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We use a Monte Carlo bond-switching method to study systematically the thermodynamic proper
of a “continuous random network” model, the canonical model for such amorphous systems asa-Si and
a-SiO2. Simulations show first-order “melting” into an amorphous state, and clear evidence for a gla
transition in the supercooled liquid. The random-network model is also extended to study heterogene
structures, such as the interface between amorphous and crystalline Si. [S0031-9007(98)07773-4]

PACS numbers: 61.43.– j, 64.70.Pf
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Amorphous materials have been intensely studi
because of both their technological importance a
fundamental interest. Because of the complexity
these systems, theoretical studies have relied mainly
numerical simulations. The standard method is molecu
dynamics (MD) [1–4], where atoms are represented
point particles with more or less realistic interactions, an
the equations of motion are integrated numerically.

Most studies of glassy behavior in amorphous syste
have involved hard-sphere or Lennard-Jones models
metallic glasses. However, the most important and ub
uitous amorphous materials are network glasses such
a-SiO2. These may also be studied by MD, but large
scale or long-time simulations are limited to the few sy
tems where suitable classical models are available for
atomic interactions [1,4]. Moreover, MD methods are in
herently less efficient for strong network-forming mater
als, because there is a large energy barrier to breaking
reforming bonds in these systems. Most of the compu
time is therefore spent in following local vibrations, wait
ing for the infrequent bond-switching events.

An alternative is to use the canonical model for suc
network glasses: a continuous random network (CR
of atoms and bonds [5]. The most realistic availab
models of amorphous Si are of this type. They have be
generated by Wooten, Winer, and Weaire [6] (hereaft
WWW), using an ingenious Monte Carlo (MC) approac
for generating random networks by bond switching.

In this paper, we extend this approach to study t
thermodynamic properties of disordered materials. T
system is represented explicitly as a CRN, i.e., as a
of atoms and a “neighbor list” specifying which pair
of atoms are connected by bonds. Equilibrium or qua
equilibrium properties are determined by MC samplin
using the bond-switching move introduced by WWW.

The specific model system studied here has four bon
to each atom, as fora-Si. But we view it principally as
a generic CNR model, and we systematically study
phase diagram and glass transition. This approach, a
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the phase structure we find, should apply also to mo
complicated covalent amorphous solids such asa-SiO2.

In addition, this approach can be used to study t
detailed properties of specific network systems, whene
an appropriate energy function is available. We illustra
this with a calculation of the interface between crystallin
and amorphous phases of silicon.

We use a Keating-like valence force model [7] for th
energy, which depends on both the positionsh$rij of the
atoms and the setc of bonds connecting pairs of atoms:

Etotsc , h$rijd ­
X

i,jec

1
2

kub2
0scosuij 2 cosu0d2

1
X
jec

1
2

kbsbj 2 b0d2. (1)

Here j represents thejth bond, bj is its length,uij is
the angle between bondsi andj connected to a common
atom,b0 is the preferred bond length,u0 is the preferred
bond angle, andku andkb are “spring constants.” In order
to focus on the role of network structure, we write th
energy as a function solely of bondtopology,minimizing
Etot with respect to the geometrical coordinatesh$rij:

Escd ­ min
h$rij

Etotsc, h$rijd . (2)

Using Escd, we can study the statistical properties of th
system through MC simulation.

We use the WWW construction for the local MC move
in the c space. That is, from an initial configurationc1,
a bond is chosen randomly (call itBC), and one more
bond connected to each terminus is also chosen rando
(bondsBA andCD). The only constraint is that all four
atomsA, B, C, and D must be distinct. The switching
move leading toc2 is then simply the cutting of bonds
BA and CD and the formation of new bondsAC and
BD. In this way the system samples topologically distin
configurations without introducing “dangling bonds” o
changing the number of bonds to any atom.
© 1998 The American Physical Society 4899
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It is important to emphasize the generality of thi
construction. Although it has been previously applie
only to tetrahedral networks representinga-Si, it is in fact
equally applicable to any network. If there are two type
of atoms with different coordination numbers, this mov
preserves the number of atoms with each coordination.

In systems with strong chemical order, such as SiO2,
the WWW move can be modified to preserve this orde
This is done by choosingB and C as the (topologically)
closest atoms of the same type, such as the two
neighbors of an oxygen in SiO2. Then A and D must
be chosen similarly. We have studied the properties
a-SiO2 by using this extended WWW move.

For our purposes, these moves simply represent a me
of sampling the space of configurationsc. However, it is
interesting to note that the actual dynamics ofa-SiO2 and
a-Si may consist of precisely such moves [3,8].

For a given temperatureT , one uses the Metropolis MC
algorithm to decide whether a given switching move
accepted or rejected: the move is accepted with proba
ity P ­ minf1, exps2DEykBT dg, whereDE ­ Esc2d 2

Esc1d is the energy change. Note that the temperatureT
applies only to the bond topology; the system is alwa
in its ground state with respect to phonons. This mak
the model less realistic in describing certain aspects
specific systems, but more generic in distilling the role
network topology and excluding other issues.

We choose parameter values appropriate fora-Si: ku ­
0.647 eVyÅ2, kb ­ 9.08 eVyÅ2, b0 ­ 2.35 Å, andu0 ­
109±. In addition, it is important that the neighbor listc

remain consistent with the geometryh$rij, with close atoms
included in the neighbor list, and distant atoms exclude
To guarantee this, we include an extra energy termE0

in Etot to prevent structures with “false” neighbors from
occurring: E0 ­ g

P
mnsd2 2 j$rm 2 $rnjd3. Here m and

n label atoms which are neither 1st nor 2nd neighbo
in c, but for which j$rm 2 $rnj is actually less than the
distanced2 ­ 3.84 Å between next-nearest neighbors i
crystalline silicon. We useg ­ 0.5 eVyÅ3.

We begin our simulations with the diamond-structur
crystal, where each atom has four bonds. At lowT this
crystalline phase is stable, while at highT the crystal
“melts” into a disordered “liquid” phase. Note that thi
disordered system is still a network, with the same bo
coordination as the crystal. Good glass formers su
as SiO2 typically share this characteristic that the liqui
retains the network structure [3].

It is difficult to determine the melting point accurately
in a homogenous system, because of the energy bar
to nucleation of a new phase. We therefore create a s
tem with a solid-liquid interface, and study the interfac
motion as a function of temperature. For temperatur
T , Tm, the crystal phase will invade the amorphou
phase, while forT . Tm the reverse occurs. The transi
tion temperatureTm corresponds to the temperature whe
the interface motion vanishes.
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The interface is prepared by allowing WWW switching
in only half of the crystal cell, at sufficiently highT , this
half becomes liquid. To determine the interface motion
the system is then cooled to the temperature of intere
and switching is allowed throughout the sample.

We have simulated interface motion in this manner
different temperatures for systems withN ­ 432 atoms,
with interfaces oriented along the [111] direction. Fig
ure 1 shows snapshots of the atomic positions project
onto thes011d̄ plane, at three successive times, for eac
of the two temperatureskBT1 ­ 0.50 eV [Fig. 1(a)] and
kBT2 ­ 0.55 eV [Fig. 1(b)]. Figure 1 makes clear that
the amorphous central region shrinks at temperatureT1
by recrystallization, while atT2 the more stable amor-
phous phase grows at the expense of the crystal. We c
clude thatT1 , Tm , T2. From further calculations of
this type, we estimate thatkBTm , 0.53 6 0.01 eV.

This Tm is a very high temperature, around 6000 K
Note that real Si does not form such a network liquid
but rather melts into a very different high-coordination
liquid phase at much lower temperature, around 1700
In this respect, our model is more appropriate for goo
glass formers such as SiO2, while real a-Si can only be
formed by processes which are very far from equilibrium

We have also studied the properties of the homogeneo
disordered network (the liquid phase) for temperature
both above and belowTm, for system sizeN ­ 216.
In particular, the average energy per atom,EasT d, of
the amorphous phase is determined by equilibrating f
,2 3 105 MC steps and then averaging over,106 MC
steps, for eachT . To further reduce inaccuracy due to
statistical fluctuation, the result is averaged over typical

1 2 3

(a)

(b)

1 2 3

FIG. 1. Snapshots of projected atom positions at time inte
vals of 400 MC steps per atom. (a)T ­ 0.5 eVykB sT , Tmd,
where the crystalline phase eventually takes over the who
space. (b)T ­ 0.55 eVykB sT . Tmd, where the whole sys-
tem becomes amorphized.
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10–20 runs with different random number seeds. Fro
standard thermodynamic relations, we can then eas
calculate the entropy,SasT d, and free energy,FasT d,
per atom:SasT d ­ SasT0d 1

RT
T0

s1yT d s≠Eay≠T ddT , and
FasT d ­ EasT d 2 TSasT d. It is particularly convenient
to choose the arbitrary temperatureT0 to be Tm, since
FasTmd ­ FcsTmd, where FcsTmd is the free energy for
the crystal. In this modelFcsT d ­ 0 to an excellent
approximation for temperatures in the range of interest [

The resulting values forEasT d, FasT d, and SasT d are
shown in Fig. 2. WhenT , Tm, FasT d . 0, so the
crystal phase is thermodynamically preferred, while f
T . Tm, FasT d , 0, and the amorphous liquid phase i
more stable. Our simulations clearly indicate that th
crystalline phase is metastable in the region of stabil
of the amorphous phase, and vice versa, with a nucleat
barrier separating the phases.

Thus, we are able to supercool the liquid and o
tain well-defined quasiequilibrium properties for th
metastable liquid below the first-order transition atTm.
The energy and entropy curves for this liquid exhib
fairly abrupt reproducible changes in slope at a rath
well-defined temperature,kBTg , 0.4 eV. This suggests
that the liquid phase undergoes a glass transition
kBTg , 0.4 eV s, 0.75kBTmd, where it falls out of
equilibrium even at our slowest cooling rate [10].

In the inset of Fig. 2, we show a cooling curve fo
the average energy ofa-SiO2 with cooling rate1.9 3

1025 eV per MC step. (To model SiO2 we use the
parameters of Ref. [11].) The transition (indicated b
change of slope) is similar to that in the main figure
indicating the generality of this behavior.
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FIG. 2. Energy, entropy, and free energy per atom vers
temperature for the amorphous phase averaged over 10–20
with statistical error about the size of the symbol. Th
break in slope for energy and entropy atT ­ Tg , 0.4 eVykB
corresponds to a glass transition. (T0 ; 1 eVykB is introduced
so that entropy can be plotted in units of energy.) In the ins
a cooling curve for amorphous SiO2 is shown for cooling rate
1.9 3 1025 eV per MC steps.
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It is interesting to note in Fig. 2 that extrapolations o
EasT d and SasT d from above Tg would give negative
values at very low temperature. This phenomenon
known as the Kauzmann paradox, and is rather comm
for materials that form structural glasses [12]. Of cours
there can be no true paradox, and the system do
not follow the extrapolation. But this illustrates that
our model reproduces the classic signatures of glas
behavior.

Figure 2 shows that the energy and entropy forkBT ,

0.4 eV lie significantly above the curves extrapolated from
higherT , thereby avoiding a true, unphysical paradox.

One can study this transition more quantitatively b
calculating the “time”-dependent structure factor [13]

Ss $q, td ­ krs $q, t0drs2 $q, t 1 t0dl , (3)

where rs $q, t0d is the Fourier transform of the atomic
density at timet0, rs $q, t0d ­

PN
j­1 expfi $q ? $rjst0dgy

p
N ,

and the angle brackets denote an average overt0. In
the liquid phase,Ss $q, td decays exponentially,Ss $q, td ,
exps2Dj $qj2td, whereD is the diffusion constant of the
liquid [14]. In a glass phase, however, the structure
frozen (albeit random), soSs $q, td in the thermodynamic
limit remains finite at long times. We choosej $qj ­
2pyb0, with b0 the bond length of the crystal structure, so
that Ss $q, td will decay as rapidly as possible in the liquid
phase. In addition to averaging overt0, we average over
many orientations of$q to get better statistics. The results
are shown in Fig. 3, where the normalized time-depende
structure factorSsj $qj, tdySsj $qj, 0d is plotted versus time
delay t, for four different temperatures aroundTg. (The
time units here are MC steps per atom.)

It can be seen from Fig. 3 that the structure facto
decays to zero forkBT ­ 0.40 and 0.45 eV, but re-
mains finite for the lower temperatures,kBT ­ 0.30 and
0.35 eV. Of course the number of accepted MC switchin
steps decreases with decreasing temperature. Howev
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FIG. 3. Normalized dynamical structure factor versus tim
(in MC steps per atom) at wave numberj $qj ­ 2pyb0 for
temperatures around the glass transition.
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FIG. 4. Interface morphology for different orientations; (100
interface (a); (111) interface (b). The (100) interface develo
(111) facets (dotted lines). The atom positions are project
onto thes011 d plane.

plotting the structure factor vsacceptedsteps gives a
similar picture, leading to the same conclusion. The sim
lations ran long enough to produce more than 2000ac-
ceptedswitching moves even for the lowest temperatur
kBT ­ 0.3 eV.

These results confirm the conclusion above, that there
a well-defined glass transition in the idealized CRN mod
[10], and this transition occurs atkBTg , 0.40 eV for the
specific network considered here. Thus the CRN mod
has the following phase structure: In equilibrium, a
temperature decreases there is a first-order transition fr
a disordered network liquid phase to the crystalline phas
The liquid phase may be supercooled belowTm, and at
T ­ Tg , Tm undergoes a transition into a metastab
glassy phase.

It is interesting to note that the model glass phas
obtained by cooling the metastable liquid throughTg has
essentially the same structure as was shown by WWW
to provide the best available model for the structure
real a-Si. Yet reala-Si is formed by radically different
processes, very far from equilibrium. This suggests th
existence of a rather well-defined metastable amorpho
phase, whose structure (after annealing) is relative
independent of the kinetic history of the material.

As demonstrated in our calculation ofTm, the random
network model can be adapted to study the interfa
between amorphous and crystalline phases. To investig
the effects of crystalline anisotropy, we prepared interfac
as before, oriented parallel to the (100), (110), and (11
planes of the crystal. We then equilibrated atT ­ Tm,
the only temperature for which the interface is stationar
After initial transients, the (100) and (110) interface
develop 111 facets, while the (111) interface remains fla
For the (100) interface, Fig. 4(a) shows the positions
all the Si atoms at one instant of time. It is clear that th
interface is unstable — the dotted lines indicate two 11
facets which have formed. Similar faceting occurs for th
(110) interface. Figure 4(b) shows that, in contrast, th
(111) interface remains planar.
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We can study the decay of crystalline order near the
interface in the amorphous phase by calculating the loca
energy density, which is zero for the perfect crystal and
nonzero in the amorphous phase. We find that the partia
crystalline structure on the amorphous side of the interfac
always forms in double layers, consistent with the crysta
structure in the [111] direction. This partial order decays
rapidly away from the interface, with a decay length of
roughly one (111) double layer.

In summary, we have studied the properties of a
random-network model for amorphous materials. While
we have used parameters fora-Si, the general behavior
should be rather generic. We demonstrated the existen
of a glass transition in an ideal network model. We have
also applied the model to study the crystal-amorphou
interface. For Si the (111) interface was found to be
stable, but (110) and (001) interfaces are unstable again
formation of (111) facets. This general approach should
be applicable to a variety of systems which maintain a
nearly ideal network structure, as well as for studies o
generic aspects of network glasses.

D. V. acknowledges support of NSF Grant No. DMR-
9613648.
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