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We present a Wannier-based method to calculate the Chern-Simons orbital magnetoelectric coupling in the
framework of first-principles density-functional theory. In view of recent developments in connection with strong
Z2 topological insulators, we anticipate that the Chern-Simons contribution to the magnetoelectric coupling
could, in special cases, be as large or larger than the total magnetoelectric coupling in known magnetoelectrics,
such as Cr2O3. The results of our calculations for the ordinary magnetoelectrics Cr2O3, BiFeO3, and GdAlO3

confirm that the Chern-Simons contribution is quite small in these cases. On the other hand, we show that, if the
spatial-inversion and time-reversal symmetries of the Z2 topological insulator Bi2Se3 are broken by hand, large
induced changes appear in the Chern-Simons magnetoelectric coupling.
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I. INTRODUCTION

In recent years, there has been a significant revival of
interest in magnetoelectric effects in solids, as surveyed in
several reviews.1–4 Potential applications of these materials
have long been discussed5,6 in areas ranging from the optical
manipulation and frequency conversion to magnetoelectric
memories. Of the various quantities that can be discussed,
the linear magnetoelectric coupling tensor αij is clearly of
primary interest, as it quantifies the leading-order term in the
coupling at small fields. We define it as

αij =
(

∂Pi

∂Bj

)
E

=
(

∂Mj

∂Ei

)
B

, (1)

where Pi is the electric polarization induced by the magnetic
field Bj , or equivalently, Mj is the magnetization induced by
the electric field Ei . We use SI units (see Sec. II A), and the
derivatives are to be evaluated at zero electric and magnetic
fields. In the special case that the induced response (P or
M) remains parallel to the applied field (B or E), the tensor
α is purely diagonal with equal diagonal elements, and its
strength can be measured by a dimensionless scalar parameter
θ defined via

αiso
ij = θe2

2πh
δij . (2)

More generally, depending on the magnetic point group of the
crystal, αij can have distinct diagonal components as well as
nonzero off-diagonal ones.

The linear magnetoelectric response αij can be decomposed
into two contributions coming from purely electronic and
from ionic responses, respectively. The former is defined as
the magnetoelectric response that occurs when atoms are not
allowed to displace in response to the applied field, while the
latter is defined as the remaining lattice-mediated response.
One generally expects ionic effects to dominate over electronic
responses, as, for example, was shown recently in Refs. 7 and 8
for the case of Cr2O3. Moreover, each of these components can
be decomposed further into spin and orbital parts, since the
magnetization induced by the electric field can be decomposed

in that way. Here, one would naively expect that the spin
contribution will dominate with respect to the orbital one,
since orbital moments are usually strongly quenched by crystal
fields. Mostly for this reason, realistic theoretical calculations
of magnetoelectric coupling have been developed7–9 only for
the spin component.

As shown in Refs. 10 and 11 using two complementary
approaches, the orbital magnetoelectric polarizability (OMP),
defined as the contribution of orbital currents to the magne-
toelectric coupling αij , can be written as the sum of three
gauge-invariant contributions. One of these, first discussed
by Qi et al.12 and Essin et al.,13 is the Chern-Simons
orbital magnetoelectric polarizability (CSOMP) term. Since
this contribution is purely isotropic, it contributes only to θ , as
in Eq. (2). In this paper, we will focus mostly on the CSOMP
component of αij . From an implementation viewpoint, the
CSOMP component is quite different from the other two
components of the OMP: It can be calculated from knowledge
of the ground-state electron wave functions alone but only
after careful attention is given to the need to choose a smooth
gauge in discretized k space.

One of the motivations for this paper is the possibility of
finding a material whose CSOMP component of the linear
magnetoelectric tensor will be large compared to the total
coupling in known magnetoelectric materials. As elaborated
in more detail in Sec. II, the basis for this possibility arises
from the before-mentioned theoretical developments14 and the
experimental verification of the existence of Z2 topological
insulators, such as Bi1−xSbx , Bi2Se3, Bi2Te3, and Sb2Te3.15–17

Roughly speaking, we seek a material that is similar to a Z2

topological insulator but having broken inversion and time-
reversal symmetries. In order to take the first steps toward
searching for such materials, we have set out to calculate the
CSOMP component of the magnetoelectric tensor in several
compounds of interest using density-functional theory.

This paper is organized as follows. In Sec. II, we pro-
vide theoretical background by reviewing the previously
derived10,11 expression for the α tensor and by discussing
the connection between bulk and surface properties in a way
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that is analogous to the theory of surface charge and bulk
electric polarization. We also review the connection to Z2

topological insulators and make some general comments about
symmetry. In Sec. III, we discuss the gauge-fixing issues that
arise when discretizing the CSOMP expression on a k-point
mesh and show how these can be resolved using Wannier-based
methods. By this route, we arrive at an explicit expression for
the CSOMP in terms of position matrix elements between
Wannier functions (WFs). We evaluate this expression in the
density-functional context for several materials of interest in
Sec. IV. Finally, we summarize and give an outlook in Sec. V.

II. BACKGROUND AND MOTIVATION

In this section, we briefly summarize previous work from
Refs. 10 and 11 on the OMP, describe relationships between
bulk and surface properties, discuss motivations for this paper
based on the discovery of strong Z2 topological insulators, and
present a brief symmetry analysis.

A. Units and conventions

In this paper, we use SI units and define α according
to Eq. (1) using independent field variables E and B. It
follows that α has the same units as the vacuum admittance
1/cμ0.18 While this is convenient from the point of view of
first-principles theory, where B is fixed to zero in practice,
the more conventional definition in the literature is in terms of
fixed E and H fields, in which case, one has

αEH
ij =

(
∂Pi

∂Hj

)
E

= μ0

(
∂Mj

∂Ei

)
H

, (3)

and αEH has units of inverse velocity.19 In the typical case
that the magnetic susceptibility of the material is negligible,
these are related by αEH = αμ0, and one can define a reduced
(dimensionless) quantity αr = cμ0α = cαEH.18 Defined in this
way, αr is numerically equal to the value of the magnetoelectric
coupling in Gaussian units using the conventions of Rivera,19

which, in turn, corresponds to the notation g.u. (Gaussian units)
in some recent papers.7,9 Furthermore, using the notation of
Eq. (2) for the isotropic magnetoelectric coupling, it follows
that the diagonal component of αr is just θ/π times the fine
structure constant (which is e2cμ0/2h in SI units).

B. Theory of orbital magnetoelectric coupling

The purely electronic orbital magnetoelectric coupling αij

can be written in terms of three gauge-invariant contributions,

αij = αCS
ij + α̃LC

ij + α̃IC
ij , (4)

where αCS
ij = δijα

CS is the above-mentioned (isotropic)
CSOMP, while α̃LC

ij and α̃IC
ij are two additional contributions.

The isotropic part of the OMP tensor has contributions from
the two α̃ terms as well as from the CSOMP term. The three
contributions to the OMP can compactly be expressed as

αCS = η
e

2

∫
d3k εijk tr

[
Ai ∂jAk − 2i

3
AiAjAk

]
, (5)

α̃LC
ij = ηεjkl Im

∫
d3k 〈̃∂kunk|(∂lHk)|D̃iunk〉, (6)

α̃IC
ij = ηεjkl Im

∫
d3k 〈̃∂kunk|D̃iumk〉〈umk|(∂lHk)|unk〉, (7)

where the notations are defined as follows. An implied sum
notation applies to repeated Cartesian (ijkl) and band (mn)
indices, corresponding to a trace over occupied bands in the
latter case (written explicitly as tr). A common prefactor η =
−e/h̄(2π )3 appears in each equation, with e > 0 being the
magnitude of the electron charge. The Berry connection,

Amnkj = 〈umk|i∂j |unk〉 (8)

is defined in terms of the cell-periodic Bloch functions,

|unk〉 = e−ik·r|ψnk〉, (9)

which are the eigenvectors of Hk = e−ik·rHeik·r, where H is
the bulk periodic Hamiltonian of the crystal at zero electric
and magnetic fields. ∂j and Dj are the partial derivatives
with respect to the j th component of the wave vector
k and the electric field E , respectively. Finally, the tilde
indicates a covariant derivative, ∂̃j = Qk∂j and D̃j = QkDj ,
where Qk = 1 − |unk〉〈unk| (sum implied over n). Additional
screening contributions to α̃LC

ij and α̃IC
ij that occur in the context

of self-consistent field calculations, not given here, can be
found in Ref. 11.

As in the case of electronic polarization, one needs to be
careful about relating the above bulk expressions to experimen-
tally measurable physical quantities, since arbitrary surface
modifications can contribute to the effective measurable OMP.
The relationship between the OMP and the experimentally
measurable responses are explained in more detail in Sec. II C.

C. Relation between bulk and surface properties

In order to discuss the relationship between bulk and surface
quantities in connection with the OMP, it is instructive first to
review the corresponding connections in the theory of electric
polarization.

1. Electric polarization and surface charge

We first review the relationship between the bulk electric
polarization, as obtained from the crystal band structure
according to the Berry-phase theory,20,21 and a measurable
quantity, which is the macroscopic dipole moment of a finite
sample cut from this crystal. Given the set of valence Bloch
wave functions |ψnk〉 of an insulating crystal, one can readily
calculate the electronic contribution to the polarization as the
integral,

Pi = − e

(2π )3

∑
n

∫
d3k 〈unk|i∂ki

|unk〉, (10)

over the Brillouin zone (BZ). Gauge changes (|unk〉 →
e−iβ(k)|unk〉) can change the value of this integral only by
Re/�, where R is a lattice vector and � is the unit cell volume.
Therefore, the value of this integral is only well-defined
mod Re/�. In what follows, we assume that a definite choice
of gauge has been made so that a definite value of P has
been established. We now analyze how, and under what
circumstances, one can relate this P to the (experimentally
measurable) dipole moment d of an arbitrarily faceted finite
sample of this crystal.
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At each local region on the surface of this finite sample,
assuming a perfect surface preparation (defect free with ideal
periodicity), we can relate P to the surface charge density σ

at that same point via21

σ =
(

P + e

�
R

)
· n̂ + 
. (11)

Here, n̂ is the surface normal unit vector, R is a lattice vector,
and 
 is an additional contribution present only for metallic
surfaces. The term involving R, which corresponds to an
integer number of electrons per surface unit cell, is required
because, for a given surface n̂, it may be possible to prepare
the surface in different ways (e.g., by adding or subtracting a
layer of ions, or by filling or emptying a surface band) such
that the surface charge per cell changes by a quantum. Thus, R
is, in general, a surface-dependent quantity in Eq. (11). If the
surface patch under consideration is not insulating, then 
 is
a term that measures the contribution of the partially occupied
surface bands to the surface charge and is proportional to the
area fraction of occupied band in k space. (In the case of an
insulator with a nonzero first Chern number, this fraction has
to be calculated with special care,22 but we will not consider
this case in what follows.)

Now, let us consider the special case that all surfaces are
insulating (
 = 0) and that the surface charges of all surface
patches are consistent with a single vector value of R (global
consistency). Under these circumstances, the macroscopic
dipole moment d of the crystallite is given by

d = V
(

P + e

�
R

)
, (12)

which can be obtained trivially by integrating Eq. (11). Here,
V is the volume of the entire finite sample. As could be
anticipated, d/V has a component depending only on the
bulk wave functions and our gauge choice and an additional
component eR/� reflecting the preparation of the surfaces.

2. OMP and surface anomalous Hall conductivity

We now discuss a corresponding set of relationships
between the bulk-calculated OMP and the surface anomalous
Hall conductivity.

Using Eqs. (5)–(7), one can calculate the tensor α from the
knowledge of the bulk Hamiltonian of an insulating crystal.
Analogously, as in the case of polarization, one can again show
that a gauge change23 must either leave α invariant or change it
by a quantum m(e2/h)I, where m is an integer and I is the unit
matrix. More precisely, this gauge transformation will only
affect the CSOMP component αCS of the OMP, since the other
two contributions α̃LC and α̃IC are fully gauge invariant (see
Ref. 11 for details).

We now imagine cutting a finite crystallite from this
infinite crystal, and we wish to relate α to its physically
observable linear magnetoelectric coupling β, defined for a
finite sample by

βij = ∂di

∂Bj

= ∂μj

∂Ei

, (13)

where di is the dipole moment of the finite sample and μj is its
magnetic dipole moment. We want to discuss this relationship

in a way that is analogous to that between the bulk P and the
sample dipole moment d in Sec. II C 1.

As follows from Eq. (1), the application of an electric field
Ej to the insulating crystal induces the magnetization,

Mk = αjkEj , (14)

where α is given by Eq. (4) and is only determined mod
m(e2/h)I. Having a homogeneous Mk inside the sample and
Mk = 0 outside is equivalent to having a surface current Ki

equal to

Ki = εiklMknl, (15)

where nl is the surface unit normal. By eliminating Mk from
these equations, we see that having a magnetoelectric tensor α

is equivalent to having a surface anomalous Hall conductivity
σ AH

ij = εiklαjknl . If the surface patch in question is insulating,
then its anomalous Hall conductivity should just be given by
this equation. If, instead, the surface patch is metallic, then an
additional surface contribution 
ij should be present, leading
to the relation

σ AH
ij = εikl

(
αjk + m

e2

h
δjk

)
nl + 
ij . (16)

This equation is in precise analogy to Eq. (11) relating the
polarization to the surface charge. Here, 
ij may, in general,
contain dissipative contributions, but in the dirty limit, it will
be dominated by the intrinsic surface contribution that can
be calculated as a two-dimensional (2D) BZ integral of the
Berry curvature of the occupied surface states.24 The integer
quantum m appearing in Eq. (16) corresponds to the theoretical
possibility that the surface preparation can be changed in such
a way that a surface band having a nonzero Chern number
may become occupied. For example, this could be done, in
principle, by constructing a 2D quantum anomalous Hall layer
(as described, e.g., by the Haldane model25), straining it to be
commensurate with the surface, and adiabatically turning on
hopping matrix elements to stitch it onto the surface.

In the special case that all surface patches are insulating
(
ij = 0), and all surface patches have an anomalous Hall
conductivity given by Eq. (16) with the same value of m (global
consistency), we can relate the experimentally measurable
magnetoelectric response β of the finite crystallite to the
bulk-calculated α via

β = V
(

α + m
e2

h
I
)

, (17)

which follows by integrating Eq. (16) over all surfaces. This
equation is in close analogy to Eq. (12) for the case of electric
polarization. In particular, we see that β/V has a component
α depending only on the bulk wave functions and our gauge
choice and an additional component that is an integer multiple
of (e2/h)I, reflecting the preparation of the surfaces.

As will be discussed in Sec. II D, time-reversal symmetry
imposes additional constraints on α, and some care is needed
in the interpretation of Eq. (17) for the case of Z2 topological
insulators.

085108-3



COH, VANDERBILT, MALASHEVICH, AND SOUZA PHYSICAL REVIEW B 83, 085108 (2011)

D. Motivation and relationship to strong Z2

topological insulators

In this section, we give arguments to motivate our hope
that, in certain materials, the CSOMP might be on the order of,
or even much larger than, the total magnetoelectric coupling
in typical known magnetoelectric materials. For simplicity,
henceforth, we focus only on the CSOMP part of the total
OMP response, although there are additional contributions
coming from α̃LC and α̃IC. Thus, from now on, the quantity
θ measures the strength of the CSOMP through the relation
αCS = θe2/2πh.

1. Time-reversal symmetry constraints on θ

Let us analyze the allowed values of θ for an infinite bulk
insulating system that respects time-reversal (T ) symmetry.
Since T flips the sign of the magnetic field, it will also reverse
the sign of θ . As mentioned earlier in Sec. II C 2, however, the
value of θ can be changed by 2π under a gauge transformation.
Therefore, one concludes12,13 that the allowed values of θ

consistent with T symmetry are 0 and π (each mod 2π ) and
that these two cases provide a topological classification of
all T -invariant insulators. Indeed, this classification has been
shown12,13 to be identical to the one based on the Z2 index,
with Z2-odd or strong topological insulators having θ = π ,
while Z2-even or normal insulators have θ = 0, although the
Z2 index is most often introduced in a different context.26

(Incidentally, α̃LC = α̃IC = 0 in both cases since these terms
are fully gauge independent, unlike the CSOMP term, which
can be changed by 2π .)

Consider now a finite sample of a normal (Z2-even)
T -symmetric insulator (θ = 0 in the bulk) with insulating
surfaces (
ij = 0) prepared in a way that the integer m is
nonzero and the same on every surface. From Eq. (17), we
conclude that this sample will have a nonzero magnetoelectric
response β, proportional to m. Obviously, a sample that has
T symmetry both in the bulk and on the surface must have
β = 0, and, therefore, we conclude that this system needs to
have broken T -reversal symmetry at the surface. As mentioned
earlier, one could, at least formally, prepare such a surface by
starting from the one that has m = 0 and then absorbing, to
each surface, a layer of anomalous Hall insulator25 with Chern
index m. Such a procedure will keep the surfaces insulating,
but it will necessarily break the T -reversal symmetry.

Next, we analyze the case of a strong Z2 topological
insulator having θ = π , or equivalently, α = αCS = (e2/2h) I.
We first consider a sample of such a system that has T

symmetry conserved at its surfaces, as in Fig. 1(a). Again,
since the entire sample is T symmetric, its experimentally
measurable magnetoelectric coupling tensor β clearly has to
vanish. Using Eq. (16) and the fact that m can take on only
integer, and not half-integer, values, we conclude that the only
way to make the response of the entire sample vanish is to
have 
ij be nonzero. This requires that the surfaces of such
a system must be metallic. Moreover, since the contribution

ij of the metallic surface band to the surface anomalous
Hall conductivity is just given by the Berry phase around
the Fermi loop,24 the needed cancellation requires this Berry
phase to be exactly ±π . All this is in precise accord with the

(a) (b)

Vacuum Vacuum

2 2

FIG. 1. Identical samples cut from a strong Z2 topological
insulator but with two different surface preparations. (a) Time-
reversal symmetry is preserved at vacuum-terminated surfaces; the
net magnetoelectric coupling of this sample is zero. (b) Time-reversal
symmetry is broken at the surface as a result of exchange coupling
to an insulating ferromagnetic adlayer; if this opens a gap in the
surface-state spectrum, the entire sample will behave as if it has a
magnetoelectric coupling of exactly θ = π .

known properties of Z2-odd insulators and their topologically
protected surface states.26

The Kramers degeneracy at the Dirac cone in the surface
band structure can be removed by the application of a T -
breaking perturbation to the surface. In principle, this could
be accomplished, for example, by applying a local magnetic
field to the surface or by interfacing the surface to an insulating
magnetic overlayer. In the latter case, the interatomic exchange
couplings provide a kind of effective magnetic field acting
on the surface layer of the topological insulator. If the local
Fermi level resides in the gap opened by field, then the surface
becomes insulating. If the field can be consistently oriented
(see Ref. 12) on each patch of the surface, either along or
opposite the direction of surface normal vector n [as shown
in Fig. 1(b)], then the entire surface becomes insulating. It
is important that the field is applied consistently in the same
direction with respect to n, since conducting channels will
otherwise appear at domain boundaries.26

If all of these requirements are met, the surface contribution

ij to β vanishes so that β = Vα with α given only by bulk
value of θ = π (assuming m = 0 for simplicity). Therefore,
such a sample of a strong Z2 topological insulator would
behave as if the entire sample has exactly half a quantum
of magnetoelectric coupling (θ = π ), although its bulk is
time-reversal symmetric!

2. Prospects for large-θ materials

Recently, surface-sensitive angle-resolved photoemission
spectroscopy measurements have experimentally confirmed
that several compounds,15–17 including Bi1−xSbx , Bi2Se3,
Bi2Te3, and Sb2Te3, do indeed behave as strongZ2 topological
insulators. Therefore, their bulk wave functions must be
characterized by θ = π . Until now, the corresponding mag-
netoelectric response has not been measured experimentally,
in part because of the difficulties in obtaining truly insulating
behavior in the bulk, as well as the need to gap the surfaces by
putting them in contact with magnetic overlayers as described
earlier.

We believe that a more promising approach to observing a
large CSOMP (i.e., θ comparable to π ) is to consider an insu-
lator that has neither T nor spatial-inversion symmetry. In this
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case, theZ2 classification does not apply, and the surface can be
gapped without any need to apply a T -breaking perturbation.
(A more precise statement of the symmetry considerations
will be given in Sec. II E.) Then, the sample can display a
bulk magnetoelectric coupling of the simple form β = Vα.
We note that an orbital magnetoelectric coupling of θ � π

(i.e., αr � 1/137) would correspond to αEH � 24.3 ps/m, a
value that is significantly larger than the observed coupling
in Cr2O3, one of the best-studied magnetoelectric materials.
For comparison, the reported experimental values for αEH

⊥
in Cr2O3, which are presumably dominated by spin-lattice
coupling, range between 0.7 and 1.6 ps/m at 4.2 K.27,28

Of course, in order to have a good chance of finding
a material with a large θ , it may be advisable to look for
materials with some of the same characteristics as the known
Z2-odd insulators, of which the most important is probably
the presence of heavy atoms with strong spin-orbit coupling.
We see no strong reason why such a search might not reveal a
material having a large OMP in the above sense.

To illustrate the kind of a search we have in mind, consider
some model Hamiltonian that depends on two parameters, one
that preserves either the T or spatial-inversion symmetry (or
both), and another that that breaks symmetry such that θ takes
a generic value. The possible behavior of such a model is
sketched in Fig. 2, where these two parameters are plotted
along the horizontal and vertical axes, respectively. The figure
also indicates the generic value of θ in each region of parameter
space. Along the horizontal axis, where the extra symmetry is
present, three regions are indicated. The black dot indicates a
point of gap closure forming the boundary between a normal
T -symmetric insulator regime on the left (θ = 0) and a strong
Z2 topological insulator regime on the right (θ = π ). If the
system is carried along the horizontal axis, θ must be either 0
or π except at the critical point, and, therefore, it must jump
discontinuously when passing through this point of metallic
behavior. On the other hand, if we now imagine passing from
the Z2-odd to the Z2-even phase along the dashed curve in
Fig. 2, θ can vary smoothly and continuously from π to 0
without any gap closure anywhere along the path. If we can
identify a material lying near, but not at, the right end of this
dashed path, it could be the kind of large-θ material we seek.

Symmetry preserving

Sy
m

m
et

ry
 b

re
ak

in
g

θ arbitrary

θ = 0 mod 2π θ = π mod 2π

Metal

FIG. 2. (Color online) Schematic of the allowable values of θ

in different parts of the two-parameter space of some unspecified
model Hamiltonian. Horizontal axis corresponds to the perturbation
that preserves at least one of the symmetries that renders θ to be 0 or
π (see Sec. II E). Vertical axis parametrizes a perturbation that breaks
those symmetries and allows θ to be arbitrary. See text for the details.

TABLE I. Magnetic point groups for which a generic nonzero
CSOMP is allowed by symmetry. Notation follows Ref. 29. Point
groups in bold allow only for a purely isotropic magnetoelectric
tensor.

1 1̄′ 2 m′ 2/m′ 222 m′m′2
m′m′m′ 4 4̄′ 4/m′ 3 3̄′ 6
6̄′ 6/m′ 422 4m′m′ 4̄′2m′ 4/m′m′m′ 32
3m′ 3̄′m′ 622 6m′m′ 6̄′m′2 6/m′m′m′

23 m′3 432 4̄′3m′ m′3m′

Thus, our ultimate goal is to use first-principles calculations
to search for a large θ , not in a topological insulator, but
in an ordinary (but presumably strongly spin-orbit coupled)
insulating magnetic material. While our work has yet to result
in the identification of a large-θ material of this kind, it
represents the first step in the desired direction.

E. General symmetry considerations

Recall that θ is a pseudoscalar that changes sign under time-
reversal and spatial-inversion symmetries (since B changes
sign under T while E changes sign under inversion). On
the other hand, θ is invariant under any translation or proper
rotation of a crystal. Therefore, if the magnetic point group of a
crystal contains an element that involves T , possibly combined
with a proper rotation, the value of θ is constrained to be 0
or π (mod 2π ) as discussed earlier. The same happens if the
magnetic point group contains inversion symmetry or any other
improper rotation.

All 32 of the 122 magnetic point groups that do not contain
such symmetry elements, and which, therefore, allow for an
arbitrary value of θ , are listed in Table I. (The bold entries
in the table are those magnetic groups for which the tensor α

must be isotropic, i.e., a constant times the identity matrix; the
same magnetic groups were also analyzed in Ref. 18.) Clearly,
we can constrain our search for interesting materials to the
cases listed in the table.

III. METHODS

In this section, we present our methods for calculating the
CSOMP in the framework of density-functional theory and
analyze, in more detail, its mathematical properties and the
formal similarities to the formulas used to calculate electric
polarization and anomalous Hall conductivity.

A. Review of Berry formalism

Assume we are given the Bloch wave functions |ψnk〉 =
eik·r|unk〉 as a function of wave vector k in the d-dimensional
BZ (d = 1, 2, or 3) for an insulator having valence bands
indexed by n ∈ {1, . . . ,N}. We work with the cell-periodic
Bloch functions unk(r) = e−ik·rψnk(r) and allow them to be
mixed at each k point by an arbitrary k-dependent unitary
matrix

|unk〉 → |umk〉Umnk (18)

(sum on m implied). After this gauge transformation, the wave
functions are no longer eigenfunctions of the Hamiltonian, but
they span the same N -dimensional subset of the Hilbert space
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as the true eigenfunctions. For any given choice of gauge, we
define the Berry connection,

Amnkj = 〈umk|i ∂

∂kj

|unk〉, (19)

which is a k-dependent N × N × d matrix that measures, at
each k point, the infinitesimal phase difference between the
mth and the nth wave functions associated with neighboring
points along Cartesian direction j in k space. This object
already was introduced briefly in Eq. (8).

In the context of electronic structure calculations, we
can now list three material properties that can be evaluated
knowing only the Berry connection: the electric polarization,
the intrinsic anomalous Hall conductivity, and the CSOMP.

The electric polarization P already appears in dimension
d = 1, and it can be evaluated as an integral of the Berry
connection over the one-dimensional BZ as20

P = − e

2π

∫
BZ

dk trAk, (20)

where the trace is performed over the band indices of the Berry
connection, as in Eq. (10). The integrand is also referred to as
the Chern-Simons 1-form, and its integral over the BZ is well
known to be defined only modulo 2π . Any periodic adiabatic
evolution of the Hamiltonian H(λ) whose first Chern number
in (k,λ) space is nonzero will change the integral above by a
multiple of 2π .20

Unlike one-dimensional systems, crystals in d = 2 can have
an anomalous Hall conductivity. For a metal, the intrinsic
contribution from a band crossing the Fermi level can be
evaluated as a line integral,24,30

σ AH = e2

h

1

2π

∮
FL

dk · Ak, (21)

over the Fermi loop. Fully filled deeper bands can also make a
quantized contribution given by a similar integral but around
the entire BZ; this is the only contribution in the case of a
quantum anomalous Hall insulator.25 (In both cases, the gauge
choice on the boundary of the region should be consistent
with a continuous, but not necessarily k-periodic, gauge in its
interior; alternatively, each expression can be converted to an
area integral of a Berry curvature to resolve any uncertainty
about branch choice. See Ref. 31 for more details.)

Finally, unlike one- or two-dimensional systems, three-
dimensional systems can have an isotropic magnetoelectric
coupling. The CSOMP can be evaluated in d = 3 as a BZ
integration of a quantity involving the Berry connection:

θ = − 1

4π

∫
BZ

d3k εijk tr

[
Ai∂jAk − 2i

3
AiAjAk

]
. (22)

The integrand in this expression is known as the Chern-Simons
3-form, and its integral over the entire BZ is again ill-defined
modulo 2π , since any periodic adiabatic evolution of the
Hamiltonian H(λ) whose second Chern number in (k,λ) space
is nonzero will change θ by an integer multiple of 2π .12,13

The sketches in Fig. 3 compare the geometrical characters
of the operations needed to evaluate Eqs. (20)–(22) in practice.
We consider the case of one occupied electron band for
simplicity. The polarization of Eq. (20) is calculated by a
line integral; on a discrete k mesh, the integral of the Berry

(a) (b) (c)

FIG. 3. Graphical interpretation of Eqs. (20) (a), (21) (b), and
(22) (c) in the case of one occupied electron band and for cubic
crystal symmetry, for simplicity. See text for more details.

connection A over each line segment, as in Fig. 3(a), is
converted to a discretized form [see Eq. (23)]. Similarly, in
two dimensions, the anomalous Hall conductivity of Eq. (21)
can be calculated as suggested in Fig. 3(b) by dividing the
occupied part of the BZ into small square segments and
then by integrating A around each square. (Equivalently,
one can integrate A along the Fermi loop.31) In three
dimensions, Fig. 3(c), Eq. (22) can be evaluated by dividing
the BZ into small cubes. In each, one needs to multiply
the integral of A along one of the Cartesian directions [as
in Eq. (20)] with the integral of the Berry connection in
the square orthogonal to that direction [as in Eq. (21)],
followed by a symmetrization over the three Cartesian
directions.

B. Numerical evaluation of θ

In electronic-structure calculations, the cell-periodic wave
functions |unk〉 are typically calculated on a uniform k-space
grid with no special gauge choice; in general, one should
assume that the phases have been randomly assigned. Nev-
ertheless, it is straightforward to construct a gauge-invariant
polarization formula that is immune to this kind of scrambling
of the gauge.32 In one dimension with kj for j ∈ {1, . . . ,M}
(where kM is the periodic image of point k1), the electronic
polarization is calculated as

P = e

2π
Im ln det

[
Mk1k2Mk2k3 · · · MkM−1kM

]
, (23)

where the overlap matrix Mkk′ is defined as

[Mkk′]mn = 〈umk|unk′ 〉. (24)

The reason for using Eq. (23) is that the determinant of
the matrix Mk1k2Mk2k3 · · ·MkM−1kM

is gauge invariant under
any transformation in the form of Eq. (18). Additionally,
the implementation of Eq. (23) is numerically stable even
when there are band crossings. A similar gauge-invariant
discretization can also be used to calculate the anomalous
Hall conductivity σ AH.31

Unfortunately, except in the single-band (Abelian) case, we
are unaware of any corresponding gauge-invariant discretized
formula for the integral of the Chern-Simons 3-form. As a
result, we have no prescription for computing the CSOMP
that is exactly gauge invariant for a given choice of k mesh.
This is a serious problem. Unlike the calculation of the
polarization, which is straightforward even if the gauge is
randomly scrambled at each mesh point, the calculation of the
CSOMP requires that we first identify a reasonably smooth
gauge on the discrete mesh.
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The problem of finding a smooth gauge in k is essentially
the same as that of finding well-localized WFs. For this reason,
here, we have adopted the approach of first constructing a
Wannier representation for the valence bands and then using
it to compute the CSOMP. In fact, starting from Eq. (22), we
derive an expression that allows us to compute θ directly in
the Wannier representation. Once we have well-localized WFs,
this guarantees smoothness of the gauge and avoids problems
with band crossings. Admittedly, such a formula still depends
on the gauge choice, meaning that different choices of WFs
will lead to slightly different results. However, this difference
will vanish as one increases the density of the k-point mesh,
since in the continuum limit, the k-space expression for θ

is gauge invariant (mod 2π ). More precisely, we expect the
calculation of θ to converge once the inverse of the k-point
mesh spacing becomes much larger than the spread of the
WFs.

Therefore, we adopt the strategy of calculating θ on
k meshes of different density and extrapolating θ to the
limit of an infinitely dense mesh. Furthermore, we construct
maximally localized Wannier functions (MLWFs) following
Ref. 32, expecting this to give relatively rapid convergence as
a function of the k-mesh density.

Recall that the WF associated with (generalized) band index
n in unit cell R is defined in terms of the rotated Bloch states
(18) as

|Rn〉 = �

(2π )3

∫
d3k eik·(r−R)|umk〉Umnk. (25)

In the case of MLWFs, the Umnk are chosen in such a way
that the total quadratic spread of the WF is minimized.32 (In
practice, the BZ integral is replaced by a summation over a
uniform grid of k points.)

Using Eq. (25), one can relate the Berry-connection matrix
Amnkj in the smooth gauge to the Wannier matrix elements of
the position operator through32

Amnkj =
∑

R

eik·R〈0m|rj |Rn〉. (26)

Replacing each occurrence of Aj in Eq. (22) with the above
gives, after some algebra,

θ = 1

4π

(2π )3

�
εijk Im

(
1

3

∑
R

〈0m|ri |Rn〉〈Rn|rj |0m〉Rk

− 2

3

∑
RP

〈0l|ri |Rm〉〈Rm|rj |Pn〉〈Pn|rk|0l〉
)

, (27)

where the sum is implied over band (lmn) and Cartesian (ijk)
indices. [Although Eqs. (22) and (27) are equivalent as a whole,
they do not match term by term.]

To obtain a more symmetric form, we introduce a
modified position-operator matrix element between WFs
defined as

〈Rm|r̃i |Pn〉 = 〈Rm|ri |Pn〉(1 − δmnδRP), (28)

and a notation for the Wannier center,

τni = 〈0n|ri |0n〉. (29)

Then, Eq. (27) becomes

θ = 1

4π

(2π )3

�
εijk

× Im

[ ∑
R

〈0m|r̃i |Rn〉〈Rn|r̃j |0m〉(Rk + τnk − τmk)

−
∑
RP

2

3
〈0l|r̃i |Rm〉〈Rm|r̃j |Pn〉〈Pn|r̃k|0l〉

]
. (30)

We find this form more convenient because it separates the
contributions of diagonal and off-diagonal elements of position
operators. (It is also manifestly invariant to the reassignment
of a WF to a neighboring cell. Furthermore, note that while
Eqs. (22), (27), and (30) are all equivalent as a whole, the
division of contributions between the first and second terms
is different in each case.) The validity of Eqs. (27) and (30)
has been tested numerically by comparing with the evaluation
of Eq. (22) for the case of a tight-binding model introduced
in Ref. 11. The evaluated expressions agreed to numerical
accuracy after extrapolation to the infinitely dense mesh. These
expressions can also be shown to be gauge invariant by working
directly within the Wannier representation.

C. Computational details

Calculations of the electronic ground state and of structural
relaxations were performed using the QUANTUM-ESPRESSO

package,33 and the WANNIER90 code34 was used for construct-
ing maximally localized WFs. We used radial-grid discretized
HGH (Ref. 35) norm-conserving pseudopotentials. Calcula-
tions were performed in the noncollinear spin framework.
QUANTUM-ESPRESSO incorporates the spin-orbit interaction at
the level of the pseudopotentials, which is a good approxi-
mation since the relativistic effects arise predominantly from
the core region. The pseudopotentials used for Cr, Fe, and Gd
contain semicore states in the valence, while the ones for Al,
Bi, Se, and O do not. In all calculations, we used the Perdew-
Wang36 local-density approximation (LDA) energy functional.

The self-consistent calculations on Cr2O3were performed
on a 4 × 4 × 4 Monkhorst-Pack37 grid in k space. Non-
self-consistent calculations for the WF construction were
performed on k-space grids containing the origin and ranging
in size from 6 × 6 × 6 to 12 × 12 × 12. The plane-wave
energy cutoff was chosen to be 150 Ry.

In the case of Bi2Se3, the self-consistent calculations were
performed on a 6 × 6 × 6 grid with energy cutoff of 60 Ry,
while the non-self-consistent calculation was done on grids
between 6 × 6 × 6 and 11 × 11 × 11.

The position-operator matrix elements 〈0m|rj |Rn〉 needed
to evaluate Eq. (30) were calculated in k space by inverting the
Fourier sum in Eq. (26) over the non-self-consistent k-point
mesh and then approximating the k derivative in Eq. (19) by
finite differences on that mesh, as detailed in Ref. 30.

IV. RESULTS AND DISCUSSION

A. Conventional magnetoelectrics

In this section, we present the results of our first-
principles electronic-structure calculations of θ . We begin with
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conventional magnetoelectrics, i.e., materials that are already
experimentally known to have a nonzero magnetoelectric
tensor. Some of these materials do not allow all diagonal
components of the magnetoelectric tensor to be nonzero. We
omit those materials from our analysis here, since we are in-
terested in calculating the CSOMP part of the magnetoelectric
coupling, which would vanish in such cases. We first present
our results on Cr2O3 in some detail, and then briefly discuss
our results for BiFeO3 and GdAlO3.

1. Calculation of θ in Cr2O3

We first fully relax the structure in the R3̄c space group and
obtain the Wyckoff position to be x = 0.1575 for Cr atoms
(4c orbit) and x = −0.0690 for O (6e orbit). The length of
the rhombohedral lattice vector is a = 5.3221 Å while the
rhombohedral angle is 53.01◦. The Cr atoms have magnetic
moments pointing along the rhombohedral axis as illustrated
in Fig. 4(a) in an antiferromagnetic arrangement. The value of
the magnetic moment is 2.0μB per Cr atom and the electronic
gap is 1.3 eV, which agrees well with previous LDA +
U calculations38,39 in the limit where the on-site Coulomb
parameter U is set to zero.

Neglecting, for a moment, the magnetic spins on the Cr
sites, the space-group generators are a threefold rotation, a
twofold rotation, and an inversion symmetry as indicated in
Fig. 4(a). Therefore, its point group is 3̄m. If we now include
the spins on the Cr atoms in the analysis, we find that the
threefold and twofold rotations remain, while the inversion
becomes a symmetry only when combined with time reversal.
Therefore, the magnetic point group of Cr2O3 is 3̄′m′.40 This
magnetic point group allows θ to be different from 0 or π , as
discussed in Sec. II E.

Figure 5 shows the calculated values of θ using Eq. (30)
for Cr2O3 with k-space meshes of various densities. The

(a) (b)

B

B

B

B

B

A
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3 3

FIG. 4. (Color online) (a) Rhombohedral unit cell of Cr2O3.
Magnetic moments on Cr atoms are indicated by red arrows, and
oxygen octahedra are drawn around each Cr atom. (b) Schematic of
hexagonal unit cell of Bi2Se3 with imposed local Zeeman field on Bi
atoms. Induced magnetic moments are shown by red arrows. Thick
blue lines indicate Se layers; letters (A,B,C) indicate the stacking
sequence of the hexagonal layers. In both panels, the vertical line
indicates the threefold rhombohedral axis, and the cross designates
a twofold rotation axis orthogonal to the plane of the figure (also a
center of inversion coupled with time reversal).

FIG. 5. (Color online) Calculated value of θ in Cr2O3 for varying
densities of k-space grids, where 
k is the nearest-neighbor distance
on the grid. The top axis specifies the size of the corresponding
uniform Monkhorst-Pack grid. The line indicates a quadratic extrap-
olation of θ to the infinitely dense k mesh.

line indicates the second-order polynomial extrapolation to
an infinitely dense mesh. The extrapolated value of θ is
1.3 × 10−3, which is a small fraction of the quantum of OMP
θ = 2π and corresponds to αEH

xx = αEH
yy = αEH

zz = 0.01 ps/m.
The positive sign of θ pertains to the pattern of Cr magnetic
moments shown in Fig. 4(a); reversal of all magnetic moments
would flip the sign of θ .

In order to compare this purely isotropic component of the
magnetoelectric coupling with experimental values and other
theoretical calculations of the full magnetoelectric response,
which is not entirely isotropic, we somewhat arbitrarily define

αeff = |αxx | + |αyy | + |αzz|
3

. (31)

The value of αeff obtained from the results of Ref. 8 is
0.23 ps/m for the purely electronic part of the spin-mediated
component. Therefore, our calculated CSOMP contribution in
Cr2O3 amounts to only 4% of this electronic-spin component.
The ionic component of the spin response calculated by
the same authors results in αeff = 0.74 ps/m, while the one
calculated in Ref. 7 is about 2.6 times smaller, 0.29 ps/m. (In
both of these calculations, αzz is zero.) Finally, experimental
measurements of the magnetoelectric tensor in Cr2O3 at 4.2 K
vary between αeff = 0.55 and 1.17 ps/m (see Refs. 27 and 28,
respectively).

Clearly, our computed CSOMP contribution for Cr2O3

is negligible, being 2 orders of magnitude smaller than the
dominant lattice-mediated spin contribution. This is probably
not surprising, since the spin-orbit coupling is relatively weak
in this material. Given that it is weak, we can guess that that
magnitude of the CSOMP should be linear in the strength of
the spin-orbit interaction in Cr2O3. Our calculations allow us
to check this by varying the spin-orbit interaction strength λSO

between 0 (no spin orbit) and 1 (full spin-orbit interaction).
As shown in Fig. 6, if we calculate θ for various intermediate
values of λSO, we see that the CSOMP does indeed depend
roughly linearly on λSO.
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FIG. 6. (Color online) Calculated θ in Cr2O3 as a function of
spin-orbit coupling strength, scaled such that λSO = 1 corresponds to
the full spin-orbit coupling strength and θ0 = θ (λSO = 1).

2. Other conventional magnetoelectrics

We have also carried out calculations of θ in BiFeO3 and
GdAlO3but with a smaller number of k-point grids than in
the case of Cr2O3. Therefore, our results are less accurate but
should still give a correct order-of-magnitude estimate of θ .

For BiFeO3, we perform the calculation in the ten-atom
antiferromagnetic unit cell (the long-wavelength spin spiral
was suppressed). We obtain an electronic band gap of 0.95 eV
with magnetic moments of 3.5μB on each Fe atom and with
a net magnetization of 0.1μB per ten-atom primitive unit cell
due to the canting of the Fe magnetic moments. Extrapolating
θ to an infinitely dense mesh using just 6 × 6 × 6 and 8 × 8 ×
8 k-point meshes, we obtain θ = 0.9 × 10−4. In the case of
GdAlO3, we calculate the electronic band gap to be 5.0 eV
and the Gd magnetic moment to be 6.7μB. We obtain a value
of θ = 1.1 × 10−4 after extrapolating calculations using 4 ×
4 × 4 and 6 × 6 × 6 k-space meshes. Thus, it is clear that the
CSOMP is very small in both materials.

B. Strong Z2 topological insulators

We now investigate the CSOMP in the case of Bi2Se3,
which is known experimentally17 and theoretically41 to belong
to the class of strong Z2 topological insulators. In the absence
of broken T symmetry, such a material should have a θ of
exactly π (mod 2π ). We first confirm this numerically. Then,
in Sec. IV C, we also study what happens when T is broken
artificially by inducing antiferromagnetic order on the Bi atoms
and tracking the resulting variation of θ .

Bi2Se3 is known to belong to space group R3̄m, with Bi at
a 2c site and Se at the high-symmetry 1a site as well as at a 2c
site. In our calculations, we find that the Wyckoff parameters
for Bi and Se are x = 0.4013 and 0.2085, respectively. We
also find the length of the rhombohedral lattice vector to be
a = 9.5677 Å and the rhombohedral angle to be only 24.77◦.
The electronic gap is calculated to be 0.4 eV.

The generators of the R3̄m space group are again threefold
and twofold rotations and inversion (point group 3̄m). Since the
system is nonmagnetic, the magnetic space group also contains
the T -symmetry operator, and its magnetic point group is 3̄m1′.
Therefore, according to the analysis given in Sec. II E, it is clear
that θ must be zero or π (mod 2π ).

FIG. 7. (Color online) Calculated value of θ in Bi2Se3 for varying
densities of k-space grids, where 
k is the nearest-neighbor distance
on the grid. The top axis specifies the size of the corresponding
uniform Monkhorst-Pack grid. The line indicates a quadratic extrap-
olation of θ to the infinitely dense k mesh.

Since we know that Bi2Se3 is a strong Z2 topological
insulator, we expect that θ should be equal to π (mod 2π ).
However, special care needs to be taken in order to evaluate θ

in such a case, because the choice of a smooth gauge becomes
problematic. Specifically, it is known that the Z2 topology
presents an obstruction to the construction of a Wannier
representation (or equivalently, a smooth gauge in k space)
that respects T symmetry.42,43 Therefore, during the maximal
localization procedure, one needs to choose trial WFs that do
not take the form of Kramers pairs, thereby explicitly breaking
the T symmetry.44 (It is important to note that this choice of
WFs does not bias our calculation toward having θ = π , since
the same starting choice of T -symmetry-broken WFs for a
normal T -symmetric insulator would result in θ = 0 up to the
numerical accuracy of the calculation.)

Our results for θ in Bi2Se3 are given in Fig. 7 for
various densities of k meshes, ranging from 6 × 6 × 6 to
11 × 11 × 11. A quadratic polynomial extrapolation for the
infinitely dense mesh limit gives θ = 1.07π . This is in
reasonable agreement with the expected value of θ = π , given
the uncertainties in the extrapolation. (Of course, if we make a
time-reversed choice of starting WFs, we obtain θ = −1.07π ,
which is consistent, within the errors, with θ = −π and
mod 2π to θ = π .) Clearly, the convergence with respect to
mesh density is somewhat slow, making a precise extrapolation
difficult. The reasons for this, and some possible paths to
improvement, will be discussed in Sec. V.

C. Z2-derived nontopological insulators
with broken symmetries

Although θ = π in Bi2Se3, a finite sample with T symmetry
preserved everywhere, including at the surfaces, will not
exhibit any magnetoelectric coupling. From the point of view
of the discussion in Sec. II D, this happens because of an exact
cancellation between θ = ±π contributions coming from the
bulk (α) and metallic surface (
) terms in Eq. (16). However,
if one breaks the T symmetry in the bulk (and possibly some
other bulk symmetries, as detailed in Sec. II E), the CSOMP
term can be allowed.
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FIG. 8. (Color online) Calculated value of θ (vertical axis) and
induced magnetic moment on the Bi atom (horizontal axis) for Bi2Se3

with artificially applied staggered Zeeman field on Bi atoms, as
described in the text. θ0 is the value of CSOMP when the magnetic
field is not present.

The magnetic space group of Bi2Se3 contains both T and
spatial-inversion symmetries. The presence of either by itself
is enough to ensure that θ = 0 or π (mod 2π ). Now, let us
consider turning on, by hand, a local Zeeman field on each
Bi atom in the staggered arrangement shown in Fig. 4(b),
i.e., with fields oriented parallel to the rhombohedral axis and
alternating in sign. The induced magnetic moments along the
threefold axis preserve both threefold and twofold rotation
symmetries; both inversion and T symmetries are broken,
but T taken together with inversion is still a symmetry. The
resulting magnetic point group of the system is again 3̄′m′, as
it was for Cr2O3, and it does allow for a CSOMP (the same
magnetic arrangement has also been discussed in Ref. 45 in a
different context).

In the density-functional calculation, one can easily apply
a local Zeeman field to individual atoms in an arbitrary
direction.46 Using this method, we have calculated the CSOMP
in Bi2Se3 with the pattern of local fields described previously
and illustrated in Fig. 4(b). Figure 8 presents the calculated
values of θ as a function of induced magnetic moment on Bi,
where a positive μBi corresponds to the pattern of magnetic
moments indicated in Fig. 4(b). (Actually this was done by
applying the full extrapolation procedure of Fig. 7 for one case,
μBi = 0.16μB, and using this to scale the results calculated on
the 10 × 10 × 10 grid at other μBi.) The dependence of the
change in CSOMP on the magnetic moment is linear over
a wide range. One can see that, for a relatively moderate
magnetic moment of ±0.27μB, the value of θ is changed from
π to π ± 0.55. (For much higher local magnetic fields, Bi2Se3

becomes metallic, and the CSOMP becomes ill defined.)
These results indicate that it is possible, at least in principle,

for a magnetic material to have a large but unquantized value
of θ , thereby providing an incentive for future searches for
materials in which such a state arises spontaneously, without
the need to apply perturbations by hand as done here.

V. SUMMARY AND OUTLOOK

In this paper, we have presented a first-principles method
for calculating the Chern-Simons orbital magnetoelectric cou-
pling in the framework of density-functional theory. We have
also carried out calculations of this coupling for a few well-

known magnetoelectric materials, namely, Cr2O3, BiFeO3,
and GdAlO3. Unfortunately, in these materials, the CSOMP
contribution to the total magnetoelectric coupling is quite
small. This is not surprising, since in most magnetoelectric
materials, the coupling is expected to be dominated by the
lattice-mediated response, whereas, the CSOMP is a purely
electronic (frozen-ion) contribution. Moreover, the CSOMP is
part of the orbital frozen-ion response, which is again expected
to be smaller than the spin response, except perhaps in systems
with very strong spin-orbit coupling, as discussed in Sec. I. For
example, in Cr2O3, the CSOMP is about 4% of the frozen-ion
spin contribution to the magnetoelectric coupling.

On the other hand, we have reason to believe that, in
special cases, the CSOMP contribution to the magnetoelectric
coupling could be large compared to the total magnetoelectric
coupling in known magnetoelectrics, such as Cr2O3. After all,
as already pointed out in Sec. II D 2, Z2 topological insulators
are predicted to display a large magnetoelectric effect of purely
orbital origin when their surfaces are gapped in an appropriate
way. If this is so, why should a similar effect not occur in
certain T -broken systems?

As a proof of concept for the existence of those special
cases, we have considered Bi2Se3 with inversion and time-
reversal symmetries explicitly broken by hand. Here, we find
that, with a relatively modest induced magnetic moment on
the Bi atoms, one can still achieve quite a large change in the
CSOMP.

On the computational side, several challenges still remain.
For example, the convergence of our calculations of the
CSOMP with respect to the k-point mesh density is disap-
pointingly slow. A direct calculation of θ in Bi2Se3 using a
very dense mesh of 11 × 11 × 11 k points only manages to
recover about 30% of the converged value of θ = π , and an
extrapolation procedure is needed to bring us within 10% of
that value. This clearly points to the need for methodological
improvements, and we now comment briefly on some possible
paths for future work.

The slow convergence that we observe is related, in part,
to the way in which we evaluate the position-operator matrix
elements 〈0m|rj |Rn〉. As discussed in Ref. 30, the k-space
procedure we adopted (see Sec. III C) entails an error of
O(
k2). Preliminary tests on a tight-binding model suggest
that an exponentially fast convergence of θ can be achieved by
an alternative procedure, in which the WFs are first constructed
on a real-space grid over a supercell (whose size scales with
the k-mesh density), and the position matrix elements are
then evaluated directly on that grid, as in Ref. 47. It may
also be possible to improve the k-space calculation by using
higher-order finite-difference formulas that have a more rapid
convergence with respect to mesh density.

An alternative approach would be to develop a formula for
the CSOMP that is exactly gauge invariant in the case of a
discretized k-space grid. Such an expression already exists for
the case of electronic polarization, Eq. (23), but we are aware
of no counterpart for the CSOMP. Although such an approach
would not necessarily provide much faster convergence with
respect to the k-space sampling, it would still be a significant
improvement. For example, one would not need to construct a
smooth gauge in k space, which is a particular problem in the
case ofZ2 insulators (or for a symmetry-broken insulator in the

085108-10



CHERN-SIMONS ORBITAL MAGNETOELECTRIC COUPLING . . . PHYSICAL REVIEW B 83, 085108 (2011)

vicinity of a Z2 phase). Another use of such a formula would
be to calculate the Z2 index of any insulator with relative ease,
even in the cases when other methods48–50 cannot be applied
(for example, when inversion symmetry is not present).

Furthermore, a full calculation of the electronic contribution
to the orbital magnetoelectric response should also include
the remaining two contributions given in Eqs. (6) and (7).
This calculation would also require knowledge of the first
derivatives of the electronic wave functions with respect to
electric field. While these derivatives are available as part
of the linear-response capabilities of the QUANTUM-ESPRESSO

package,33 some care is needed to arrive at a robust imple-
mentation of Eqs. (6) and (7), as will be reported in a future
communication.

Finally, recall that our calculations have all been carried
out in the context of ordinary density-functional theory.
In cases where orbital currents play a role, it is possible
that current-density functionals51,52 could give an improved
description. However, such functionals are still in an early
stage of development and testing, and we prefer to focus first on
exploring the extent to which conventional density functionals
can reproduce experimental properties of systems in which
orbital currents are present.

Overall, significant progress has been made in the ability to
calculate the magnetoelectric coupling of real materials in the
context of density-functional theory. The methods described in
Refs. 7 and 8 allow for the calculation of both the electronic and
lattice components of the spin (i.e., Zeeman) contribution to
the magnetoelectric coupling. In principle, at least, the lattice
component of the orbital contribution could be computed using
the methods of Ref. 53, while the remaining orbital electronic
contributions can be computed from the formulas derived in
Refs. 10 and 11 following the developments discussed here.
While we have not focused here on the contributions of Eqs. (5)
and (6), we plan to present calculations of these terms in a
forthcoming publication. Thus, we expect that the computation
of all of the various contributions to the magnetoelectric
coupling will soon be accessible to modern density-functional
methods.
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