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We extend the Berry-phase concept of polarization to insulators having a nonzero value of the Chern

invariant. The generalization to such Chern insulators requires special care because of the partial

occupation of chiral edge states. We show how the integrated bulk current arising from an adiabatic

evolution can be related to a difference of bulk polarizations. We also show how the surface charge can be

related to the bulk polarization, but only with a knowledge of the wave vector at which the occupancy of

the edge state is discontinuous. Furthermore, we present numerical calculations on a model Hamiltonian

to provide additional support for our analytic arguments.
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In 1988 Haldane pointed out that an insulating crystal
with broken time-reversal symmetry may exhibit a quan-
tized Hall conductance even in the absence of a macro-
scopic magnetic field [1]. We shall refer to such a material
as a ‘‘Chern insulator’’ (CI) because it necessarily would
have a nonzero Chern invariant associated with its mani-
fold of occupied Bloch states [2,3]. While no CI has yet
been discovered experimentally, there appears to be no
reason why one could not exist, and theoretical models
that behave as CIs are not difficult to construct. It seems
plausible that the current blossoming of interest in exotic
noncollinear magnets and multiferroics could yield an
experimental example before long.

CIs occupy a middle ground between metals and ordi-
nary insulators. Like metals, their conductivity tensor ���

is nonzero, their surfaces are metallic (as a result of topo-
logical edge states crossing the Fermi energy), and it is
impossible to construct exponentially localized Wannier
functions (WFs) for them [4]. On the other hand, only the
off-diagonal (dissipationless) elements of ��� can be non-

zero, the chiral edge states decay exponentially into the
bulk, the one-particle density matrix decays exponentially
in the interior [5], and the localization measure �I [6,7] is
finite [5] as in other insulators. Overall it appears natural to
regard a CI as an unusual species of insulator, but many
aspects of its behavior remain open to investigation.

As is well known, the electric polarization P is not well
defined in a metal. For an ordinary insulator, its definition
alternatively in terms of Berry phases or WFs is by now
well established [8–10]. For a CI, the absence of a Wannier
representation removes the possibility of using it to define
the polarization, and we shall show below that there is a
fundamental difficulty with the Berry-phase definition as
well. In view of the presence of dissipationless currents and
metallic edge states, one might be tempted to conclude that
P is not well defined at all in a CI. On the other hand,�I is
related to the fluctuations of P [11], and the finiteness of
this quantity [5] suggests that the polarization might be
well defined after all.

The purpose of this Letter is to discuss whether, and in
what sense, a definition of electric polarization is possible
in a CI. We demonstrate that the usual Berry-phase defini-
tion does remain viable if it is interpreted with care when
connecting it to observables such as the internal current
that flows in response to an adiabatic change of the crystal
Hamiltonian, or to the surface charge at the edge of a
bounded sample.
For the remainder of this Letter we restrict ourselves to

the case of a 2D crystalline insulator having a single
isolated occupied band. The generalization to the case of
a 3D multiband insulator is not difficult, but would com-
plicate the presentation. We also restrict ourselves to a
single-particle Hamiltonian, noting that the principal diffi-
culties in understanding CIs occur already at the one-
particle level. The lattice vectors a1 and a2 are related to
the reciprocal lattice vectors b1 and b2 in the usual way
(bi � aj ¼ 2��ij) and the cell area is S ¼ ja1 � a2j.
The Berry-phase expression for the electric polarization

can be written as

P ½k0� ¼
e

ð2�Þ2 Im
Z
½k0�

dkhukjrkjuki; (1)

where e is the charge quantum (e > 0), juki are the cell-
periodic Bloch functions, and ½k0� indicates the parallelo-
gram reciprocal-space unit cell with origin at k0 (that is,
with vertices k0, k0 þ b1, k0 þ b1 þ b2, and k0 þ b2). In
an ordinary insulator one insists on a smooth and periodic
choice of gauge (relative phases of the juki) in Eq. (1), and
P is well defined (modulo eR=S, whereR is a lattice vector
[8]) independent of k0. However, in a CI such a gauge
choice is no longer possible. To see this, we decompose
P½k0� ¼ P1a1 þ P2a2, k ¼ k1b1 þ k2b2, and k0 ¼
�1b1 þ �2b2, and rewrite Eq. (1) as

P½�2�
1 ¼ �e

S

Z �2þ1

�2

dk2
�1ðk2Þ
2�

; (2)
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�1ðk2Þ ¼ �Im
Z �1þ1

�1

dk1huk1;k2 j@k1 juk1;k2i: (3)

Equation (3) is a Berry phase and is gauge independent
modulo 2� (independent of �1). This allows us to make an
arbitrary choice of branch for �1ðk2 ¼ �2Þ and to insist, as

part of the definition of P½�2�
1 , that �1ðk2Þ should remain

continuous as k2 is increased from �2 to �2 þ 1. Since
states at ðk1; �2Þ and ðk1; �2 þ 1Þ are equivalent, it follows
that

�1j�2þ1
�2

¼ �2�C; (4)

where C is an integer. In fact C just defines the Chern
number, and the insulator is a CI if C � 0. For simplicity
we focus henceforth on a CI having C ¼ �1.

Using Eqs. (2) and (3) and similar equations for P2, we
have arrived at a definition P½k0� that is well defined,

modulo eR=S as usual, even for a CI. However, as illus-
trated in Fig. 1(a),

P ½k0þ�k� ¼ P½k0� �
eC

2�
ẑ��k; (5)

where ẑ is the unit vector along a1 � a2. This dependence
on k0 clearly presents a problem for the interpretation of
Eq. (2) as a ‘‘physical’’ polarization in the case of a CI.

However, let us recall how the concept of polarization is
used. For a normal insulator at least [8], the change of
polarization during an adiabatic change of some internal
parameter of the system from time ti to tf is given by

Z tf

ti

dtJðtÞ ¼ PðfÞ
½k0� � PðiÞ

½k0� ðmodulo eR=SÞ; (6)

where JðtÞ is the cell-averaged adiabatic current flowing in
the bulk. A related statement, connected with the require-
ment that the charge pumped to the surface must be con-
sistent with Eq. (6), is that the charge on an insulating
surface normal to reciprocal vector b1 is [9]

� ¼ P � b̂1 ðmodulo e=a2Þ: (7)

Equations (6) and (7) embody the attributes of a useful
definition of P. In the remainder of this Letter, we dem-
onstrate that a generalized definition of P, having similar
attributes, can be given in a CI. We first show that Eq. (6)
remains correct, provided that the same k0 (i.e., the same

reciprocal-space cell) is used for PðiÞ and PðfÞ in Eq. (6). We
also show that Eq. (7) must be modified and explain how.
We provide numerical tests as well as analytic arguments
for both claims.
We begin by giving two arguments for the correctness of

Eq. (6) in the CI case. First, it is straightforward to see that
the contribution to J1ðtÞ can be computed independently
for each k2 [9], with the problem in ðk1; tÞ space effectively
corresponding to that of an ordinary 1D crystal. Thus, the
derivation of Eq. (6) given in Ref. [8] goes through un-
changed for the CI case. Second, we note that the expected
result is obtained for the special case that the parameter of
interest is a spatially uniform but time-dependent vector
potential AðtÞ. Since a slow turning on of AðtÞ causes state
uke

ik�r to evolve into ukþðe=@cÞAeik�r, it follows that

P ½A�
½k0� ¼ P½A¼0�

½k0� � e2C

hc
ẑ�A: (8)

But a time varying vector potential generates an electric
field E ¼ ð�1=cÞdA=dt, so that J ¼ ðCe2=hÞẑ�E. The
transverse conductivity �xy is thus quantized in units of

e2=h, expressing the fact that a CI is a realization of the
integer quantum Hall effect [1].
We further confirm the validity of Eq. (6) by numerically

testing our prediction on the Haldane model [1], a tight-
binding model for spinless electrons on a honeycomb
lattice at half filling with staggered site energies and com-
plex second-neighbor hoppings chosen so that C ¼ 1.
Using the notation of Ref. [1], we adopt parameters t1 ¼
1, t2 ¼ 1=3, � ¼ �=4, � ¼ 2=3 and the lattice vectors

FIG. 1 (color online). (a) Sketch of �1ðk2Þ in a Chern insulator
(C ¼ þ1). Solid black frame and dashed gray (red) frame
indicate reciprocal-cell origin chosen at �2 and �2 þ�k, re-
spectively. Dotted lines indicate corresponding averages, pro-
portional to P1. (b) Computed P1ð�Þ and P 1ð�Þ for the modified
Haldane model, in units of �0:01e=S, for adiabatic (dashed
lines) and thermal (solid line and symbols) filling. See text.

FIG. 2 (color online). Sketch of a band structure of a finite
ribbon of a Chern insulator. Solid regions indicate projected bulk
bands; thin solid lines are edge states. Black and gray (red)
correspond to � ¼ �i and � ¼ �f, respectively; corresponding

values of k�2 are indicated. Thick lines indicate filling of edge

states as dictated by k�2, chosen to illustrate system thermalized at

�i and then carried adiabatically to �f. Inset: Edge states

associated with left (green) and right (blue) surfaces.

PRL 102, 107603 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 MARCH 2009

107603-2



a1 ¼ a0ð
ffiffiffi
3

p
x̂þ ŷÞ=2 and a2 ¼ a0ŷ (so that a1 ¼ a2 ¼

a0). Furthermore, we modify the first-neighbor hopping
t1 ! t1ð1þ �Þ on the bonds parallel to a1 þ a2 so as to
break the threefold rotational symmetry and allow an
adiabatic current to flow as � is varied. The compensating
ionic charge is assumed to sit on the site with lower site
energy.

We consider an infinite strip of the Haldane model N1

cells wide and extending to�1 along y, as sketched in the
inset of Fig. 2. States c nk2ðrÞ are labeled by k2, which

remains a good quantum number, and an additional index
n ¼ 1; . . . ; 2N1. The dipole moment across the strip, per
unit length, is

P 1 ¼ �e

N1S

Z 1

0
dk2

X
n2N ðk2Þ

hc nk2 jr1jc nk2i; (9)

where position vector r is decomposed as r ¼ r1a1 þ r2a2
and N ðk2Þ is the set of occupied states to be discussed
shortly. In the limit of large N1, we associate the integrated
current that flows along x̂ in the interior of the strip during
an adiabatic evolution from � ¼ �i to � ¼ �f with the

corresponding change inP 1, since by continuity the charge
must arrive at the surface. We then compare this with the
change of P1 evaluated using a single bulk unit cell via
Eqs. (2) and (3) to validate the theory.

There is a subtlety, however. Neutrality implies that
N ðk2Þ contains N1 states, but which ones? The problem
arises because a CI is topologically required to have chiral
metallic edge states. Our ribbon of CI therefore has one
band of edge states along its left (L) edge and one along its
right (R) edge (see inset of Fig. 2). For any given �, let
k�2 ð�Þ be the value of k2 at which L-edge and R-edge bands
cross. A thermalized filling of the edge states would cor-
respond to the thick black curve for case�i in Fig. 2, where
the N1 lowest-energy states are occupied at each k2 and
	f ¼ 	ðk�2 Þ. Defining k�2 to be the point at which the

occupation switches between L and R edge states, we
have k�2 ¼ k�2 for the thermalized case.

In general, k�2 ð�Þ varies with �. However, k�2 cannot
change during an adiabatic evolution. Because we want to
‘‘measure’’ the polarization by the charge that accumulates
at the surface, we specify that the adiabatic evolution is fast
compared to the tunneling time between edge states but
slow compared to all other processes, so that electrons
cannot scatter between edges. Thus if we thermalize the
system at �i and then adiabatically carry the system from
�i to �f, we arrive at the adiabatic filling illustrated by the

thick gray (red) curve for case �f in Fig. 2.

We thus expect that the change in polarization calculated
from the right-hand side of Eq. (6) from the bulk band
structure using Eqs. (1)–(3) should match that given by the
change of Eq. (9) only if the adiabatic filling is maintained.
We have confirmed this numerically for our modified
Haldane model. The polarization as a function of � calcu-
lated using Eq. (9) and using the right-hand side of Eq. (6)
is indicated in Fig. 1(b) with black dashed lines and gray

(blue) dashed lines, respectively [12]. Equations (2) and (3)
were evaluated on a 300� 300 k-point mesh. Equation (9)
was calculated using five values of N1 2 ½25; 70� and then
extrapolating to infinity, while the k2 integral was discre-
tized with 5000 k points. While there is a vertical offset
between these curves that depends on the choice of k0 in
Eq. (6), the differences �P1 between different � are cor-
rect at the level of 10�5. On the other hand, the results
obtained with the thermalized filling in Eq. (9), shown by
the solid line in Fig. 1(b), are drastically different. These
results confirm that the appropriate comparison is with the
adiabatic filling, and provide numerical confirmation that
Eq. (6) is indeed satisfied even in a CI.
We now turn to Eq. (7). A naive generalization to the CI

case might be that � ¼ P½k0� � b̂1 (modulo e=a2), but this

cannot be correct. First, the left-hand side should be inde-
pendent of k0, but the right-hand side is not. Second, the
usual proof for ordinary insulators of the connection be-
tween surface charge and bulk polarization assumes that
the surface is insulating, with the Fermi level lying in a gap
common to both the bulk and surface [9]. When chiral edge
states are present, the surfaces cannot be insulating, so the
usual conditions are violated.
To show how Eq. (7) can be corrected for the case of a

CI, let us again consider our Haldane-model ribbon at
some fixed �. Its surface charge � can be calculated

from � ¼ P � b̂1 ¼ ðS=a2ÞP 1 with P 1 evaluated using
Eq. (9), but its value will depend on the choice of the k�2
at which the occupation of the edge state has its disconti-
nuity, so that

�½k�2� ¼ �e

N1a2

Z 1

0
dk2

X
n2N

hc nk2 jr1jc nk2i; (10)

where N is the set of N1 occupied states at k2 given the
specified k�2 (i.e., the choice whether the L orR edge state is
included in N flips as k2 passes through k�2).
Since the surface charge theorem of Eq. (7) for ordinary

insulators was demonstrated via the Wannier representa-
tion [9], we take the same approach here. However, well-
localized bulk WFs do not exist in a CI [4], so we focus
instead on ‘‘hybrid Wannier functions’’ (HWFs) [13] in
which the Fourier transform from Bloch functions is car-
ried out in the r1 direction only. Thus k2 remains a good
quantum number and the HWF

Wk2ðr1; r2Þ ¼
ffiffiffiffiffiffi
N1

p Z 1

0
dk1
k1k2ðr1; r2Þ (11)

is well localized only in the a1 direction. Using these we
can represent the polarization

P½�2�
1 ¼ �e

S

Z �2þ1

�2

dk2�
½�2�
k2

(12)

in terms of the HWF center �½�2�
k2

¼ hWk2 jr1jWk2i. We re-

quire � to be a continuous function of k2 2 ½�2; �2 þ 1� so
as to guarantee a result that is equivalent to Eqs. (1)–(3).
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To make the connection between Eqs. (10) and (12), we
recast the former by constructing Wannier-like functions
along the a1 direction for the finite-width strip, starting

from the N1 � N1 matrixR
½k�

2
�

mn;k2
¼ hc mk2 jr1jc nk2i, where

m; n 2 N as specified by k�2. TheN1 eigenvectors ofR
½k�2�
k2

correspond to states that are Bloch-like along r2 but local-
ized along r1, which we refer to as ribbon HWFs, and the

eigenvalues %
½k�

2
�

jk2
locate their centers of charge. Using the

basis independence of the trace, Eq. (10) can now be
rewritten as

�½k�
2
� ¼ �e

N1a2

Z 1

0
dk2

X
j

%
½k�2�
jk2

: (13)

The similarity between Eqs. (12) and (13) suggests that
these can be connected. Since k2 is a good quantum num-
ber, each k2 can be treated independently. For each k2 we
can compare the infinite (bulk) 1D system described by
Eq. (12) with the finite (ribbon) 1D system described by
Eq. (13). The essential observation is that, in the limit of
large N1, the HWF centers %jk2 deep inside the ribbon

converge to the bulk �k2 , modulo an integer [9]. This is

illustrated in Fig. 3, where both sets of HWF centers
are plotted as a function of k2 for a ribbon of width
N1 ¼ 6. Furthermore, the fact that the occupation of
edge states switches between L and R edge at k�2 is re-
flected in the discontinuity of ribbon HWF centers %jk2 at

k�2. On the other hand, the bulk HWF centers �k2 are chosen

to be continuous across k�2. We can account for this dis-
crepancy either by including a correction term proportional
to (k�2 � �2),

�½k�2� ¼ 1

a2
½SP½�2�

1 þ eCðk�2 � �2Þ� ðmod e=a2Þ; (14)

or by realizing that by the virtue of Eq. (5) this is equivalent
to shifting the reciprocal-space origin to k�2,

�½k�
2
� ¼ S

a2
P
½k�

2
�

1 ðmod e=a2Þ; (15)

as can be seen from the dashed frame in Fig. 3. Equa-
tion (14) or (15) is the appropriate generalization of the
surface charge theorem, Eq. (7), to the case of a CI, and
should be correct in largeN1 limit for both thermalized and
adiabatic fillings as long as the appropriate k?2 is used.
We have also tested the correctness of this formula using

our numerical calculations on the modified Haldane model.
Recall that the solid curve in Fig. 1(b) represents the
surface charge as computed from Eq. (9) for the thermal-
ized case. For each �, we first locate k�2 using 1000 k
points on a ribbon of width N1 ¼ 70 and evaluate Eq. (15)
with k�2 ¼ k�2 using Eqs. (2) and (3) on a 250� 250 k-point
mesh. The resulting values are plotted as gray (blue) dots in
Fig. 1(b). The agreement is excellent.
In summary, we have generalized the Berry-phase con-

cept of polarization to the case of a Chern insulator. The
integrated current flow during adiabatic evolution is given
by Eq. (6), where the reciprocal-space cell must be the
same in both terms on the right-hand side. The surface
charge at an edge of a bounded sample is given by Eq. (15),
where k�2 specifies the wave vector at which the occupation
discontinuity occurs in the chiral edge state. These results
may be of use in understanding the physical properties of
these topological insulators, and perhaps in searching for
experimental realizations.
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