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Theory of structural response to macroscopic electric fields in ferroelectric systems
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We have developed and implemented a formalism for computing the structural response of a periodic
insulating system to a homogeneous static electric field within density-functional perturbation (DE&T).
We consider the thermodynamic potentiB R, 7,£) andF (R, »,P), whose minimization with respect to the
internal structural parameteRs and unit cell strainy yields the equilibrium structure at fixed electric fiefd
and polarizatiorP, respectively. First-order expansion B{R, 7,£) in £ leads to a useful approximation in
which R(P) and »(P) can be obtained by simply minimizing the zero-field internal energy with respect to
structural coordinates subject to the constraint of a fixed spontaneous polarRaflenfacilitate this mini-
mization, we formulate a modified DFPT scheme such that the computed derivatives of the polarization are
consistent with the discretized form of the Berry-phase expression. We then describe the application of this
approach to several problems associated with bulk and short-period superlattice structures of ferroelectric
materials such as BaTiand PbTiQ. These include the effects of compositionally broken inversion symme-
try, the equilibrium structure for high values of polarization, field-induced structural phase transitions, and the
lattice contributions to the linear and the nonlinear dielectric constants.
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[. INTRODUCTION In the present paper we propose a scheme for the treat-

As the usefulness of density-functional thedBFT) for  ment of a dielectric system in a static homogeneous electric
the study of dielectric materials is now well established, ondield. Our scheme is based on a low-order truncation of the
might imagine that calculations of crystalline insulators inDFPT perturbative expansion in electric field, and the use of
the presence of a homogeneous macroscopic electric fielthis truncated expansion to extrapolate to finite electric field.
should be routine. On the contrary, the presence of an electris key feature of our approach is that, while we keep only
field introduces several severe difficultfesThe electric po- low orders in the expansion in electric field, we effectively
tential acquires a term that is linear in the spatial coordinateskeep all orders of expansion in the structural degrees of free-
thus violating the periodicity condition underlying Bloch’s dom. We demonstrate that even a first-order truncation of the
theorem and acting as a singular perturbation on the elelectric-field perturbation provides a very useful and practi-
tronic eigenstates. Moreover, in principle there is no longer a&al scheme. In this context the electric field simply couples
well-defined ground state for the electrons in a solid in ato the zero-field polarization, so that the latter plays a central
macroscopic electric field because the energy of the systemole in our formulation. In fact, it is rather natural to formu-
can always be lowered by transferring electrons from thdate our approach in terms of a constrained minimization
valence band in one spatial region to the conduction band iprocedure in which the DFT energy functional is minimized
a distant region. over all structural degrees of freedom subject to a constraint

One way around these difficulties is to make use ofon the value of the polarization. This allows a two-step ap-
density-functional perturbation theof@FPT),2->which pro-  proach in which one first maps out the energy surface as a
vides a framework for calculating the perturbative responsdunction of polarization in the DFT framework, and then uses
to infinitesimal electric field$as well as to atomic displace- this energy surface, augmented by the coupling to the electric
ments and strainsDFPT has been widely adopted for many field, to obtain the ground-state structure in the presence of
studies of the dielectric and piezoelectric properties and dythe field. We will show that essentially no additional approxi-
namic effective charges of dielectric materials. However, bemations are needed beyond the first-order truncation of the
ing a perturbative approach, the method is not capable diee-energy expansion in electric field. We will also show
treating a finite electric field directly. that the methodology can be extended to second doaein

A more direct attack on the finite-field problem was madefact, to any desired ordem the electric field.
by Nunes and Vanderbit,who showed that a real-space  Our approach is partially inspired by recent work of Fu
Wannier-function representation could be used to represemind Cohen on polarization rotation in BaTi® These au-
the electronic system in the presence of a finite electric field.thors made a partial map of the energy surface as a function
In this approach, one minimizes a total-energy functional ofof the direction of the zero-field polarization, and then used it
a set of field-dependent Wannier functions for a periodic systo study applied fields in a way similar to that described
tem at fixed electric field. Alternatively, the minimization can above. However, the energy for a given polarization direction
also be performed at fixed polarization via a Legendre transwas obtained by minimizing the energy of structures with a
formation of the energy functional with the electric field fixed direction of the Ti displacement relative to the Ba atom,
treated as a Lagrange multiplier. The approach was impledsing this as an approximate representation of the polariza-
mented in the DFT context by Fernandetzal.® but proved tion direction. By using the polarization itself as the con-
too cumbersome to find widespread utility. straint, and by mapping the energy in the full three-
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dimensional polarization space, we arrive at a more accuraignergy per unit celE(R, 7,€) has a single local minimum of

and systematic approach, generalizable to any insulator. interest in the R, 7) space for givere. (This restriction is
Before proceeding, we should acknowledge an additionahormally appropriate for a paraelectric material, but not for a

theoretical subtlety associated with the correct choice Ofgrroelectric one. The existence of multiple local minima in

exchange-correlation functional in the electric-field problemhq |atter case calls for a more careful discussion. which is
Gonze, Ghosez, and GodbyGGG) argued that the exact éieferred to the following subsectionie let

Kohn-Sham exchange-correlation energy functional shoul

have a dependence on t_he macroscc_)pic polarizati_on and for- E(&)=min E(R, 7,€) (1)

mulated a “density-polarization functional theory” in which R.7

there is generally an exchange-correlation contribution to the

Kohn-Sham electric fiel.While this was an important for- and denote the location of the minimum I®.{(&) and

mal development that subsequently received muctied€). The polarizatiorP(R,7,£), the thermodynamic con-

attention’ ! it has not yet led to an improved practical jugate of & can then be obtained from the expression

exchange-correlation functional. We thus restrict ourselve®(R,7,€)=—[dE(R, 7,£)/d€]|r,, and P(&) obtained by

here to the usual LDA exchange-correlation functionale€valuating P[Rc(¢),7e(€),€] or, equivalently, —dE(E)/

where, because of the locality of the central approximationdé.

the subtleties identified by GGG do not arise. We can recast this minimization into a form in which the
This paper is organized as follows. In the next section, wepolarization is more central. Viewing(R, »,£) as a thermo-

present our formalism for computing the structural respons€lynamic potential that minimizes to equilibrium valuesRf

of an insulating system to an electric field. Some details ofind 7 at fixed € leads naturally via a Legendre transforma-

the implementation are presented in Sec. lll, including detion to a thermodynamic potenti&l(R, ,P) that minimizes

tails of our minimization procedure, a discussion of modifi-to equilibrium values oR and » at fixed P:

cations that we made to the DFPT procedure to achieve com-

patibility with the discretized Berry-phase polarization F(R,7,P)=min[E(R,7,X)+\-P]
formula, and a description of the technical details of dfre A
initio pseudopotential calculations. Then, in Sec. IV, we =E[R, 7,A(R,7,P)]+N(R,7,P)-P (2

present several sample applications of our method. In Sec.

IV A, we show that it provides an alternative approach to thewith N(R,7,P) being the value at the minimum. This is
study of short-period ferroelectric superlattice structures witrequivalent toP(R, 7,A) =P, that is,\(R, ,P) is the value
broken inversion symmetry. In Sec. IV B we present a of the macroscopic field necessary to produce polarization
study of the dependence of the internal structural parametes$ givenR and 7.

of BaTiO; on polarization. In Sec. IV C we show that our ~ We then define the function

method provides a straightforward way of computing the di- ]

electric susceptibilities and piezoelectric coefficients as func- F(P)=min F(R,7,P)=F[RedP),7¢e{P),P] (3
tions of the electric field, thus allowing an estimation of the R

nonlinear dielectric and piezoelectric response in a ferroeleayith R.(P) and 7.P) being the values at the minimum.
tric system. Fina”y, in Sec. IV D, we consider a case inThese structural parametemq(P) and necﬂp) are in fact
which a full three-dimensional treatment of the polarizationequal t0R.(E) and 74(E), the structural parameters defined
and the structural distortions is needed. Specifically, Wehy minimizing E(R,7,€) at the corresponding fixed

model the polarization rotation and structural phase transi—:)\[Req(p),,]eq(p)’p]. The polarization at this extremum is,
tions induced by the application of a macroscopic electricys expected,

field to a model ferroelectric system and relate our results to
recent experiments in PZN-PYFinally in Sec. V, we sum-  P[R(&), 7(€),E]= P{Req(P), 7ed P) N[ Red(P), ¢4 P) . P1}
marize our work and discuss the prospects for future appli-

cations of our approach. =P. 4
Il. FORMALISM Finally, we reexpress the original minimization as
Our goal is to investigate the effect of a homogeneous E(&)=minfF(P)—&-P]. (5
static electric field on the structure and polarization of polar P

insulators, including systems with a nonzero spontaneous PO this expression, the electric fielfl appears only in the
larization. In addition to an efficient approach for computa—term _ &P, and thus the effects of the field can be com-

tion, we also aim towards a formulation that readily allows letel derstood by i tioating thaind dent f
an intuitive understanding of the effects of the field. As will P'€'€!y understood by investigating trZeindependent free
energy landscapg(P).

become clear below, this will lead us to a formulation in

which the polarization plays an especially prominent role.
B. Case of multiple stationary points

A. Case of a single minimum In many cases of interest, the functiBR, 5,£) has sev-

Let £ be the macroscopic electric fielR, the atomic co- eral local minima, and the essential physics of the problem is
ordinates, andy the lattice strain, and assume that the totalto map out the competition between these minima. For ex-
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ample, in a tetragonal ferroelectric like PbTEiQhere are six
degenerate minima of this function &0, and the applica-

PHYSICAL REVIEW @5, 104108 (2002

can also be interpreted as one in whiclappears simply as
a Lagrange multiplier implementing the constraint

tion of a nonzerd breaks the symmetry and establishes onéP(R, 7,0)=P in the set of equations that minimiER, »,0)

dominant domain orientation of the polarization. However, it

overR and », i.e.,

may also be of interest to follow the behavior of the other

local minima, corresponding to metastable states, as well as
other stationary points of this energy surface. For example,

saddle points and local maxima B{R, »,£) can correspond
to stable states for fixeR.

In such cases, it is straightforward to generalize the pre-

vious discussion by associating a lal®l with each station-

ary point of interest. Thus the location of the stationary point

is denoted by RM(&E) and 7M(E), and EM(E)
=E[RM(&), »M(E),£E] is the energy at the stationary point.

&Ria _% aRia )\B_ '
JE(R, 7,0 IP4(R, 7,0
( 71)_2 B n))\ﬁ:,
In, B In,
P(R,7,0)=P. (10

All results reported in the following sections are obtained

The arguments of the previous subsection carry over much assing thei=1 expressions. Generalization of the formalism

before. The discussion following E@) is modified by not-
ing that the minimization oF (R, %,P) with respect tqR and

7 at fixedP in Eq. (3) will always be associated with one of
the stationary points d&(R, 7,£) with respect tdR and » at
the corresponding fixed; that is, ReP)=R™(&) and
nedP)=7"(€) for somen. Finally, defining the global
minimum E(&)=min,EM(&), it is easy to see that Eq5)
holds as before.

C. Truncation of the expansion

. L . n
The central quantities appearing in the preceding subsec-

tions are the energyE(R,7,£) and the polarization
P(R,7,£) in a given electric fieldS. Unfortunately, there is
as yet no rigorous formulation of DFT for the case of finite
nonzero&. However, electric-field derivatives of arbitrary

order may be computed by the methods of density-functional

perturbation theory. We thus expand&raroundé=0:

JE(R,7,€)
g,

E(R,7,6)=E(R,7,E=0)+ 2, &,

*E(R,7,)

9,08 ©

1
+= D &L
2 op ? £=0
Carried to all orders ir€, this expansion is exact. How-
ever, for sufficiently small fields we can make the approxi-
mation of truncating this sum to defiig(R, ,£) as the sum
of the firsti+1 terms in Eq.(6), and P;(R,%,£) as
—[dE(R, n,S)/dE]lR,”. Note that this truncation is only in
powers of€&, and that the dependence &hand 7 is pre-
served to all orders.

to orderi=2 is provided in Appendix A.

IIl. METHODOLOGY
A. Minimization procedure

We now describe in detail how we solve Ed40) to
minimize E(R, »,0) with the constrainfP(R, ,0)=P. We
begin with a trial guess of the initial coordinat&, and
strains 7o for the desired structure. The energyR, ,0)
can be expanded up to second ordebR=R—R, and 67
— 7o as

E(R,n,0>=E<Ro,no,0)+iE (—Fia)0Ria
1 i
+% (—0)0m,+ 5 %j Kl 50Ri0R; 5

E ’}/ip'a 5RI a577/.L ’

i,

1
+5 % C.v07,0m,+

11)

where F;, are the Hellmann-Feynman forces, are the
stresses in Voigt notatiorK ) ; are the force-constant matrix
elementsc ,, are the elastic constants, apg,, are the cou-
pling parameters between the internal coordinates and
strains. The corresponding variation in the polarization
P(R,#,0) is

Pa<R,n.0>=Pa<Ro.no,0>+jE Z,0R g+ > 4,07,
a M
(12)

For many systems, it is already of interest to consider thevhere Ziaﬁz dP,liR;z and e,,=dP,ldn, are, respec-

simplest casé=1, where

Ei(R,7,6)=E(R, 7,00~ &-P(R, 7,0), (7
P1(R,7,£)=P(R,7,0). 8

At this order, the resulting expression
F(P)= min{E(R,7,0)+\-[P—P(R, 7,0)]} 9)

R, 7.\

tively, the dynamic effective charge and piezoelectric ten-
sors.
Equations(10) lead to the linear system of equations

K y z*\ /R F
y € e on|=| o (13
Z* e O A -P

for 6R, 67, and\, whereP on the right-hand side denotes
the difference between the initial and target value$ ot
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each step of the minimization, we compui® and 87, and ~ Where the integration over the two-dimension@D) k,
obtain the new coordinates and strains Rg"=R,+6R  Plane perpendicular to directiam is replaced in practice by
and 70°"'= 5o+ 57. ThenRpey and 7,6y are chosen as the & summation over a 2D mesh. The product runs over a string

new trial coordinates and strains. This is repeated until conS(KL) of k points running parallel to direction at a given

vergence is achieved. k. . bis the separation between neighboring points along the
For a practical implementation of this procedure we useString andf =2 is the spin degeneracy factor. The composite-

density-functional perturbation theory, which allows us toPand formuifémon is presented in Appendix B.

compute the coefficients!) ; andZ, ; efficiently. The forces In DFPT,™ there are three equivalent expressions for the

F and the stresses are calculated by the Hellmann- z* tensor. The first |s.the change in the polar|za.t|on due to

Feynman theorem with Pulay correctibhéor the stresses. the flrst-qrder change in the wave functions resulting from an

For v, ¢, ande, the DFPT calculation is not yet implemented &t0mic displacement:

in the current version of theBINIT packagegsee Sec. Il . ) oce

In Sec. IVC and IV D, we describe an alternative to the 2 _ |fer <‘3“mk

exceedingly tedious finite-difference calculation of these p (2m)%)ez'm \ IR,

guantities. Finally, the most efficient way to comp@®ewith . ,

a discretized Berry-phase expression, is exactly consisteNfNerédUmi/JRi, is the first-order change of the wave func-

with the DFPT derivatives only in the limit of an infinitely 10N due to the perturbation by displacing an atom belonging

densek-point mesh. This issue is discussed and resolved if® theith sublattice along ther axis. Alternatively,Z* can
detail in the next subsection. be computed as the derivative of the force along direciion
Before concluding this subsection, we note that the®N an atom in theth sublattice with respect to an electric

higher-order formalism can be implemented in an analogoufiéld along directions,
way. However, additional energy derivatives would be

Uk
7Kg >dk, (17)

occ
needed. The details of the treatmentifer2 are presented in ) N S flu 9V ext| MUk dk
Appendix A. " 2mB3lez "™ OR, | 9Eg
B. DFPT computation of derivatives + }f Fuxd(r) an(r) rl, (18)
of the discretized Berry-phase polarization 2)v R, &gﬁ

In the implementation of the minimization proced{iE.  whereduy, /d&s is the first-order change of the wave func-
(13)], a practical problem arises in connection with the cal-tions due to the electric field, andve./dR;, and
culation of the dynamical effective chargé$ and polariza- dv,(r)/dR;, are, respectively, the first-order derivatives of
tion P. By definition, they should be related by the external potential and the exchange-correlation potential

with respect to aj=0 displacement’ The third expression

A P, (omitted herg includes both types of first-order wave func-
ZLB=V0T, (14)  tion changes, and is stationary with respect to small errors in
iB

the first-order wave functions.

In DFPT, first-order changds/(") in the wave functions
with respect to a perturbation can be computed as self-
gonsistent solutions of the first-order Sternheimer equations

wherea and g are Cartesian directionsis the index for the
atom, andV represents the unit cell volume.

However, when the discretized Berry-phase expression i
used to comput® and the DFPT expression is used to com- _ (AN _ _ 1)[,,(0)
puteZ* on the samé-point mesh, Eq(14) is not satisfied Pe(H = em)Pel ) = = PH Dl ym’) (19
exactly. The discrepancy vanishes in the limit of a densesubject to a “parallel transport” gauge constraint
k-point mesh, but in a practical calculation, which must use
a finite mesh, it will result in an inconsistency in the equa- («pﬁo)ldfﬁj)):O, (20
tions for the minimization.

In the Berry-phase theolythe polarization is whereH) is the first-order change iH and P, is the pro-

jection operator onto the subspace of the conduction bands,
andn andm run only over the valence bands.

pEP_ ife § ! a u ) dk 15 In the case of the electric-field perturbation with field in
T 2m3lezm \ ™ dk, | ™ Cartg%an directiorn, the Sternheimer equation takes the
form™
wheref =2 for spin degenerac®” is computed in practice U
X ) X . . ‘
g::gsat;jlisecsriﬂéigrxrmula which, for the case of isolated P.(H=—éem) P, &gm > __ PcH(1)|Umk>, (21)
where
fe occ
Po=— (277)3fAdkL% |m|nk I;(Ik ) (Unnk| U k+b) w_ _: 9 duy  doy(r)
ek, HMY=—j—+ —+ . (22
(16) ok, d&, d&,
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As input to this equation, we need the quantity,, /dk,

PHYSICAL REVIEW @5, 104108 (2002

In the three-dimensional multiband case, we just need to

appearing on the right-hand side. This is obtained by solvingeplacev, of Eq. (26) by its generalizatiow y , represent-

a second Sternheimer equation

-

where H,=3(—iV+k)?+vys and thusdH,/dk,=—iV,
+k,. The presence of the operatat/ 9k, in Eq. (22) is a
unique feature that arises from the couplfid® between the
macroscopic electric field and the polarization.

Now we come to the main point of this subsection, which

IH

oK,

Uk

oK,

Po(H—em)Pc ) |umk>a (23

ing dunk/dKk, as discussed in Appendix By . iS gauge
independent in the more general sense of being invariant
with respect to a unitary rotation among occupied bands on
neighboringk points. Thisv ., can then be substituted for
A 19K, in Eq. (17) to computeZ* . Or equivalently, it can

be inserted into Eq(21) to computedu,,/d&,, which in

turn can be substituted into E@.8) to computeZ*. In either
case, we are guaranteed to obtain the same valug$ afs
would be derived from a series of finite-difference calcula-
tions of polarization vs atomic displacement using the same

is that the derivatives oP calculated from DFPT are not k-point set. This is because Eq@5),(26) are derived di-
exactly the derivatives of the discretized Berry-phase eXpresf'ectIy from the Berry-phase polarization expression of Eq.

sion for P in practical calculations. In particular, forgven
k-point sampling, the Z* computed by solving for
dlum)! 9k, from Eqg. (23), and then computin@* via Eq.
(17) or via Egs.(21) and(18), is not exactly equal to th&*
computed from finite differences of the Berry-phase polar
ization in Eqg.(16). For example, on a ¥4X4 k mesh,
discrepancies on the order of-2 % are found using the
original formula. This can affect the application of the con-

strained minimization scheme proposed in Sec. lll A because

it introduces an inconsistency into the linear system in Eq
(13.

Our cure for this problem is to modify the algorithm by
which d|u )/ dk, is calculated within the DFPT framework.
Instead of solving the Sternheimer equati@3), we calcu-
late d|u)/ 9k, from finite differences of the ground state
Bloch wave functions|u.,) between the neighboring
points along thex direction. This approach corresponds to
the “perturbation expansion after discretization” formalism
discussed by Nunes and Gonze in Ref. 2.

We illustrate our approach here for the case of a singl
band in one dimension. Then the Berry-phase polarization i

P

fe
T on Ek Im In{ui| Uy ) (24

and its first-order variation reflecting a first-order change i
the wave functiorj suy) is

fe Su,lu uy|Su
P Im< K Ukip) (Uil SUiip)
27 X (ulUp) (uglugsp)
fe (Suilugip)  (Suylug_p)
=———2> Im -
27 X (ulUp) (uglug—p)
feb
=— 2> Re(dufvy), (29
T X
where
[ |Uksp) [U—p)
)= — - 26
lve) 2b [ (UUsp)  (Uilug—p) 29

QYenerates

n

(15) using the samé& mesh. Moreover, because the Berry-
phase polarizatiofincluding ionic contributionkis indepen-
dent of origin, it also follows that the acoustic sum fdle
ziz'aﬁzaaﬂ on the components of the dynamic effective

charges will be satisfied exactly, which is not the case in
conventional linear-response calculationsZdf.

C. Computational details

* We carried out all theb initio calculations using thes-

INIT package? in which we have implemented the above
algorithm.ABINIT uses a plane-wave basis and provides mul-
tiple norm-conservingNC) and extended NC pseudopoten-
tials. The discretized formula for the wave function deriva-
tives with respect to the wave vectors, E@14), is
introduced in the subroutinBUDK.F.

In Sec. IV A, in order to construct the pseudopotentials
for the virtual atom¥ that enter the heterovalent system
Ba(Ti-8,Ti,Ti+ 6)O;, we utilize theFH! atomic codé' that
Troullier-Martin ~ separable  norm-conserving
pseudopotential®. However, therHl pseudopotential gen-
eration scheme only allows one projector within each angu-
lar momentum channel, thus preventing the inclusion of the
3s and J states, in addition to @ and 4 states, in the
valence for the Ti pseudopotentidllhe same problem oc-
curs for the 5 and 5 states for the Ba atomWe generate
the pseudopotential in ionized configuratiorsf3p®3d24s°
for Ti and 5°5p%6s® for Ba. We used the exchange-
correlation energy functional in the Ceperley-Alfeform
with Perdew and Warf§ parametrization.

The studies described in Secs. IV B to IV D have been
performed with the highly transferable extended norm-
conserving pseudopotentials proposed by TeéterA
Perdew-Zungéf parametrized Ceperley-Alder exchange-
correlation functional was used. These pseudopotentials in-
clude the Pb 8, 6s, and &, the Ba 5, 5p, and &, the Ti
3s, 3p, 4d, and 4, and the O 8 and 2 electrons in the
valence states.

We have used an energy cutoff of 35 Ha throughout. The
integrals over the Brillouin zone have been replaced by a
sum over a &K4x4 k-point mesh. Both thé&-point sam-

is understood to be a finite-difference approximation topling and the energy cutoff have been tested for good con-

id|u,)/dk. Note that Eqs(25) and(26) are manifestly gauge

vergence of the phonon eigenvalue and eigenvector proper-

independent in the sense of being independent of the choidees. We use the samk-point mesh for the Berry-phase

of phases for théu,).

calculations. Convergence of the relaxations requires the
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Hellmann-Feynman forces to be less than 0.02 e\ the 4 T - ]
constrained minimization procedure described by @®), ‘\‘. ©5=0.4 ¥
the forces that are tested for convergence are the ones aft ‘\‘-\ €503 j
projection onto the constaf-subspacg. ol i m 5=0.2 /'7 i

IV. SAMPLE APPLICATIONS

In this section, we illustrate the theory within the first-
order (=1) formalism(see Sec. )Iby applying it to a series
of problems involving ferroelectric, dielectric, and piezoelec-
tric properties. In particular, we emphasize that the main pur- -2 |
pose of these calculations is to exhibit and understand the
nonlinearity in the structural response of the ferroelectric
systems to an electric field. Such studies have not previoush  _, ‘ ‘ . . . ‘ .
been widely pursued. We have used Bagi®bTiO; and a -08 -06 -04 02 0 02 04 06 08
short-period superlattice structure as our example systems. & (bohr)

Energy (mHa)
o

FIG. 1. Energy vs displacement along the line connecting the
A. Inversion symmetry-breaking system two energy minima in the Ba(T&; Ti, Ti+ 8) O; system, plotted for

In a conventional ABQ perovskite such as BaTiQthe  Several values ob.

cubic symmetry of the high-temperature paraelectric phase is
spontaneously broken at the transition to the ferroelectriglisplacement amplitude along the straight line in the 15-
phase, leading to a switchable polarization associated witdimensional parameter space connecting the primary and
the occurrence of degenerate energy minima that are colsecondary minima(The direction along this line is taken to
nected by the broken symmetry operations. define the “FE direction” withé-g=0 being the midpoint
Recently, using DFT total-energy methods, wW8ai, between minima.Unfortunately, however, it is not possible
Meyer, and Vanderbitt) studied a new class of cubic perov- to plot such a curve fo6>0.4, since only a single minimum
skite compounds in which the composition is modulated in aexists in this range o#.
cyclic sequence of three layers on th& site [i.e., Here, we demonstrate how the current method allows for
(AA’A"YBO; structure$ or on theB site[i.e., A(BB'B”")O;  a much more natural treatment of these systems, especially at
structures The inversion symmetry that was present in thelarge 6. At a fixed value of polarization, we calculalgP)
high-symmetry cubic structure is permanently broken inas in Eq.(9). That is, we minimize the total energy over the
these materials by the imposed compositional order, givingnternal coordinates subject to the constraint that the sponta-
rise to important qualitative differences in the energetic beneous polarization has a fixed value, following the procedure
havior of these compounds. Most interestingly, it was showrdescribed in Sec. Ill. As in our previous watkthis is done
that by using heterovalent compositional substitutions, thén a fixed tetragonal cell.
strength of the breaking of the inversion symmetry could be The energy as a function of the polarization for several
tuned through an enormous range, suggesting that such syglues ofé is illustrated in Fig. 2. We obtain a similar energy
tems could be very promising candidates for new materialevolution as in Fig. 1. However, there are two important
with large piezoelectric and other dielectric responsequalitative differences. First, the procedure is not limited to
properties-? the range ofs in which both minima exist. At largef (e.g.,
Such compositionally modulated structures were studied= 0.6), where the secondary minimum has disappeared due
within a model system Ba(Fi 8, Ti,Ti+ 8)O; where the two  to a strong symmetry-breaking perturbation, the procedure
atomic species that alternate with Ti on tBesite are virtual  allows the mapping of the energy to be carried out just as
atoms that we constructed by varying the nuclear charge afasily as at smalles. Second, the horizontal axis of the
Ti by = 8. Therefore, ag is tuned continuously from 0 to 1, figure now has a physical meaning of polarization. For ex-
we can simulate a set of systems evolving from a convenample, a glance at Fig. 2 shows an interesting feature,
tional BaTiOQ; ferroelectric system to a heterovalent namely, that the saddle point is also polarized, unlike in a
Ba(Sg/3Ti13V 13 O3 one in which all three alternated species normal ABO; compound.
are from neighboring columns in the periodic table. We investigated this interesting feature further by plotting
As a consequence of the compositionally broken inverin Fig. 3 the polarization at the saddle point, as well as at the
sion symmetry, the thermodynamic potential associated witlenergy minima, as a function @. All the stationary points
the FE instability does not have the usual symmetric doubleare seen to be shifted in the direction of the shallower mini-
well form. Instead, it takes the form of an asymmetric doublemum asé is turned on. As a consequence, the polarization of
well, or even of an asymmetric single well, depending on thehe primary minimum changes sign neés=0.35. Coinci-
strength of the compositional perturbation that breaks thelentally, this is close to the criticad.=~0.4 at which the
symmetry. In Ref. 12, a procedure was described that allowsaddle point and secondary minimum meet and annihilate.
one to search for both minima when they coexist. We plotin  In summary, we have illustrated the convenience and
Fig. 1, for several values of, the energy as a function of power of our method in the context of recent work on a new
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FIG. 2. Energy vs polarizatioR in Ba(Ti-&,Ti,Ti+ 8) O; at dif-
ferents. Note the saddle point &(P) shifts in the direction of the
secondary(shallowej minimum asé increases.
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provides a much more informative picture of the system. For
example, certain interesting and nontrivial behaviors of the
polarizations at the saddle points and minima can be eluci-
dated.

B. Structural response in BaTiO;

In this section, we apply our approach to study the depen-
dence of the internal structural parameters of BaTo@ the
polarizationP. Our calculation is restricted to allow only

atomic displacements along tledirection in a fixed simple
cubic lattice, with full relaxation of the internal structural

parameters at fixed polarizatiéh= P,z to yield equilibrium
coordinatesRe(P,). In this way, we can investigate the con-
tribution of the internal structural parameters alone, decou-
pled from the strain degrees of freedom, to the structural
response to an electric field, providing a first step towards
understanding the nonlinearities of the total structural re-
sponse expected with increasiéig

We choose to work at the experimental cubic lattice con-
stant 7.547 a.t’ The spontaneous polarizatid® is ob-
tained by full relaxation of the internal structural parameters,
and is found to be 0.21C/An The relaxed internal coordi-
nates for each Ba, Ti, O1, and O3 atom are plotted as a
function of P, in Fig. 4. ForP,>Pg, the state can be real-
ized as an equilibrium state in an appropriate fixed electric
field, while states withP,<Pg are local maxima of(P,)
— &P, for some value of€. For example, the value of
corresponding td®,=0.48C/nt (approximately twiceP,) is
16 MV/cm.

To focus on the dependence of the character of the distor-
tion on the amplitudePZ, we define a “unit displacement
& €01 £9%) py normalizing the sum of the

inversion symmetry. The new approach is especially usefusquared d|splacements to (The origin of the distorted

for studying the case where the compositional perturbation istructure is chosen such that the unweighted average of the
so strong that only a single local minimum survives. More-displacements vanishes, i.&;£,=0.) At P,=Pg, the unit
over, expressing the behavior as a function of polarizatiordlisplacement vector is found to be (0 26, 0.73).22,

0.6

04 +

02+

P (C/m®)
o
o
;

cmmmmm -

FIG. 3. Calculated polarization at the left minimufsolid
circle), right minimum(open circlg, and saddle poindiamond in
Ba(Ti-4, Ti,Ti+ 6) O5. Left (right) minimum is the principal one for
6>0 (6<0), as shown in insets.

—0.55), closely resembling the unstable ferroelectric mode
of cubic BaTiG, (0.18, 0.74,—0.18, —0.59) computed from

a linear-response calculation. In Fig. 5, we show Byede-
pendence of the components of the unit displacement vector.
If the polarized state were obtained by freezing in a single
polar mode, these components would be constant. The actual
behavior is considerably more complicated.

Three distinct regimes for the atomic displacement pattern
can be clearly observed. Fd®, below ~0.48 C/nf, the
relative displacements are similar in character to those of the
soft mode. In this regime, the magnitudes of the Ba and O1
components increase with,, while the magnitudes of the
Ti and O3 components decrease. Fy between roughly
0.48 C/nt and 1.4 C/r, the consequence of these opposing
trends is that the magnitudes of the Ba and O1 displacements
actually exceed those of Ti and O3, respectively, changing
the character of the structural distortion. Rt~1.4 C/nf,
the trend withP, reverses for Ba and Ti, so that as the
polarization increases further, the Ba and O1 atoms move
together in a direction opposite to that of Ti and O3.

The Born effective chargeg* are expected to be sensi-
tive to the internal structural parameters. Figure 6 shows the
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FIG. 4. Fully relaxedz coordinates for each
atom in BaTiQ (see unit cell at rightas a func-
tion of polarizationP, in the simple-cubic lattice.
Curves are cubic-spline fits to calculated points;
top- and bottom-most points correspond to trans-
lational images of Ba and O3 atoms, respectively,
in neighboring unit cellsPg marks the spontane-
ous polarization. The Born effective chargé
for each atom is marked aP,=1.64 C/nf.
Shaded area indicates metallic regime.

uy(a.u.)

evolution of the computed* for each atom. Near the cubic ~ We carried out an analogous calculation for Phjli®the
structure, the dependence @¥; and Zg; on P, is nearly  cubic structure using the lattice constant deduced from ex-
quadratic, in agreement with previous calculations forperimentag=7.5 a.u., yielding a spontaneous polarization of
BaTiO,.2% While Z%, and Z%, are rather insensitive t8,, ~ 0.73 C/nf. The unit displacement vector as a functionRyf

the Born effective charge of Ti decreases by over 30% fronis shown in the right panel of Fig. 5, where the pattern re-
P,=0 to 1.4 C/ni, with a corresponding increase in that of sembles that of BaTiQat intermediate values d?,. Thus,

03. More specificallyZ% drops to its smallest value-4.7  the pattern .that is field—indupeq in Ba‘lg(Es'charact.eristic of
while the magnitude ofZ%; is close to its smallest value that of PbTiQ at zero electric field. The higR; regime sets
—3.9. This structural sensitivity can be understood as bein%f‘ at around 1.5 Clfy with the Pb and O1 atoms moving
related to the anomalous values in the undistorted cubic pef°9ether as a pair and Ti and O3 moving together as a second
ovskite structure, which arise from the hybridization of Ti P&l _

and O orbitals in the Ti-O3 chains oriented along As Some general observations can be made about the effects

shown in Eia. 4. wherP. increases. the Ti are displaced of an electric field on the internal structural parameters. At
9 = z ' P small fields, the cations and anions move independently, fol-

towards one O3 neighbor and away from the other, disrupt;
induced current along the chaiConsequently, the magni- ormal valence. However, once the field-induced distortions
tudes of the Born effective charges are reduced towards t perevents further compression of Ba/Pb-O1 and Ti-O3 bonds
As the polarization and associated structural distortiongy; ~5 204 Ti-03 units move rigidly with net charaes ver
become larger, the band structure evolves correspondinglx10Se to—2 and +2 respectivgly yln summary V\Q/]e havey
=1.8C/nf relative to that of the undistorted cubic perovskite ! I ; ; DN -
structure. Some bands, such as the topmost O 2p band, Iogngos exhibit interesting nonlinearities in structure with in-
the characteristic flathess that is usually seen in perovskites
such as BaTi@ 3 Most importantly, the band gap decreases

ing the chain and reducing the anomalous displacemenLowmg the electrostatic force corresponding to the sign of the
e large enough so that short range interatomic repulsion
nominal valences:4 for Ti and — 2 for O. the further distortions acquire a character in which Ba-
We find significant changes in the band structure Ryr shown that the “simple” perovskite compounds Bagiend
reasing polarization, as will occur in large electric fields.
with increasingP,, extrapolating to an insulator-metal tran-

C. Nonlinear dielectric and piezoelectric response

sition just aboveP,=1.8 C/nt. The polarization is a mean- Tunability of the dielectric and piezoelectric coefficients
ingful quantity only in insulators, and therefore calculationby an applied electric field, a property of great technological
for higher values of, cannot be considered. importance, is expected to be especially large in ferroelec-
1 no| | | "L |
M

05 05 FIG. 5. The component of the unit displace-
ment vectoré, corresponding to each atom in
BaTiO; (left) and PbTiQ (right) as a function of
polarizationP,. In the left panel, vertical lines
demarcate the regimes of BaTi®oft-mode-like,
PbTiO; soft-mode-like, atom-pair, and metallic

l behavior; at right, the single vertical line sepa-
P!

O\*
N

i
|
f

unit displacement vector
o

rates soft-mode-like and atom-pair regimes.

i
-1 ' -1

05 1 5 15 2 0 015
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8 ‘ - , TABLE I. The values of the least-squares fitted parameters in
"‘\‘\T‘i\w Eq. (29) at £=0 in PbTiG;. The units are the appropriate combi-
6r 1 nations of Ha and (C/R)2.
2 -\.h._’_./' (CIf
% 41 Ba | Parameters Values Parameters Values
g »—a—a—= —
o 2 B Eo —165.953 Asoo 0.005
2 0 Cu 4.374 Asoo 0.004
g 01 C12 1326 Blzz _0199
E 2 g * i ] Ao —0.003 Bayy —0.049
£
o 4t 03 0 .
a 4»/‘/ two-step procedure is also required, as mentioned in Sec.
6T | Il A, by the limitations imposed on the present implementa-
8 ‘ , tion by the use ORBINIT 3.1.
0 0.5 1 0 15 2 We have applied this procedure to compute the nonlinear
P, (C/m") dielectric and piezoelectric response of tetragonal PhTtO

fields alongz using thei=1 expression$Eq. (9)]. At this
level of approximation, only lattice contributions %g,5(£)
andd,z(£) are included, and their electric-field dependence
arises only through induced structural changes. However,
this is expected to be a good approximation for PiTiO

. - .where the lattice contribution to the dielectric and piezoelec-
trics due to the dependence of these coefficients on electrl(%FiC responses dominates everiTat 0

field-induced structural changes such as those reported for For present practical purposes(7,P) is obtained in a

BaTiO; in the previous section. This behavior can be quan- . "
tified by the values of the nonlinear dielectric and piezoelec-parametrlzed form by fitting a Landau-Devonsfitrexpan

tric coefficients. In this section, we formulate the calculationSlon expanded around the minimum-energy cubic structure

of these nonlinear coefficients in our poIarization-baseo("’lo:7'33 a.u.). Values of are calculated fpr an appropri-
) . ate set ofy andP. The results are used to fit the parameters
framework, and give results for tetragonal PbJiO .

The first step in this analysis is the computation=¢P) n
and »(P) from the minimization ofF (R, »,P) at fixed P. 1
Thi; is folloyveq by the minimization of (P)—P- £ at fixgd F(51,73,P,)=Eq+ §C11(27I§+ 72)+ C1A 27173+ 12)
&, directly yieldingP(&) and (&) = n[ P(£)]. From the first

FIG. 6. Computed Born effective charges for each atom
in BaTiO; as a function of the polarizatioR, . For the cubic struc-
ture (P,=0), we obtain Z§,=2.72, Z%=6.99, 26L= —5.57,
ng= -2.07.

derivative of P(£), we obtain the field-dependent static di- A P24 AP+ A PS4 2B p2
electric susceptibility tensox ,5(£), with the nonlinear co- 2007z - 7400z T 600" z Lyt
efficients defined through a smallexpansion +B1,,m3P2, (29
1 dP,(E) 1 5 ) where 71= 7= 7yy, 13= 1,2, P, is the polarization per
Xaﬁ(g):e__o IEs =Xap T XahEtO(ED). (2D ynit volume and the truncations to sixth orderRn and to
lowest order in the elastic and polarization-strain coupling
The relative dielectric tensor is given 3= 05,5+ Xup - are found to be sufficient within a standard least-squares fit.

Correspondingly, from the first derivative g{ &), we obtain ~ The resulting coefficients are shown in Table I; statistical
the field-dependent piezoelectric tenswys(£), with the  analysis shows that the strain coupling parameBags and
nonlinear coefficients defined through a sntkxpansion B,,, are the most sensitive to changes in the input configu-
ration energies.

We now use this expansion to compute the field depen-
dence of the strain and polarization under zero stress by
minimizing F(#»4, n3,P,) — EP, with respect ton,, 73, and

In fact, in our present implementation we perform theP, to get 7,(&), 73(&), and P,(€). By first consideringE
minimization of F(R, »,P) at fixedP in two separate steps. =0, we can confirm the validity of the parametrization by
First, we obtain a reduced free-energy functiefw,P) by  comparing the tetragonal structure obtained by minimizing
minimizing with respect tdR at fixed » andP. Further mini-  the expression foF(#.,7s,P,) given by Eg.(29) with
mization with respect to to obtainF(P) and »(P) allows  properties of the fully relaxed tetragonal ground-state struc-
the computation of the zero-stress responses as in the previsre in zero electric field. In Table 1l we list the energy dif-
ous paragraph. In addition, this approach allows the compuferenceAE between the tetragonal ground state and the cu-
tation of the clamped-strain dielectric response, measured &ic structure, the spontaneous polarizatfyE=0), and the
frequencies above the resonant frequency of the sampléttice parameters, finding good agreement in all respects.
through minimization ofF(#,P)—P-& at fixed £ and 7 Next, we consider nonzer6. Minimizing first with re-

= (&), directly yielding P[ (€),€] and x[ 7(£),£]. This  spect toy gives a free energy

1,(E)

dMB( &)= &EB

=d+d?) e, +0(£?). (29
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TABLE II. Comparison of the structural parameters computed TABLE Ill. Comparison between theory and experiméRef.
by minimizing Eq.(29) with those computed from direct LDA cal- 34) (at room temperatujeor the first- and second-order dielectric
culation and those obtained from experimérefs. 32,33 constants of PbTi@ (RT). The superscriptsr and # indicate
whether the measurement is under constant-stress or constant-strain
AE (mHa P~ (C/m?)  a(Bohn  c(Bohn condition.

model 0.86 0.67 7.324 7.487 X% X2 X(S%)a (nm/v) X(B%)n(nm/v)
LDA 0.90 0.65 7.310 7.484
exp 0.7%295K) 7.373 7.852 model 67 37 315 82
experiment 79 33
F(P,)=AsodP2+ AP+ AsodPe (30

Table lll, these values are compared with the reported ex-

where perimental dielectric constants at both the constant stress and
, 1 ) clamped-strain conditidfi which were measured below and

2C1B12B1yy~ C11B1yy—5 (€11t €19 B, above the sample resonant frequencies respectively. The
As00= Asoot , value for yZ; can also be compared with a previous first-

(C11+2€19) (€11~ C12) principles calculatior®

_ @D In both the stress-free and fixed-strain cases, the hyster-
andA,qp is found to be 4.%10 *HaC *m™8. esis profile of the static susceptibility shows thaf; in-
SinceA,q<0, F(P,) has a double well structure, so that creases with field amplitude for the local minimum &t
F(P,) —P,& has two local minima for small enough values <&, and decreases with increasing field for the global mini-
of £ The evolution of the two local minima wit§ can be  mum, which is the only branch in the region abd¥e For
summarized in the calculated hysteresis loop shown in theach branch, we find a nonlinear susceptibwgﬁ"’ of mag-
upper panel of Fig. 7. We find an intrinsic coercive fi€ldf  nitude 315 nm/V in the stress-free case. However, when the
1.5 MV/cm. From Eq/(27), we can proceed to calculate the strain is clamped, the coercive field becomes larger than in
static susceptibilityy33(€) and the result is plotted in the the stress-free case, and the nonlinear susceptibility is more
lower panel of Fig. 7. Fitting this to Eq27), we find that the  than two times smaller. In the present framework, this is not
zero-field stress-free susceptibilipgy is x5,=67, the super-  surprising since the change in the dielectric response is the
script o indicating stress-free conditions. result of a field-induced change in structure, and this change
For the clamped-strain response at zero field, weyfixt  is reduced by clamping the strain.
7»(£=0). A different double well structure is obtained for  Next, we consider the piezoelectric respofise. (28)]. In
F(M(P,), resulting in a different hysteresis loop shown in Fig. 8, we plot the equilibrium values of the straips and
the same figure. We find an intrinsic coercive figldof 3 73 as a function of the electric field along tlzedirection.
MV/cm. From fitting to Eq.(27), we obtain y%,=37, the  The slopes of these curves give rise to the piezoelectric co-
superscript# indicating the clamped-strain condition. In efficientsd;; andds; which are plotted in the lower panels of
the same plot. We find,5= — 0.6 pC/N andd33=40 pC/N,
1 ‘ - - . ‘ considerably less than the room temperature values measured
= experimentally® (=25 and 117 pC/N, respectivelyand
computed from first principle¥ We attribute this primarily
to the choice of pseudopotentials, which give a low value for
the ground state tetragonal ratita and in particular, a value
of a almost unchanged from the cub&,. However, our
calculation does serve to demonstrate the applicability of our
method to the calculation of these quantities. In particular,
there is to our knowledge no previous calculation of the non-
linear piezoelectric response.

P, (C/m?)

D. Field-induced structural phase transitions

In a single crystal, the relative stability of distorted-
: : : : ‘ structure phases with polarizations in different directions is
-6 -4 El 2 0 g 2 4 6 expected to change as an electric field is applied. In particu-
ectric field (10 Kv/cm) o . . . .
lar, a phase transition might be induced by applying a suffi-
FIG. 7. Calculated polarization-vs-electric-field hysteresis loopciently large field in a different direction from the polariza-
(upper panéland static susceptibility(£) (lower panel of PbTiO; tion of the ground state. This change in phase, the result of
under stress-free conditigisolid circle and clamped-strain condi- an electric-field induced rotation of the polarization, may be
tion (open squane Dashed line corresponds to the nonaccessibleadccompanied by a large change in strain, manifested as a
state(saddle point in the thermodynamic potential large piezoelectric response.

104108-10



THEORY OF STRUCTURAL RESPONSE TO. .. PHYSICAL REVIEW &5, 104108 (2002

0.04 strength. An effective Hamiltonian study of PhZr, _,O,

near theR-T MPB® showed that with increasing electric
field along[111], the polarization vector of tetragonal PZT
rotates continuously from the tetragori@i01] direction to
the rhombohedra[111] direction through a monoclinic “

0.03
£ 0.02

0.01 M " phase”® with P along[uul]. In contrast, for the case of
0 | | | | | an[001] electric field applied to rhombohedral PZT, the po-
larization vector does not simply follow the return path, but
-0.0008 ¢ 3 instead follows a discontinuous path of a kind first discussed
= by Nohed& It first rotates continuously into the! , phase
-0.001 . for small field strengths, and then jumps discontinuously to a

monoclinic “M¢” phase® with P along[u01] before reach-

ing the tetragonal structure. The calculations show that a
large piezoelectric response is expected for this latter type of
path.

In this section, we apply the full three-dimensional for-
malism described in Sec. Il to study, in a Pb-based perovskite
system, the rotation of polarization by an applied electric
field in the two cases most relevant to enhanced piezoelectric
response near thB-T MPB: (i) application of an electric
field along[111] to a tetragonal system aifiil) application of
an electric field along001] to a rhombohedral system. For
(i), we consider tetragonal PbTiOFor (ii), we introduce a
simple modification of the structural energetics of Pblt®
stabilize a rhombohedral ground-state structure. This follows

-6 _;1 -2 0 the spirit of a view of PZN-PT and PMN-PT as large-strain
i~ fi 3 PbTiO;-based systems that have been chemically “engi-

Elecmc_ _fle_ld (1 0 _KV/Cm) neered” to make them marginally stable in the rhombohedral

~ FIG. 8. The calculated equilibrium straing, and 75 and the  phase!® We do something very similar, but using a theoreti-
piezoelectric tensod;; andds; as a function of the electric field in - 4 manipulation that avoids the unnecessary complexities of

PbTiG;. the real alloy systems.

This “polarization rotation” mechanism was proposed in 1. Free-energy functional

Ref. 7 to explain the experimentally observed colossal piezo- Extending the procedure described in Sec. IV C to the full
electric response to electric fields alofg01] of single- three-dimensional case, we first evaluate the reduced free-
crystal rhombohedral perovskite alloys such asenergy functionF(%,P) by minimizing F(R, »,P) with re-

[ Pb(ZnysNby3) Og](1 - )~ PbTiO;], (PZN-PT) with compo-  spect toR for a set of selected tetragonal, rhombohedral, and
sitions near the rhombohedral-tetragonal morphotropiorthorhombic structures. Strains are defined relative to the
phase boundaryR-T MPB), and has been the subject of cubic structure with the experimental lattice constaag (
continuing experimentd and theoreticdf investigation. =7.5 a.u.). In the range of andP of interest, we used a
Particular attention has focused on the nature of the pathrocedure similar to Sec. IV C to fE(#»,P) in a Landau-
followed by the polarization vector with increasing field Devonshire form

1 1
F(7,P)=Eq+Ci(m+ n2t7n3)+ 5011( i+ 15+ 13) + Cof mamat namyt mimo) + §C44( na+ nE+ 13)

+Agod PE+ P+ P2) + Agod P+ Py + PY) + Agad PIPZ+ PZPE+ PEP7) + Agod PS+ PO+ P2)
+Agd PE( Py+P3)+ Pi(P§+ Py +PZ(Py+ P)] +A222P>2<P§P§+ Bix 71Pe+ 772P32/+ 73P2)

+Bayy[ 71(P5+P2) + 72( P2+ PZ) + 03P+ Py) 1+ Bay 74Py P+ 15P,Py+ 76PyPy). (32

We list the least-squares fitted coefficients in the column deSpecifically, we consideE(6,¢,£=0), obtained by fixing
noted byM1 in Table IV. the direction ofP along the direction specified by spherical

Using Eq.(32), we now consider the energetics of statesanglesg and ¢, relative to the polar axig, and minimizing
with different orientations of the polarization in zero field. F(7,P) with respect to the strain and the magnitudéofs
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TABLE IV. Least-squares fitted values of the parameters in Eq. 0.8 m :
(32. M1, all parameters freely variedf12, with the constraint i i
A,,=0.062 HaC®m™1? (boldfacé. Units are the appropriate i i
combinations of Ha and (CAy?. 06 i 5
M1 M2 M1 M2 T ooil n &
(S ' i
= —165.947 -165.947 C; 0.168 0.168 - !
Aooo -0.01 —0.009 Cyy 3.829 3.973 g oo |
A0 0.008 0.005 Cp 1.462 1.484 LICJ .
Asno 0.015 —0.0007 C, 1174 1.218 = T b
Asoo 0.003 0.004 By, —0235 —0.234 0 F----2 Sl bSgmm oo oo oo
Ao 0.010 0.019 Byyy —0.048 —0.0525 i
Ao 0.009 0.062 B4y, —0.069 —0.068 Yy i i i

12 10 08 06 -04 02 0.0
AC,, (Ha)
shown in Table V, the structural parameters and the sponta-

neous polarizations agree well with the LDA results, espe- FIG. 9. The energies of the rhombohed¢sduar¢ and tetrago-
cially for the O andR phases. nal (circle) phases relative to the orthorhombic phéseosen as the

From this table, it can also be seen that the energy differzero of energyas a function of the tunable shear modulS,, of
ences between thg O, andR phases are quite small. For PbTiO;, calculated using Ed33). The ranges oA C,, in which the
this reason, the parameters obtained by a global Ieast-squar'@gagonal’ orthorhom_blc, and rhor_nbohedrgl phases are most stable
minimization do not accurately reproduce the LDA values. In2'€ separated by vertical dashed lines and indicateti by andR,
particular, the energy difference between ThandR phases ~ "eSPectively.
is seen to be much larger than the LDA result. However,
these features of the energy surface are crucial to the physi€¥T and O-R energy differences as well as the structural
of the structural phase transitions. Therefore, we adjusted thgarameters and spontaneous polarizations of all three phases
fitting procedure to reproduce these relative energies acc@re in excellent agreement with the LDA results, as shown in
rately while using the least-squares procedure for the begbe last column of Table V. Therefore, this set of parameters
overall fit to the remaining data, as follows. Rather than in-was used in the following calculations.
troduce additional parameters by including higher-order
terms, we “tune” one parameter while determining the other 2. Engineering a Rhombohedral Structure foPbTiO4
13 parameters by standar(_j least-squares m|n|m|zat|on,_ and In previous first-principles investigations of PbTjOit
choose the value for the single tuned parameter that yield§,g peen observed that the strain coupling is responsible for
the most accurate values fooththe O-T andO-R energy  gapilizing the tetragonal ground state structtirén the
differences Az, proves to be the best choice for the tuning gjmpje cubic lattice, the lowest-energy structure has polariza-
parameter, and withy,,=0.062 and the other parameters as;;,n along[111], corresponding to a rhombohedral symme-

given in the column denoted by M2 of Table IV, both the yy "\yhile the energy of the optimal state with polarization
along[001] is higher. However, when the lattice is allowed
TABLE V. Comparison between the structural properties of theto relax, the energy gain from strain coupling in the tetrago-
tetragonal T), orthorhombic ©), and rhombohedrdR) phases of  nal structure is much larger than the gain in the rhombohe-
PbTiO,. LDA denotes direct LDA structural relaxations|1 and  dra| structure, leading to the observed reversal of stability. In
M2 are as in Table IV. Units of polgrizatidh rhombohedral angle  ggch case, the energy gain from strain coupling increases as
a, cell volumeV, and phase energi@are C/nf, degrees, B the relevant elastic constant decreases. So, if it were possible
and mHa, respectively. to decrease the shear modulg,, there would be a critical
value below which the rhombohedral state would be most

LDA M1 M2

stable.
Vo 399.9 402.3 401.9 Within Eg. (32), the modification ofC,, can be imple-
cla 1.024 1.04 1.03 mented by the inclusion of a tunable shear elastic term
Pt 0.65 0.75 0.71
V 398.4 397.3 398.7 ~ 1
. 80,7 89.6 89.8 F(n.P)=F(7.P)+5AC.u( ni+ 75+ ng), (33
Pr 0.33 0.32 0.34
Vo 398.8 398.1 399.7 where AC,, = 0 corresponds to PbTiOwith its natural
ag 89.5 89.4 89.6 shear elastic modulus. Using E&3), we compute the zero-
Po 0.41 0.42 0.44 field energy for the optimal tetragonal, rhombohedral and
Er-Eo 0.060 0.097 0.064 orthorhombic phases as a function®€,,. This yields the
Eo—Er 0.159 0.639 0.154 phase sequence shown in Fig. 9 with fheand R phases

separated by a sliver of an orthorhombic phase. This phase
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FIG. 10. Same as Fig. 9 but calculated using a direct LDA |}
approach. As in Fig. 9, an orthorhombic window appears, though
the phase boundaries are slightly shifted.

sequence is very reminiscent of that of the
Pb(ZnsNby/5) O3—PbTiO, systent® with the tunable param- .
eter being the proportion of PbTiO The stability of the FIG. 11. Contour maps d&(0,¢,£) on the upper hemisphere
orthorhombic phase reflects the importance of the sixth-ordef=< 6=z for an electric field of magnitudé€ applied along the
terms in Eq.(32), as in a fourth-order model only tetragonal pseudocublc{lll] direction to tetragonal Pb'_l'rp The contou_r is
and rhombohedral structures are possible minima. equally spaced in I&{—Ey,+ ), whereEy, is the global mini-
To check that the observed phase sequence is not an ar um and& is a small offset. The central axis points along th&1]
fact of our fit, we have computed the structural parameterglrectlon.(a)—(d) correspo_nd to electric fields of 0, 0.86, 1.73, and
and energies of the tetragonal, orthorhombic and rhombohe-‘46>< 10° kviem, respectively.
dral phases as a function AfC 4, through direct LDA calcu-
Iati_ons. For consistency with Eq33), we impl_e_ment the _ E(0,¢,E110)=mMIiN[F(75,P)— 131 (Py+Py+ pz)/\/§]_
adjustment of the shear modulus as an additional applied P,y
stress (35

Then, we locate the minima on the sphere of polarization
directions parametrized b§ and ¢.
The evolution of the phase stability can be readily dis-

whereo; (with i=4,5,6) are the shear stress components irPlayed by the contour plots &(6, ¢,&111) shown in Fig. 11.
\Voigt notation. The results, given in Fig. 10, show the saméAt zero electric field, the tetragonal structure appears as a
T-O-R phase sequence as Fig. 9. While fi®© and O-R threefold degenerate energy minimum in the hemisphere
phase boundaries are slightly shifted, the width of the orthoShown. As&yy, increases, the minima migrate from the te-
rhombic window is comparable to that in Fig. 9. Thus, in thetragonal positions along the lines corresponding to the mono-
following, using Eq.(33) with a particular value ofAC,,,  Clinic Ma phase(threefold degeneratend eventually reach
we expect results which would reflect a direct LDA calcula-the rhombohedral point at the center of the hemisphere.

tion, though perhaps with a slightly differentC,,. Figure 12 §hows how.the polarizqtion components of te-
tragonal PbTiQ evolve with the amplitude of;;;. At 11

=0, the only nonzero component,. As £ increasesP,
=Py grow while P, slowly decreases. The structure thus
We consider two cases: tetragonal PbJi@® a field ap- enters theM, monoclinic phase. Wherf reaches 1.4
plied along[111] and a rhombohedral variant of Pbi@ a X 10° kV/cm, the three components merge and the system
field applied alond001]. We first consider the former case, enters the rhombohedral phase where the polarization vector
in which the[111]-oriented applied field tends to favor a points along the pseudoculit11] direction. While rotating,
rhombohedral direction for the polarization. To investigatethe polarization vector remains in ti&10 plane, as shown
the evolution of various phases wif;;, where&;41is the  in the inset of Fig. 12.
magnitude of the electric field, we perform the minimization Next, we consider rhombohedral “PbTjOwith AC,,
in two steps. First, we transform the Euclidean coordinates=—1.1 Ha(see Fig. 9 in an electric field along th€001]
(Px,Py,P,) into spherical coordinatesP(¢,¢) and com- direction, which tends to favor a tetragonal direction for the
pute polarization. The analog of E¢35) is

Aoi=—ACym;, (34)

3. Electric-field-induced phase transitions
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FIG. 12. The Cartesian compone®y (circle), P, (triangle, P,
(square of the polarization as a function of the magnitude of the
electric field applied along th¢l111] pseudocubic direction in
PbTiO;. The inset shows the polarization path.

E(8,¢,E000) = Min[F(7,P) — EooaP2]- (36)
P.,n

The energy contour plot in this case is shown in Fig. 13. In
zero electric field, the system is in a rhombohedral phase =
with an eightfold degenerate minimum. For small nonzero [{{{ [N
&oo1, the energy minima correspond tdvl, phase as shown N
in Figs. 13b),13(c) where there are four degenerate minima
lying in the (110 plane. At a critical value o€y, the en-
ergy minima jump to fourfold points in thél00) plane, as
can be seen in Fig. 18). The four minima then move
smoothly towards thE)Ol] axis, finaIIy merging to yI6|d the FIG. 13. Contour map of the free energypper hemisphe}e
tetragonal phase. when an electric field is applied to rhombohedral “PbJIO
Figure 14 shows how the polarization components of(AC,,=—1.1 Ha) along the pseudoculji@01] direction. The cen-
rhombohedral “PbTiQ" evolve with the amplitude 0€qg;. tral axis corresponds to one of the tetragonal directigas-(f)
Under zero applied electric field, the polarization vectorcorrespond to electric field magnitudes of 0, 1.4, 2.8, 7, 14, and
starts along the pseudocubiit1l] direction Py=P,=P, 19X 10° kv/cm, respectively.
=0.56 C/nt). As &y, increases, the structure entersMp V. SUMMARY
phase in whichP, and P, remain equal, but become less '
thanP,. P, andP, keep dropping untiP, shows a sudden In this paper, we have introduced a formalism for com-
jump to zero at around 4:510° kV/cm. At the same time, puting the structural response of an insulating system to a
both P, and P, exhibit an upward jump in their values. The static homogeneous macroscopic electric field. We have
new phase corresponds to a different monoclinic phase dehown that, in the presence of an electric field, the thermo-
noted byM(. The structure remains in thd - phase untii dynamic potentiaE(R, 7,£) can be minimized by introduc-
P, also drops to zero at around 290° kV/cm, yielding a ing a related thermodynamic potenti&(R, ,P) in which
tetragonal phase. As the field increases furtRercontinues  the polarizatiorP is treated as a fundamental variable. Cor-
to increase smoothly. responding to each polarizatiéh the equilibrium values for
In this section, we have seen that a small modification othe internal coordinateR and » as well as the minimum of
the structural energetics of PbTj@an yield a complex po- this energy functional can be computed. Consequently, one
larization path quite similar to that proposed by Noh&da arrives at an energy functional that only dependsPoand
and observed in simulations of PZ¥Additional calcula- where the effect of a homogeneous electric field can be
tions, for example of the lattice parameters as a function ofreated exactly by adding a linear term&- P to this func-
electric field, may assist in achieving a direct experimentational.
observation of this behavior. In addition, further exploration In practice, wherE(R, 7,€) is expanded to first order in
within this framework may suggest ways to produce andf, the minimization is reduced to one over the internal coor-
control complicated polarization paths in real systems. dinates constrained by a fixed polarization computed at zero
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12 T ‘ T T APPENDIX A:
SECOND-ORDER EXPANSION FORMALISM
1t This appendix presents the formalism in Sec. Il for trun-
cation of the sum in Eq6) ati=2, that is, at second order
08 - in the electric field€. At this order, the thermodynamic po-
' tential E(R, %,&) is replaced byE,(R, 7,£), which is the
NE sum of the first three terms in E¢p).
o 06 We recall the definition of the dielectric susceptibility
o tensor
04r R e LPERDE 1 PR
Xep(R7:6)= = 00 € &
02+ (A1)
Therefore, we can write
5 0 s 10 15 20
Electric field (10°Kvicm) E2(R,7,8)=E(R,7,6)~ 2 P.(R,n.0&,

FIG. 14. Same as Fig. 12, for an electric field applied along the €
[QOl] pseudocubic direction in rhombohedral “PbEiCobtained — EO E 5a5/3Xaﬁ(R-7]-o) (A2)
W|th AC44: - 11 Ha. aﬁ

and

electric field. We have implemented a minimization scheme
in the framework of a modified DFPT, using a consistent _
discretization formula that was developed for?he response to P2a(R7.E)=Pa(R,7.0)+ 602/;’ EpXap(R.0).
an electric field. Consequently, the computed response is (A3)
compatible with the Berry-phase polarization, which is a
central quantity in the formalism.

It is important to note that the presént 1 theory is most
useful for systems in which the response to an electric field i

The computation oF (P) [Eq. (2)] for a givenP proceeds
by the minimization ofE(R, ,\) +\ - P following the pro-
gedure in Sec. llIA. This involves computing the derivatives

dominated by the changgs in ato_mic.coordinates anq strains JE5(R,7,\)  9E(R,7,0) P (R, 7,0)
rather than by electronic polarization. Ferroelectric and R =Y -> R N
nearly ferroelectric materials are among the best examples. y y “ ty
We therefore look forward to future applications of our new €o X ap(R, 7,0)
approach for a variety of purposes, for example, ferroelectric ) 2 Nk BT R (A4)
alloys and ferroelectric superlattices. Applying the method to p "
the so_call_ed highk materials” to stu_dy their (_jlel_ectrlc JEL(R,7N)  JE(R, 7,0) 9P.(R,7,0)
properties in the presence of an applied electric field also = _2 A,
appears to be a promising direction. My My « 9Ny

Though the higher-orddésayi = 2) theory requires higher e 9x.a(R, 7.0)
(=3) order energy derivatives, this does not preclude its _20 > MM;M, (A5)
application. As mentioned in Appendix A, it is possible to 2 B m

approximate certain response quantities that are related to the )
third derivatives by constant values from a single structure, if JE2(R, 7,N)
they show only small variations within the range of the po- N, Po(R,7.0) 60% Xap(R7.0Ap+ Py

larization studies. Systems that may satisfy such a condition (A6)

will be the subject of further investigation. . — .
These are related to the corresponding derivatives ini the

=1 casdEq.(10)] by the addition of terms one order higher
in . From Eg.(A6), we see that at this ordd?(R, 7,\)
includes an electronic contributiaR= sx ,s(R, 7,0)A 5. The
This work was supported by ONR Grant Nos. N0014-97-effective forces and stressdg=gs.(A4) and(A5)] involve the
1-0048 and N00014-00-1-0261. The work of K.M.R. wasderivatives ofy with respect taR and . While these are in
performed in part at the Aspen Center for Physics. We woulgrinciple obtainable from ther2+1 theorem, they are not
like to thank X. Gonze for his interest in the work and valu- routinely calculated in current DFPT codes. For cases where
able discussions on thesINIT code. We acknowledge Ph. the lattice contribution t& dominates, it is reasonable, how-
Ghosez and M. Veithen for their help on thel pseudopo- ever, to approximate the and » dependence of by evalu-
tentials. ating it at the zero-field equilibrium structure. A more accu-
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rate but still praCtical apprOXimation would include the first where Apruns over all possib|e permutations among the oc-
order changes with respect &R and 67, with the deriva-  cupied bands, the change in this phase from a first-order

tives computed through a finite difference approach. change in the wave functions kis
APPENDIX B: Sp= |m—5dewI (B7)
MULTIBAND DISCRETIZATION FORMULA detM,

In Sec. Il B we presented a finite-difference formula, Eq.Where
(26), representing the derivativé|u,)/Jk in the single-band

1D case. In this Appendix we generalize the derivation in 5detM=2 (_1)132 <5Unk|uﬁ(n)k'>H <Umk|Uﬁ(m)k'>
n m#n

order to obtain a corresponding formula for the multiband )
3D case. .
The general expression for the electronic polarization in :Z (_1)p2 ( SUpid Upimykr) H M ompcm) -

3D is easily reduced to a sum of 1D Berry phases over p n m#n
strings ofk points™ We can write (B8)

1 Here My is the matrixM evaluated before variation of the

pP= VN > > R,PLK), (B1)  wave functions.
k ki e Unfortunately, Eq.(B8) does not lend itself to simple

evaluation. However, we can reduce E&8) to a trivial

whereV is the cell volumeg labels the three primitive real- . . ;
form as follows. Consider a linear transformation

space lattice vectorsR, conjugate to the primitive
reciprocal-space vectofs,, andk, runs over a 2D mesh of

N, positions in the reciprocal-space directions perpendicular |an/)52 AmnlUnie) (B9)
to a. The contribution from the string(k,) of k points m
running parallel taG, at a givenk, is among the occupied states kdt, whereA is a nonsingular
¢ (but not necessarily unitary matrix. Letting M,
pa(kL):__e S imindetM®k+D) (B2)  =(UmilUni), it follows that M=MA and thus dei{l)
27 ke, ) =det(M)det(A). SinceA is a constant matrix,
wheref=2 for spin, SIndeth = 5In detM. (B10)
Mﬁ'fhk+b)=<umk|un,k+b> (B3)  We thus have the freedom to evaluate E@7) and (B8)

_ _ _ with the substitutiondl —M, M—M,, and Uy — U ,
is the overlap matrix formed of inner products between,naaii=MA andM,=MA, for arbitraryA.

Bloch orbitals on neighboring points on the stringy is the The obvious choice is\=Mg~. We then find that the

Zﬁg?}riﬁ'ﬁg\?eert\t'}/]eeegcﬁggzovrg;gngg'rt')tjn?jz tlrE](equSz;gg), irgnd only permutation that survives in EB8) is the identity and
essentially the multiband generalization of Eg4) of Sec. the denominator of EGB7) becomes unity, so that

I B.
For the remainder of this Appendix, we drop the 3D no- 5¢=Im2 (SUnlUnier)s (B11)
tation and start from the 1D version 4
where

fe
P=—— > Imin detM(kk*b) (B4) -
2m % |unk'>:% (M(;l)mn|umk’>- (B12)

of Eq. (B2) and, correspondingly, for EB3). Our task is to
compute the variatio@P arising from the first-order varia-
tions of the wave functions in EgB4). Focusing on a single Sh=ImTrH(SM-M=1 B13
wave vectork and its neighbork’=k+b and letting M ¢ ( 0): (B13
=M&K) our central task is clearly to compute the first- Carrying out similar manipulations for the connection be-
order variation of the phase tweenk andk—b, we can define

Equation(B11) can also be written neatly as

_ i~ ~
¢=ImindetM. (BS) Vi) = %(|un,k+b>_ [Un,k—b)) (B14)
Using . N .
which becomes the finite-difference representation of
i d|un)/ 9k in the multiband case, analogous to E2f). It is

detM :2 (_1)5]_[ (Unil Upmykr ) (B6) easy to check the orthogonality of the, to the occupied
p n subspace
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<unk|Umk>:2I_b(5nm_ 6nm =0, (B15)

thus removing the need for explicit application of a
conduction-band projector onto tHe,,) when computing
the right-hand side of Eq21). Since(UmyUnk )= 8mn, We
can think of|l~1nk/) defined in Eq.B12) as a phase-aligned
and amplitude-corrected “partner” ta,,) formed from the

PHYSICAL REVIEW @5, 104108 (2002

occupied subspace &', and |v,,) is proportional to the
difference between the “partners” &t+b andk—b.
Finally, the variation of Eq(B4) becomes

feb
oP=— ; Re( SUni vk (B16)
in analogy with Eq(25). Our implementation of this scheme

into ABINIT is based on EqgB11)—(B16) above.
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