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Quadrupole moments, edge polarizations, and corner charges in the Wannier representation

Shang Ren ,1,* Ivo Souza ,2,3 and David Vanderbilt 1

1Department of Physics & Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
2Centro de Física de Materiales, Universidad del País Vasco, 20018 San Sebastián, Spain

3Ikerbasque Foundation, 48013 Bilbao, Spain

(Received 26 October 2020; revised 31 December 2020; accepted 6 January 2021; published 28 January 2021)

The modern theory of polarization allows for the determination of the macroscopic end charge of a truncated
one-dimensional insulator, modulo the charge quantum e, from a knowledge of bulk properties alone. A more
subtle problem is the determination of the corner charge of a two-dimensional insulator, modulo e, from a
knowledge of bulk and edge properties alone. While previous works have tended to focus on the quantization of
corner charge in the presence of symmetries, here we focus on the case that the only bulk symmetry is inversion,
so that the corner charge can take arbitrary values. We develop a Wannier-based formalism that allows the corner
charge to be predicted, modulo e, only from calculations on ribbon geometries of two different orientations.
We elucidate the dependence of the interior quadrupole and edge dipole contributions upon the gauge used to
construct the Wannier functions, finding that while these are individually gauge dependent, their sum is gauge
independent. From this we conclude that the edge polarization is not by itself a physical observable and that
any Wannier-based method for computing the corner charge requires the use of a common gauge throughout the
calculation. We satisfy this constraint using two Wannier construction procedures, one based on projection and
another based on a gauge-consistent nested Wannier construction. We validate our theory by demonstrating the
correct prediction of corner charge for several tight-binding models. We comment on the relations between our
approach and previous ones that have appeared in the literature.

DOI: 10.1103/PhysRevB.103.035147

I. INTRODUCTION

From elementary electrostatics it is well known that the
electric polarization in an insulator, corresponding to the
dipole density, gives rise to bound charges at the surface.
However, the definition of bulk dipole density is not obvious
in the context of a quantum treatment of the electron system,
since the electron charge cloud is not naturally decomposable
into localized entities. This problem was solved by the modern
theory of polarization, which can be formulated in the single-
particle context either in terms of Berry phases of the Bloch
functions or in terms of dipole moments of Wannier functions
(WFs) [1–3].

Adopting the latter point of view, the polarization is defined
in terms of the dipole moment of the unit cell, taken to consist
of point ionic charges and the continuous but exponentially
localized charge clouds of the WFs attached to that cell. Cru-
cially, although gauge transformations of the Bloch functions
result in changes of both the shapes and charge centers of
the WFs, the vector sum of the Wannier centers in one unit
cell is gauge invariant up to a lattice vector. As a result, the
polarization is well defined modulo a quantum eR/Vcell, where
e is the quantum of charge, R is a real-space lattice vector, and
Vcell is the unit cell volume.

Recently, several groups have explored generalizations of
this theory to the quadrupole and higher moments of the

*Corresponding author: shangren@physics.rutgers.edu

charge distributions in insulating crystalline solids. Benal-
cazar, Bernevig, and Hughes [4,5] introduced the concept
of “topological quadrupole insulators,” in which the cor-
ner charge is quantized by symmetries, as examples of
“higher-order topological insulators” [6]. This work attracted
considerable attention. Several authors adopted a Wannier
(or hybrid Wannier) representation as a means to define the
topological indices in such higher-order topological insulators
[7–11]. Attempts were put forward to derive a formula for
the corner charge, either when it is quantized by symme-
tries [8,12–14] or in the more general case where it takes
a nonquantized value [15]. It was shown that even common
ionic compounds such as NaCl may display a fractional cor-
ner charge [16]. Other works [17,18] attempted to extend
a quadrupole-moment expression to the many-body case by
making use of Resta’s position operator formalism [19], but
these approaches have proven to be controversial [13,20].

Most of these previous works have mainly been concerned
with systems whose symmetry quantizes the corner charges.
In the absence of symmetry, however, it is unclear whether
a robust definition of a bulk quadrupole density, analogous
to that of the electric polarization for the dipole density, is
possible, even at the single-particle level [13,17,18,20]. The
essential problem is that unlike the total dipole of the Wannier
charge distribution associated with a unit cell, the correspond-
ing quadrupole is not gauge invariant. In fact, the trace of
the Wannier quadrupole is essentially the spread functional
that is minimized when arriving at maximally localized WFs
[21,22]; the very fact that it can be minimized is a reflection
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of its gauge dependence. It is not surprising, then, that the
off-diagonal elements of the quadrupole tensor are also gauge
dependent, i.e., they vary according to the exact locations and
shapes of the WFs. For this reason, the theory of quadrupoles
and higher multipoles is fundamentally different from the
theory of dipoles that underlies the modern theory of polar-
ization.

Just as a bulk dipole density results in a bound surface
charge, so a bulk quadrupole density is expected to result in
bound surface polarizations and edge charges in 3D, or edge
polarizations and corner charges in 2D [4,5,15,23], where it
is understood that we refer to the polarization tangential to
the surface or edge. Intuitively, a quadrupole density Qxy in a
2D sample results in bound 1D dipole densities Px = Qxy at
the +ŷ-normal edge and Py = Qxy at the +x̂-normal edge. It
also results in an overall bound charge Qc = Qxy at the corner
where these edges meet, but this Qc is not simply the sum of
the contributions expected from the edge polarizations. Thus,
such definitions become quite subtle, even for simple classical
charge distributions [4,5,15].

In fact, there are serious reasons to question whether the
edge polarization is a physical observable at all. We give
two arguments that it is not. To do so, we focus on a large
rectangular flake cut from an insulating 2D crystal and frame
the discussion in terms of spinless electrons.

First, recall that in the case of dipole densities, there is a
robust bulk-boundary correspondence in that the macroscopic
edge charge density is exactly given by the bulk polarization
projected onto the edge unit normal, modulo a quantum of one
electron per edge unit cell [24]. This means that no adiabatic
periodicity-preserving perturbation at the edge, such as a dis-
placement of a sublattice of edge atoms, can have any effect
whatsoever on the edge charge density. It is natural, then, to
regard the macroscopic edge charge density as a manifestation
of a bulk property. The edge dipole density, on the other hand,
is obviously modified by such edge-atom displacements, sug-
gesting that it is not a manifestation of a bulk property in the
same sense.

Second, insofar as a 1D polarization P is well defined,
we would expect its time derivative dP/dt to correspond to
a physically observable edge current. However, this is prob-
lematic in the case of edge polarizations and currents. For
example, if the insulating flake in question has been cut from
a bulk that has some nonzero orbital magnetization Morb (as
a consequence of broken time-reversal symmetry), then there
will be a persistent counterclockwise current I = Morb on each
edge, forcing the nonsensical conclusion that P increases
linearly in time. In fact, even if the bulk material itself is time-
reversal invariant, so that its intrinsic orbital magnetization
vanishes, Trifunovic, Ono, and Watanabe [25] have shown
that when such a system is carried adiabatically around a
parametric loop, this results in a net circulation of current
around the perimeter of the sample. This would imply that
the edge polarization can be changed by an arbitrary amount
by such an adiabatic cycle. These arguments suggest that any
attempt to define the change in edge polarization in terms of
an integrated current, as is done for the bulk polarization, is
bound to run into grave difficulties.

The arguments given above imply that there are seri-
ous difficulties associated with attempts to define the bulk

quadrupole density and edge dipole density in a 2D system.
By contrast, the macroscopic corner charge is unambiguously
a physical observable. Thus, given details of the geometric
structure and the electronic Hamiltonian of the 1D-periodic
edges as well as of the 2D-periodic bulk, a robust theory
should be capable of correctly predicting the macroscopic
corner charges modulo e.

In this work, we show how to construct such a theory
for the case of centrosymmetric 2D insulators, based on a
Wannier representation of the electronic system at the single-
particle level. In our formulation, we first identify a bulk unit
cell, or “tile,” composed of a set of ionic positive point charges
and the charge distributions associated with a set of bulk WFs.
The quadrupole density Qxy associated with this unit cell is
gauge dependent, i.e., dependent on the exact locations and
shapes of WFs in the unit cell. We also construct “edge tiles”
consisting of ions and WFs in a “skin” region close to the
edge and associate surface polarizations P to these edges. In
our formulation the edge P’s are defined independently of
the bulk Qxy, as they must be since they depend upon the
detailed form of the Hamiltonian at the edge. While the P’s
are independent of a gauge change localized at the edge, they
are, like Qxy, dependent on the choice of bulk WF gauge.
Nevertheless, we find that all gauge dependence cancels out
when the various contributions are summed, thus allowing for
a robust prediction of the corner charge.

Specifically, we work in the context of tight-binding mod-
els of centrosymmetric 2D insulators whose bulk and edge
electronic structures are gapped. We solve for the ground-state
electronic structure in four configurations, namely the infinite
bulk with 2D periodic boundary conditions, 1D-periodic rib-
bons of finite width in the x direction, the same but finite in the
y direction, and rectangular flakes with fully open boundary
conditions. We develop two formalisms for computing the
macroscopic corner charge (mod e) from the bulk and ribbon
calculations alone, and demonstrate their success by direct
calculation on the rectangular flake.

In the course of preparing this paper, we became aware of
related work of Trifunovic [15], in which similar questions
are addressed from a somewhat different point of view. While
that work considers more general unit cell shapes and corner
geometries than we do, the implementation was only pre-
sented for the case of single-occupied-band models and for the
isolated molecular limit of the Benalcazar-Bernevig-Hughes
model [4,5]. We occasionally comment on similarities and
differences below.

This paper is organized as follows. In Sec. II, we introduce
an expression for the macroscopic corner charge in terms
of contributions from bulk, edge, and corner charge densi-
ties based on a tiling approach. We explain how quadrupole,
dipole, and monopole contributions from bulk, edge, and
corner tiles, respectively, add up to give the observable macro-
scopic corner charge. In this formulation, the electronic charge
density associated with each tile is that of the WFs attached
to it, raising questions about the dependence of the bulk
and edge contributions on the gauge used to construct these
WFs. This issue is addressed in Sec. III, where we show
that the sum of bulk and edge contributions is indeed gauge
invariant, even though the individual contributions are not. In
Sec. IV, we provide additional details about our methodology.
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Specifically, in Sec. IV A we discuss how we calculate the
macroscopic corner charge directly from a finite flake. Then in
Sec. IV B we present several approaches to the construction of
Wannier functions for ribbon models, including a projection
approach (Sec. IV B 1) and approaches based on maximal
localization applied first transverse (Sec. IV B 2) or paral-
lel (Sec. IV B 3) to the extended ribbon direction. We then
demonstrate in Sec. V the limitations of a naive hybrid Wan-
nier implementation and show that these are overcome using
the gauge-consistent projection method, for three centrosym-
metric tight-binding models at half filling. Specifically, we
consider a two-band model [23], a related four-band model,
and the four-band model proposed in Refs. [4,5] to discuss
quantization of the corner charges. In Sec. VI, we present
a nested maximally-localized Wannier construction that also
generates a consistent gauge, and working in the context of
the four-band model show that this also provides a correct
prediction of the corner charge. We discuss some possible
generalizations of our approach and its relation to the the-
ory of orbital magnetization in Sec. VII and summarize in
Sec. VIII.

II. PRELIMINARIES

A. General considerations from tiling

We consider a centrosymmetric 2D crystalline material
having a rectangular unit cell with lattice vectors a = ax̂ and
b = bŷ. A finite sample, or “flake,” has been cut from this
material, and its charge density is assumed to be written as the
sum of Nx × Ny contributions from the individual unit cells.
In the deep interior all these cells are identical, but those near
the edges and corners are modified by the presence of the
boundaries.

We identify a “skin region” on each edge, consisting of My

cells at top and bottom and Mx cells at left and right, where
Mx and My are chosen large enough that the deeper tiles are
bulklike to some desired accuracy. This is illustrated in Fig. 1,
where Mx = My = 2. We decompose the charge density of the
flake as a whole into contributions from the interior, the four
skin regions, and the four leftover corner regions. That is, we
write

ρflake(r) = ρI(r) + ρS(r) + ρC(r), (1)

where the superscripts denote “interior,” “skin,” and “corner”
contributions (black, red, and blue regions in Fig. 1), respec-
tively.

The first term in Eq. (1) is the superposition of the identical
interior tile charge densities, i.e.,

ρI(r) =
∑
�x∈Ix

∑
�y∈Iy

ρ I
tile(r − �xa − �yb), (2)

where �x ∈ Ix means Mx + 1 � �x � Nx − Mx, and similarly
for �y ∈ Iy. The tile density ρ I

tile(r) represents one unit cell but
does not have to be confined inside the rectangular boundaries
of the cell; it can leak into neighboring cells, but the sum of
these tile densities must exactly reproduce the bulk periodic
density. Note that ρ I

tile is net neutral, and since we assume
inversion symmetry, we also require it to have a vanishing
dipole moment.

R L 

B 

T 

BL 

TR TL 

BR 

 

FIG. 1. Sketch of tiling scheme for a rectangular sample cut from
a 2D crystal. Small square tiles (black) correspond to single interior
(‘I’) unit cells. Rectangular edge tiles (red) and larger corner tiles
(blue), which may extend to a depth of two or more cells, define the
skin region. Edges are labeled as ‘T’ (top), ‘R’ (right), ‘B’ (bottom),
and ‘L’ (left), and corners are labeled by combinations such as ‘TR’
(top right).

The second term in Eq. (1) is a sum of four skin contribu-
tions, ρS = ρT + ρR + ρB + ρL (top, right, bottom, and left,
respectively). Here, for example, the top skin contribution is

ρT(r) =
∑
�x∈Ix

ρ T
tile(r − �xa − Nyb), (3)

where the “tile” ρT
tile(r) is only one unit cell wide but

comprises all of the My vertically stacked cells in the top
skin region. The density ρT

tile(r) must have the property that
ρ I(r) + ρ T(r) is identical to ρflake(r) in the central region of
the top edge. Similarly, in

ρR(r) =
∑
�y∈Iy

ρ R
tile(r − �yb − Nxa) (4)

the density ρ R
tile(r) describes a region one cell high and Mx

cells wide at the right skin region. Since we are only interested
in neutral edges, we will require all the tiles in the skin regions
to be neutral, but they are generally not dipole free.

The last term in Eq. (1) is a sum of contributions from the
four corner regions,

ρC(r) = ρ TR
tile (r) + ρBR

tile (r) + ρBL
tile (r) + ρTL

tile (r), (5)

where each of these tiles is a larger one covering an entire
corner region comprised of Mx × My unit cells. These corner
tile densities need to make up for whatever charge density is
missing after accounting for interior and skin contributions.
For example, the top-right tile charge density is

ρ TR
tile (r) = ρflake(r) − ρ I(r) − ρ T(r) − ρ R(r) (6)

restricted to the vicinity of this corner.
We now focus on the top-right corner and let Qc be the

macroscopic charge of this corner, defined as the integral of
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a smoothened charge density over the corner region (see also
Sec. IV A). This is given by

Qc = 1

ab
q I

xy + 1

a
d T

x + 1

b
d R

y + QTR, (7)

where

q I
xy =

∫
x y ρ I

tile(r) d2r, (8)

d T
x =

∫
x ρ T

tile(r) d2r, (9)

d R
y =

∫
y ρ R

tile(r) d2r, (10)

QTR =
∫

ρ TR
tile (r) d2r. (11)

Working from right to left in Eq. (7), the contribution of QTR

is obvious. The contribution from the right-edge tiles is that
of a 1D chain of entities of dipole moment d R

y , Eq. (10),
with density 1/b; this has 1D polarization d R

y /b and thus
contributes a bound end charge of that magnitude to the top
end of the chain. The same applies to the 1D chain of d T

x
dipoles of density 1/a at the top edge via Eq. (9). Finally, the
superposition with density 1/ab of identical, neutral, dipole-
free quadrupoles q I

xy, Eq. (11), produces no macroscopic edge
charge, but it does generate four macroscopic corner charges:
+q I

xy/ab at TR and BL, and −q I
xy/ab at TL and BR. Com-

bining all the contributions at the TR corner coming from
Eqs. (8)–(11) results in Eq. (7), which will serve as an im-
portant basis for the remainder of this work.

Equation (7) is claimed to hold in the thermodynamic limit,
but we expect rapid convergence with system size. The ideal
situation occurs when the tile densities all have finite support,
each vanishing outside its own local region. In that case, the
2D periodicity relating interior tiles and the 1D periodicity
relating edge tiles guarantees that the coarse-grained charge
density ρ̄(r), obtained using the sliding window average to
be described in Sec. IV A, vanishes except near the corners
as soon as Mx and My are large enough. The corner charge
obtained by integrating ρ̄(r) over one of the corner regions
then remains unchanged by any further increase of Mx or My,
so that perfect convergence to the thermodynamic limit is al-
ready achieved for modest values of Mx and My. In practice the
tile densities have exponential tails, in which case we expect
exponential convergence with sample size, an expectation that
is confirmed in the results to be presented below.

For future reference, it is useful to introduce the interior
quadrupole density

Q I
xy = 1

ab
q I

xy (12)

and edge dipole densities

P T
x = 1

a
d T

x (13)

for the top edge and similarly for the other three edges. In this
language, the top-right corner charge is

Qc = Q I
xy + P T

x + P R
y + QTR. (14)

All quantities in Eq. (14) have units of charge e.

We emphasize that other definitions of edge polarizations
are possible. First, the definitions of the bulk quadrupole
density and surface dipole densities may differ from one for-
mulation to another and even within our approach, where it
can depend on the choice of tile. Second, we would also be
free to define

P̄ T
x = P T

x + 1
2Q I

xy

P̄ R
y = P R

y + 1
2Q I

xy

}
Qc = P̄ T

x + P̄ R
y (15)

or
¯̄P T

x = P T
x + Q I

xy

¯̄P R
y = P R

y + Q I
xy

}
Qc = ¯̄P T

x + ¯̄P R
y − Q I

xy (16)

(written here for QTR = 0) in the spirit of some previous
works [4,5,15]. Because we have concluded that the edge
polarization is not a physical observable, we do not think that
any one of these definitions is “more correct” than another.1

The reader is encouraged to beware of different definitions of
these quantities when comparing papers from the literature.

B. System of quantized charges

We now assume that the charge density of the crystal is
composed of quantized charges in multiples of e. This could
be the fictitious world of integer point “ions” and integer point
“electrons,” but we will focus below on the case that the
electrons are represented by WFs, each carrying charge −e
and exponentially localized in the vicinity of its WF center.
The bulk tile ρ I

tile(r) is then constructed by choosing a set of
representative ions and WFs to include in the home cell.

The dipole moment of this interior tile is

d I
μ =

∫
rμρ I

tile(r)d2r. (17)

Because we assumed inversion symmetry, the formal polar-
ization, expressed in reduced units px = d I

x/ae, py = d I
y/be,

must map to itself, modulo integers, under inversion. There
are four possible cases in which (px, py) is either (0,0), (0, 1

2 ),
( 1

2 , 0), or ( 1
2 , 1

2 ), modulo integers. Only the first is fully non-
polar. The other three cases are somewhat trickier to handle,
and for these we adopt a split-basis convention [24]. That
is, we split one or more ions into several equal pieces, as-
signing these to unit cells in such a way that the home cell
is dipole-free. For example, suppose there is one +e ion at
(0,0) and one Wannier center at (a/2, b/2), which would give
p = (− 1

2 ,− 1
2 ). In this case we could choose the home tile to

consist of the WF density plus point ions of charge +e/4 at
(0,0), (a, 0), (0, b), and (a, b), making for a dipole-free home
cell. In this way, we will always arrange for ρ I

tile to have zero
dipole moment as well as zero net charge.

We also want to restrict ourselves to neutral edges, since
otherwise the definition of a corner charge is problematic. For
the (0,0) case the edges are naturally neutral, and the edge tile,
say at the top, just consists of some overall-neutral leftover
set of ions and WFs. For the other cases, some edges are

1Note, however, that the formulation of Eq. (15) has the advantage
of being easily generalized to treat corners subtending angles other
than 90◦, as shown in Ref. [15].
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not naturally neutral, but they can always be made so by a
period-doubling (or, for threefold symmetries, period-tripling)
edge reconstruction. We shall require that this has always been
done. Since the (possibly split-basis-containing) bulk tiles are
dipole-free by construction, the (possibly enlarged) edge tiles
may also contain some fractional ionic charges, but they will
always be neutral overall.

We note in passing that a similar split-basis approach was
recently used to derive formulas for the quadrupole moment
and corner charge [13]. The authors pointed out the gauge
dependence of the quadrupole moment but observed that it
can be removed when the system has a Cn rotational symmetry
(n = 3, 4, 6). Mapping to a picture in which electrons are
represented by point charges located at Wannier centers, they
construct a charge-neutral and polarization-free basis by an
appropriate assignment of Wannier centers to Wyckoff posi-
tions, an approach that is quite similar in spirit to our tiling
decomposition. The method was implemented for a variety of
model geometries in subsequent work [16]. However, these
papers did not address the nonquantized corner charge that
can appear when the Cn symmetries are absent.

C. Wannier representation and choice of home cell

We now explicitly require that our 2D insulator must have a
vanishing Chern number, since otherwise the presence of gap-
less edge channels would give rise to metallic boundaries, and
there would be a topological obstruction to the construction of
bulk WFs spanning the occupied bands. Regarding the ionic
charges, let the ith ion in the home cell R = 0 be located at
τ i and carry charge Zie. Each ionic site τ i either sits on one
of the four inversion centers in the unit cell, or they appear in
pairs symmetrically arranged around an inversion center.

As for the electrons, we assume that a smooth and periodic
bulk gauge has been chosen for the wave functions |ψnk〉 of
the n = {1, ..., J} occupied bands and that this gauge also
respects the inversion symmetry. The WFs constructed from
these bands have centers

r̄Rn = 〈Rn|r|Rn〉 = R + r̄n. (18)

Since the gauge respects inversion symmetry, the r̄n are also
located on inversion centers or are symmetrically disposed
about them in pairs. When we consider our flake, we assume
that the WFs of the flake become identical to these bulk WFs
deep in the interior of the flake, so that the home-cell charge
distribution ρ I

tile is just built from these ions and WFs. As
discussed in the previous section, this tile will always be
dipole-free, even if it requires splitting some ionic charges.

It may be useful to introduce a set of reference WF center
positions as follows. For each WF |0n〉 that sits on one of
the inversion centers, we define tn to be the location of that
inversion center (i.e., equal to r̄n), and for every pair of WF
centers symmetrically disposed about one of the inversion
centers, we again assign tn for each of them to be at that
inversion center. Then the interior tile charge density

ρ I
tile(r) = e

∑
i

Ziδ
2(r − τ i ) − e

∑
n

|〈r|0n〉|2 (19)

can be written as

ρ I
tile(r) = ρ ion

tile (r) + ρ el
tile(r), (20)

where

ρ ion
tile (r) = e

∑
i

Ziδ
2(r − τ i ) − e

∑
n

δ2(r − tn) (21)

and

ρ el
tile(r) = −e

∑
n

[|〈r|0n〉|2 − δ2(r − tn)]. (22)

The advantage of this formulation is that ρ ion
tile is a purely

classical point charge distribution that is gauge independent,2

while all of the electronic gauge dependence is carried by ρ el
tile.

D. Wannier quadrupoles and dipoles

We are now ready to put it all together. The ingredients
needed to compute the upper-right corner charge of Eq. (7)
are given as follows. The bulk quadrupole is

q I
xy = e

I∑
i

Ziτixτiy − e
I∑
n

〈0n|xy|0n〉

= q ion
xy + q el

xy, (23)

where the sums are over the contents of the interior (I) tile,
and q ion

xy and q el
xy are the quadrupoles of the distributions in

Eqs. (21) and (22), i.e.,

q ion
xy = e

I∑
i

Ziτixτiy − e
I∑
n

tnxtny, (24)

q el
xy = −e

I∑
n

[〈0n|xy|0n〉 − tnxtny]. (25)

The x dipole of a top-edge tile is

d T
x = e

T∑
i

Ziτix − e
T∑
n

〈0n|x|0n〉, (26)

where this time the sum is over the contents of the top edge
tile, and |lxn〉 denotes a WF belonging to the l th

x tile along the
edge. Similarly,

d R
y = e

R∑
i

Ziτiy − e
R∑
n

〈0n|y|0n〉, (27)

where the ket notation is |lyn〉. Finally,

QTR = e
TR∑
i

Zi − eN TR, (28)

where N TR is the number of WFs associated with the top-
right corner tile. Inserting Eqs. (23)–(28) into Eq. (7) yields
the desired expression for the top-right corner charge.

2To be clear, there are “large” or “radical” gauge transformations
that shift one or more WF centers by a lattice vector, and “small”
or “progressive” ones that can be smoothly connected to the identity
gauge transformation. We assume that the former are built into the
definition of the contents of the unit cell, so at this point when we
speak of gauge transformations, we mean progressive ones only.
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If we are only interested in the corner charge mod e, then no
electronic solution is needed for the TR region; QTR vanishes
mod e if fractional ionic charges Zi are absent and are easily
determined if they are present. Thus, Qc can be determined
mod e using only calculations on two infinite ribbons and
a knowledge of the ionic arrangement at the corner. If we
want to know Qc fully, not just mod e, then we also need
enough information about the electronic structure of the flake
to decide the number N TR of occupied WFs in the corner tile.

III. GAUGE DEPENDENCE OF INTERIOR QUADRUPOLES
AND EDGE DIPOLES

In Secs. II C and II D we assumed some definite choice
of WFs providing a representation of the occupied electronic
states of the flake. Specifically, the set of all bulk, skin, and
corner WFs must be orthonormal and must exactly span the
occupied band subspace of the flake. We refer to any particular
choice of WFs as a “choice of gauge.” This choice is not
unique, so it is important to discuss the gauge dependence of
quantities such as q el

xy and d T
x of Eqs. (25) and (26).

A general gauge transformation corresponds to a unitary
mixing of the WFs according to

|R1n1〉new =
∑
R2n2

UR2n2,R1n1 |R2n2〉, (29)

where U is unitary. For our purposes, it is sufficient to con-
sider the transformation properties under infinitesimal unitary
transformations, since finite gauge transformations can always
be built up by using these as generators.3 The general form
of an infinitesimal unitary operator is U = eA = 1 + A for
infinitesimal anti-Hermitian A. In the bulk part of the flake,
we want the WFs to retain the property of being periodic
images of each other, so we require that A be lattice periodic,
i.e., AR1n1,R2n2 = AR1+R′,n1,R2+R′,n2 . We further specialize to
the case that A specifies a mixing of amplitude ε between WF
n1 = m in cell R1 = R and WF n2 = n in cell R2 = R + R′,
since more general gauge transformations can again be built
up from elementary ones such as this.

The first-order changes in the WFs in tile R are then given
by

δ|Rm〉 = ε|R + R′, n〉,
δ|Rn〉 = −ε∗|R − R′, m〉, (30)

with other WFs in the cell being unaffected. The mixing
pattern is illustrated in Fig. 2. For an arbitrary single-particle
operator O, the change of its trace over the WFs in cell R is
given by

δ〈O〉tile = δ〈Rm|O|Rm〉 + δ〈Rn|O|Rn〉
= 2Re[ε〈Rm|O|R + R′, n〉 − ε〈R − R′, m|O|Rn〉]
= 2Re[ε〈Rm|[O, TR′ ]|Rn〉], (31)

3Strictly speaking, this only applies to “small” or “progressive”
gauge transformations, i.e., those that can be continuously deformed
to the identity. “Large” or “radical” gauge transformations that shift
some WFs into a neighboring cell are also possible, but these would
correspond to a different choice of tiling.

− ∗
|Rn

− ∗

− ∗

|Rm

|R+R ,n

− ∗

− ∗

− ∗

TOP EDGE 

|R−R ,m

FIG. 2. Sketch of top edge of sample, showing mixing of
Wannier functions under the infinitesimal gauge transformation of
Eq. (30). Gray cell is an interior cell whose dipole moment is un-
changed due to cancellation of the ε contribution from above and the
−ε∗ one from below; pink cell is a top skin cell whose dipole does
shift as a result of the unbalanced −ε∗ contribution from below.

where TR is the operator that translates by lattice vector R.
For a lattice-periodic operator such as the bulk Hamiltonian,
the commutator in Eq. (31) vanishes, and the density of O per
unit cell is gauge invariant.

However, we are interested in dipoles and quadrupoles, and
for these cases we have that [x, TR] = RxTR, [y, TR] = RyTR,
and [xy, TR] = (yRx + xRy + RxRy)TR. Using the orthogonal-
ity of the WFs, 〈Rm|R + R′, n〉 = δ0R′δmn, it follows that

δ〈x〉tile = δ〈y〉tile = 0, (32)

δ〈xy〉tile = 2R′
xRe

[
εY R′

mn

] + 2R′
yRe

[
εX R′

mn

]
, (33)

where

X R
mn = 〈0m|x|Rn〉,

Y R
mn = 〈0m|y|Rn〉. (34)

Equation (32) confirms that the dipole moment of the Wannier
charge distribution in a bulk tile is gauge invariant, as expected
since it corresponds to the electric polarization. Another way
to see this is to compute the shifts of the Wannier centers
x̄Rm = 〈Rm|x|Rm〉 = Rx + x̄m; using the same methods, we
obtain

δx̄m = −δx̄n = 2Re
[
εX R′

mn

]
, (35)

and similarly for δȳ. The two WF centers thus shift by equal
distances but in opposite directions, preserving the overall cell
dipole.

However, the gauge invariance of the dipole does not ex-
tend to the quadrupole. From Eq. (12), (23), and (33) we
obtain

δQ I
xy = −2e

ab

(
R′

xRe
[
εY R′

mn

] + R′
yRe

[
εX R′

mn

])
. (36)

This shows that the bulk quadrupole moment of an interior tile
is not a gauge-invariant quantity. In particular, this suggests
that it is not a physical observable.
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Now let us concentrate our attention on the skin region,
specifically at the top edge of the flake. The quadrupoles in
this region are of no interest, since the area of the skin region
becomes negligible in the limit of a large flake. A gauge
change that is restricted only to the skin region cannot change
the dipole moment of an edge tile, by an argument similar to
that leading to Eq. (32).

Surprisingly, though, the dipole of an edge tile can be
modified by an interior gauge transformation. To see this,
we return to Fig. 2 and discuss it in the context of Eq. (35).
Note that Fig. 2 is drawn for the case that R′ = �xa + �yb
with �x = �y = 1, and for simplicity we assume that the skin
tile is only one unit cell thick. In this case, each skin tile
“donates” a contribution −2eRe[εX R′

mn] to one of the topmost
interior tiles below it, as illustrated by the blue arrow marked
ε∗ pointing from |R + R′, n〉 in the pink skin cell to |Rm〉 in
the gray interior cell in Fig. 2. As a result, the shift of r̄R+R′,n
adds to the dipole of the pink edge tile by 2eRe[εX R′

mn], and
the shift of r̄Rm in the gray tile makes an equal and opposite
contribution to the gray-tile dipole. However, there is no net
change of the gray-tile dipole, since it receives a compensating
donation marked by the −ε∗ arrow from the deeper tile below
it. By contrast, no such cancellation occurs for the pink tile,
so there is a net change of its dipole, and a resulting change
by (2e/a)Re[εX R′

mn] of the edge polarization P T
x .

This result depends crucially on the choice of �y = 1, as in
Fig. 2, for the relative lattice vector R′ involved in the unitary
mixing. If �y = 2, then there are two uncompensated contri-
butions to the edge tile instead of one, and if �y = −1, then
the transfer of dipole moment goes in the reverse direction.
Overall, then, we find that δd T

x = 2e�yRe[εX R′
mn], and using

Eqs. (13) and (26) together with �y = R′
y/b, and applying

similar considerations to the right edge, we find that the bulk-
gauge-induced changes to the edge dipole densities are

δP T
x = 2e

ab
R′

yRe
[
εX R′

mn

]
, (37)

δP R
y = 2e

ab
R′

xRe
[
εY R′

mn

]
. (38)

Finally, as for the top-right corner tile, neither its
quadrupole nor its dipole can contribute to the macroscopic
corner charge. Moreover, its net charge density, given by
Eq. (28), is obviously gauge invariant, so that δQTR = 0.

Combining these contributions to Eq. (14), we find that the
contributions from Eqs. (37) and (38) exactly cancel the one
from Eq. (36), so that

δQc = δQ I
xy + δP T

x + δP R
y = 0. (39)

In other words, the bulk quadrupole density and edge dipole
densities are individually gauge dependent, but their sum is
gauge invariant and describes a physical observable, the cor-
ner charge. This is a major result of our work.

A crucial consequence of this result is that the corner
charge Qc can be obtained modulo e from independent calcu-
lations of Q I

xy, P T
x , and P R

y , but only if all three contributions
are computed using the same bulk gauge. For example, by
studying ribbons that are finite in y and infinite along x, we
can compute Q I

xy from the charge density of a deep interior
tile, and P T

x from that of an edge tile, and we can get P R
y in a

similar way from a ribbon that is finite in x instead. However,
unless we insist that the bulk gauge is the same, we cannot
use Eq. (14) to compute the corner charge by summing these
ingredients. For example, if one obtains P T

x from a y-finite
ribbon Wannierized along ŷ and P R

y from an x-finite ribbon
Wannierized along x̂ as described in Sec. IV B 2 below, then in
general the gauges are not consistent, and the sum P T

x + P R
y

is not meaningful. (An exception to this rule will be discussed
in Sec. V A.)

While preparing this paper, we became aware of a recent
work that proposes a “thermodynamic” definition of gauge-
invariant electric quadrupole moments [26]. However, the
underlying formulation of this approach is very different from
ours; it aims to describe local polarizations induced by slow
spatial variations of a bulk Hamiltonian and makes no claim
to predict surface or corner properties except in the case of
quantizing symmetries. The two approaches are thus comple-
mentary, and investigations into the relations between them
may be a fruitful avenue for future investigation.

IV. METHODS

In this work, we use simple tight-binding models for the
purpose of implementing our formalism and testing its predic-
tions. These will be introduced in detail in Sec. V. Each model
is specified by providing the location of each basis orbital |ϕ0i〉
in the rectangular a × b home unit cell, implying periodic
images |ϕRi〉 = TR|ϕ0i〉 in other cells. The on-site energy of
each basis orbital, and the hoppings connecting near-neighbor
orbitals, are also specified. The position operator is assumed
to be diagonal in the tight-binding basis, 〈ϕRi|r|ϕR′ j〉 = (R +
τ i )δR,R′δi j , with τ i denoting the location of the ith basis func-
tion in the home cell. We treat the charge density of each basis
orbital as a Dirac delta function, |〈r|ϕRi〉|2 = δ2(r − R − τ i ),
so that the basis functions themselves have zero spread. Posi-
tive ionic charges are assigned to all of the tight-binding sites
to neutralize the unit cell. The electronic Hamiltonian for bulk,
ribbon, and flake geometries is constructed and solved using
the PYTHTB code package [27].

A. Corner charge and macroscopic averaging

To calculate the corner charge directly, we construct a
rectangular flake consisting of Nx × Ny unit cells and obtain
the total charge qRi (ionic plus electronic) on every site. Since
we associate the electronic charge to delta functions on the
sites, the total charge density takes the form

ρ(r) =
∑
Ri

qRiδ
2(r − R − τ i ). (40)

The macroscopic corner charge is determined by first
applying a smoothening procedure, since simple sums of
individual charges are not convergent. For this purpose we
adopt the sliding window average approach [3,28], in which
a broadened charge density ρ̄(r) is obtained by convoluting
ρ(r) with a “window function”

w(x, y) =
{

1/ab if |x| < a/2, |y| < b/2
0 otherwise, (41)
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FIG. 3. Sketch of sliding-window approach for obtaining macro-
scopic corner charges. The macroscopically averaged charge density
ρ̄(r0 ) is defined as the average of ρ(r) over a rectangular cell cen-
tered at r0 = (x0, y0 ). For this model of ±e point charges, ρ̄ vanishes
except in the blue and pink rectangles, where it takes values +e/ab
and −e/ab, respectively. Integration of the charge in one of these col-
ored rectangles yields the corresponding macroscopic corner charge.

i.e.,

ρ̄(r0) =
∫

ρ(r0 − r′) w(r′) d2r′. (42)

The advantage of this procedure is that ρ̄(r) is guaranteed to
vanish in the bulklike regions of the sample as a result of the
charge neutrality of the bulk unit cell. We also assume that
the bulk has been terminated in such a way as to yield neutral
edges, as described in Sec. II B, so that ρ̄(r) vanishes there
as well. The corner charge is then obtained by integrating the
smoothened charge density over the corner of interest.

The application of the above macroscopic averaging pro-
cedure to a simple checkerboard arrangement of ±e point
charges is illustrated in Fig. 3. The range of the window func-
tion centered on position r0 = (x0, y0) is shown by the gray
rectangle. As one slides this window around on the sample,
the charge contained in it vanishes except when r0 falls in the
rectangular a/2 × b/2 regions, where ±ρ̄ = e/ab in the blue
and red rectangles, respectively. Thus, the macroscopic edge
charges are zero for this model crystal, and the macroscopic
corner charges are ±e/4, with the positive charges at top right
and bottom left.

Other coarse-graining approaches will lead to the same re-
sult. For example, Gaussian broadening can also be used, but
then a careful treatment of the two limits max(a, b) � σ �
min(Lxa, Lyb) has to be enforced, where σ is the Gaussian
width. The sliding window approach avoids such complica-
tions. Note, however, that a simple summation of the charges
in a quadrant of the flake, as shown by the heavy black lines,
does not yield the correct corner charge. For the quadrant
shown, it yields zero; if the quadrant contained 5 × 5 instead
of 4 × 4 cells, it would yield +e. Neither value is correct.

The technical implementation of the sliding window aver-
aging procedure is as follows. We can write

Qc =
∫

d2r 
(r) ρ̄(r), (43)

where 
(r) = 1 in an upper-right-hand region x > x0 and
y > y0 and zero otherwise for appropriately chosen x0 and y0.
In the language of function spaces this is the inner product

 ◦ ρ̄, while ρ̄ is the convolution ρ̄ = ρ ∗ w; noting that
w(r) = w(−r), this is equivalent to Qc = W ◦ ρ with W =

 ∗ w. Thus, in practice we compute the macroscopic corner
charge as

Qc =
∫

d2r W (r) ρ(r), (44)

with W (x, y) = fa(x − x0) fb(y − y0) given by the product of
two “ramp functions” defined as fd (u) = 0 for u < −d/2,
1 for u > d/2, and 1/2 + u/d in the interval [−d/2, d/2].
Note that Eq. (44) is not the same as the bare Qc obtained
by integrating ρ(r) over a quadrant, i.e,

Qbare
c =

∫
d2r 
(r) ρ(r) (45)

for x0 and y0 at the sample center. This definition of Qc was
used in Refs. [5,8,17,18], and the difference with respect to
the macroscopic Qc of Eqs. (43) and (44) will be discussed in
Sec. V C.

B. Wannier construction for ribbon models

Our goal is to use our formalism to predict corner charges
from edge polarizations and interior quadrupoles computed
for x- and y-finite ribbon models. For example, we cut from
the infinite 2D bulk a ribbon that is finite and Ny cells thick in
the y direction, but still infinite and periodic in the x direction.
In this case the wave vector kx is a good quantum number,
and we obtain the Bloch states according to the eigenvalue
equation

H
∣∣ψkxn

〉 = Ekxn

∣∣ψkxn
〉
. (46)

We are interested only in the occupied wave functions, so for
consistency with the bulk which has J occupied bands, we let
n run over NyJ occupied ribbon bands at each kx. We then
need to construct a specific gauge for the WFs spanning the
occupied states, and in the following we present three different
strategies for doing so.

We first present, in Sec. IV B 1, a method based on project-
ing onto trial functions. As the same trial functions are used
for both x-finite and y-finite ribbons, this yields a consistent
gauge, allowing for a viable calculation of the corner charge.

Next, we discuss Wannier constructions based on assigning
states to layers via a preliminary maximal localization in one
direction, followed by maximal localization within each layer
in the orthogonal direction. If the first step is taken in the trans-
verse (finite) direction, it corresponds to the “hybrid Wannier”
construction; the occupied subspace is represented in terms of
states that are exponentially localized in the transverse direc-
tion, while remaining extended and labeled by wave vector
in the longitudinal direction. However, we then follow by a
second localization step to arrive at fully localized WFs. This
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“transverse-first” nested Wannier construction is described in
Sec. IV B 2. We also consider the reverse order of operations,
in which the preliminary localization is carried out in the
extended direction; this “longitudinal-first” nested Wannier
construction is described in Sec. IV B 3.

In Ref. [23], the transverse-first hybrid Wannier construc-
tion was applied to both the x-finite and y-finite ribbons. We
emphasize that in general this does not produce the same
gauge for the interior WFs of the two ribbons, and hence
it cannot safely be used to predict the corner charge. This
will later be demonstrated explicitly in Sec. V B. (Centrosym-
metric models with a single occupied band and time-reversal
symmetry provide an exception, as will be discussed in
Sec. V A.) Instead, if either the x-first or y-first nested Wannier
scheme is consistently adopted for both ribbons (transverse
for one ribbon and longitudinal for the other), then we arrive
at a second viable approach for computing the corner charge,
as discussed later in Sec. VI. In the following, we focus for
concreteness on y-finite ribbons and discuss each of the WF
construction schemes in this context.

1. Projection-based Wannier construction

One approach to the construction of a gauge, and one
that automatically produces the same gauge for both ribbons,
is to use the trial function projection method [21,22]. In
this approach, one invents J trial functions |gn〉 in the home
unit cell that are intended as a rough approximation to the
desired bulk WFs, with g�x�yn(r) = gn(r − �xa − �yb) being
their translational images. Then considering a y-finite ribbon,
for example, we construct a set of ribbon trial functions by
taking the |g�x�yn〉 with �x running over all integers while �y

runs over the Ny layers in the ribbon, with possible additions or
deletions in the skin region to match the expected occupation
of edge and corner states (see, e.g., Sec. V C). The goal then
is to construct a set of WFs |w�x�yn〉 that look “as similar as
possible” to these |g�x�yn〉, while still being built only from
occupied Bloch states.

This is most easily done by going to reciprocal space.
Temporarily introducing the composite index α = (�yn), we
define trial Bloch functions∣∣g̃kxα

〉 = N−1/2
x

∑
�x

eikx�xa
∣∣g�xα

〉
(47)

and construct the overlap matrix

Bkx,αβ = 〈
ψkxα

∣∣g̃kxβ

〉
. (48)

If our choice of trial functions had been ideal in the sense
that the |g̃kxα〉 had spanned the occupied subspace at kx, Bkx

would be a unitary matrix. More generally, we find the uni-
tary part B of the B matrix by subjecting it to the singular
value decomposition B = V 
W † (V and W are unitary and

 is positive real diagonal) and choosing B = VW †. We also
monitor the singular values (diagonal elements of 
); if any
of them becomes much less than unity, this signals the need to
choose a different set of trial functions.

We then construct mixtures of Bloch functions such
that the resulting ones are maximally aligned to the |g̃kxα〉

according to ∣∣hkxα

〉 =
∑

β

Bkx,βα

∣∣ψkxβ

〉
. (49)

Restoring α = (�yn), these |hkx�yn〉 can be interpreted as hy-
brid Wannier functions, as they are exponentially localized
in the finite direction while remaining extended and labeled
by wave vector kx in the extended direction. From these, we
can construct fully localized WFs by carrying out the Fourier
transform ∣∣w�x�yn

〉 = a

2π

∫
dkxe−ikx�xa

∣∣hkx�yn
〉
. (50)

In the deep interior of the ribbon, all of these WFs will be
periodic images of those in neighboring cells.

We now pick the WFs associated with one central cell with
labels (�x�y) and sum the 〈w�x�yn|xy|w�x�yn〉 over n to obtain
the interior quadrupole q I

xy via Eq. (23), where |0n〉 in the
notation of Eq. (23) is the same as |w�x�yn〉 here. Similarly, we
define the skin region at the top edge of the sample to consist
of some number My of the topmost layers. Since the dipole
moments of these cells vanish exponentially with depth, a
fairly small value of My is typically sufficient. Then, the x
dipole moments 〈w�x�yn|x|w�x�yn〉 are summed to provide the
needed contributions to the total dipole d T

x of Eq. (26).
We emphasize that our projection procedure insures that

if we start from the same set of trial functions, the gauges in
the interior region are the same by construction for y-finite
and x-finite ribbons. Thus, we should expect to find the same
Q I

xy for both ribbons; we confirm this below. Moreover, with
the results of both ribbon calculations in hand, we are assured
that the set of quantities P T

x , P R
y , and Q I

xy have been computed
in a common gauge and can confidently be combined as in
Eq. (14) to predict the corner charge.

2. Transverse-first nested Wannier construction

Let us now discuss an alternative Wannier construction
procedure that does not require choosing a set of trial func-
tions. Again taking a y-finite ribbon and noting that matrix
elements of the position operator ŷ are well defined, it is
straightforward to obtain the matrix

Ykx,mn = 〈
ψkxm

∣∣y∣∣ψkxn
〉
, (51)

where m and n run over the NyJ occupied bands of the ribbon
at a given kx, and to diagonalize it,∑

n

Ykx,mnξkxα,n = ȳkxαξkxα,m, (52)

where α = {1, ..., NyJ} now labels the eigenvalues and eigen-
vectors of Ykx . Then the maximally localized states along y,
known as hybrid Wannier functions, are constructed according
to ∣∣hkxα

〉 =
∑

n

ξkxα,n

∣∣ψkxn
〉
. (53)

As we shall see, the spatial locations of their Wannier centers
ȳkxα cluster in groups of J per unit cell along y, correspond-
ing roughly to the locations along y of the true 2D WFs
assigned to a unit cell. Thus, we relabel ȳkxα → ȳkx�yn and
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|hkxα〉 → |hkx�yn〉, where �y is a layer index specifying the unit
cell along y and n = {1, ..., J} labels the Wannier bands within
a layer.

Then, for each layer that has been identified in this way,
we treat the entire layer as a multiband group and carry out
a maximal localization procedure in the extended direction.
To do so, we transform to a twisted parallel transport gauge,
i.e., one that makes the Berry connections 〈h̃kx�yn|i∂kx |h̃kx�yn′ 〉
diagonal and kx independent, where |h̃kx�yn〉 = e−ikxx|hkx�yn〉.
The fully localized WFs are constructed from the Fourier
transform in Eq. (50), thus arriving at WFs that are expo-
nentially localized in both directions. The computation of q I

xy

from deep interior WFs, and d T
x from skin-region WFs, then

proceeds as described in the previous subsection.
We note in passing that another option for computing d T

x is
to bypass the second maximal localization step and simply
compute it from Berry phases, as was done in Ref. [23].
That is, having constructed the |h̃kx�yn〉, we compute the Berry
phases

γ
(x)
�yn =

∫
dkx

〈
h̃kx�yn

∣∣i∂kx

∣∣h̃kx�yn
〉

(54)

on a discretized kx mesh using standard methods. In this
context the last term in Eq. (26) becomes (−e/2π )

∑T
�yn γ

(x)
�yn ,

where the sums are restricted to the cells associated with the
top-edge tiles. However, we find in practice that PT

x computed
in this way converges more slowly with respect to k-mesh
density than does the method based on the direct summation
of WF dipoles, which we have therefore adopted below.

3. Longitudinal-first nested Wannier construction

The nested procedure outlined in the previous subsection
consists of a sequence of two maximal localization steps, the
first along the ribbon’s finite direction y and the second along
the extended direction x. If we reverse the order of those
two operations, we again arrive at fully localized WFs, albeit
in a different gauge. Since the first localization step is now
along the extensive direction of the ribbon, we refer to this
as the longitudinal-first nested Wannier construction. We note
that a similar construction was used in Refs. [4,5], although
the subsequent steps making use of the construction were
different there.

We again start from the Bloch eigenstates |ψkxn〉 of
Eq. (46). We first transform all of them to a twisted parallel
transport gauge in the extensive direction x and then carry out
the Fourier transform∣∣h′

�xn

〉 = a

2π

∫
dkxe−ikx�xa

∣∣ψkxn
〉
. (55)

These new states are maximally localized along x, but typ-
ically they are extended across the width of the ribbon in
the y direction. In a sense, they can still be regarded as a
species of hybrid WFs. Those with the same index n but
different cell indices �x are translational copies of one another
along x. Finally we localize along y the NyJ hybrid Wannier
functions in each horizontal cell �x by performing the steps
in Eqs. (51)–(53) with |ψkxn〉 therein replaced by |h′

�xn〉. This
yields a set of fully localized WFs |w�x�yn〉, from which the

interior quadrupole q I
xy and edge dipoles d T

x can be evaluated
as described below Eq. (50).

4. Quantum distance between Wannier gauges

Once specific gauges have been chosen for differently ori-
ented ribbons or different Wannier constructions, it is useful
to check whether those gauges are consistent. By “consistent
gauges” we mean that the sets {|wint,n〉} and {|w̃int,n〉} of J
WFs in one interior cell span the same Hilbert space in both
cases. If so, the two sets of WFs are related by a J × J unitary
transformation

|w̃int,n〉 =
J∑

m=1

Umn|wint,m〉 (56)

that only mixes WFs within the same interior cell. On the
other hand, Eqs. (36)–(38) show that Q I

xy, P T
x , and P R

y only
change under gauge transformations that mix WFs belonging
to different cells (R′ 
= 0). This means that we are allowed to
evaluate the corner charge as the sum of those three quantities
provided that they are evaluated using gauges for the two
ribbons that are consistent in the above sense.

The degree of “gauge inconsistency” can be quantified by
measuring the “quantum distance” between the two sets of
interior WFs. Here the square of the quantum distance D is
defined as [29]

D2 = J − Tr[PintP̃int]

= J −
J∑

m,n=1

|〈wint,m|w̃int,n〉|2, (57)

where Pint and P̃int are the projection operators onto each set.
A vanishing D indicates that the two sets are related by a
unitary transformation. Allowing for numerical error, we take
the gauges to be consistent whenever D < 10−5.

V. RESULTS

We study three tight-binding models of increasing com-
plexity. All models are centrosymmetric and spinless, and we
consider them at half filling. The first is a two-band model
(one occupied band), and the other two are four-band models
(two occupied bands). In the first two models the symmetry
is sufficiently low that the corner charge is not quantized,
while the third model has a high-symmetry phase where the
corner charge is quantized to either zero or e/2, depending on
the choice of parameters. For ribbons and finite flakes, edges
are always constructed by simply truncating the bulk, i.e., the
hoppings to vacant sites are removed while other hoppings
and site energies are unchanged.

In this section, we restrict ourselves to a comparison of the
transverse-first nested Wannier construction as applied to both
ribbons, as in Ref. [23], and the projection construction. In
Sec. VI we will return to the four-band model of Sec. V B and
consider the gauge-consistent nested Wannier construction,
i.e., y first (or x first) for both ribbons, and show that this also
yields a consistent gauge and a correct prediction of the corner
charge.
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FIG. 4. (a) Visualization of the two-band model. Atoms in the
home cell are shown as black dots, the intracell hopping t1 as a
solid line, and intercell hoppings t2 to t5 as dashed lines. (b) Bulk
band structure for the parameters given in the main text. The Fermi
level (dashed line) has been placed at midgap. The inset shows the
2D Brillouin zone and the high-symmetry points � (0, 0), X ( 1

2 , 0),
X′(0, 1

2 ), and M ( 1
2 , 1

2 ).

A. Two-band model

The first model we consider was introduced in Ref. [23]
and is illustrated in Fig. 4(a). The rectangular unit cell (gray
square) has an aspect ratio of b/a = 0.8 and contains two
atoms along its diagonal, with reduced coordinates (− 1

6 ,− 1
6 )

and (+ 1
6 ,+ 1

6 ) relative to the center of inversion in the middle
of the cell. Since we treat the model as spinless and at half
filling, we assign a positive charge of +e/2 to each atom to
neutralize the unit cell.

Our choice of bulk tile corresponds to the contents of the
unit cell in Fig. 4(a), with the reference position tn chosen
at the origin, which is also the location of the WF center.
As a result, the ionic part of the interior quadrupole q I

xy of
Eqs. (23) and (24) is immediately given as q ion

xy = (e/36)ab.
The electronic contribution qel

xy in Eq. (25) is determined by
the shape asymmetry of the WF charge distribution around its
center and remains to be calculated, as do the dipoles of the
edge tiles. From these, Q I

xy, P T
x , and P R

y are trivially obtained
from Eqs. (12)–(14).

To evaluate these quantities we construct two ribbons span-
ning ten unit cells along the x and y directions, respectively.
We begin by applying the transverse-first nested Wannier con-
struction of Sec. IV B 2 to both ribbons. That is, the maximal
localization procedure is first carried out along the finite direc-
tion of the ribbon to generate hybrid WFs and then along the
extended direction. The result is illustrated in Fig. 5 for the
y-finite ribbon. Panel (a) shows the Wannier centers ȳkx�y =
〈hkx�y |y|hkx�y〉 obtained in the first step. In the second step,
an optimally-smooth gauge along x is enforced within each
hybrid Wannier band, resulting in fully localized WFs. Panel
(b) shows the layer-resolved dipole moment density along x;
as expected, it vanishes in the interior region and assumes
equal and opposite values at the two edges.

The values of P T
x , P R

y , and Q I
xy calculated from those

WFs are indicated in the left column of Table I. We find
that Q I

xy has the same value in the two ribbons, suggest-
ing that their gauges are consistent. Decomposing Q I

xy into
ionic and electronic parts, we find Q ion

xy = q ion
xy /ab = e/36 ≈

0.027778e and Qel
xy = q el

xy/ab = −0.027808e. We also find
that the corner charge predicted from Eq. (14) is in excellent

Γ X Γ
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4

6

8

(a)

1 10�y

4

0

4

(b)

FIG. 5. (a) Wannier bands (i.e., hybrid Wannier centers) ȳkx�y (in
units of b) for a ribbon of the two-band model with a width of ten unit
cells along y. The red Wannier band deep inside the ribbon is selected
to construct the fully localized interior Wannier function that is used
to evaluate Q I

xy. (b) Layer-resolved dipole density Px,�y = dx,�y/a,
computed from the dipole moments of the fully localized Wannier
functions in each layer.

agreement with that obtained from a direct calculation on a
10 × 10 flake using Eq. (44), again suggesting that the gauges
are consistent (as well as validating our formalism). The last
row of Table I lists the value of the bare corner charge,
obtained by simply adding up the charges inside the 5 × 5
tiles forming the top-right quadrant of the flake, according to
Eq. (45); as expected, the bare corner charge differs signifi-
cantly from the macroscopic corner charge listed in the two
rows above it.

To confirm that the gauges are consistent between the two
ribbons, we calculate the quantum distance D according to
Eq. (57) and find that it is zero to numerical accuracy. Since
there is a single WF per cell, gauge consistency means that the
WFs deep inside the two ribbons are the same up to an overall
phase factor. The site amplitudes of one such interior WF are
listed in Table II.

Recall that the transverse-first nested Wannier construction
is not guaranteed to yield consistent gauges for two differently
oriented ribbons of a generic model. The reason why it does
so for this particular model is the following. In addition to
spatial inversion, the model has time-reversal symmetry, and
in the presence of both symmetries the k-space Berry curva-
ture of each band vanishes identically. Since the curvature
is the curl of the connection, it follows that both the x and
y components of the Berry connection can be chosen to be

TABLE I. The values of P T
x , P R

y , and Q I
xy, calculated for ribbons

of the two-band model using the transverse-first hybrid Wannier and
projection methods. In the bottom half of the table, the corner charge
Qc predicted from Eq. (14) is compared with the value obtained from
a direct calculation on a finite flake using Eq. (44) and with the “bare”
corner charge obtained from Eq. (45).

Hybrid Wannier Projection
(10−3 e) (10−3 e)

P T
x −0.531575 −0.531574

P R
y −1.164427 −1.164427

Q I
xy −0.030068 −0.030068

Qc (predicted) −1.726070 −1.726069
Qc (direct) −1.726068 −1.726068
Qbare

c −0.071873 −0.071873
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TABLE II. The bulklike Wannier function |wint〉 in the home unit
cell of the two-band model. |φR j〉 is the basis orbital at site R + τ j ,
given in reduced coordinates. The 12 largest coefficients are listed;
only half of them are shown, as the other half can be obtained by an
inversion operation.

R + τ j 〈φR j |wint〉 R + τ j 〈φR j |wint〉
(− 1

6 , − 1
6 ) 0.70565 (− 5

6 , 1
6 ) 0.02662

(− 7
6 , − 1

6 ) −0.02634 (− 1
6 , 5

6 ) 0.01777

(− 1
6 , − 7

6 ) −0.01752 ( 7
6 , 7

6 ) 0.00328

constant. Moreover, these constant values are a measure of the
electric polarization, which vanishes here. Thus, in this case
of a single occupied band with inversion and time-reversal
symmetry, there is a unique “natural” gauge with vanishing
Berry connection. This same gauge is arrived at regardless of
whether maximal localization is applied first in x and then in
y, first in y then in x, jointly as in conventional 2D maximal lo-
calization, or using the projection technique discussed next.4

We now repeat the calculations using the projection
method of Sec. IV B 1 to fix the gauge. We choose as the trial
function the eigenstate of an isolated tile, without any intercell
hoppings. The trial function in the home unit cell is then

1√
2
|φ1〉 + 1√

2
|φ2〉, where |φ1〉 and |φ2〉 are the basis orbitals

located at (− 1
6 ,− 1

6 ) and ( 1
6 , 1

6 ), respectively. After confirming
that the resulting gauges for the two ribbons are consistent
(D = 0 to numerical accuracy), we have recalculated P T

x , P R
y ,

and Q I
xy, obtaining the values in the right column of Table I.

They are identical to the ones in the left column, confirming
that the transverse-first hybrid Wannier and projection meth-
ods yield consistent gauges for this model. To further verify
this, we measure the quantum distance between the interior
WFs obtained with the two methods, again obtaining D = 0.

We conclude by commenting on the results obtained in
Ref. [23] for the same model. In that work, P T

x and P R
y were

calculated for y- and x-finite ribbons using the transverse-first
nested Wannier construction, and P T

x + P R
y was found to be

in good agreement with a direct calculation of Qc for a flake.
Our analysis reveals an oversight in that work, also pointed
out in Ref. [15], namely the omission of the Q I

xy term in
Eq. (14). For the choice of parameters in Ref. [23], |Q I

xy| is
much smaller than both |P T

x | and |P R
y |, helping to explain

why that omission was not revealed by the numerical tests
carried out there. Reference [23] also neglected to discuss
the gauge-consistency issue that arises in more general cases,
although as discussed above, it is not a problem for single-
occupied-band models with time-reversal symmetry. It does
become an issue for multiband cases, as we shall see in our
next example.

4The order of the two Wannierization steps becomes irrelevant
when the projected position operators PxP and PyP commute, which
was shown in Appendix C of Ref. [21] to occur if and only if the
Berry curvature vanishes identically.
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FIG. 6. (a) Visualization of the four-band model. Atoms are la-
beled from 1 to 4 as shown at upper right. The intracell hoppings t1,
t2, t3, and t4 are shown as solid lines, while the intercell hoppings
t5 and t6 are shown as dashed lines. Sites denoted by open and
filled circles have onsite energies ±δ, respectively. (b) Band structure
of the model. The Fermi energy (dashed line) has been placed at
midgap.

B. Four-band model

Our second test case is the model depicted in Fig. 6(a). The
unit cell is rectangular with b/a = 0.8 as before, but it now
contains four atoms instead of two, with reduced coordinates
(− 1

6 ,− 1
6 ), ( 1

6 ,− 1
6 ), ( 1

6 , 1
6 ), and (− 1

6 , 1
6 ) relative to the center

of inversion in the middle of the cell. The hopping amplitudes
are t1 = −2.0, t2 = −1.5, t3 = −0.8, and t4 = −0.6 eV (in-
tracell hoppings), and t5 = −0.5 and t6 = −0.4 eV (intercell
hoppings). The sites depicted as open and filled circles have
onsite energy ±δ, where δ = 0.8. The band structure is shown
in Fig. 6(b); at half filling the two lowest bands are occupied,
and we assign a charge of +e/2 to each atom to render
the cell neutral. The bulk tile again corresponds to the unit
cell, and the reference positions of Eqs. (21) and (22) are
again t1 = t2 = 0; now q ion

xy = 0 and only q el
xy will contribute

to q I
xy.

As in our previous example, the model has both spatial
inversion and time-reversal symmetry. However, since we now
have two occupied bands, the transverse-first nested Wan-
nier construction is no longer expected to produce consistent
gauges for the two ribbons. Its application to a 20-cell-thick
y-finite ribbon is illustrated in Fig. 7. Panel (a) shows the
Wannier bands obtained in the first step, with the two bands
in each vertical cell being closer to one another than to their
neighbors in adjacent cells. In the second step, the maximal

Γ X Γ
16

17

18
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20
(a)

15 20
y

−0.5

0.0

0.5
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FIG. 7. (a) Wannier bands ȳkx�yn (in units of b) for a y-finite
ribbon of the four-band model with a width of 20 layers and two
bands per layer. (b) Dipole moment density of the layers near the top
edge of the ribbon.
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TABLE III. The values of P T
x , P R

y , Q I
xy, calculated for ribbons

of the four-band model using the transverse-first hybrid Wannier
and projection methods. In the center column, the identical value
of Q I

xy found for both ribbons is reported. In the last two rows, the
corner charge Qc predicted from Eq. (14) is compared with the value
obtained from a direct calculation on a finite flake.

Hybrid Wannier Projection
(10−2 e) (10−2 e)

P T
x 0.300250 0.254669

P R
y 0.476420 0.446029

Q I
xy −3.756016 −3.684265

Qc (predicted) −2.979346 −2.983567
Qc (direct) −2.983567 −2.983567

localization procedure is applied along x, treating the two
hybrid Wannier functions within a cell as a composite group,
resulting in two fully localized WFs per 2D cell. When applied
to the x-finite ribbon, the transverse-first procedure results in a
similar pair of WFs but now obtained by localizing first along
x and then along y.

The center column of Table III lists the calculated values of
P T

x (for the y-finite ribbon), P R
y (for the x-finite ribbon), and

Q I
xy (for both). Even though Q I

xy has identical values in both
ribbons, the predicted corner charge Qc differs by about 0.14%
from that obtained via a direct calculation on a 20 × 20 flake,
indicating some degree of gauge inconsistency. The gauges
of the two ribbons are indeed slightly different, as can be
seen by inspecting the second and third columns of Table IV,
where we list the site amplitudes of one of the two interior
WFs per cell (the other is related to it by spatial inversion) in
each ribbon. To check that this difference cannot be accounted
for by a 2 × 2 intracell gauge transformation described by
Eq. (56), we calculate the quantum distance of Eq. (57) to
be D = 0.0138. This nonzero value confirms that the interior
gauges produced by this naive hybrid Wannier approach is
inconsistent between the two ribbons.

TABLE IV. One of the two bulklike Wannier functions in the
home unit cell of the four-band model, constructed in three different
ways. |w(y)

int,1〉 and |w(x)
int,1〉 are obtained by applying the transverse-first

nested Wannier construction to y- and x-finite ribbons, respectively,
while |w(p)

int,1〉 is obtained by applying the projection method to both
ribbons starting from the trial function |g1〉 described in the main text.
|φR j〉 is the basis orbital at site R + τ j , given in reduced coordinates.

R + τ j 〈φR j |w(y)
int,1〉 〈φR j |w(x)

int,1〉 〈φR j |w(p)
int,1〉 〈φR j |g1〉

(− 1
6 , − 1

6 ) −0.86557 −0.86563 −0.86481 −0.87128

(− 1
6 , 1

6 ) −0.42664 −0.42656 −0.42851 −0.45897

( 1
6 , − 1

6 ) −0.17659 −0.17654 −0.17732 −0.15379

(− 1
6 , − 5

6 ) −0.11485 −0.11527 −0.10720 0

(− 5
6 , − 1

6 ) −0.07271 −0.07294 −0.07163 0

( 1
6 , 1

6 ) 0.07108 0.07108 0.07185 0.08101

( 1
6 , 5

6 ) 0.06598 0.06548 0.06286 0

( 5
6 , 1

6 ) 0.04861 0.04798 0.04626 0

To arrive at a common gauge for the two ribbons we
use the projection method, choosing as trial functions |g1〉 =

1√
2
|ψ1〉 + 1√

2
|ψ2〉 and |g2〉 = 1√

2
|ψ1〉 − 1√

2
|ψ2〉, where |ψ1〉

and |ψ2〉 are the two lowest-energy eigenstates of an isolated
tile, i.e., with intercell hoppings set to zero. These two eigen-
states are of even and odd parity, respectively, so that |g1〉 and
|g2〉 are each off-centered with respect to the origin and map
into one another under inversion.

Applying the projection method to ribbon models cut from
the bulk as described in Sec. IV B 1, we find as expected that
the pair of WFs taken from the deep interior of the x-finite
ribbon match those extracted from the y-finite ribbon within
numerical precision. We denote as |w(p)

int,1〉 and |w(p)
int,2〉 the

WFs projected from |g1〉 and |g2〉, respectively. Like the trial
functions, these lie off-center and map into one another under
inversion. In the last two columns of Table IV we list the site
amplitudes of |w(p)

int,1〉 and |g1〉. It is evident that the projected
WFs are similar, but not identical, to the ones obtained by the
transverse-first hybrid Wannier approach; we find quantum
distances of D = 0.03844 and 0.03857, respectively, from the
projected pair to the pairs generated via the transverse-first
nested Wannierization of x-finite and y-finite ribbons, respec-
tively.

Having verified that the projection method leads to two
ribbons described by the same bulk gauge, we proceeded to
calculate P T

x for the y-finite ribbon and P R
y for the x-finite

ribbon; their values are listed in the right column of Table III,
followed by the common value of Q I

xy in both ribbons. In con-
trast to the center column, the sum of the three now matches
perfectly the value of Qc in the finite flake.

This example confirms our expectation that the corner
charge can reliably be predicted from ribbon calculations
alone, provided that consistent gauges are used for both rib-
bons, even in the case of multiple occupied bands. It also
illustrates the fact that this gauge consistency is achieved only
via the projection method,5 while the transverse-first hybrid
Wannier approach fails in this case.

C. Benalcazar-Bernevig-Hughes (BBH) model

Our final test case is a model introduced by Benalcazar,
Bernevig, and Hughes as an example of a topological phase
with quantized corner charges [4,5]. The BBH model is pic-
tured in Fig. 8(a). It has four sites per cell as in our previous
example but now placed on a square lattice. We again choose
the atoms to have reduced coordinates (− 1

6 ,− 1
6 ), ( 1

6 ,− 1
6 ),

( 1
6 , 1

6 ), and (− 1
6 , 1

6 ) relative to the origin at the center of a
small square.6 Figure 8(a) shows four unit cells (gray squares)
centered in the same way, but as we shall see later, our choice
of bulk tile may or may not coincide with this unit cell. Each

5A gauge-fixing method was recently proposed in Ref. [15] based
on parallel transport as intercell hoppings are varied. Although this
was applied only to a single-occupied-band case, we expect that
this method, while more complicated than ours, would also lead to
bulklike WFs in a multiband case.

6The location of the sites was not specified in Refs. [4,5]. Our
choice of 1/6 is arbitrary.
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FIG. 8. (a) Visualization of the Benalcazar-Bernevig-Hughes
model. Atoms are labeled from 1 to 4 inside the unit cell, as shown at
upper right. Intracell hoppings of amplitude ±γ are shown as solid
or dashed red (short) lines, and intercell hoppings of amplitude ±λ

as solid or dashed blue (long) lines. In the calculations reported in
the main text, sites denoted by open and filled circles have small
on-site energies ±δ, respectively. (b) Band structure of the model for
λ = 1.0, δ = 0, and two different values of γ . The solid bands were
calculated at γ = 1.5 (trivial phase, Qc = 0), and the dashed ones at
γ = 0.5 (topological phase, Qc = e/2). In both cases, the bands are
doubly degenerate. The Fermi energy (dashed line) has been placed
at midgap.

site also carries an ionic charge of +e/2, so that the system is
neutral at half filling.

When viewed along x or y, the model consists of parallel
chains with dimerized bonds. The hopping amplitudes along
x alternate between γ (intracell) and λ (intercell). The same
bond alternation occurs along y, except that the hopping am-
plitudes change sign from one chain to the next, as though
π fluxes have been threaded through the plaquettes. Follow-
ing BBH, we also include an optional parameter δ which, if
present, assigns an onsite energy ±δ to the sites depicted as
open and filled circles, respectively, in Fig. 8(a).

The model always has inversion and time-reversal sym-
metry, and in the absence of δ it also has Mx and My mirror
and C4 rotational symmetries. (Strictly speaking, the spatial
symmetry operators only return the system to itself after a
sign-flip gauge change, but this does not affect the symmetry
arguments.) The BBH model was introduced largely for the
purpose of investigating the consequences of symmetry for
the bare model (δ = 0). The BBH and subsequent papers have
shown that the presence of Mx and My symmetries, or C4

symmetry, constrains the corner charge of a rectangular flake
to be a multiple of e/4 quite generally, or of e/2 in some
cases [4,5,8,12–14,30], stimulating interest in the theory of
higher-order topological phases [6]. We can understand this
in the context of our Eq. (14) by noting that P T

x = −P R
y

and Qxy = 0 in a C4-respecting gauge, leaving only the QTR

contribution of Eq. (28). For a general rectangular-lattice sys-
tem, this must be either zero or a multiple of e/4 (mod e),
depending on whether any fractional ionic charges were left
over in the corner tile after the bulk and edge tiling. (In the
context of the BBH model, C4 symmetry implies Qc = 0 or
e/2.)

Here, instead, we are more interested in the case that spa-
tial symmetries other than inversion are not present, so that

γ

(a)

λ

(b)

FIG. 9. Visualization of the isolated tiles whose low-energy
eigenstates serve as trial functions for constructing Wannier func-
tions in ribbons of the Benalcazar-Bernevig-Hughes model. The
figures represent y-finite ribbons three unit cells high, while those
used in the actual calculations are 40 unit cells high. (a) Tiles used
for the trivial phase (red squares). (b) Tiles used for the topological
phase. The blue squares are interior tiles. At the edges and corners,
there are “leftover” dimers and isolated atoms, respectively.

the corner charge is not quantized. Returning to the BBH
model, at δ = 0 the model has two gapped phases, a trivial
phase with Qc = 0 for |γ /λ| > 1 and a topological phase with
Qc = ±e/2 for |γ /λ| < 1. The bulk energy gap closes at the
M point in the BZ at the critical |γ /λ| = 1. In what follows
a small δ is applied to break the mirror and C4 symmetries.
Note that we continue to refer to the resulting systems as
being in the “trivial” or “topological” phase, even though such
a classification is no longer strictly well defined.

1. Trivial and topological phases

In our calculations we set λ = 1.0 and choose γ = 1.5
and γ = 0.5 to put the system in the trivial and topological
phases, respectively. The resulting energy dispersions, plotted
in Fig. 8(b), consist of two doubly-degenerate bands separated
by finite gaps. To fix the sign of the corner charge in the
topological phase, BBH weakly broke the quantizing symme-
tries Mx, My, and C4 while preserving inversion symmetry by
adding a nonzero δ term to the Hamiltonian [4,5]. When δ

is small, Qc deviates slightly from the quantized value. The
results reported below are obtained using δ = 0.001 for both
phases. Since the model has two occupied bands, we know
from our previous example that the transverse-first nested
Wannier construction cannot be trusted to produce consistent
gauges for the two ribbons, so we focus here on the projection
approach from the outset.

In view of the qualitative difference between the trivial and
topological phases, we adopt a different choice of bulk tile
for each case. For the trivial phase we choose the bulk tile to
correspond to the unit cell centered on the small red square
in Fig. 9(a), with reference locations t1 = t2 = 0. The ionic
interior quadrupole in Eq. (24) is thus q ion

xy = 0, with q el
xy in

Eq. (25) left to be determined by the anisotropy of the Wannier
charge distribution. Since we assume the sample has been cut
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as shown in Fig. 8(a), there will be no leftover charges in the
top-right corner tile, i.e., QTR = 0.

By contrast, for the topological phase, the WFs are chosen
to be associated with a large blue square in Fig. 9(b), e.g.,
the one centered at (1/2,1/2). A choice of tile involving these
WFs together with ions centered around (0,0) would gener-
ate a bulk dipole, which our approach requires us to avoid.
Instead, we choose the bulk tile as the unit cell centered on
the large blue square in Fig. 9(b), with reference positions
t1 = t2 = (1/2, 1/2) at the center of this square.7 Again the
symmetry is such that q ion

xy = 0 in Eq. (24), and q el
xy in Eq. (25)

is left to be determined. Note that there are now two leftover
ionic charges that need to be assigned to each top tile as shown
in Fig. 9(b) and similarly for the right edge tiles. Each corner
tile acquires one ionic charge of +e/2, so QTR of the corner
tile will be −e/2 if there is an occupied WF in that tile and
+e/2 otherwise. From a minimal knowledge of the model, we
can anticipate that a WF will be present in the top-right tile if
and only if δ < 0.

To obtain gauge-consistent values for P T
x , P R

y , and Q I
xy via

projection, we begin by considering a y-finite ribbon 40 unit
cells high, with simple periodic boundary conditions along
x. The trial functions are chosen as the low-energy eigen-
states of the isolated tiles obtained by removing the weaker
of the two hoppings. For the trivial phase, we take as trial
functions the two lowest-energy eigenstates of the isolated
small red square in Fig. 9, replicated 40 times to cover the
entire ribbon. For the topological phase the WF centers shift
to the large blue squares [7,9,10], so we take their isolated
eigenstates as our projection functions, replicated 39 times.
We also include two edge tiles, one at the top and one at the
bottom of the ribbon, each consisting of a single dimer with
its single low-energy eigenstate. Taken together, these states
comprise our trial functions for the ribbon in the topological
phase. We do the same for x-finite ribbons, and we confirm
that within each phase, the deep interior WFs are identical for
x- and y-finite ribbons. The site amplitudes of the resulting
WFs are given in Table V for the trivial phase and in Table VI
for the topological phase, together with the trial functions for
comparison.

From the consistent sets of WFs obtained for the two rib-
bons, we calculate edge polarizations and interior quadrupoles
in the usual manner. To accommodate the leftover dimer WFs
in the outermost layers in the topological phase, the edge
polarizations are evaluated from edge tiles containing an odd
number of WFs, while in the trivial phase that number is
even. The values of P T

x , P R
y , and Q I

xy are listed in Table VII.
These are all very small, of order 10−5 e and 10−4 e in the
trivial and topological phases, respectively, as a consequence
of the small δ. The fourth contribution QTR vanishes in the
trivial phase and is e/2 in the topological phase. Summing
all four contributions, we find excellent agreement with the
directly calculated macroscopic corner charge in both phases.

7Note that here, if we had taken a model with ionic charge 2e at
the origin from the outset, we would have needed to use the split-
basis approach discussed below Eq. (17), yielding the same pattern
of fractional charges. This is not the case for the trivial phase.

TABLE V. Bulklike Wannier functions in the home unit cell
of the BBH model in the trivial phase. The Wannier functions are
constructed using the projection method, choosing as trial orbitals
|g1〉 and |g2〉 the lowest-energy eigenstates of the isolated red-square
tile in Fig. 9(a). |φR j〉 is the basis orbital located at site R + τ j , given
in reduced coordinates.

R + τ j 〈φR j |w(p)
int,1〉 〈φR j |g1〉 〈φR j |w(p)

int,2〉 〈φR j |g2〉
( 1

6 , 1
6 ) 0.67899 0.70694 0 0

(− 1
6 ,− 1

6 ) 0 0 0.67899 0.70694

(− 1
6 , 1

6 ) −0.48037 −0.50012 0.48037 0.50012

( 1
6 ,− 1

6 ) −0.48037 −0.50012 −0.48037 −0.50012

( 5
6 , 1

6 ) −0.12012 0 −0.03317 0

( 1
6 , 5

6 ) −0.12012 0 0.03317 0

(− 5
6 ,− 1

6 ) 0.03317 0 −0.12012 0

(− 1
6 ,− 5

6 ) 0.03317 0 0.12012 0

( 5
6 ,− 1

6 ) 0.10844 0 0.06157 0

(− 1
6 , 5

6 ) −0.10844 0 0.06157 0

(− 5
6 , 1

6 ) 0.06157 0 −0.10844 0

( 1
6 ,− 5

6 ) 0.06157 0 0.10844 0

( 1
6 , 7

6 ) −0.05019 0 −0.00333 0

( 7
6 , 1

6 ) −0.05019 0 0.00333 0

(− 1
6 ,− 7

6 ) 0.00333 0 −0.05019 0

(− 7
6 ,− 1

6 ) −0.00333 0 −0.05019 0

Thus, in both cases, the small deviation from the quantized
Qc value caused by the staggered onsite potential is precisely
reproduced by the ribbon calculations.

2. Corner charge pumping cycle

In this section, we carry out calculations of the interior
quadrupole and edge polarizations, and compare the predicted
corner charge with the directly calculated one, for the same
adiabatic cycle

(δ, λ, γ ) =
{

(cos(t ), sin(t ), 0) 0 < t � π

(cos(t ), 0, | sin(t )|) π < t � 2π
(58)

considered previously by BBH [4,5]. This cycle is somewhat
artificial; in that one or the other of the hoppings γ or λ is al-
ways zero. However, to make contact with previous literature,
we apply our method to the same system here.

At t = 0 the system starts in a state in which the sites are
completely decoupled, with only black sites in Fig. 9 occupied
as a result of the positive δ. In the interval 0 < t < π , a set
of positive λ hoppings are first turned on and then turned
off on the edges of the large blue squares in Fig. 9. In this
interval, the system takes the form of a molecular crystal with
“molecules” centered on the large blue squares. At t = π/2
where δ vanishes, the symmetry suffices to define the topo-
logical index, and the system is in the nontrivial phase. Once t
passes π/2 the sign of δ is reversed, so that at t = π we again
reach a state of completely decoupled sites, but now with only
the open-circle sites occupied. The second half of the loop
is similar, except that now the γ hoppings are progressively
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TABLE VI. Same as Table V but for the topological phase of the
BBH model. The trial orbitals |g1〉 and |g2〉 are now chosen as the
lowest-energy eigenstates of the isolated blue-square tile in Fig. 9(b).

R + τ j 〈φR j |w(p)
int,1〉 〈φR j |g1〉 〈φR j |w(p)

int,2〉 〈φR j |g2〉
( 1

6 , 1
6 ) 0.69081 0.70686 0 0

( 5
6 , 5

6 ) 0 0 0.69081 0.70686

( 5
6 , 1

6 ) −0.48885 −0.50018 0.48885 0.50018

( 1
6 , 5

6 ) −0.48885 −0.50018 −0.48885 −0.50018

(− 1
6 , 1

6 ) −0.09152 0 −0.02753 0

( 1
6 , − 1

6 ) −0.09152 0 0.02753 0

( 7
6 , 5

6 ) 0.02753 0 −0.09152 0

( 5
6 , 7

6 ) 0.02753 0 0.09152 0

( 5
6 , − 1

6 ) −0.08424 0 0.04535 0

(− 1
6 , 5

6 ) 0.08424 0 0.04535 0

( 1
6 , 7

6 ) 0.04535 0 0.08424 0

( 7
6 , 1

6 ) 0.04535 0 −0.08424 0

(− 5
6 , 1

6 ) −0.04049 0 0.00160 0

( 1
6 , − 5

6 ) −0.04049 0 −0.00160 0

( 11
6 , 5

6 ) −0.00160 0 −0.04049 0

( 5
6 , 11

6 ) 0.00160 0 −0.04049 0

turned on and off, so that the system is molecular once more
but centered on the small red squares. The topology is again
defined at t = 3π/2, now being trivial, and the system returns
to its starting point at t = 2π .

We use two different sets of trial functions for the Wannier
projection during the first and second halves of the cycle. For
t ∈ [0, π ] we adopt the trial functions of the topological state,
while for t ∈ [π, 2π ] we choose those of the trivial state, as
described in the previous subsection and detailed in Tables VI
and V, respectively. We thus have a gauge discontinuity at
t = π and again at t = 2π . For a mesh of t values, we com-
pute Q I

xy, P T
x , and P R

y , and compare the prediction of Eq. (14)
with the directly computed macroscopic corner charge of a

TABLE VII. Individual contributions and total predicted macro-
scopic corner charge Qc in Eq. (14), compared with a direct
calculation, for the trivial and topological phases of the BBH model
as depicted in Fig. 8(b). In both cases, the symmetries that quantize
the corner charge are weakly broken by a staggered onsite potential
(see main text). The values of P T

x , P R
y , and Q I

xy are obtained from
ribbon calculations, while QTR is inferred mod e from the tiling
procedure. The last line reports the bare corner charge computed by
summing over the top-right quadrant.

Trivial Topological

P T
x 0.854 × 10−5 −44.077 × 10−5

P R
y 0.854 × 10−5 −44.077 × 10−5

Q I
xy 4.517 × 10−5 18.412 × 10−5

QTR 0 0.5
Qc (predicted) 6.225 × 10−5 0.5 − 69.743 × 10−5

Qc (direct) 6.225 × 10−5 0.5 − 69.743 × 10−5

Qbare
c 1.602 × 10−5 0.5 − 84.817 × 10−5

0 π/2 π 3π/2 2π

t

−0.5

0.0

0.5

1.0

Q
c

Prediction

Direct calculation

FIG. 10. Evolution of the corner charge Qc (in units of e) during
the adiabatic pumping cycle described by Eq. (58). The ribbon cal-
culations only predict Qc modulo e, so three branches are plotted vs t
as the blue dots. The evolution of the actual corner charge of a finite
flake is indicated by the red circles.

large but finite flake. The results are presented in Fig. 10.
Since the corner charge is predicted only mod e, we plot
several branches corresponding to the periodicity of e along
the vertical axis as blue dots, and the directly calculated corner
charges are the red circles.

We confirm that Qc = e/2 and zero (mod e) at π/2 and
3π/2, respectively, where the topology is sharply defined.
However, we find that most of the pumping of the corner
charge occurs in the first half of the cycle. That is, Qc grows
from e/18 to 17e/18 in this interval, for an increase of 8e/9,
while the growth in the second half of the cycle is only by the
remaining amount e/9.

Note that the gauge discontinuities at t = π and 2π intro-
duce no discontinuities in the predicted value of Qc. However,
there are discontinuities in the individual values of Q I

xy, P T
x ,

and P R
y . In the first half of the cycle, Q I

xy comes from the
larger blue-square tile and changes from 2e/9 to −2e/9, while
in the second half Q I

xy comes from the twice-smaller red-
square tile and grows from −e/18 to e/18. In the first half
cycle, P T

x = P R
y each increase from −e/3 to e/3, while in the

second half P T
x and P R

y are identically zero. Finally, our tiling
is such that QTR = e/2 (mod e) in the first half cycle and zero
(mod e) in the second half. Adding the various contributions
according to Eq. (14), we find that the total Qc evolves as
described in the previous paragraph.

Without a knowledge of the population of WFs in the cor-
ner tile, we can only make predictions “mod e” as done above.
In particular, we cannot predict precisely when the corner
charge will make the discontinuous jump needed to allow it
to return to its initial state at the end of the pumping cycle.
However, by inspecting the Hamiltonian, we can anticipate
that a WF will be present in the top-right tile in the interval
π/2 < t < π , when the open circle at top right in Fig. 9(b)
has negative energy but not otherwise. Making use of this
additional information about QTR, we expect the discontinuity
in the macroscopic corner charge to occur at t = π/2. We then
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correctly predict not only the value mod e, but also the correct
branch choice, of Qc over the entire cycle.

A comparison of our Fig. 10 with Fig. 37 of Ref. [5], which
also compares predictions from ribbons with a computed cor-
ner charge, shows important differences. In their case, all the
change in the corner charge occurs in the first half cycle,
when it evolves from 0 to e, and there is no change in the
second half cycle. While the computed corner charges agree
with the predictions in their theory, as they do in ours, it
is important to keep in mind that the two approaches differ
in crucial ways. (i) In Ref. [5], BBH do not compute the
macroscopic corner charge defined by Eq. (43); instead, they
compute the total charge of the upper-right quadrant, that
is, the bare corner charge of Eq. (45). In fact, since they
did not specify the positions of the orbitals, the macroscopic
corner charge is ill determined in their case. For the triv-
ial and topological cases discussed in Sec. V C 1, we obtain
the values of Qbare

c presented in the last row of Table VII,
which are clearly very different from the macroscopic corner
charges.8 (ii) Their edge polarizations pedge are not defined in
the same way as ours. For the specified cycle, their pedge is
defined in such a way that d pedge/dt corresponds to the flow
of current into a quadrant, while our dP/dt corresponds to
the polarization current associated with the changing dipole
moments of the edge tiles in the skin region. (iii) In our
theory, in order to correctly predict the macroscopic corner
charge, we also insist that bulk quadrupole and surface dipole
contributions are computed in a common Wannier gauge. As
a result of these differences, each theory obtains internally
consistent results, although we argue that ours is more phys-
ical in that it predicts a macroscopically observable corner
charge.

VI. GAUGE-CONSISTENT NESTED WANNIER
CONSTRUCTION

In the previous section, we demonstrated that a naive
application of the hybrid Wannier approach, in which the
transverse-first nested Wannier construction is applied to rib-
bons of both orientations, is not gauge consistent, whereas an
alternative projection construction does result in a consistent
gauge. Here, we demonstrate a second successful method for
generating a consistent gauge, this time without the need for
providing trial functions. We do this using the nested Wan-
nier constructions described in Secs. IV B 2 and IV B 3, but
now insuring that the two localization steps are executed in
the same order for both the x-finite and y-finite ribbons. In
other words, one should apply the transverse construction of
Sec. IV B 2 to one ribbon and the longitudinal construction of
Sec. IV B 3 to the other.

8If all sites are located precisely at the origin in the middle of the
unit cell, the bare and macroscopic corner charges become equal.
This follows because W (x, y) in Eq. (44) is identical for all electronic
and ionic charges in the cell, and the total charge of the cell vanishes
both for deep interior cells and for skin cells far from the corners.
Thus, Eq. (44) is equivalent to integrating the charge density over a
quadrant.

TABLE VIII. Individual contributions and total predicted macro-
scopic corner charge Qc in Eq. (14), compared with a direct
calculation, for the four-band model of Fig. 6. The ribbon calcu-
lations were performed using a gauge-consistent nested Wannier
construction where we first Wannierize along y and then along x
(middle column) or vice versa (right column).

Wannierize y then x Wannierize x then y
(10−2 e) (10−2 e)

P T
x 0.300250 0.296029

P R
y 0.472198 0.476420

Q I
xy −3.756016 −3.756016

Qc (predicted) −2.983567 −2.983567
Qc (direct) −2.983567 −2.983567

Let us apply this procedure to the four-band model of
Fig. 6, for which we obtained inconsistent gauges in Sec. V B
by applying the transverse construction to both ribbons. We
choose to localize first along y and then along x. Thus we
apply the same transverse construction as before to the y-finite
ribbon and apply the longitudinal construction to the x-
finite ribbon. We find that deep inside the two ribbons the
resulting WFs are identical: Within numerical accuracy, their
site amplitudes are the same and the quantum distance be-
tween them vanishes. We then repeat the entire procedure but
localizing first along x and then along y, and again we arrive
at the same interior gauge for both ribbons (but different from
the previous one).

Table VIII shows the individual contributions and total
predicted corner charge in the two nested Wannier gauges.
The predicted corner charges are the same in both, and they
agree perfectly with the actual corner charge of a finite flake.
Note that while the edge polarizations are different between
those two gauges, the interior quadrupoles are identical. The
reason is that Q I

xy is a symmetric tensor, and hence it remains
unchanged upon reversing the order of the x and y localization
steps.

We have also tested this gauge-consistent nested Wannier
approach for the BBH model [4,5], and we again find that the
corner charge is correctly predicted. The implementation is
straightforward following the example of the four-band model
discussed above.

Before concluding the discussion of this method, we note
that it is possible to bypass the second step of the longitudinal-
first construction. Briefly, again working in the y-first context,
we carry out only the first step of the y-first construction
for the x-finite ribbon. We identify the total charge ρ�y (r)
of the ions and WFs associated with any one of the single-
cell-high layers �y and compute its y-dipole density d (y)(x) =∫

y ρ�y (x, y) dy. This quantity is independent of �y, and let-
ting d̄ (y)(x) be its window average in the x direction, we
note that d̄ (y)(x) vanishes except near the edges of the rib-
bon, and its integral over the right skin region gives Q I

xy +
P R

y . Adding this to the P T
x obtained from the transverse-

first nested Wannier construction for the y-finite ribbon then
gives the correct corner charge as before. Nevertheless, we
recommend applying the two-step nested procedure to both
ribbons, as this increases the reliability of the method by
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allowing a cross check on the equivalence of the two sets
of WFs.

VII. DISCUSSION

Several generalizations of our work remain to be devel-
oped. Our current formulation is trivially extended to the case
of broken time-reversal symmetry, and the presence of spinor
electrons entails no special difficulty. The case of nonrectan-
gular crystals and corner angles other than 90◦ can be treated
following the methods of Ref. [15]. By contrast, generaliza-
tions to topological systems, such as 2D Chern insulators or
Z2-odd quantum spin Hall insulators, do not look straightfor-
ward. In these cases, metallic edge states are topologically
protected, interfering with any natural definition of edge po-
larization. Finally, while we have focused here on the case
of low-symmetry systems such that the corner charge is not
quantized, further exploration of the connections to the the-
ory of higher-order topological insulators in higher-symmetry
systems is desirable.

Generalizations to higher dimensions are easily antici-
pated. The line of intersection of two surface facets of a 3D
crystal, generally known as a “hinge,” carries a linear charge
density that can be computed via an elementary extension
of the present methods, either by Wannierizing in all three
dimensions or by Wannierizing in 2D at each k‖ (wave vector
along the hinge) and averaging over k‖. The prediction of the
corner charge in 3D, while perhaps more difficult in practice,
should follow the same principles outlined here. That is, one
would need to compute the octupoles of interior bulk tiles far
from any surfaces, the quadrupoles of surface tiles far from
any hinges, and the dipoles of hinge tiles. While these will not
be individually gauge invariant, their sum will be, allowing
for a prediction of the corner charge mod e. So, for example,
a calculation of three rectangular rod geometries, one each
extending along x̂, ŷ, and ẑ, should provide all the needed
information.

Throughout this work we have assumed the presence of
bulk inversion symmetry so that the bulk cell can be chosen to
be free of an electric dipole moment. However, other symme-
tries can also force a nonpolar point group. In 2D these would
be the C6, C4, and C3 rotations (C2 is equivalent to inversion in
2D). All of these Cn symmetries force q I

xy to vanish and result
in quantized corner charges for a crystallite in the shape of a
regular n-gon. However, there could be cases of inequivalent
edges meeting, as for example a 90◦ corner of a material
with bulk C3 symmetry. In such cases the adjoining edges are
inequivalent and could result in a generic corner charge. More
opportunities arise for nonpolar but noncentrosymmetric point
groups in 3D. It should be straightforward to generalize our
theory to such cases.

We end this section with a discussion of connections to
the theory or orbital magnetization, which we already briefly
invoked to argue that surface polarization is not a physical
observable. We argued that if it were, its time derivative ought
to correspond to a physical flow of current at the edge of the
2D sample. However, for a time-reversal broken system with
a nonzero orbital magnetization, a steady current circulates
around the edges of the sample, which is inconsistent with a
uniquely defined edge polarization. By contrast, it is clear that

the edge current is a physical observable; it can be evaluated
as an expectation value of a Hermitian operator in the usual
way and is fully gauge invariant.

There is a strong formal similarity between the theory
presented here and that developed by Thonhauser et al. [31]
and Ceresoli et al. [32] to derive the modern-theory expression
for orbital magnetization using the Wannier representation. In
fact, that work made use of an identical decomposition of
the Wannier functions of a large but finite flake into those
associated with interior and skin regions, and identified two
contributions to the orbital magnetization. One, denoted as the
“local circulation,” was identified with the internal circulation
of charge in a deep-interior WF. The second, labeled “itinerant
circulation,” arises from edge currents defined as the expecta-
tion value of the current operator traced over WFs in the skin
region. The current of this type on the right-hand edge, labeled
as Iy in Ref. [31] and denoted as I R

y henceforth, is just the time
derivative of the edge polarization P R

y defined here. Indeed
the expression for I R

y in Eq. (9) of Ref. [31] takes the form of
a sum of contributions from hoppings that cross the boundary
between the interior and skin regions, just as our expression in
Eq. (38) for the change in P R

y under a gauge change depends
on lattice vectors R′ crossing that same boundary.

This is no accident. Since we are in the ground state, the
unitary time-evolution operator e−iHt/h̄ does not change the
occupied subspace, but it does modify the gauge by multi-
plying each energy eigenstate by a phase factor e−iEt/h̄. An
infinitesimal time step δt corresponds to an infinitesimal uni-
tary transformation in which the deep interior WFs change
by δ|0m〉 = ∑

R′n εR′,nm|R′n〉, using a notation consistent with
Eq. (30), with

εR′,nm = −i
δt

h̄
〈R′n|H |0m〉. (59)

Substituting into Eq. (38) and using Eq. (34), the upward-
flowing current I R

y = δP R
y /δt on the right edge of the sample

is

I R
y = 2e

ab

1

h̄

∑
R′

x>0

∑
nm

R′
x〈0m|y|R′n〉〈R′n|H |0m〉. (60)

In other words, time evolution within the occupied sub-
space generates a gauge evolution, and the changing gauge
drives a displacement of WF centers in the skin region that
corresponds precisely to the itinerant edge current I R

y . Equa-
tion (60) reproduces the expressions derived in Refs. [31,32]
for the single-band and multiband cases, respectively. The
(counterclockwise) itinerant-circulation contribution to the or-
bital magnetization is given by the average of I R

y on the right
edge and −I T

x on the top edge, while instead the difference
between I R

y and −I T
x (that is, I R

y + I T
x ) corresponds to a skin

contribution to the time rate of change of the top-right corner
charge. The latter is in fact independent of time, so this must
be exactly canceled by a contribution from the time depen-
dence of the interior-tile Wannier quadrupole, which is more
closely related to the local circulation in the orbital magne-
tization theory. These relationships indicate a deep formal
connection between the theory of orbital magnetization and
that of edge polarizations and corner charges presented here.
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VIII. SUMMARY

In summary, we have considered the case of a 2D cen-
trosymmetric insulator in which the corner charges are not
quantized by additional symmetries. Decomposing the large
but finite flake into bulk, skin, and corner regions, and intro-
ducing a tiling in this context, we have shown that the corner
charge can be written as a sum of a quadrupole contribution
associated with the bulk tiles, and two dipole contributions
associated with the two edges that meet at the corner. Having
introduced a Wannier representation to attach electron charges
to these tiles, we demonstrated that the bulk quadrupole and
two edge dipole contributions are not individually gauge in-
variant, although their sum is. As a consequence, we argue
that it is crucially important to adopt a common gauge for
the computation of all of these quantities in the two ribbon
geometries.

To verify the correctness of our approach, we have tested it
via calculations on three different tight-binding models. We
have demonstrated two different methods for arriving at a

consistent gauge for ribbons of both orientations, one based
on projection from trial functions and another based on a con-
sistently applied nested Wannier construction. We emphasize
that the macroscopically observable corner charge has to be
computed by an appropriate coarse-graining procedure and
not simply by counting charges in a quadrant of the sam-
ple. Having taken all these constraints into account, we have
demonstrated that the corner charge can indeed be computed
modulo e, to numerical accuracy, from calculations on two
ribbon geometries alone. We are hopeful that our work paves
the way toward the emergence of a deeper and more general
understanding of the intimate connections between bulk and
surface properties of crystalline materials.
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