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A new method is presented for performing first-principles molecular-dynamics simulations of systems
with variable occupancies. We adopt a matrix representation for the one-particle statistical dpecator
introduce a “projected” free energy functior@lthat depends on the Kohn-Sham orbitals only and that
is invariant under their unitary transformations. The Liouville equafioné] = 0 is always satisfied,
guaranteeing a very efficient and robust variational minimization algorithm, that can also be extended
to nonconventional entropic formulations. [S0031-9007(97)03810-6]

PACS numbers: 71.15.Pd, 31.50.+w, 65.50.+m, 68.35.Ja

In recent years, the range of problems that can béhe ground state is developed and implemented. Dramatic
studied with quantitative accuracy using the methods ofmprovements are obtained in the convergence of the
computational solid state physics has expanded dramaténergies and especially of the Hellmann-Feynman forces.
cally. Itis now possible to calculate many materials prop- Within ensemble DFT, the Helmholtz free energy
erties with a precision that is often comparable to thafunctional at a temperaturé and for anN-representable
of experiments. This degree of confidence is based ooharge densityn(r) in an external potentialVe is
the fundamental quantum-mechanical treatment offered bty [n(r)] = Fz[n(r)] + [ Veu(r)n(r) dr, where Fy is
density-functional theory (DFT) [1], coupled with the the finite-temperature Mermin-Hohenberg-Kohn func-
availability of increasingly powerful computers and with tional [6]. The charge densityiy(r) that minimizes
the development of algorithms tuned towards optimal perAy is the ground-state charge density, aA¢[ny(r)]
formance [2,3]. is the free energy of the electronic system. A Kohn-

The application of these methods and techniques t&ham mapping onto noninteracting electrons leads to a
metallic systems has nonetheless encountered several difecomposition of the functionafy into noninteracting
ficulties that have made progress slower than for théinetic-energy, electrostatic, and entropic contributions,
case of semiconductors and insulators. The discontinuoyslus the exchange-correlatioX ) functional, for which
variation of the orbital occupancies across the Brillouinwe take the local density approximation [1].
zone (BZ) makes the occupation numbers rather ill- A key assumption is made by adopting a matrix repre-
conditioned variables, and the self-consistent solution o$entatiory;;, in the basis of the orbitals, for the one-particle
the screening problem can suffer from several instabilieffective statistical operatdr, so that
ties. The absence of a gap in the energy spectrum and
the requirement of an exact diagonalization for the Hamil- n(r) = iji Ui (r)y;(r). @
tonian matrix everywhere in the BZ (in order to assign ij

the occupation numbers) introduce “slow frequencies” inyere the{y,} are orthonormal single-particle Kohn-Sham
the eVO|Ut|On Of the Orb|tals tOW&lI’dS the gl’OUI’Id state an%rbitaJS, the sum extends in pnnClple over all the States’
preclude the straightforward extension to metals of algoandf,-, is constrained to have fr= N and eigenvalues

rithms which performed well for insulators. Smearing thepoynded tof0, 1]. The functionald to be minimized is
Fermi surface with a finite electronic temperature [4,5]then

allows for an improved BZ sampling, but only partially
alleviates the problems alluded to above. AT v fij}]

In this Letter, we introduce a new approach which . A
solves many of these problems in a natural way, and = ij,-(gb,-lT + Veultj) + Enuxcln] — TS[{fi;}];
which provides a general and efficient framework for Y 5
obtaining the ground state of a Kohn-Sham Hamiltonian 2)
at a finite electronic temperature. The context is thehe Hartree andXC terms, which depend only on the
Mermin formulation for the Fermi-Dirac statistics [5—7], charge density, have been grouped together. The Fermi-
but the method also applies when generalized entropibirac entropic term is a function of the eigenvalues of
functionals are introduced [8], as is often the case fof: S[{ fi;;}] = tr s(f), wheres is fInf + (1 — f)In(1 —
metallic systems. The language of ensemble DFT [9] i§f). Typically, Ve is generated by an array of nonlocal
used, and a variational algorithm for the minimization topseudopotentials. The free energy functioadk in the
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form of traces of operators, and so it is covariant under &he behavior of A along the search lines becomes
change of representation (i.e., for a unitary transformatiofncreasingly complicated in larger systems, leading to
U of the orbitals{y;}); this can be verified by letting inaccurate minima.

f— ' =UfUT and |y;) — |y, = X, Upntpm. The Returning to our approach, and beginning with the
covariance ofi allows for the definition of a newrojected inner-loop problem, let us define

functional Gthat depends only on the orbitdks; }: hiy = WilT + Vs, Vl[](z] — Vel

G|T;;}] = minA[T; irsvSiisl- 3

[T Ayid] {fis} [Titwidh ] ) for the matrix elements of the Hamiltonian (the super-
G isinvariantunder any unitary transformation of thig;}:  script[#] is a reminder of the dependence on charge den-
the transformed orbitals cannot lead to a different value fosity); the minimum condition that defings implies
G, by virtue of the covariance of. SA 5 Epixc 58

The projected functionaG represents a much better — = h;; + — T — — udjj

conditioned choice than the original free energjor the ofji ofji ofji
evolution of the orbitals towards the ground state. The b+ /’ dr 0Euxc on(r) TIs' (6] — o,
reasons are several, albeit related. (i) The functianal Y dn(r) &fji i KO
no longer depends on the occupancies of the orbitals or on ~ TS — i =0 @)
their unitary transformations (“rotations”) in the occupied i MO ‘
subspace. These are ill-conditioned, nonlocal degrees dthe constraint of charge conservatietnf = N is en-
freedom, with the added nonlinear constraint of chargdorced via the Lagrange multiplier, and the notation
normalization. (i) Thef;; have become dependent vari- [s'(f)];; is used in place ofl tr s(f)/df;;. The stationar-
ables, implicitly defined by the minimization in Eqg. (3), ity condition in (4) implies thatf;; and the Hamiltonian
and this dependency does not enter into the calculationij + Vi[f] are diagonalized by the same unitary rotation,
of the functional derivatiye§G/5¢f, since the contribu-  at fixed orbitals, and thus represent “commuting” opera-
tions (0G/dfu) (3 fu/dy;) are zero because of the mini- tors; the non-self-consistent Liouville equatipfi, #] =

mum condition. (iii) The occupancies of the orbitals andy s satisfied. The relation (4) does not mean that
their internal rotations are now consistently considered aﬁij n Vi[]n] and f; are diagonal, but that there is a com-

part of the same problem (finding the ground st /o transformation that diagonalizes both; the formalism
and not as two independent problems. (iv) The expen nqt inked to a preferred diagonal representation.

sive and inefficient evolution for the orbital rotations is The inner loop for the update of the occupation matrix
now shifted to the matriX; this implies that the associ- f,; is carried out at fixed orbitals, and so it does not

ated slow frequencies [10] have now been removed (coMyaqyire the calculation of new matrix elements for the

pressed to zero) by the minimization condition. Subspacginetic energy operator or the nonlocal pseudopotential,
alignment [11,12] between subsequent orbital updates ignq there are no orthogonalizations involved. The Fourier

automatically enforced. _ transforms of the(y;} can also be eliminated by storing
This formulation naturally decouples the evolution of e real-space representation. Note that if the problem
the orbitals{y;} from that of thef;;: the orbitals get \ere not self-consistent, the solution for the equilibrium
updated as an outer loop minimiz€s and after each (. \ould be found by straightforwardly diagonalizing
update an inner loop on th¢; minimizes A at fixed  ine Hamiltonian matrix, calculating from its eigenvalues
orbitals {;}. The minimization of G is then freed ihe thermal distribution of the occupation numbers, and

from all constraints but the orthonormality of tHé}.  (otating these back into the current orbital representation.
By contrast, conventional methods adopt a diagonafps is not the solution, but we use it as a search direction

representation fod’ (the occupation numberg;), and ¢4 5 direct line minimization in the multidimensional
add orbitals rotations and updates of tfie [5,10,13],  gpace of thef;;. The procedure is organized as follows.
or diagonalizations of an updated Hamiltonian [12], inThe matrixs;; is determined once for all before entering

order to reach the ground state. Such approaches haygs inner loop. The updated charge density (oniie
several drawbacks. The rotations (or diagonalizationS}eration in the inner loop) is

are not guaranteed to lower the free energy, unless

additional constraints are imposed [5], and do not take (m) () — (m) ) )

into account the rotation dependencendf) (directly, or nr) ,-ij’l Vi (£)4(e). ®)
indirectly via the changes it induces in the self-consistent (m) .
Hamiltonian). The dynamics of rotation introduces poorlyExxc and Vixc(r) are then calculated, and the matrix
conditioned slow frequencies in the evolution of therepresentatiorV,-(;") is constructed. The entropy™ is
orbitals [10]. Also, the{y;} are made inequivalent by also computed, following a diagonalization ff
association with different;, thus precluding the subspace

alignment [11,12] between successive orbital updates and f,-(}") =y Yy ’)Jrf,('")Y,(,'-"). (6)
interfering with a meaningful minimization algorithm. 1

o [n]

= hy + Vi’
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In a plane-wave approach the charge density (5) igero introduce, the convergence is slower than for sys-
calculated more efficiently in this representation in whichtems with a gap. Thus, we resort to a preconditioning

the f;; are diagonal, since a temporary rotation of thestrategy: We choose a set of scaled variables in which
orbitals can then be performed on their more compacthe functional has a more compressed spectrum, and the
reciprocal-space representation. The Hamiltonian matrisearch directions are calculated in this new metric. In the

is updated with the new local terms, and diagonalized: diagonal representation, the total energy around the mini-
mum is a quadratic fornY, , fi€;ci, (ci, is the expan-

H = h;; + Vl, ZZ(m” (m)Zz(;n)- (7)  sion coefficient ofy; in the nth element of the basis set);
) if we take the gradients according to the scaled variables
The non-self-consistent minimum férwould be ¢ = /ficin, the (unconstrained) preconditioned gradi-
(m) Zzzz fT(Gz B M)Zz(}"), ®) ents for the original variables become [15]
_8G 138G, 9
where fr is the (Ferm|-D|rac) thermal distribution. We Sy fi o vi- ©)

choose this as our search direction in fiespace, and a ity some degree of overcorrection [16], these can also

full line m'”'m'z?,ﬁ'f{‘ is performed along the multidimen- o 5o to construct conjugate directions. A generaliza-
sional segmentg' ' = £ + BAf!™, whereAf"™ = {jon to our case is obtained by calculating the gradients
fm — £0m Note that@ parametrizes amnconstrained of G, passing them into the diagonal representation where
search, since tfs = N at the end points and thus, by lin- they can be preconditioned as in (9), and transforming
earity, at all3. Since the search direction is determinedthem back in the initial representation. The gradiegts

by the eigenvalues and eigenvectorsihf and not from — are

the occupation numbers, this current formalism can also 5G A A
be applied when generalized entropic functionals or non-g; = — soF Zf,-ilej>; gl = —fLH|Y)),
monotonic thermal distributions are introduced [8]. i J

The minimization proceeds by calculating the free (10)
energy and its derivative along the search line at the twavhere the primed term refers to the diagonal representa-
end pointsg = 0 and g = 1, taking into account the tion (f' = f/;5,; = UfUT). The preconditioned gradients
self-consistent variations in the charge densityd thus G! andG; are thus
in the Kohn-Sham Hamiltonian. The line derivativedis

. (m) . .
is>,; Afji (8A/8f;i), where G = —H|y!) = —H(Z U;‘mw/m)), (11)
0A (m) (mt g1 <m> (m) "
hl + i T Y 5 * A
5fji £=0 |: J V] Z G, = Z Uin-l-G;z = _Hllr//l> (12)

A'(B = 0) is always smaller thaf, and so the iterative
update off takes place in a strictly variational fashion.
We then calculate the charge densnt(y'>(r) the matrix

eIementsV,, , and the free energy& corresponding to
B = 1, together with the line derivativa’(8 = 1) via

Such preconditione@s; greatly improve the convergence
rate, and are much cheaper to compute thangthén

Eqg. (10). A standard kinetic-energy preconditioning [2]
should also be used in plane-wave calculations. In sum-
mary, on each iteration (i) each preconditioned gradient

SA ~(m) )t (m) (m) —H|y;) is calculated, conjugated with the previous search
5/ hij + Vi TZZ s'( : direction, and projected out of the subspace spanned
Jtlg=1 by the orbitals to impose orthonormality (to first order)

Since thel” andV,,, contributions are exactly linear along along the search; (i) the first derivative of the free energy
the search direction, and the Hartree energy is quadratiglong the multidimensional (all bands, all plane waves,
while the remainingkC and entropic terms are very well and allk points) line is calculated, and a trial step along
behaved, a cubic or a parabolic interpolation locates th#éhe search line is taken; and (iii) after reorthogonalizing
optimal 8 with very good accuracy. More importantly, the orbitals, the new free energy provides the third con-
the choice of a direct minimization fdf along a linear straint to identify the minimum along the search line.
search implies thalevel-crossing instabilities are com-  The complete algorithm provides a remarkably robust
pletely eliminatedeven in the limit of zero temperature. and efficient convergence, and, at variance with iterative
In practice, we find that two iterations in the inner loop methods [3], it is formulated in a strictly variational
are an optimal choice [14], since we ultimately need selffashion, where the free energy is bound to converge
consistency also with thigl;}. towards the ground state after every iteration. As a
In the outer loopG can be minimized efficiently with paradigmatic case we present here results for a unit cell
a direct all-bands conjugate gradient method. Howeverthat is 32 A long, and contains a 15 IayEr>< 1 Al(110)
due to the broader spectrum that occupancies approachistab. We use the singlk pomt (4 4) a fictitious
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dynamics simulations. We show in Fig. 2 the results of a
i run for our Al(110) slab. The time step is 2 fs; the ions
] are moved after a fixed tolerance in the convergence of
1 the free energy is reached (identical results are obtained
1 if a fixed number of iterations is used). The systematic
1 drift of the constant of motion stabilizes after0.3 ps
1 of thermalization to —0.6 (eV/cell)/ps for the ABV
150 200 250 case, and to—0.0008 (eV/cell)/ps for ensemble DFT.
Such stability opens the way to inexpensive molecular
dynamics simulation of large metallic systems even on
-0.6 ] common workstations [14].
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