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We use a Monte Carlo bond-switching method to study systematically the thermodynamic properties
of a “continuous random network” model, the canonical model for such amorphous systen® asd
a-Si0,. Simulations show first-order “melting” into an amorphous state, and clear evidence for a glass
transition in the supercooled liquid. The random-network model is also extended to study heterogeneous
structures, such as the interface between amorphous and crystalline Si. [S0031-9007(98)07773-4]

PACS numbers: 61.43.—j, 64.70.Pf

Amorphous materials have been intensely studiedhe phase structure we find, should apply also to more
because of both their technological importance andomplicated covalent amorphous solids sucla-&i0.
fundamental interest. Because of the complexity of In addition, this approach can be used to study the
these systems, theoretical studies have relied mainly odetailed properties of specific network systems, whenever
numerical simulations. The standard method is moleculaan appropriate energy function is available. We illustrate
dynamics (MD) [1-4], where atoms are represented byhis with a calculation of the interface between crystalline
point particles with more or less realistic interactions, andand amorphous phases of silicon.
the equations of motion are integrated numerically. We use a Keating-like valence force model [7] for the

Most studies of glassy behavior in amorphous systemenergy, which depends on both the positigag of the
have involved hard-sphere or Lennard-Jones models fatoms and the set of bonds connecting pairs of atoms:
metallic glasses. However, the most important and ubig-
uitous amorphous materials are network glasses such as g (y,{7;}) = Z 11(0;93(0059” — cosf)?

a-Si0,. These may also be studied by MD, but large- ijew
scale or long-time simulations are limited to the few sys- 1 5
tems where suitable classical models are available for the + Z ) ky(bj = bo)”. (1)

atomic interactions [1,4]. Moreover, MD methods are in- Jed

herently less efficient for strong network-forming materi-Here j represents thgth bond, b; is its length,6;; is
als, because there is a large energy barrier to breaking anide angle between bondsand j connected to a common
reforming bonds in these systems. Most of the computeatom, b is the preferred bond lengthd, is the preferred
time is therefore spent in following local vibrations, wait- bond angle, andély andk, are “spring constants.” In order
ing for the infrequent bond-switching events. to focus on the role of network structure, we write the

An alternative is to use the canonical model for suchenergy as a function solely of bordpology,minimizing
network glasses: a continuous random network (CRNE,, with respect to the geometrical coordinafés:
of atoms and bonds [5]. The most realistic available _ .
models of amorphous Si are of this type. They have been E(Y) = min Ewo(y, {Fi}) . 2)
generated by Wooten, Winer, and Weaire [6] (hereafter "

WWW), using an ingenious Monte Carlo (MC) approachUsing E(i/), we can study the statistical properties of the
for generating random networks by bond switching. system through MC simulation.

In this paper, we extend this approach to study the We use the WWW construction for the local MC moves
thermodynamic properties of disordered materials. Thén the ¢ space. That is, from an initial configuratign,
system is represented explicitly as a CRN, i.e., as a set bond is chosen randomly (call RC), and one more
of atoms and a “neighbor list” specifying which pairs bond connected to each terminus is also chosen randomly
of atoms are connected by bonds. Equilibrium or quasi{bondsBA andCD). The only constraint is that all four
equilibrium properties are determined by MC sampling,atomsA, B, C, and D must be distinct. The switching
using the bond-switching move introduced by WWW.  move leading toy, is then simply the cutting of bonds

The specific model system studied here has four bondBA and CD and the formation of new bonddC and
to each atom, as fa#-Si. But we view it principally as BD. In this way the system samples topologically distinct
a generic CNR model, and we systematically study itsonfigurations without introducing “dangling bonds” or
phase diagram and glass transition. This approach, archanging the number of bonds to any atom.

0031-900798/81(22)/4899(4)$15.00 © 1998 The American Physical Society 4899



VOLUME 81, NUMBER 22 PHYSICAL REVIEW LETTERS 30 NVEMBER 1998

It is important to emphasize the generality of this The interface is prepared by allowing WWW switching
construction. Although it has been previously appliedin only half of the crystal cell, at sufficiently high, this
only to tetrahedral networks representingi, it is in fact  half becomes liquid. To determine the interface motion,
equally applicable to any network. If there are two typesthe system is then cooled to the temperature of interest,
of atoms with different coordination numbers, this moveand switching is allowed throughout the sample.
preserves the number of atoms with each coordination.  We have simulated interface motion in this manner at

In systems with strong chemical order, such as,SiO different temperatures for systems with= 432 atoms,
the WWW move can be modified to preserve this orderwith interfaces oriented along the [111] direction. Fig-
This is done by choosing and C as the (topologically) ure 1 shows snapshots of the atomic positions projected
closest atoms of the same type, such as the two Sinto the(011) plane, at three successive times, for each
neighbors of an oxygen in S{O ThenA and D must of the two temperaturegzT; = 0.50 eV [Fig. 1(a)] and
be chosen similarly. We have studied the properties okgT, = 0.55 eV [Fig. 1(b)]. Figure 1 makes clear that
a-SiO, by using this extended WWW move. the amorphous central region shrinks at temperaiyre

For our purposes, these moves simply represent a meabyg recrystallization, while a7, the more stable amor-
of sampling the space of configuratiofis However, itis  phous phase grows at the expense of the crystal. We con-
interesting to note that the actual dynamics:e6i0, and  clude thatT, < T,, < T,. From further calculations of
a-Si may consist of precisely such moves [3,8]. this type, we estimate thagT,, ~ 0.53 = 0.01 eV.

For a given temperaturg, one uses the Metropolis MC  This T, is a very high temperature, around 6000 K.
algorithm to decide whether a given switching move isNote that real Si does not form such a network liquid,
accepted or rejected: the move is accepted with probabibut rather melts into a very different high-coordination
ity P = min[1,exp(—AE/kgT)], where AE = E(y,) — liquid phase at much lower temperature, around 1700 K.
E(y) is the energy change. Note that the temperalure In this respect, our model is more appropriate for good
applies only to the bond topology; the system is alwayglass formers such as SiOwhile real a-Si can only be
in its ground state with respect to phonons. This makeformed by processes which are very far from equilibrium.
the model less realistic in describing certain aspects of We have also studied the properties of the homogeneous
specific systems, but more generic in distilling the role ofdisordered network (the liquid phase) for temperatures
network topology and excluding other issues. both above and belowr,,, for system sizeN = 216.

We choose parameter values appropriate:f&i: ky = In particular, the average energy per atom},(T), of
0.647 eV/A?, k, = 9.08 eV/A%, by =235 A, andf, = the amorphous phase is determined by equilibrating for
109°. In addition, it is important that the neighbor ligt ~2 X 10° MC steps and then averaging ovel0® MC
remain consistent with the geomefiy}, with close atoms steps, for eacl’. To further reduce inaccuracy due to
included in the neighbor list, and distant atoms excludedstatistical fluctuation, the result is averaged over typically
To guarantee this, we include an extra energy téfm
in E., to prevent structures with “false” neighbors from

occurring: E' = y > ,,,(do — |F, — 7,])}. Herem and

n label atoms which are neither 1st nor 2nd neighbors
in ¢, but for which |7, — 7,| is actually less than the
distanced, = 3.84 A between next-nearest neighbors in
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crystalline phase is stable, while at high the crystal 1
“melts” into a disordered “liquid” phase. Note that this
disordered system is still a network, with the same bond
coordination as the crystal.
as SiQ typically share this characteristic that the liquid
retains the network structure [3].

It is difficult to determine the melting point accurately
in a homogenous system, because of the energy barrier ¢3¢’
to nucleation of a new phase. We therefore create a sys- 88s
tem with a solid-liquid interface, and study the interface 88
motion as a function of temperature. For temperatures
T < T,, the crystal phase will invade the amorphousF'G' 1
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Snapshots of projected atom positions at time inter-
-~ vals of 400 MC steps per atom. (&)= 0.5 eV/kg (T < T,),

phase, while foll' > T,, the reverse occurs. The transi- ypare the crystalline phase eventually takes over the whole
tion temperaturd’,, corresponds to the temperature wherespace. (b)r = 0.55 eV/kp (T > T,.), where the whole sys-

the interface motion vanishes. tem becomes amorphized.
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10-20 runs with different random number seeds. From It is interesting to note in Fig. 2 that extrapolations of
standard thermodynamic relations, we can then easil¥,(7) and S,(T) from aboveT, would give negative
calculate the entropyS.(T), and free energyF,(T), values at very low temperature. This phenomenon is
per atom:S,(T) = S,(Ty) + f;o(l/T) (0E,/dT)dT, and  known as the Kauzmann paradox, and is rather common
F.(T) = E,(T) — TS,(T). ltis particularly convenient for materials that form structural glasses [12]. Of course
to choose the arbitrary temperatufg to be 7,,, since there can be no true paradox, and the system does
F,T,) = F.(T,,), where F.(T,,) is the free energy for not follow the extrapolation. But this illustrates that
the crystal. In this modelF.(T) = 0 to an excellent our model reproduces the classic signatures of glassy
approximation for temperatures in the range of interest [9]behavior.

The resulting values foE,(T), F,(T), and S,(T) are Figure 2 shows that the energy and entropykpl’ <
shown in Fig. 2. WhenT < T,, F,(T) >0, so the 0.4 eV lie significantly above the curves extrapolated from
crystal phase is thermodynamically preferred, while forhigherT, thereby avoiding a true, unphysical paradox.

T > T,, F,(T) <0, and the amorphous liquid phase is One can study this transition more quantitatively by
more stable. Our simulations clearly indicate that thecalculating the “time”-dependent structure factor [13]
crystalline phase is metastable in the region of stability >N ER NS /

of the amorphous phase, and vice versa, with a nucleation §(@.0 = (pl@.r)p(=g,1 + 1)), 3)
barrier separating the phases. where p(g,t') is the Fourier transform of the atomic

Thus, we are able to supercool the liquid and ob-density at timet', p(q,t') = Z}V:l exdiq - ?j(t’)]/\/ﬁ,
tain well-defined quasiequilibrium properties for the and the angle brackets denote an average o\erin
metastable liquid below the first-order transitionZgt.  the liquid phaseS(g,t) decays exponentially§(g,t) ~
The energy and entropy curves for this liquid exhibitexp(—D|g/|*t), where D is the diffusion constant of the
fairly abrupt reproducible changes in slope at a rathefiquid [14]. In a glass phase, however, the structure is
well-defined temperaturésT, ~ 0.4 eV. This suggests frozen (albeit random), s6(g,¢) in the thermodynamic
that the liquid phase undergoes a glass transition dimit remains finite at long times. We choodé| =
kgT, ~ 0.4 eV (~ 0.75kgT,), where it falls out of 2 /by, with by the bond length of the crystal structure, so
equilibrium even at our slowest cooling rate [10]. that S(g, t) will decay as rapidly as possible in the liquid

In the inset of Fig. 2, we show a cooling curve for phase. In addition to averaging ovey we average over
the average energy af-SiO, with cooling rate1.9 X many orientations of to get better statistics. The results
1075 eV per MC step. (To model SiOwe use the are shown in Fig. 3, where the normalized time-dependent
parameters of Ref. [11].) The transition (indicated bystructure factorS(|gl,7)/S(lgl,0) is plotted versus time
change of slope) is similar to that in the main figure,delay¢, for four different temperatures arourdd. (The

indicating the generality of this behavior. time units here are MC steps per atom.)
It can be seen from Fig. 3 that the structure factor
15 oo decays to zero forkzgT = 0.40 and 0.45 eV, but re-
' a-Si == mains finite for the lower temperaturdg7T = 0.30 and
E os o ° 0.35 eV. Of course the number of accepted MC switching
10t o steps decreases with decreasing temperature. However,
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FIG. 2. Energy, entropy, and free energy per atom versus T
temperature for the amorphous phase averaged over 10-20 runs  , . . . .
with statistical error about the size of the symbol. The 0 1000 2000 3000 4000 5000
break in slope for energy and entropyZat= T, ~ 0.4 eV/kg t (MC steps per atom)

corresponds to a glass transitionly (= 1 eV /kp is introduced

so that entropy can be plotted in units of energy.) In the insetFIG. 3. Normalized dynamical structure factor versus time
a cooling curve for amorphous Si@s shown for cooling rate (in MC steps per atom) at wave numbgj| = 27 /b, for

1.9 X 1073 eV per MC steps. temperatures around the glass transition.
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(b) We can study the decay of crystalline order near the
interface in the amorphous phase by calculating the local
energy density, which is zero for the perfect crystal and
nonzero in the amorphous phase. We find that the partial
crystalline structure on the amorphous side of the interface

(112) always forms in double layers, consistent with the crystal
structure in the [111] direction. This partial order decays
rapidly away from the interface, with a decay length of
roughly one (111) double layer.

In summary, we have studied the properties of a
random-network model for amorphous materials. While

FIG. 4. Interface morphology for different orientations; (100) we have used parame_ters lorSi, the general behaylor
interface (a); (111) interface (b). The (100) interface developsShould be rather generic. We demonstrated the existence
(111) facets (dotted lines). The atom positions are projecte®f @ glass transition in an ideal network model. We have
onto the(011) plane. also applied the model to study the crystal-amorphous
interface. For Si the (111) interface was found to be
stable, but (110) and (001) interfaces are unstable against
plotting the structure factor vacceptedsteps gives a formation of (111) facets. This general approach should
similar picture, leading to the same conclusion. The simube applicable to a variety of systems which maintain a
lations ran long enough to produce more than 2660 nearly ideal network structure, as well as for studies of
ceptedswitching moves even for the lowest temperaturegeneric aspects of network glasses.
kgT = 0.3 eV. D. V. acknowledges support of NSF Grant No. DMR-
These results confirm the conclusion above, that there i8613648.
a well-defined glass transition in the idealized CRN model
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