P

2 ~Ref. 19!.
We concentrate on SrTiO3 and study the effect of quan-

tum fluctuation on both FE and AFD phase transitions. In
Fig. 1, we show the FE and AFD order parametersf(G) and
a(R) as a function of temperature for a 12312312 simula-
tion cell. The classical data~previously published in Ref. 12!
are produced by a cooling-down simulation, starting at 250
K and cooling down gradually, equilibrating and then simu-
lating to obtain the order parameters.12 The quantum simula-
tions are performed withP54, which is found to give con-
verged results forT.60 K and qualitatively correct results
for T.20 K. We use the equilibrium configuration from the
classical simulations (P51! as the starting configuration. We
find the system reaches equilibrium faster this way than it
does if gradually cooled and the results are less affected by
hysteresis. The system is equilibrated for 10 000 MCS’s, and
then another 30 000–70 000 MCS’s are used to obtain the
reported thermodynamic averages.

Figure 1 shows that the quantum fluctuations do affect
both the AFD and FE phase transitions. The AFD phase tran-
sition temperature decreases from 130 K to 110 K when the
quantum fluctuations are turned on, bringing the results into
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better agreement with the experimental result of 105 K. On
the other hand, the quantum fluctuations can be seen to have
completely suppressed the FE phase transitions, at least
down to 40 K. Further simulations going as high asP520
place an upper bound of about 5 K on anypossible FE phase
transition temperature. Thus, we conclude that quantum fluc-
tuations almost certainly suppress the FE phase transitions
completely, resulting in a paraelectric phase down toT50.

Since the effect of quantum fluctuations is more dramatic
on the FE transitions, we analyze this case in more detail. In
the paraelectric phase, the fluctuation of the FE local-mode
vector f has both quantum and thermal contributions. We
identify the thermal fluctuations as those associated with the
fluctuations of the center of gravity of the cyclic chain. More
specifically, lettingf( i ,s,t) representf on lattice sitei , Trot-
ter slices, and MCSt, the thermal fluctuation can be ob-
tained from our simulation using

~D f thermal!25^^ f &s
2& i ,t , ~3!

while the total fluctuation is

~D f total!25^ f 2& i ,s,t . ~4!

Here the brackets represent the indicated average. The part of
fluctuation due solely to the quantum effects can be obtained
from (D fQM)25(D f total)22(D f thermal)2. The result for a
10310310 lattice is shown in Fig. 2. The results are ob-
tained from simulations at several small Trotter numbers and
then extrapolated to P5` using the formula
a01a1 /P1a2 /P

2. As expected, the thermal fluctuation de-
crease with decreasing temperature, while the quantum fluc-
tuations increase. Below 70 K, the quantum fluctuations
dominate.

Recent experiments suggest there may be a weak signa-
ture of a phase transition in SrTiO3 around 40 K.5 This was

tentatively suggested to be a phase transition to a coherent
quantum state in which small FE domains propagate through
the crystal. Because the size of our simulation cell is much
smaller than the domain size suggested, we expect that such
a state would appear as a real FE phase in our simulation.
This is not observed. However, our simulation does reveal
some changes in the character of the FE fluctuations at low
temperature. A typical FE fluctuation at high temperature re-
sembles the soft eigenvector of the force-constant matrix,
which is independent of the masses, since the classical ther-
modynamic properties are related only to the potential en-
ergy. However, the quantum fluctuations are quite sensitive
to the ionic masses, and at low temperature the fluctuations
of light ~primarily oxygen-related! degrees of freedom are
accentuated. This crossover in the character of the fluctua-
tions occurs gradually below 100 K, and we suspect that it
might possibly be responsible for the experimentally ob-
served anomalies which were interpreted in terms of a phase
transition. If this is the case, the ‘‘quantum paraelectric’’
phase at very low temperature is probably not separated by a
true phase transition from the classical paraelectric phase at
higher temperature.

To better characterize the impact of the quantum effects
on FE transitions, we also apply the PI simulations to
BaTiO3. The results are summarized in Table I. The simula-
tion procedure is the same as for SrTiO3 , except that the
AFD degrees of freedom are neglected in BaTiO3 because of
their high energy. Experimentally, BaTiO3 has four phases in
the sequence cubic (C), tetragonal (T), orthorhombic (O),
and rhombohedral (R) with decreasing temperature. Our
classical simulations correctly reproduce this transition se-
quence, and give transition temperatures that are in reason-
able agreement with (; 15–30% below! the experimental
ones. We have argued previously that the quantitative dis-
crepancy can probably be traced to the LDA lattice-constant

FIG. 1. AFD and FE order parametersa(R) andf(G) as a func-
tion of temperature for a 12312312 SrTiO3 simulation cell.
Squares, circles, and triangles indicate the largest, intermediate, and
smallest components of the order parameter, respectively. Filled
symbols are from classical simulations, while open symbols are
from path-integral simulations withP54 ~the latter for the FE case
are nearly zero and are thus not very visible!. Insets indicate sche-
matically the nature of the AFD and FE distortions.

FIG. 2. Classical~squares!, quantum~circles!, and total ~tri-
angles! RMS fluctuation of the FE local-mode vectors@Eqs.~3! and
~4!# in SrTiO3 as a function of temperature.

TABLE I. The effect of quantum fluctuations on the FE transi-
tion temperatures in BaTiO3 , for a 12312312 supercell.R, O, T,
andC indicate rhombohedral, orthorhombic, tetragonal, and cubic
phases, respectively.

Phase Classical Quantum Expt.

O2R 2006 10 1506 10 183
T2O 2326 2 1956 5 278
C2T 2966 1 2656 5 403
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error.10,11Here, we find that, with quantum effects included,
the calculated transition sequence is still the same, while the
transition temperatures are reduced further by 35 to 50 K.
Although the absolute transition temperatures are thus in
slightly worse agreement with experiment, the spacing be-
tween phases is more reasonable. In any case, it is clear that
the quantum effects can have a substantial effect on the FE
transition temperatures even up to several hundreds of de-
grees K, a result which was not obvious from the outset.

It may appear counterintuitive that quantum effects on the
FE instability are much stronger than on the AFD instability
in SrTiO3 . After all, the AFD instability involves only the
motion of oxygen atoms, while the FE instability involves
mainly Ti atoms which are three times heavier than the oxy-
gen atoms. A partial explanation can be drawn from the fact
that the structural change involved in the FE distortion~0.1
a.u. for Ti in SrTiO3) is much smaller than for the AFD
distortion~0.3 a.u. for O!. As a result,mDq2 turns out to be
three times larger for the AFD case, even though the effec-
tive mass is smaller. Thus, according to Eq.~1!, the effect of
the quantum fluctuations will be less significant for the AFD
case.

We think a more fundamental explanation may be found
in the stronger spatial correlations between AFD distortions.
In the cubic phase, the spatial correlations for the FE local
vectors are chainlike or quasi-one-dimensional~1D!: f z(Ri)
correlates strongly only withf z(Ri6naẑ), where n is a
small integer number anda is the lattice constant.20,13 This
correlation is due to the strong Coulomb interactions be-
tween FE local modes,21 which strongly suppress longitudi-
nal excitations relative to transverse ones. With the correla-

tion length estimated at 10a,13 we can roughly say that about
ten local-mode vectors are ‘‘bound together’’ and the effec-
tive mass becomes ten times larger. On the other hand, the
AFD modes, associated with rotation of the oxygen octahe-
dral, correlate strongly with each other because of the rigid-
ity of the octahedral unit. The correlation region is 2D disc-
like: az(Ri) correlates strongly withaz(Ri6nax̂1maŷ),
wherem is again a small integer. The AFD correlation length
is comparable with the FE one,13 but now the 2D nature
implies that roughly 100 mode vectors are tied together, for a
mass enhancement of 100 instead of just 10. Thus, this effect
weakens the quantum fluctuations much more for the AFD
than for the FE case, and one should generally expect quan-
tum suppression of phase transitions to be stronger in the FE
case.

In summary, we have applied the PI technique to study the
effect of quantum fluctuations on FE and AFD phase transi-
tions in SrTiO3 and BaTiO3 . We find that the quantum fluc-
tuations have a weaker effect on the AFD transition than on
the FE one, because the AFD modes are more strongly cor-
related with each other. In the case of SrTiO3 , we find that
the FE phase is suppressed entirely, thereby supporting the
notion of ‘‘quantum paraelectric’’ behavior~though not nec-
essarily a distinct phase! at very low temperature. The AFD
transition temperature is found to be only slightly reduced.
For BaTiO3 , we find that the quantum effects preserve the
transition sequence and reduce the transition temperatures
modestly.
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