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First-principles modeling of ferroelectric capacitors presents several technical challenges due to the coex-
istence of metallic electrodes, long-range electrostatic forces, and short-range interface chemistry. Here we
show how these aspects can be efficiently and accurately rationalized by using a finite-field density-functional
theory formalism in which the fundamental electrical variable is the displacement field D. By performing
calculations on model Pt /BaTiO3 /Pt and Au /BaZrO3 /Au capacitors we demonstrate how the interface-specific
and bulk-specific properties can be identified and rigorously separated. Then, we show how the electrical
properties of capacitors of arbitrary thickness and geometry �symmetric or asymmetric� can be readily recon-
structed by using such information. Finally, we show how useful observables such as polarization and dielec-
tric, piezoelectric, and electrostrictive coefficients are easily evaluated as a byproduct of the above procedure.
We apply this methodology to elucidate the relationship between chemical bonding, Schottky barriers and
ferroelectric polarization at simple-metal/oxide interfaces. We find that BO2-electrode interfaces behave analo-
gously to a layer of linear dielectric put in series with a bulklike perovskite film while a significant nonlinear
effect occurs at AO-electrode interfaces.
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I. INTRODUCTION

Capacitors based on ferroelectric perovskites hold prom-
ise for substantial advances in nanoelectronics with potential
applications in nonvolatile random-access memories and
high-permittivity gate dielectrics.1 Thinner devices, which
are mandatory for optimal efficiency and speed, are strongly
influenced by the electrical and mechanical boundary condi-
tions imposed by the interface.2 While there has been signifi-
cant progress in the understanding of strain effects,3 the elec-
trostatics of metal-ferroelectric interfaces still remains a
challenge and is widely recognized as a central issue in the
scaling of ferroelectric devices.

Interface electrostatics is generally modeled within
Landau-Ginzburg theories, by a hypothetical thin layer of
standard dielectric �dead layer� interposed between an ideal
electrode and the active, bulklike ferroelectric film. The di-
electric dead layer is arranged in series with the film and
therefore the small interfacial capacitance associated with it
tends to suppress the polarization of the film via a depolar-
izing field.4 It was postulated a long time ago5 that even in
the absence of an extrinsic interfacial layer, a small interfa-
cial capacitance can originate from the finite penetration
length of the electric field in a real electrode. The imperfect-
screening model and the dead-layer model are mathemati-
cally equivalent and lead to the same consequences, regard-
less of the microscopic nature of the effect.6

Owing to the complex structure and chemistry of a real-
istic interface, however, it is difficult to infer the magnitude
of this interfacial capacitance based on macroscopic consid-
erations. Moreover, the usual assumption that the capacitance
�or equivalently, the effective screening length� is constant as
a function of the ferroelectric displacement might not be jus-
tified in some cases. For example, it was shown very recently
by means of first-principles calculations that chemical bond-

ing across the junction profoundly influences the ferroelec-
tric properties of the device.7 This is likely to introduce non-
linearities in the electrical response of the interface that are
neglected within most phenomenological approaches. In or-
der to achieve a quantitative model of the electrode/
ferroelectric interface there is therefore the clear need for a
theory that complements Landau free-energy expansions
with a microscopically reliable description of local chemistry
and electrostatics.

A strategy for modeling the ferroelectric behavior of sym-
metric and asymmetric capacitors that combines Landau
theory with first-principles calculations was recently pro-
posed by Gerra et al.8 Their strategy has the advantage of
exploiting the power of the ab initio approach to gain
quantitative insight into the coefficients that describe the
behavior of the interface. In particular, the interface enters
the free energy through two distinct quadratic terms, a depo-
larizing effect which provides a uniform electric field and is
the main contribution, and a short-range chemical bonding
effect which provides a much smaller correction. These co-
efficients are then input into a standard Landau free-energy
expansion and used to predict the behavior of devices of
macroscopic thicknesses, which are not directly tractable
from first principles. This model was shown to describe the
SrRuO3 /BaTiO3 /SrRuO3 system quite accurately. The re-
sults were consistent with the seminal work of Junquera and
Ghosez,9 who demonstrated how the main impact of the
electrodes is embodied in the depolarizing field in an other-
wise bulklike BaTiO3 �BTO� film.

Some authors, however, have questioned the generality of
such an assumption, postulating that in some cases the elec-
trodes can have a much more profound impact on the ferro-
electric film. The authors of Ref. 10, for example, claimed
that SrRuO3 electrodes can destroy the polar soft mode of
ferroelectric KNbO3 films, producing a head-to-head domain
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wall a few unit cells from the interface. Furthermore, in Ref.
11, Pt electrodes were found to induce a “ferrielectric” dipole
pattern in the whole volume of a BaTiO3 film. Such effects,
which are nonlocal in nature, cannot be described by the
simple models of Refs. 8 and 9. To account for �and clarify
the nature of� these “exceptions,” it would be very desirable
to have a rigorous methodological framework that treats the
electrical properties of a given capacitor heterostructure fully
from first principles without any a priori assumptions.

Such a methodological framework was recently devel-
oped for the case of purely insulating perovskite superlat-
tices. By performing the calculations at a fixed value of the
electric-displacement field D, Wu et al.12 were able to sepa-
rate the long-range electrostatic interactions between layers
from the short-ranged compositional dependence. Based on
this separation, the electrical properties of a given layer were
shown to depend on the chemical nature of a small number
of first and second neighbors only. This allowed for a first-
principles description of dielectric, ferroelectric, and piezo-
electric properties of arbitrary superlattice sequences in
terms of very few parameters, appropriately arranged in the
form of a cluster expansion.

It is the main scope of this work to extend these ideas to
the case of ferroelectric films with metallic electrodes. Such
an extension is now possible as there are well-established
methods for treating polarization and electric fields in metal/
insulator heterostructures, and these can readily be combined
with recently developed approaches for treating the electric
displacement field D as the controlled electric variable.7,12,13

Using an extensive analysis of several Pt /BaTiO3 /Pt and
Au /BaZrO3 /Au capacitor heterostructures to illustrate the
power of this approach, we show that a film-electrode inter-
face behaves analogously to an insulator-insulator interface
in a ferroelectric superlattice �assuming that there is no
Schottky breakdown� in that the same “locality principle”12

holds. This means that the film is in a bulklike state except
for the two or three oxide monolayers which lie closest to the
boundary. Moreover, all the complexity of interfacial chemi-
cal bonding and electrostatics can be incorporated in a single
energy contribution, which we define as the interface electric
equation of state. Taking advantage of the constrained-D
technique, we further show how to extract in practice �from
calculations of compositionally symmetric capacitors� such
an interface equation of state and represent it in terms of a
potential drop which is in general a nonlinear function of the
electric displacement field. Then, we use this information,
together with the bulk equation of state of the ferroelectric,
to predict, with full first-principles accuracy, the electrical
properties of capacitors of arbitrary thickness and geometry
�symmetric or asymmetric�. Finally, we show how useful ob-
servables such as polarization and dielectric, piezoelectric,
and electrostrictive coefficients are easily evaluated as a
byproduct of the above procedure.

Our results demonstrate the validity of D as a fundamen-
tal electrical variable to study ferroelectric capacitors within
an imperfect screening regime. �The appropriateness of such
an approach was recently questioned although in a slightly
different context, in Ref. 14.� From the practical point of
view, our detailed study of Au /BaZrO3 /Au capacitors also
yields important insight into the similarities and dissimilari-

ties of AO-terminated versus BO2-terminated perovskite
films in contact with simple-metal electrodes. On the one
hand, the relatively high interfacial capacitances we obtain
for both interface types corroborate the ideas of Ref. 7,
where weak interface bonding was found to be favorable for
the overall dielectric �or ferroelectric� response of the device.
On the other hand, at the BaO-Au interface we find signifi-
cant nonlinear effects, which do not fit into a “constant in-
terfacial capacitance” model. We correlate these effects with
the formation and breaking of the interfacial Au-O bonds
upon polarization reversal. �This same mechanism was al-
ready found to strongly influence the ferroelectric instability
in Ref. 7.�

The manuscript is structured as follows. In Sec. II we
review the methodological background and present the de-
velopments which are specific to this work. In Sec. III we
discuss the structural and electronic properties of ferroelec-
tric Pt /BaTiO3 /Pt capacitors, which we then use to model
their dielectric and piezoelectric properties as a function of
thickness and applied bias. In Sec. IV we focus on the
Au /BaZrO3 /Au model system. First we compare the electri-
cal properties of the Au-BaO and the Au-ZrO2 interface
structures then we show how to reconstruct the behavior of
asymmetric capacitor configurations starting from the inter-
facial and bulk equations of state. Finally, in Secs. V and VI
we discuss our results in light of the existing literature and
present our conclusions.

II. METHODS

A. Polarization

1. Bulk insulators

We shall consider superlattices and capacitor structures
stacked along ẑ so that we are interested in polarizations and
fields only along this direction. We start with the case of a
bulk insulator, either a single bulk unit cell or a supercell
representing an insulating superlattice but with a formulation
chosen for convenient later generalization to the case of a
capacitor structure.

We thus consider a periodic insulator described by three
real-space lattice vectors Ri, where for simplicity of notation
we impose that R3= �0,0 ,c� is perpendicular to R1,2 �the
latter two lie therefore in the xy plane�; the corresponding
reciprocal-space vectors are G1,2,3. We choose a discrete
k-point sampling of the form k= jb� +k�, where the vector
b� =G3 /N� spans a regular one-dimensional �1D� mesh of
dimension N�, and k� belongs to a set of N� special points in
the perpendicular plane. The electronic ground state is de-
fined by a set of one-particle Bloch orbitals, unk; our goal
now is to define the polarization along G3.

To that end, we first seek a localized representation of the
electronic wave functions along the direction G3 for each
given k�. We do this by constructing a set of maximally
localized “hermaphrodite” orbitals wnk�

�r� that are Wannier-
type along z while remaining Bloch-type in the xy plane15,16

using a parallel-transport procedure.17 The center znk�
of

wnk�
is then defined as18
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znk�
= �wnk�

�ẑ�wnk�
� =� �wnk�

�r��2zdr3 �1�

and the contribution of k� to the polarization is

P�k�� =
1

��− 2e	
n

znk�
+ 	

�

Q�z�
 , �2�

where z� and Q� are the ionic coordinate and bare pseudo-
potential charge, respectively, of the atom �; the factor of
two refers to spin-paired orbitals. The total polarization P is
then obtained by integrating k� over its two-dimensional
�2D� Brillouin zone while making sure that the branch choice
of P�k�� is continuous in k�. This integration is performed
by using the special-point technique with a discrete set of k�

and associated weights w̄k�

P = 	
N�

w̄k�
P�k�� .

Note that the integration along the polarization direction is
implicit in the construction of the Wannier functions; there-
fore, only a 2D integration of P�k�� is needed. Note also that
we included the ionic contribution in the definition of P�k��.
This might look surprising at first sight as the ionic charges
and positions are independent of k�. Indeed, it would have
been perfectly equivalent if we integrated the electronic con-
tribution first and only in the end added the ionic part. How-
ever, the electronic-only part is not a well-defined physical
quantity as it is not charge neutral and therefore origin de-
pendent. For this reason, we preferred the present formula-
tion, which yields identical results while providing a function
P�k�� that is origin independent.

Our Wannier-based definition of P, Eq. �2�, lends itself
naturally to a local decomposition in terms of the dipolar
contribution of individual oxide layers as proposed in Refs.
12 and 19. In particular, given that in typical perovskite in-
sulators the centers znk�

cluster themselves around the oxide
layers they formally “belong” to, one can define the layer
polarization �LP� of the jth layer as

pj�k�� =
e

S�− 2	
n�j

znk�
+ 	

��j

Q�Z�
 . �3�

In the above equation the sums are restricted to atoms � and
Wannier centers i that are “in” the layer j, and S is the cell
surface area; again, the overall pj is calculated by performing
a 2D Brillouin-zone average. pj is well defined as long as �i�
the oxide layers are charge-neutral and �ii� the assignment of
a specific atom or wave function to a given layer is clear cut
and unambiguous. Both conditions are satisfied in typical
II-IV perovskite ferroelectrics such as PbTiO3 and BaTiO3.

2. Capacitor superlattices

Ideally one would like to study a capacitor in the form of
a number of layers of insulator sandwiched between semi-
infinite metallic contacts. However, we adopt here the stan-
dard approach of constructing supercells consisting of alter-
nating insulating and metallic regions stacked along z, just as
is normally done when studying ferroelectric superlattices.

We adopt the same notations and conventions as in Sec. III A
with c being the superlattice repeat distance along z. We set
N� =1 �and henceforth write k�=k�; this is by no means a
limitation since we are only interested in capacitors that are
thick enough so that tunneling is insignificant, in which case
the one-particle bands will have negligible dispersion along
the z direction. We further require a rectifying �rather than
Ohmic� contact at the oxide/electrode interface. This means
that both the valence-band maximum �VBM� and
conduction-band minimum �CBM� of the film are located far
enough in energy from the Fermi level that they are not
appreciably populated/depleted by the tails of the smearing
function �e.g., Fermi-Dirac, Gaussian, etc.�.

Because the capacitor superlattice is metallic, one might
wonder whether it is possible to define a polarization P.
However, the superlattice is only metallic in the x and y
directions, whereas we are interested only in computing P
along z, and only in applying fields along z. The methodol-
ogy for computing P in such cases was developed in Ref. 20.
The electronic states are classified into three energy win-
dows: �i� the completely empty states �upper window� are
discarded from the computation since they do not contribute
to P or to other ground-state properties. �ii� The partially
occupied states �middle window� lying in the range W
= �EF−� ,Ef+�� around the Fermi level Ef are considered as
conduction states. Since these states fall in the energy gap of
the dielectric film, they are confined to the metallic slab and
the dipole moment of their overall charge distribution is thus
well defined. To make sure that this conduction charge dis-
tribution decays fast enough in the insulating film, it is useful
to define its planar average

�cond�z� =
1

S
	

�nk�W
wkfnk� dxdy��nk�r��2, �4�

where �nk and fnk are the eigenvalue and occupancy of the
state, wk is the k-point weight, and S is the cell cross-
sectional area. �iii� The lower states, which are all fully oc-
cupied are transformed to yield a set of hybrid Wannier func-
tions wkn that are maximally localized along z while
remaining extended �and labeled by k=k�� in the x and y
directions. The contribution of each Wannier function to P is
then defined through the center of the corresponding charge
distribution �kn�x�= �wkn�x��2.

The center of charge of �cond�z� �middle window� is com-
puted by integrating against a linear sawtooth function
whose discontinuity is placed in the middle of the insulating
region. Similarly, the center of each Wannier charge �lower
window� is computed from its �kn using a sawtooth function
whose discontinuity is chosen far away from its center. For
the systems considered in this work, the �kn are typically
very well localized and the main source of error comes from
the slower decay length of �c in the insulator. This means
that in very thin capacitors �few oxide layers� the polariza-
tion becomes ill defined; rather than a defect of the algo-
rithm, this is a signature that the system becomes metallic
and the polarization cannot be defined.

Note that there is an inherent arbitrariness in the separa-
tion of the total charge density into lower and middle win-
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dows �i.e., in the choice of the parameter � above�. This
arbitrariness indeed affects both �cond and those �kn which lie
closest to the electrode; the total value of P, however, is not
affected by this choice and is therefore well defined. Far
enough from the electrode, the �kn themselves are unaffected
by this choice and can therefore be used to construct mean-
ingful layer polarizations analogously to the case of an insu-
lating superlattice. This point will be demonstrated in prac-
tice in the applications sections.

We are generally concerned with capacitor structures in
which a finite bias is applied across the capacitor. In our
approach, this is treated by applying a finite macroscopic
electric field E along the z direction of the superlattice and
identifying Ec as the bias applied between successive metal-
lic segments. The formulation above applies equally well to
this case, where it is understood that the electric field couples
to �cond �middle window� and to all the Wannier charges
�lower window�. Note that the presence of a finite macro-
scopic field implies that there are effectively an infinite num-
ber of regularly spaced Fermi levels, one for each repeated
image of the metallic slab along the field direction. The
“transition” between two adjacent Fermi levels takes place
deep in the insulating slab, where the system is locally insu-
lating and a shift in Ef within the gap does not produce any
physical consequence.

B. Constrained-D method

1. General theory

We summarize here the details of the constrained
displacement-field method that are most relevant for this
work �see Ref. 13 for the full derivation�. For consistency
with the previous sections, we restrict our analysis to the
case of a monoclinic system with the polarization axis, z,
parallel to the heterostructure stacking direction and perpen-
dicular to the xy plane; we shall further assume that R1,2 are
fixed and only c �together with the ionic and electronic co-
ordinates, v�� is allowed to vary. Within these assumptions,
the constrained-D method13 reduces to a simpler formulation,
where only the z components of the macroscopic fields D, P,
and E are explicitly treated. Thus, we define the internal
energy functional

U�D,v�,c� = EKS�v�,c� +
Sc

8�
�D − 4�P�v�,c��2, �5�

which depends directly on the external parameter D, and
indirectly on the internal �v�� and strain �c� variables
through the Kohn-Sham total energy EKS and the macro-
scopic polarization P; S= �R1	R2� is the constant cell cross
section. We then proceed to minimize the functional with
respect to v and c at fixed D

U�D� = min
v�,c

U�D,v�,c� , �6�

which yields the equilibrium state of the system as a function
of the electric displacement D.

D can also be expressed in terms of the reduced variable
d=SD /4�, which has the dimension of a charge and can be
interpreted as d=−Qfree, where Qfree is the free charge per

surface unit cell stored at a hypothetical electrode located at
z=+
.21 Since the surface areas of the parallel plate capaci-
tors considered in this study are not allowed to vary, con-
straining D or d is completely equivalent. However, for rea-
sons of convenience, we shall adopt d as our electrical
variable in the remainder of this work.

This method is equally valid for bulk insulators, insulat-
ing superlattices, and capacitor superlattices, once the polar-
ization is defined as explained in Sec. II A. For the capacitor
case, our adoption of the definitions of Sec. II A 2 implies
that the metallic electrode layer is treated as an infinitely
polarizable dielectric and the free charges on its surfaces are
reinterpreted as polarization charges coming from the metal.
While such a choice may seem unnatural from the point of
view of textbook electrostatics, it is in fact the most natural
one in the context of first-principles electronic-structure cal-
culations, where it is not easy to draw a distinction between
free and bound charges. For example, the metal-insulator in-
terface is typically rather diffuse with the conduction states
of the metal mixing strongly with the states of the insulator
across several interatomic spacings so that a spatial distinc-
tion is not meaningful and we have seen in Sec. II A 2 that a
distinction based on energy windows is also arbitrary to
some degree.

The reduced electric field �̄=Ec, which is minus the po-
tential step across the supercell, �̄=−V, is related to the in-
ternal energy by

�̄�d� =
dU�d�

dd
. �7�

This corresponds to the fundamental relationship

U�D2� − U�D1� =
�

4�
�

D1

D2

E�D�dD �8�

of classical electrostatics but expressed in differential form
using the reduced variables appropriate to the variable-cell
case. The connection to classical electrostatics can be made
even more apparent by recalling the relationship between the
reduced variables and free charges and potentials

U�D2� − U�D1� = �
d1

d2

�̄�d�dd = �
Q1

Q2

V�Q�dQ . �9�

Having established the functional relationships between
the active degrees of freedom �both electrical and structural�,
it is relatively easy now to extract from a calculation all
functional properties of a material or device that involve a
coupling between them. For example, the proper piezoelec-
tric strain constant can be readily obtained as

d33 =
dc

d�̄
=

dc

dd
�d�̄

dd

−1

. �10�

Note that in the above equation d�̄ /dd has the dimension of
an inverse capacitance and is related to the free-stress dielec-
tric constant of the crystal; with the notation of Ref. 22 we
have
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�33
��� =

4�c

S
�d�̄

dd

−1

. �11�

2. Practical procedure

We typically span the range of relevant polarization states
by repeating the structural and electronic relaxations for a
number �five to ten� of equally spaced d values, d
=d1 ,d2 , . . . ,dn. For each di, we tabulate the energy Ui, �cell-
averaged� electric field Ei and equilibrium out-of-plane lat-
tice constant ci; we use the latter two to compute the reduced
field �̄i=Eici.

In order to obtain �̄i with sufficient accuracy it is impor-
tant to perform well-converged structural relaxations by im-
posing sufficiently stringent thresholds on residual forces and
stresses. A useful indicator of the overall numerical quality
of the calculations is the fundamental relationship Eq. �7�,
which, in principle, should be exactly satisfied. To check the
validity of Eq. �7� we first perform a polynomial fit to the
calculated ��̄i ,di� points. This yields a continuous function,
�̄�d� that we integrate analytically to obtain U�d� modulo a
constant; we choose this constant as the one that best
matches the first-principles internal energies �Ui ,di�. Any re-
sidual discrepancy between Ui and U�di� points to a numeri-
cal issue that must be addressed before proceeding further in
the analysis. Usually the most important source of error con-
cerns the relaxation of the cell volume and shape; we shall
discuss this issue further in Sec. II E. For convenience, we
also perform a polynomial fit to the �ci ,di� points, which
yields a continuous curve c�d� that is relevant for the piezo-
electric response of the crystal as stated in Sec. IV B.

C. Locality principle and spatial decomposition

According to classical electrostatics, in the absence of
free charge the normal component of the electric displace-
ment field is preserved at a planar interface between two
insulators

�D2 − D1� · n̂ = 0. �12�

This means that for an insulating superlattice in electrostatic
equilibrium, D is the same in all participating layers, unlike
the electric field E and the polarization P, whose local values
generally vary from layer to layer �see Fig. 1�. Therefore,
using D �or d� as the fundamental electrical variable is ex-
tremely practical for modeling the behavior of ferroelectric
capacitors because it makes it possible to decompose the
equation of state of a layered structure into the sum of the
individual building blocks.

For example, we can write the internal energy as

U�d� = 	
i

Ui�d� , �13�

where Ui refers to the internal energy of an appropriately
defined subunit. For a capacitor with metallic electrodes, it is
natural to decompose the internal energy as

U�d� = ŪL + UL�d� + NUb�d� + UR�d� + ŪR, �14�

where N is the number of bulk cells comprising the insulat-
ing film and Ub is its bulk internal energy per cell, UL�d� and

UR�d� are the left �L� and right �R� interface internal ener-

gies, and ŪL and ŪR are the internal energies of the left and

right metallic electrodes. �In our capacitor supercells, ŪL and

ŪR are combined into NmetalUmetal, where Nmetal is the num-
ber of cells of bulk metal and Umetal is its internal energy per
cell, which is independent of d as appropriate for a metal.�
Taking the derivative of Eq. �14� according to Eq. �7� yields

�̄�d� = �̄L�d� + N�̄b�d� + �̄R�d� , �15�

where �̄bulk is the potential drop across a unit cell of the bulk
insulator at a given value of d and �̄L,R=dUL,R /dd contains
the interface-specific information.

The potentials and the energies contain the same informa-
tion, apart from a constant of integration, and one can choose
to work with one or the other as a matter of practical conve-
nience. Indeed, when analyzing the electrical properties of a
capacitor, one is generally interested in energy differences
between two different electrical states rather than in the total
energy of the device. Therefore, the constant of integration
that gets lost in going from Eq. �14� to Eq. �15� is not im-
portant for the scope of our discussion. Thus, we shall as-
sume henceforth that U�0�=0, which also implies that the

constant energies ŪL,R in Eq. �14� have been set to zero.

D. Decomposition of the interface contribution

1. Partial decomposition

Since U�d� and �̄�d� in Eqs. �14� and �15� can be obtained
from supercell calculations while Ub�d� and �̄b�d� can be
obtained from bulk insulator calculations, it is straightfor-
ward to extract the quantities

Uint�d� = UL�d� + UR�d� �16�

and

�̄int�d� = �̄L�d� + �̄R�d� �17�

representing the total impact of both electrodes on the elec-
trical equation of state of the capacitor. Explicitly, we take

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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FIG. 1. �Color online� Sketch showing conservation of longitu-
dinal component of displacement field D but not electric field E or
polarization P, in an insulating superlattice composed of three di-
electric constituents A, B, and C.

FIRST-PRINCIPLES MODELING OF FERROELECTRIC… PHYSICAL REVIEW B 80, 224110 �2009�

224110-5



�̄int�d� = �̄N�d� − N�̄b�d� . �18�

Often, this is all that is needed, e.g., for modeling the polar-
ization and dielectric response of a given device as a function
of the oxide film thickness �we shall demonstrate this in our
first application to Pt /BaTiO3 /Pt capacitors�. The number N
of cells of insulating material should be kept small enough to
avoid an undue computational burden while remaining large
enough to decouple the two electrode interfaces so that the
center of the oxide slab should behave like the bulk material
within the same mechanical �in-plane strain� and electrical
�d� boundary conditions.

2. Full decomposition

There are, however, situations in which it may be valuable
to obtain the individual terms in Eq. �17�, i.e., to define the
individual interfacial potential steps �̄L and �̄R which occur
at the left and right electrode interfaces, respectively. How-
ever, instead of using quantities defined as offsets of the
average electrostatic potential across the interface, we find it
more physical to use variables L and R that are the offsets
of the metal Fermi levels Ef�L� and Ef�R� relative to the
VBM just inside the insulator as illustrated in Fig. 2. With
this choice, L and R are just the p-type Schottky barrier
heights �SBH� at the metal/insulator interface. �It would be
equally viable to adopt the CBM as the reference, corre-
sponding to n-type Schottky barriers, but we do not do so
here.� As long as both electrodes are made from the same
material,23 the total potential step is just �̄=Ef�R�−Ef�L�.
This difference can be decomposed by following the hypo-
thetical path in Fig. 2 of an electron traveling from the left
electrode through the insulator and into the right electrode
and we obtain

�̄ = − L + N�̄b + R. �19�

In the remainder of this section, we make some of the
above definitions more precise and discuss how in practice to
extract accurate values of the SBH at a polarized metal/
insulator interface. The main issue here is that, whenever �̄b
is nonzero, the SBH is somewhat ill defined because the
VBM does not have a well-defined asymptotic value deep in
the oxide. �Instead, it varies linearly with depth, with a slope
corresponding to the internal electric field Eb�. In the next
few paragraphs, we propose a procedure that provides a
reasonable yet sharp definition of L and R even when
Eb�0.

For the moment we assume an interface configuration
with the semi-infinite electrode at right and the film at left.
The situation is sketched in Fig. 3, which also illustrates the
following discussion. We first compute the planar average of
the local electrostatic potential, VH�r�, further convoluted
with a Gaussian filter of width � to suppress the short-range
oscillations

V̄�d,z� =
1

���S
� VH�d,r��e−�z − z��2/�2

d3r�. �20�

Next, we identify two z coordinates on either side of the
interface, zF in the film and zM in the metal. Both zF and zM
must be located far enough from the interface that the short-
range structural distortions related to interface bonding have
already relaxed back to the regular bulklike spacings of the
respective material �oxide film or metal electrode�. As a fur-
ther requirement, we impose that the interface-related pertur-

bations in the local electrostatic potential V̄�z� �schematically
indicated in the figure by the strong oscillations near the
metal/film boundary� are also negligible in the neighborhood

of both zF and zM. This implies that V̄�d ,z� is a linear func-
tion near zF with a finite slope given by the bulk internal field

Ebulk�d�, and V̄�d ,z� is a constant near zM. We generally find
that three perovskite unit cells on the film side and five
monolayers on the electrode side are sufficient for both re-

quirements �on the structure and V̄�z�� to be satisfied accu-
rately. We therefore set zF as the z coordinate of the fourth
B-site cation in the film �numbering as 1 the B cation which
lies adjacent to the interface� and zM as the z coordinate of
the sixth metallic layer in the electrode.

Now, using these two reference points in the lattice, we

extract V̄�d ,zM� and V̄�d ,zF�, which are indicated in the fig-

ure as black circles. On the film side, we use V̄�d ,zF� to
estimate the VBM at the interface

(L)fE
(R)fE

Rφ
φ L

N

εbulk

Conduction band

Valence band

FIG. 2. Schematic model of the decomposition of the potential
into bulk and interface contributions. An electron traveling from the
L electrode to the R electrode experiences potential variations in
−L, N�̄bulk, and R; the total variation is �̄=Ef�R�−Ef�L�.
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FIG. 3. �Color online� Illustration of proposed procedure for
evaluating the p-type Schottky-barrier height  at a perovskite/
metal interface when a macroscopic field is present in the insulating
layer. Small light blue �light gray� circles correspond to B-site cat-
ions, large red �dark gray� circles to oxygens, and large gold �light
gray� circles to the metal electrode atoms.
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EVBM�d� = V̄�d,zF� + �VF�d� + 3�̄bulk�d� , �21�

where �VF�d� is the relative position of the VBM to the
average electrostatic potential in the bulk �techniques for cal-
culating this are detailed in Sec. V C�. On the metal side we
compute the Fermi energy as

Ef�d� = V̄�d,zM� + �VM , �22�

where �VM �independent of d� is again a bulk property, i.e.,
the relative position of the Fermi level to the average elec-
trostatic potential of the metal. Finally, we define the p-type
Schottky barrier as

�d� = Ef�d� − EVBM�d� . �23�

It is easy to verify that this definition reduces to the standard
technique for calculating Schottky barriers at metal/
semiconductor interfaces24 whenever the macroscopic field
in the oxide vanishes. Note that the above construction pro-
vides, as a byproduct, structural parameters that are relevant
for accessing the piezoelectric properties of the device. In
particular, starting from the same zF and zM, we define an
interfacial expansion

c�d� = �zM − zF� − Ncbulk�d� − 5�M , �24�

where �M is the bulk interlayer distance of the metal �see Fig.
3�.

Note that, while there is an intrinsic arbitrariness in the
definition of �d� and c�d� �several choices are possible for
zF�, the arbitrariness always cancels out in the final equation
of state of the entire capacitor because of the way these func-
tions are always summed up in pairs �a capacitor always has
two electrodes�. We also note that these functions, by con-
struction, transform properly under spatial inversion, so that
for a capacitor having a centrosymmetric reference structure,
we have R�d�=L�−d� and cR�d�=cL�−d�.

3. �VF and �VM

�VM can be calculated with high precision for the bulk
metal by extracting the Fermi level and the average electro-
static potential from the structural and electronic ground
state. To define �VF�d� we start from a constrained-D calcu-
lation of the bulk oxide. Since a macroscopic electric field is
generally present, the values of both the VBM and the aver-
age electrostatic potential are not directly obvious from the
eigenvalue spectrum �strictly speaking, the energy eigenval-
ues themselves are ill defined�. The effect of an electric field
is to induce a linear ramp in the electrostatic potential and a
corresponding linear “tilting” of the energy bands. For a
given value of the macroscopic electric displacement, the
VBM and the average electrostatic potential will therefore
have the same linear z dependence and the difference �VF
=VVBM�z�−VH�z� will be independent of z. In practice we
compute �VF by first relaxing the structural and electronic
degrees of freedom in the finite field, using the usual con-
vention that the electrons feel a periodic electrostatic poten-
tial having zero unit-cell average, plus a coupling to the field
through the Berry-phase polarization. �VF is then obtained
by diagonalizing the zero-field Hamiltonian operator in the

subspace spanned by the wave functions, which form the
“ground state” of the finite-field calculation and finding its
maximum over the wave vectors in the Brillouin zone.

Note that this procedure is to some extent arbitrary and it
is certainly possible to adopt alternative strategies. Whatever
choice is made, the only important requirement is to have a
well-defined reference energy in the insulating lattice as a
function of D; the arbitrariness in the specifics of this choice
cancel out anyway when we consider a complete capacitor
heterostructure.

E. Computational parameters

Our calculations are performed within the local-density
approximation of density-functional theory and the projector-
augmented-wave method25 as implemented in an “in-house”
code. We used a plane-wave basis cut-off energy of 40 Ry in
Sec. III and of 80 Ry in Sec. IV; the higher value in the latter
case is intended to minimize the Pulay error in the stress and
the numerical noise in the energies which are due to the
discrete nature of the basis set.26 In all cases we fix the
in-plane lattice parameter to a constant value and we enforce
a tetragonal P4mm symmetry constraint; the out-of-plane lat-
tice parameter, as well as the internal coordinates, are al-
lowed to relax fully. The Brillouin-zone integrations of the
capacitor heterostructures are performed with a 6	6
	1 mesh, where kz=0 and the grid is shifted in-plane ac-
cording to the Monkhorst-Pack27 prescription for two-
dimensional sampling; the Gaussian smearing energy is set
to 0.15 eV. In the bulk calculations we use a 6	6	6
Monkhorst-Pack mesh, which is sufficient to converge both
the structural and the dielectric response of the crystal to an
accuracy comparable to that of the capacitor calculations. To
relax the structure �both internal coordinates and the out-of-
plane strain� at each d value we use a steepest-descent ap-
proach, optimally preconditioned by inverting the force-
constant matrix and the elastic constant calculated in the
centrosymmetric d=0 configuration. Generally, five to ten
iterations were sufficient to relax the geometries to a strin-
gent convergence threshold for both forces �10−3 eV /Å� and
stresses �10 MPa�. �To ensure excellent accuracy of the cal-
culated energies and potentials, we further enforce a thresh-
old of 1% convergence in the internal electric field.�

Correcting for the Pulay error in the stress is crucial to
accurately model the strain-polarization coupling effects dis-
cussed in this work. We use a technique similar in spirit to
the prescription of Ref. 26. In particular, we define the cor-
rected stress �ij as

�ij = �ij
0 +

C�ij

�
, �25�

where �ij
0 is the calculated stress tensor �analytical derivative

at fixed number of plane waves�, � is the cell volume, and C
is a constant �dependent on the cell stoichiometry and plane-
wave cut off�. To evaluate C several techniques are possible.
A possible strategy is to fit the dependence of the total en-
ergy on the plane-wave cut off as discussed in Ref. 26. In our
calculations, we infer C by imposing �ij =0 in Eq. �25� for a
particular configuration of a given system that has been
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structurally relaxed using a different technique �e.g., a Mur-
naghan fit to the energy/volume curve�.

III. RESULTS: Pt ÕBaTiO3 ÕPt CAPACITORS

We start by analyzing the polar ground state at zero bias
of 7-, 5-, 3-, 2-, and 1-unit-cell-thick BaTiO3 films with
compositionally symmetric �the overall spatial symmetry is
broken upon ferroelectric off-centering� BaO terminations
and Pt electrodes. �N-unit-cell capacitors are actually “N
+1 /2” perovskite cells thick; e.g., N=1 means
Pt-BaO-TiO2-BaO-Pt.� The Pt electrodes are modeled by a
nine-layer Pt slab in periodic boundary conditions. We fix the
in-plane lattice constant28 to a0=7.276 a.u., the theoretical
equilibrium value for cubic SrTiO3 �STO�, and we allow the
out-of-plane lattice parameter of the tetragonal supercell, as
well as the internal coordinates, to relax fully. We shall start
by discussing our motivation for choosing this system. We
shall proceed then to present our results for the structural and
dielectric properties at zero bias. Finally, we shall use our
constrained-D techniques to study the electrical behavior of
the system as a function of bias and BTO thickness.

A. Motivation

Our goals in this section are threefold. First, we shall
introduce our methods for computing the macroscopic polar-
ization in short-circuited ferroelectric capacitors, separating
the different contributions that we discussed in Sec. II A 2.
Second, we shall analyze the structural and electrical prop-
erties as a function of the thickness of the short-circuited
film, identifying those aspects that are common to ferroelec-
tric single-crystal BaTiO3, and those that depart from the
bulk behavior. Third, we shall demonstrate with a quantita-
tive model that even these thickness-dependent perturbations
can be understood in terms of the bulk properties of BaTiO3,
once the interface contribution is properly taken into ac-
count. This analysis is primarily aimed at verifying in prac-
tice our locality principle, which allows us to separate the
equation of state of a capacitor into two interface contribu-
tions and a bulklike term. We shall show that, in the case of
Pt /BaTiO3 /Pt, this separation works with excellent accuracy
down to a thickness of only two BaTiO3 unit cells.

The choice of Pt and BaTiO3, and more specifically of the
BaO-terminated interface, is motivated by the recent
prediction7 of a chemical-bonding mechanism that enhances
the ferroelectricity of the film beyond the bulk BaTiO3 value.
Because of this effect, it was found that Pt /BaTiO3 /Pt ca-
pacitors remain ferroelectric down to a single unit cell of
BaTiO3, i.e., there is no critical thickness below which the
polar instability is suppressed. Given the practical interest in
overcoming the usually deleterious size effects in ferroelec-
tric devices, the Pt /BaTiO3 /Pt system is therefore an appeal-
ing test case for the present study. We warn the reader, how-
ever, that the above-mentioned features of the Pt /BaTiO3 /Pt
system are to some extent anomalous, i.e., they depart from
the usual understanding of depolarizing effects in thin-film
ferroelectrics. For this reason, the results presented in this
section should not be understood as an example of the most

typical ferroelectric capacitor. Instead, this application to
Pt /BaTiO3 /Pt illustrates how the general strategy developed
in this work �free from a priori assumptions� is particularly
effective at capturing the peculiar physics of a highly non-
standard case. The TiO2-terminated interface of BaTiO3 with
Pt would perhaps have provided a more “regular” example,
which, in principle, could have allowed us to trace a closer
link with earlier first-principles and phenomenological re-
sults. However, this system is inappropriate because it suffers
from the band-alignment issues mentioned in Ref. 4. In par-
ticular, we find that the TiO2-terminated BaTiO3 /Pt interface
has charge-spillage problems already when the capacitor is in
the paraelectric reference structure, thwarting attempts at de-
fining a polarization or even introducing an external bias
potential. In Sec. IV we consider a different ferroelectric/
electrode combination �BaZrO3 /Au� whose BO2-type inter-
face is free from band-alignment problems; in that case we
are able to compare two different interface types and discuss
the differences between a “standard” and a “nonstandard”
case.

B. Structural and dielectric properties at zero bias

Here we shall present our results starting from a compara-
tive analysis of the relaxed atomic positions in our short-
circuited Pt /BaTiO3 /Pt capacitors; then we shall gradually
introduce the ingredients that enter the definition of the po-
larization and its coupling to an external field.

1. Structural properties

We plot in Fig. 4 our calculated results for the layer rum-
plings of the relaxed capacitors at zero bias, defined as the
cation displacement relative to the oxygens in the same oxide
layer; in the same figure we report the calculated rumpling
values for bulk BaTiO3 as a comparison. The most striking
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FIG. 4. �Color online� Layer rumplings, defined as cation dis-
placements relative to oxygens, for oxide layers in relaxed short-
circuited Pt /BaTiO3 /Pt capacitors containing seven �circles�, five
�squares�, three �diamonds�, two �left triangles�, or one �up tri-
angles� perovskite unit cells. Odd and even layer numbers refer to
BaO and TiO2 layers, respectively, with Layer 1 being the BaO
layer that is chemically bonded to the Pt. Bulk values are shown for
comparison as filled symbols connected by dashed lines. The polar-
ization is along +ẑ.
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feature at all thicknesses is the strong bucking of layer 1,
which is the BaO layer directly in contact with the Pt surface
on the negatively polarized end of the films. �The BaO buck-
ling is also enhanced at the positively polarized end but the
effect there is significantly smaller.� Quite interestingly, the
rumplings of all the films are systematically larger than the
bulk values; furthermore, the enhancement in the structural
distortions becomes more important in thinner films. This is
unexpected as the depolarizing effect is known to suppress
polarization and symmetry-breaking distortions in the ultra-
thin limit. The mechanism leading to such an enhancement is
related to the interfacial chemical-bonding effect discussed
in Ref. 7; we shall clarify this point in the following.

In Fig. 5 we plot the interlayer distances between ions
belonging to the same sublattice, focusing here on the 3-, 5-,
and 7-cell-thick capacitors only. �Atoms are grouped in dif-
ferent sublattices according to their chemical identity. Pt and
O atoms are further split into three and two sublattices, re-
spectively, as shown schematically in the right panel of Fig.
5.� The atomic layers closest to the interface undergo strong
distortions, both on the electrode and on the insulator side.
The largest effects are located again on the negatively polar-
ized end of the film. Here, the surface Pt atoms and the BaO
ions strongly buckle with the overall effect of reducing the
Pt-O distance �which ranges from 2.01 to 2.04 Å in the ca-
pacitors considered� and increasing the Ba-Pt distance
��2.9 Å�. These features are consistent with the oxygen
binding chemically to the Pt surface while the Ba atom re-
pels the Pt atom that lies directly underneath. Such a picture
was proposed, from an analysis of the centrosymmetric ref-
erence structure, in Ref. 7; here we can see its impact on the

properties of the fully polarized state of the film. At the posi-
tively polarized end of the film, the structural distortions of
the Pt surface are relatively minor and the oxide film does
not appear to be chemically interacting with the electrode;
the Pt-O distances in all capacitors are larger than 3.3 Å and
the metal-oxide bonding appears to be of purely electrostatic
nature. Two monolayers away from the interface, the inter-
layer distances of the BTO film converge to a uniform value,
which can be understood as the relaxed strain state of the
film in the capacitor heterostructure. In all cases this value is
larger than in the equilibrium value of the strained bulk,
which is indicated in the same figure as a dashed horizontal
line. �The bulk out-of-plane strain was calculated by impos-
ing the same in-plane strain as in the capacitor calculations;
therefore, the effect shown in Fig. 5 is not of mechanical
origin.� Remarkably, the tetragonality of the film increases
for thinner capacitors. Since ferroelectrics have a strong cou-
pling between polarization and strain, this provides addi-
tional evidence to the enhancement of polarity we already
pointed out earlier while discussing the layer rumplings.

Note that such a strong coupling makes the results very
sensitive to the accuracy in the relaxation of the out-of-plane
lattice constant. To this end, it is crucial to properly take into
account the effect of the Pulay stress as explained in Sec.
II E. In order to check that this procedure was effective, we
monitored in all capacitors the interlayer distance in the cen-
ter of the Pt slab, i.e., the black circle at z=0 in the three
panels of Fig. 5. The maximum deviation in this value was
less than 10−3 Å, confirming that our structural relaxations
are very well converged.

In the next section we shall investigate the electrical prop-
erties of the Pt/BTO/Pt capacitors and demonstrate the ferro-
electric nature of the enhanced structural distortions dis-
cussed above.

2. Polarization and electrical properties

Our goal now is to evaluate the macroscopic polarization
of the capacitor heterostructures discussed in the previous
section. Since all the capacitors are relaxed within standard
short-circuit electrical boundary conditions, the macroscopic
electric field is zero and the polarization is equal to the
electric-displacement field D.

First we assess the level of accuracy we can expect for the
value of the polarization computed according to the tech-
nique discussed in the methods section. To that end, we ana-
lyze the planar-averaged conduction charge �cond�z� as de-
fined in Eq. �4� by setting the width of the middle energy
window �=0.5 eV. Given the Gaussian smearing of �
=0.15 eV, �Ef−� ,Ef+�� encompasses all partially occupied
states within an occupancy threshold of 10−6. In other words,
at the bottom of the window the smearing function f�Ef−��
is equal to 1–10−6 while at the top f�Ef+��=10−6. Recall
that all states lying higher in energy are discarded; all states
lying below this window are treated as fully occupied and
transformed into Wannier functions as we shall discuss
shortly.

To define the dipole moment of �cond�z� it is essential that
this function be small in the middle of the insulating region.
Whenever the film is not thick enough for �cond�z� to decay
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FIG. 5. �Color online� Relaxed interlayer distances of short-
circuited Pt /BaTiO3 /Pt capacitors with oxide thickness of 7, 5, and
3 unit cells and nine Pt layers. Black �left� and colored �right�
symbols/lines correspond to Pt and oxide layers, respectively. Ver-
tical axis indicates distances between neighboring cations belonging
to the same sublattice �see right panel�; horizontal axis is the mid-
point coordinate. Dashed line indicates the calculated equilibrium
out-of-plane lattice parameter of bulk BaTiO3 strained to the STO
in-plane lattice constant. The code for the symbols and colors is
schematically explained in the right panel, where the relaxed struc-
ture of the bottom interface �located at z�10 Å� is shown. Each
symbol and color corresponds to a different sublattice: Pt1 �down-
ward triangles with light gray filling�, Pt2 �empty black squares�,
Pt3 �black circles�, Ba �red/dark gray empty squares�, Ti �green/
light gray diamonds�, O1 �blue/dark gray empty downward tri-
angles�, and O2 �dark green/dark gray upward triangles�.
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to zero, this introduces an error in the definition of the mac-
roscopic P which can be roughly estimated by

�P � �cond�L/2��z . �26�

Here L /2 corresponds to the center of the insulating film and
�z is a length that takes into account the arbitrariness in the
positioning of the discontinuity of the sawtooth function
used to define the dipole moment of �cond. We shall assume
�z to be half an oxide layer or 2 bohr units.

To give an idea of how the conduction charge decays in
the oxide films, we plot in Fig. 6 the calculated �cond�z� in
the five structures considered. While the thinnest capacitor
�1-cell-thick, leftmost curve in the graph� is clearly metallic,
in all other structures the conduction charge decays almost to
zero in the central oxide layer. The estimated accuracy using
the above formula is on the order of 0.5 �C /cm2 for the
2-cell-thick capacitor, decreases by a factor of 3–4 for the
3-cell-thick capacitor and further decreases at an exponential
rate of 1 order of magnitude per each two more unit cells
added. This means that, at a thickness of 5 unit cells, the
estimated error is on the order of 0.01 �C /cm2, i.e., already
smaller than the overall numerical accuracy of our calcula-
tions. In the remainder of this section, therefore, we shall
drop the one-cell structure from our discussion and focus on
the remaining four structures, where the value of the macro-
scopic P can be accurately defined.

The fully occupied states are transformed, separately for
each k point, by means of the parallel transport algorithm.17

This yields a set of orthonormal orbitals which sum up to the
same charge density and are maximally localized along the
polarization direction �their Bloch-type character is pre-
served in plane�. Note that the actual number of states differs
for each k point. Therefore, when performing the Brillouin-
zone averages of the polarization, particular care must be
taken in order not to introduce by mistake a fraction of the
quantum of polarization into the final value. In order to en-
sure that this issue is properly taken care of, it is useful to
analyze how the Wannier centers distribute in space for each
k point. Upon visual inspection, we find that the Wannier
centers are characterized by a significant degree of disorder
in the metallic region as might be expected by recalling

that the band structure of the metallic slab is not constituted
by full energy bands and in our algorithm it is abruptly
“cut” at Ef−�. Conversely, in the insulating region, we find
that the Wannier centers cluster nicely around the oxide
layers, analogously to what happens in purely insulating
superlattices;19 to demonstrate such a behavior we plot in
Fig. 7 the calculated Wannier centers for the two-cell capaci-
tor. The total number of orbitals shown in Fig. 7 for each k
point matches exactly the “nominal” number of valence or-
bitals of the oxide ions. This means that the oxide film can be
identified as a charge-neutral and spatially confined sub-
system, whose dipole moment can be computed with high
accuracy and potential issues with the quantum of polariza-
tion are therefore completely avoided. �Note the increased
k-space dispersion in the Wannier centers associated with the
bottom BaO layer; this is due to the strong perturbation in-
duced by chemical bonding with Pt.�

By combining the ingredients discussed in the above para-
graphs, we now compute the electric displacement D of the
films, which is plotted as a function of film thickness in Fig.
8. In the thickest seven-layer film D=46.1 �C /cm2, which
is 17% larger than the spontaneous polarization of bulk BTO
within the same mechanical boundary conditions �shown as a
horizontal dashed line in the same plot�. This indicates that
the electrical boundary conditions induce an enhancement in
the polarity of the film; this is unlike the vast majority of
cases, where generally a suppression of P due to depolariz-
ing effects is observed. The enhancement in P is due to the
chemical bonding at the negatively polarized end of the film
to the Pt surface. Such an effect was discussed for the cen-
trosymmetric geometry in Ref. 7; the present study of the
fully relaxed capacitors in short circuit demonstrates that the
effect persists in the polar structure. In fact an analysis of the
local electrostatic potential shows that there is, instead of the
usual depolarizing field �which would oppose the spontane-
ous P�, a strong “polarizing” field; its magnitude is in excess
of 200 MV/m and drives the film significantly more polar
than the bulk.
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FIG. 6. �Color online� Conduction-charge density �cond�z� �Eq.
�4�� for five Pt /BaTiO3 /Pt capacitors of Fig. 4.
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FIG. 7. Wannier centers in the 2-unit-cell BaTiO3 film as a
function of in-plane k point in the irreducible 2D Brillouin zone,
labeled as �i , j� according to k� = �i+1 /2, j+1 /2� /6. Second and
fourth groups of centers correspond to TiO2 layers; others are BaO,
of which the first and fifth are in contact with Pt. P points up.
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In such a “negative dead-layer” regime one would expect
thinner films to be even more polar. This is nicely confirmed
by our results, shown in Fig. 8, where the polarization en-
hancement attains values as large as 35% in the 2-cell-thick
capacitor; also the tetragonal ratio and the internal electric
fields �not shown� steadily increase with decreasing thick-
ness as expected from the above qualitative arguments.

3. Layer polarizations and macroscopic polarization

While it is not a necessary step to computing the macro-
scopic P, it is nonetheless interesting to push further the
analogy to insulating superlattices and compute the LP as
defined in Ref. 19. This involves grouping the Wannier cen-
ters of Fig. 7 into the separate clusters corresponding to the
individual oxide layers, which are obvious from the plot, and
computing the individual dipole moment pj per surface unit
�see methods section�. We plot in Fig. 9 the results for the
Wannier-based layer polarizations. In all cases the dipole
moment of the first BaO layer is about three times larger than
the LP values in the rest of the films. This qualitatively re-
flects the strong structural distortion due to the chemical in-
teraction with the Pt surface, which was discussed in the
previous section. Otherwise, the LPs display qualitative fea-
tures which are remarkably similar to bulk BaTiO3. In par-
ticular, the LP of both layer types �BaO and TiO2� have the
same positive sign �consistent with the positive displacement
of all cations with respect to the O sublattice� with the LPs of
the BaO layers systematically larger than the TiO2 values
�approximately by a factor of 1.6�. Note that in all cases the
LPs are larger than the corresponding bulk values and uni-
formly increase as the film becomes thinner. This confirms
that the enhanced structural distortions discussed in the pre-
vious section correspond indeed to an enhanced polarization
of the films.

It is interesting to note that the LPs converge rather
quickly to a uniform bulklike sawtooth pattern two or three

oxide layers away from the interface, which indicates that the
perturbations induced by the electrode are rather local. This
contrasts sharply with the picture proposed in a recent work11

for the same system. We defer a detailed discussion of this
issue to Sec. V.

The local LP values in the middle of the ferroelectric,
pBaO and pTiO2

, together with the average out-of-plane strain
cavg inferred from the data of Fig. 5, provide an accurate
estimate of the macroscopic P inside the film as

Pfilm =
e

cavg
�pBaO + pTiO2

� . �27�

We plot Pfilm of the 5- and 7-unit-cell capacitors as square
symbols in Fig. 8; here Pfilm can be directly compared to the
calculated values of the electric displacement D. First, the
values of D and Pfilm are very close as can be expected from
their relationship �in SI units� D=�0Efilm+ Pfilm: indeed, �0E
� P in typical ferroelectrics. Next, the fact that D is slightly
larger than P is consistent with the electric field’s being col-
linear with P in the capacitors considered here, i.e., the in-
terface induces a polarizing effect instead of a depolarizing
one as we already discussed extensively.

Note that the electric field Efilm, as Pfilm, is the macro-
scopically and planar-averaged value of E�x� inside the film
and far from the interfaces. Therefore, we identify Efilm and
Pfilm as, respectively, the internal field and the polarization
that are typically discussed in Landau-Ginzburg models of
thin-film ferroelectrics. As will become clearer in the follow-
ing sections, the relationship between Efilm, Pfilm, and D is an
intrinsic property of bulk BaTiO3, and does not depend on
the interfaces, electrical boundary conditions or applied bias
potential. This point is crucial to the development of our
modeling strategies and therefore we consider the above
definitions of Pfilm and Efilm to be very convenient. Other
authors29,30 defined P by averaging the dipoles over the
whole volume of the film, including the interface region.
Such a choice is less convenient for modeling as �i� it does
not provide a clear separation between bulk and interface
effects and �ii� it introduces a degree of arbitrariness as the
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FIG. 8. �Color online� Calculated values of the electric displace-
ment field �or surface density of free charge stored on the plates� for
short-circuited BaTiO3 capacitors �black solid line and star sym-
bols�. The calculated bulk spontaneous polarization of BaTiO3 at
the SrTiO3 in-plane lattice parameter is shown as a horizontal
dashed line. Red �gray� squares are the values of the macroscopic
polarization Pmac of the 5- and 7-unit-cell capacitors as defined in
Eq. �27�.
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FIG. 9. �Color online� Calculated Wannier-based layer polariza-
tions for the capacitors discussed in the text. Even-numbered layers
are TiO2; odd layers are BaO. Bulk values are reported for com-
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“bound” dipoles near the interface are strongly mixed with
the metallic free carriers.

Summarizing the above results, we have shown that, in
thin-film capacitor configurations with Pt electrodes, BaO-
terminated BaTiO3 films display many features that are typi-
cal of a bulklike crystal within the same mechanical bound-
ary conditions �in-plane strain�. However, in addition to
these similarities, there are also a few remarkable departures
from the bulk behavior that are fully consistent with an
interface-induced polarization enhancement. The effect is
stronger in thinner films, which is at odds with the common
belief that realistic electrodes would systematically induce a
polarization suppression due to imperfect screening.

In the following we shall use the constrained-D method to
understand the origin of this effect. In particular, we shall
demonstrate that the locality principle is restored once the
long-range electrostatic interactions are properly rational-
ized. In particular, we shall show that a simple model of this
system with full ab initio accuracy can be constructed in
terms of the electrical properties of bulk BaTiO3 and of the
BaO-terminated Pt/BTO interface.

C. Electrical equation of state

In order to model the electrical behavior of the Pt/BTO
capacitors considered in this work, we now use the fixed-D
method to sample the equation of state of the 5-cell-thick
capacitor; this is the thinnest one in which �cond is essentially
zero in the middle of the oxide film, which ensures a high
level of accuracy. For the scope of the present discussion, it
is enough to restrict our investigation to a range of D that
encompasses the equilibrium values calculated for different
thicknesses in short circuit, i.e., 0.4e�d�0.5e. Subse-
quently, we shall show how this information can be com-
bined with the bulk equation of state to predict the properties
of capacitors of arbitrary thickness. We shall start by calcu-
lating the electrical equation of state of bulk BTO.

1. Bulk BaTiO3

As in the capacitor structures, we fix the in-plane lattice
constant to a0=7.276 a.u., the theoretical equilibrium value
for cubic SrTiO3 and we let the out-of-plane lattice param-
eter as well as the internal coordinates of the five-atom te-
tragonal unit cell, relax as a function of the reduced electric
displacement d. We use twelve values of d, equally spaced
between d=0.0 and d=0.55. We extract from the calculation
the values of the potential and the c lattice parameter for
every value of d; then we use splines to interpolate these
values and we finally integrate the potential to recover the
internal energy U. The results are plotted in Fig. 10. Note the
perfect match between the values of U calculated ab initio
�plus symbols� with the integrated potential �solid black
curve�; such a good match is a consequence of accurately
compensating the Pulay stress with a fictitious constant nega-
tive pressure of �=−2.61 GPa. The Pulay error is high �due
to the relatively low plane-wave cutoff of 40 Ry� and ne-
glecting it would produce significant errors; with this simple
correction, the numerical values are highly accurate.

The relaxed ferroelectric ground state ��̄=0� is at d0
=0.364, which corresponds to P=39.4 �C /cm2, an energy

�U=−28.6 meV /cell, and c /a=1.061. Note that this is con-
siderably larger than the value, c /a=1.038, in the strained
centrosymmetric geometry. We can understand the c /a ratio
of the epitaxially constrained ferroelectric phase as a result
of two distinct contributing factors. One effect comes from
the elastic properties �Poisson ratio� of the centrosymmetric
crystal; straining BaTiO3 to the SrTiO3 lattice constant
�−2.1%� produces a tetragonality of c /a=1.038 even in the
absence of a polar distortion. The second effect, related to
polarization-strain coupling, bring this value to c /a=1.061
once the unstable “soft” mode is condensed. For more details
about the relationship between polarity and epitaxial strain
we direct the reader to Ref. 31.

2. Capacitor structures

We shall write the electrical equation of state of the
5-unit-cell capacitor as �̄5�d�, the d-dependent reduced elec-
tric field. Since we already have one data point from the
calculation in short circuit �d=0.442e , �̄=0� and we expect
the potential to be a rather smooth function of d, it is likely
that two additional points lying at the extremes of the inter-
val will be enough for constructing our model. Therefore, we
repeat the calculation of the 5-cell capacitor twice with d set
to 0.4e and 0.5e, respectively. �In both cases the ionic posi-
tions and out-of-plane lattice parameter are relaxed to the
same convergence thresholds used in the zero-field cases.�
The smoothness of the potential is confirmed by our results,
plotted as black circles in Fig. 11, which lie almost on a
straight line.

To account for the small curvature, we interpolate the
points with a second-order polynomial expanded around the
spontaneous reduced displacement d0 of the bulk. To estab-
lish notation, we do this first for a simple bulk crystal. Re-
calling that internal energies are related to the reduced elec-
tric fields by Eq. �7�, �̄�d�=dU /dd and anticipating an
expansion of the internal energy up to third order in d−d0

Ub�d� = A0
b + A1

b�d − d0� +
A2

b

2
�d − d0�2 +

A3
b

3!
�d − d0�3,

�28�

we expand �̄b�d� as
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FIG. 10. �Color online� Internal energy, reduced electric field,
and c /a ratio vs reduced displacement field �in units of e� for co-
herently strained bulk BaTiO3. Ab initio data are shown as symbols;
dashed curves in the middle and right panels are spline interpola-
tions; and continuous curve in the left panel is the numerical inte-
gral of the spline in the middle panel.
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�̄b�d� = A1
b + A2

b�d − d0� +
A3

b

2
�d − d0�2. �29�

�Note that the expansion is carried out about the spontaneous
displacement d0 of the bulk so that A1

b vanishes by construc-
tion.� We then carry out similar expansions for each N-cell
capacitor, e.g., for N=5

U5�d� = A0
�5� + A1

�5��d − d0� +
A2

�5�

2
�d − d0�2 +

A3
�5�

3!
�d − d0�3

�30�

and

�̄5�d� = A1
�5� + A2

�5��d − d0� +
A3

�5�

2
�d − d0�2. �31�

The fitted bulk expansion parameters An
b and the interface

parameters defined via

An
I = An

�5� − 5An
b �32�

are reported in Table I.

Focusing first on Eq. �31� for the 5-cell-thick capacitor,
the fitted �̄5�d� is shown as the solid black line passing
through the circles in Fig. 11. Using this together with the
bulk information encoded in Eq. �29�, we can then predict
the equations of state for thinner or thicker capacitors ac-
cording to the formula

�̄N�d� = �N − 5��̄b�d� + �̄5�d� . �33�

Setting N to 2, 3, and 7 we obtain the colored solid curves in
Fig. 11. The intersection of each curve with the �̄=0 axis
yields a well-defined value of d, which is the predicted po-
larization state of a capacitor with thickness N, and can be
directly compared to the first-principles data already in hand.
To that end, we take the d values from Fig. 8 and plot them
as colored symbols on the �̄=0 axis of Fig. 11. The agree-
ment between the first-principles points and the model pre-
dictions is extraordinarily good �discrepancies are smaller
than 0.1%�. Surprisingly, this holds true even for the thinnest
�2-cell� capacitor, where one would expect the estimation of
d to be less accurate �see previous sections�. Also, apart from
purely technical issues in defining d, one might expect the
properties of such a thin layer of oxide to depart somewhat
from what is calculated in thicker capacitors. The accuracy
of our model in this thickness regime is indeed encouraging
and indicates that our methods for accessing the interfacial
electrical properties are able to predict, with full first-
principles accuracy, the behavior of a wide range of systems.

To further confirm the internal consistency of our model,
we perform a similar analysis for the energetics of the ca-
pacitors. Let UN�d� be the difference in internal energy, for a
given thickness N, between the state at specified d and the
paraelectric structure at d=0. We plot in Fig. 12 the three
values of U5�d� �black circles� that we extracted for the
5-cell capacitor from the same calculations described above.
Expanding in d−d0 according to Eq. �30�, we note that all
the coefficients have already been determined from Eq. �31�
except for the arbitrary constant of integration A0

�5�. Adjusting
this one free parameter, we find an excellent match of the fit

TABLE I. Values, in atomic units, of the expansion coefficients
used to model the bulk and interface contributions to the electrical
equation of state, Eqs. �28�, �29�, �36�, and �37�, and to the elastic
equation of state, Eqs. �40� and �43�.

n

Electrical EOS Elastic EOS

Bulk An
b Interface An

I Bulk cn
b Interface cn

I

0 −0.0011 −0.0105 7.719 7.124

1 0 −0.0296 0.764 1.894

2 0.0501 0.0895 0.704 −3.745

3 0.0589 0.2245
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FIG. 11. �Color online� Calculated values of reduced electric
field �̄ as a function of d in capacitors of various thicknesses �empty
symbols�. Solid lines correspond to the first-principles derived
model described in the text. Dashed line is the calculated bulk equa-
tion of state �from middle panel of Fig. 10�, which corresponds to
the potential drop across a single bulk unit cell. Star corresponds to
the relaxed ferroelectric state of the strained bulk crystal.
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FIG. 12. �Color online� Calculated energies, relative to corre-
sponding paraelectric state, for BTO capacitors of various thick-
nesses and polarization states �symbols�. Solid curves correspond to
the model discussed in the text. Vertical dashed line indicates the
spontaneous polarization of bulk BaTiO3.
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�black curve� with all of the data �black circles�. As was done
for the potential, we then predict the energy UN�d� for other
N just by adding or subtracting bulk units

UN�d� = �N − 5�Ub�d� + U5�d� . �34�

Again, all of the needed bulk coefficients were already
determined from Eq. �29� except for the constant term
A0

b=�U. The results for N=2, 3, and 7 are plotted as the
colored curves in Fig. 12. Again, the minima of all the UN�d�
curves match very well the points explicitly calculated in the
short-circuit first-principles calculations at various thick-
nesses. The maximum discrepancy is about 1 meV, which is
comparable to the numerical noise in the total energy values
introduced by the discreteness of the plane-wave basis set
during variable-cell structural relaxations.

Two important details are apparent from Figs. 11 and 12.
First, all curves in Fig. 11 have a common intersection at
d=d0; this is related to the fact that at d=d0 the internal
electric field in the bulk vanishes: A1

b=0 �we shall come back
to this point in Sec. III E�. Second, the relaxed internal en-
ergies of the capacitors considered here are about one order
of magnitude larger than the depth of the bulk double well
�see Fig. 12�. This indicates that the chemical-bonding
mechanism discussed in Ref. 7 has a substantial impact on
the energetics, which explains the strong tendency of the
capacitors toward a superpolar state.

D. Interfacial dielectric and piezoelectric response

Our goal now is to show how several useful interface-
specific observables can be directly linked to the electric
equations of state �EOS� discussed above. In addition to the
purely electrical variables, we shall further extend our model
by addressing also the elastic �i.e., piezoelectric� EOS of
both bulk and electrode interface.

1. Dielectric response

The polynomial expansion of the dielectric response
�electrical EOS� was essentially already determined in Sec.
III C 2. Using the N=5 as our model structure and using Eq.
�33�, we single out the interface contribution by defining the
interface EOS to be that of a hypothetical “zero-thickness
capacitor”

�̄I�d� = �̄0�d� = �̄5�d� − 5�̄bulk�d� �35�

with a similar relation for the internal energy. The interface
potential and energy are then expanded as in analogy to Eqs.
�28�–�31� as

UI�d� = 	
n=0

3
An

I

n!
�d − d0�n, �36�

�̄I�d� = 	
n=0

n
An+1

I

n!
�d − d0�n. �37�

The coefficients An
I are determined once and for all from a

pair of calculations on the bulk and on the 5-cell capacitor

superlattice using Eq. �32�. The resulting bulk and interface
coefficients are reported in Table I.

The physical interpretation of the zero-order coefficient
A0

I is immediate as it represents the interfacial contribution to
the energy of the capacitor when a reduced displacement d0
is induced in the film �the energy zero is set to that of the
paraelectric d=0 state�. The first-order coefficient is also
physically transparent as it corresponds to the interfacial po-
tential drop at d=d0. As we mentioned above, the bulk
ground state at d0 has zero internal field so an applied exter-
nal bias of A1

I will always induce the same �bulklike� polar-
ization, regardless of the thickness N of the film.

In order to interpret the higher-order coefficients, we first
derive an expression for the inverse capacitance that is valid
for bulk, interface and the full capacitor structure

CX
−1�d� =

d�̄X�d�
dd

= A2
X + A3

X�d − d0� , �38�

where X=b , I , �N�. Therefore, A2
X is the inverse capacitance

at d=d0. In the bulk case we can directly link this
coefficient13 to the static �free-stress� dielectric constant of
ferroelectric BaTiO3 through Eq. �11�

�33
��� =

4�c

SA2
b . �39�

Using the values reported in Table I we obtain �33
���=37.

In the capacitor case the physical meaning of C�N�
−1 �d� is

obvious; note that this is an inverse capacitance per surface
unit cell and must be multiplied by S to obtain an inverse
capacitance density. Finally, CI

−1�d� is the inverse interface
capacitance that was discussed, for instance, in Ref. 7. �Note
that here CI is the combined effect of both interfaces, unlike
the CI defined in Ref. 7. We shall present a general strategy
for separating this quantity into two individual contributions
later, in Sec. IV.� By using the values of Table I we obtain an
interfacial capacitance density CI�d0� /S=0.44 F /m2; this
value, due to the dielectric nonlinearity contained in the
third-order coefficient A3

I , is reduced by half near the right
end of the d interval considered here �d�0.55�.

2. Piezoelectric response

In order to describe piezoelectric effects, we consider the
bulk lattice parameter cb and the interfacial distance cI as
functions of d. In the same spirit as before, we first perform
a quadratic fit of cb as

cb�d� = c0
b + c1

b�d − d0� +
c2

b

2
�d − d0�2. �40�

Here c0
b is the equilibrium lattice parameter of the epitaxially

strained tetragonal state and c1
b is related to the piezoelectric

constant by Eq. �10�

d33 = �dcb

d�̄
�

d=d0

= �dcb

dd
�d�̄

dd

−1�

d=d0

=
c1

b

A2
b . �41�

With the calculated values, we obtain d33=30 pm /V. �Note
that in our calculations we kept the in-plane lattice param-
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eters fixed; this value might change upon full relaxation of
the crystal.�

Next, we define the interface contribution cI�d� as

cI�d� = LN�d� − Ncbulk�d� − nPt�Pt. �42�

where LN�d� is the total thickness of the relaxed capacitor for
a given value of d, and N and nPt are the number of oxide
and metal bulk cells in the capacitor superlattice. Note that
�Pt, the relaxed interlayer distance in bulk Pt �strained in
plane to the same lattice parameter�, is independent of d.
Using this formula, we extracted cI�d� for all the capacitor
structures considered so far and plotted the values in Fig. 13.
In the same figure the solid line is a quadratic fit using the
formula

cI�d� = c0
I + c1

I �d − d0� +
c2

I

2
�d − d0�2. �43�

The zeroth-order coefficient c0
I has the meaning of a com-

bined effective interface distance for both top and bottom
electrodes. �It may look larger than expected because there
are actually N+1 /2 oxide cells in our capacitors, not N, and
because the Pt/BTO interface distances are typically some-
what larger than the bulk interlayer spacings of either Pt or
BTO.� The linear coefficient, in analogy to the bulk case, is
related to the electrode contribution to the piezoresponse of
the capacitor. All the coefficients defined in the text are re-
ported in Table I.

In summary, our simple model is able to predict, within
the numerical accuracy of a full first-principles calculation,
the energy, polarization, dielectric, and piezoelectric re-
sponse of a Pt/BTO/Pt capacitor of arbitrary thickness �from
2 unit cells to infinity�.

E. Band lineup and ferroelectricity

The simple model derived above allows us to interpret the
physics behind the polar enhancement from yet another point
of view. If we go back to Fig. 11, it is apparent that the solid
lines converge to the same point at a value of d correspond-
ing to the spontaneous polarization of bulk BaTiO3 �d0

=0.364�. The reason is that the potential is zero in BaTiO3 at
that value of d because the bulk crystal is at electrostatic
equilibrium; hence, adding or subtracting bulk units does not
change the value of �̄N�d0�. Therefore, �̄I�d0�= �̄N�d0�, inde-
pendent of N, is an intrinsic interface property related to the
band lineup between the metal electrode and the fully polar-
ized ferroelectric film

�̄I�d0� = A1
I = + − −, �44�

where � are the respective Schottky barrier heights at the
positively and negatively polarized ends of the film. Since
the symmetry is broken on ferroelectric off centering, these
two values generally differ.

Based on typical assumptions of phenomenological theo-
ries and on a large body of experimental data, one would
expect a positive interface potential �̄I�d0��0; in short cir-
cuit this would yield a depolarizing field that opposes the
polarity of the film �recall that �̄=−V�. This means that gen-
erally one needs to apply a positive bias in order to reach
�and sustain� bulk values of d in a thin film; when the bias is
switched off, the polarization is either reduced or relaxes to
zero by transitioning to a multidomain state.32 The Pt/
BTO/Pt system analyzed in this work displays a rather dif-
ferent behavior, in that �̄I�d0��−0.8 V is negative. This is a
signature of the strong polarizing field discussed earlier in
the context of our calculations in short circuit.

Note that in our calculations so far we never extracted +

and − separately since in the case of compositionally sym-
metric capacitors only their difference matters for the elec-
trical properties of the device. Analogously, we considered
only a total interfacial distance cI that takes into account both
the top and bottom ends of the film. In the following sections
we shall use the techniques described in Sec. II D 2 to single
out the potential lineup and distances of either interface in-
dividually as a function of d. We shall demonstrate, as an
example, how this information allows one to accurately
model the electrical behavior of truly asymmetric devices
starting from calculations performed on systems having a
centrosymmetric paraelectric geometry.

IV. RESULTS: Au ÕBaZrO3 ÕAu CAPACITORS

A. Motivation

As a model system for studying the electrical behavior of
asymmetric capacitors we choose ferroelectric devices with
Au as the electrode and BaZrO3 �BZO� as the active film.
This choice is motivated by issues of computational practi-
cality. As mentioned in the introductory sections, an essential
prerequisite for defining and controlling the polarization in a
metal/insulator heterostructure is its insulating character
along the direction perpendicular to the interface. This can
only be true if there are nonvanishing Schottky barriers at
both interfaces and if those barriers are preserved on ferro-
electric off centering. The wider band gap of BZO makes this
property much easier to satisfy than with more conventional
ferroelectric oxides such as PbTiO3 and BaTiO3. Then, given
the larger lattice parameter of BZO, we decided to use Au as
the electrode instead of Pt in order to avoid unrealistically
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FIG. 13. Calculated interfacial distance cI�d� of Eq. �42� for
capacitors of various thicknesses and polarization states �symbols�;
solid curve is a quadratic fit.
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large strains in the electrode slab. �Pt is more popular in the
ferroelectrics community because it matches better the lattice
parameter of many Ti-based perovskites.� This combination
of materials yields large Schottky barriers for both BO2- and
AO-terminated interfaces and is therefore ideally suited to
the scope of the present study. An interesting aspect of this
study is that we are able to compare the electrical behavior of
BO2- and AO-terminated interfaces.

One important issue is that BZO is not ferroelectric. Ex-
perimentally it has a stable cubic structure down to very low
temperatures while theoretically there have been several re-
ports of zone-boundary instabilities associated with rotations
of the oxygen octahedral.33 In order to induce a polar insta-
bility in BZO, we set the in-plane lattice parameter to a fixed
value of 7.60 a.u. �a compressive strain of −3.0% with re-
spect to the theoretical equilibrium lattice parameter of 7.38
a.u. of the cubic structure�.34 Note that we did not check for
possible competing nonpolar states as such an analysis
would require doubling the size of the simulation cell, sub-
stantially raising the computational cost. For this reason, our
setup should not be understood as a direct prediction of
ferroelectric behavior in epitaxially strained BaZrO3. Rather,
we intend it primarily as a tractable computational model,
which we expect may be representative of the behavior of a
typical perovskite with a tetragonal ferroelectric ground state
�e.g., PbTiO3 or BaTiO3 at room temperature�.

B. Computational model

Our model heterostructures consist of �001�-oriented BZO
films with symmetrical ZrO2 or BaO terminations and a
thickness of 8.5 unit cells, interfaced with a metal electrode
slab of 11 Au monolayers. Our first goal is to study the full
equations of state of these structurally symmetric capacitors
to establish the similarities and the differences arising from
the dissimilar �ZrO2 /Au vs BaO/Au� bonding configurations.
Next we extract the interface-specific information and use it
to predict the full equation of state of an asymmetric configu-
ration �with BaO and ZrO2 terminations at opposite ends�.
Then, we verify that our procedure yields the desired result
by comparing this prediction with the explicitly computed
U�d� curve for an asymmetric capacitor having 8-unit cells
of BZO and 12 layers of Au. Before going into details about
the capacitor structures, however, we first briefly summarize
the electrical properties of bulk BaZrO3 within the symmetry
and mechanical constraints described above.

C. Bulk BaZrO3

As in the capacitor structures, we fix the in-plane lattice
constant to a0=7.60 a.u. and let the out-of-plane lattice pa-
rameter as well as the internal coordinates of the five-atom
tetragonal unit cell, relax as a function of the reduced electric
displacement d. We use seven evenly spaced values of d
ranging between d=0.0 and d=0.276e. We extract from the
calculation the values of the reduced field �̄ and the lattice
parameter c for each value of d, use splines to interpolate
these values, and finally integrate �̄�d� with respect to d to
recover the internal energy U�d�. The results are reported in
Fig. 14. As for the BaTiO3 case, the match between the val-

ues of U calculated directly �red “plus” symbols� with those
obtained by integrating �̄�d� �black curve� is excellent. Both
the spontaneous polarization Ps and the double-well potential
depth �U are significantly smaller than in BaTiO3. The re-
laxed ferroelectric ground state is at d=0.2076, which corre-
sponds to P=20.5 �C /cm2, �U=−3.05 meV /cell, and
c /a=1.052 �compared to c /a=1.0475 in the strained cen-
trosymmetric geometry�.

D. Schottky barriers

In Fig. 15 we plot, as a function of the reduced displace-
ment d, the SBH extracted from the symmetric BaO- and
ZrO2-terminated capacitors using the techniques of Sec.
II D 2. All values lie between about −1.2 and −1.7 eV. Con-
sidering that the calculated local-density approximation gap
for centrosymmetric bulk BaZrO3 is 3.12 eV, this indicates
that in all cases the Fermi level of Au lies close to midgap
and that our BZO/Au capacitors are thus free from Schottky-
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FIG. 14. �Color online� Internal energy, reduced electric field,
and c /a ratio vs reduced displacement field �in units of e� for co-
herently strained bulk BaZrO3. Ab initio data are shown as symbols;
dashed curves in the middle and right panels are spline interpola-
tions; and continuous curve in the left panel is the numerical inte-
gral of the spline in the middle panel.
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FIG. 15. �Color online� Solid curves: interfacial p-type Schottky
barrier values extracted from the symmetric capacitor configura-
tions for BaO-terminated �black circles� and ZrO-terminated �red
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breakdown issues.4 Both curves shown in Fig. 15 have con-
siderable curvature although with dissimilar features. In the
case of ZrO2 /Au this curvature is found to be dominated by
the bulk �VF�d�: If we remove such a dependence from
ZrO�d�, we obtain a roughly linear function �red dashed
curve, which is related modulo a constant shift to the inter-
facial step in the electrostatic potential�. By contrast, re-
moval of the bulk contribution �VF�d� �black dashed curve�
does not restore linearity in the BaO/Au case.

Incidentally, we note that our method may be of general
use for the computation of Schottky barriers35,36 �indepen-
dently from their relationship to dielectric properties�, which
are extremely important for many technological applications.
Recall that the SBH has a truly unique definition only when
the macroscopic electric field vanishes in the insulator since
then one can identify the valence- and conduction-band
edges precisely. For noncentrosymmetric insulators such as
wurtzite oxides or spontaneously polarized ferroelectrics,
such a condition is not easily obtained in ordinary first-
principles supercell calculations. However, our approach
makes it extremely easy to do such calculations. For ex-
ample, we have indicated with large “star” symbols in Fig.
15 the “physical” values of the SBH, i.e., those correspond-
ing to the spontaneously polarized ferroelectric film in the
absence of any internal field.

E. Interfacial equation of state: ZrO2 ÕAu

The discussion in the previous section suggests that there
might be important qualitative differences between the be-
havior of BaO/Au and ZrO2 /Au interfaces. However, it is
not immediately obvious how to interpret the �d� curves
directly as their relationship to the physical electrical re-
sponse of the capacitor contains some aspects of arbitrari-
ness. Such arbitrariness does, of course, cancel out when the
final equation of state of the entire capacitor is constructed.
Therefore, in order to obtain quantities that have a direct
physical meaning, we proceed by combining the above �d�
curves in pairs as appropriate for the capacitor structures of
interest. There are four such structures that we denote as
“AB,” where A and B are variables that specify, for the bot-
tom and top interfaces respectively, whether the interface is
BaO/Au or ZrO2 /Au. Then the interface contribution to the
equation of state of the specified capacitor structure is

�̄I,AB�d� = − A�− d� + B�d� �45�

in terms of which the equation of state of the entire N-cell
capacitor is then �̄N,AB�d�= �̄I,AB�d�+N�̄b�d�.

The four resulting functions �̄I,AB�d� are plotted in Fig.
16. The most striking feature is the almost perfect linearity of
the symmetric ZrO2 /ZrO2 configuration. This means that the
description of the interfacial equation of state in terms of a
constant interfacial capacitance �i.e., replacing the interfaces
by a layer of linear dielectric in series with a bulklike
BaZrO3 film� is appropriate in this case. The slope of the
�̄I�d� curve yields a combined capacitance density of CI /S
=1.73 F /m2 for both interfaces so that each interface is as-
sociated with a capacitance density of 3.46 F /m2. This value
is remarkably high when compared to the typical range of

�0.4–0.6 F /m2 calculated7,37 for oxide electrodes such as
SrRuO3. This result corroborates the ideas proposed in Ref. 7
that weak electrode-oxide bonding is beneficial to the ferro-
electric properties of a capacitor. Here we indeed find that a
chemically inert electrode material such as Au yields excel-
lent screening and only a marginal perturbation to the polar
response of the film. Using the formalism developed in Ref.
7, we find a “critical thickness for ferroelectricity” Ncrit=3
for both symmetric geometries �ZrO2 /ZrO2 and BaO/BaO�.

F. BaO/Au and bonding properties

Interestingly, the BaO/BaO curve is almost exactly over-
lapping with the ZrO2 /ZrO2 one in the interval −0.15e�d
�0.15e while a strong departure from the linear regime oc-
curs for values of d lying outside this interval. A significant
nonlinearity was indeed expected from the �d� curves in
Fig. 15; the fact that this nonlinearity cancels for −0.15e
�d�0.15e and yields a quasilinear behavior is probably co-
incidental.

The nonlinearity of the BaO/Au interface emerges most
clearly in the case of an asymmetric capacitor �green and
blue curves in Fig. 16, which are correctly related by a
mirror-symmetry operation�.

To trace the origin of the qualitative difference between
ZrO2 /Au and BaO/Au interfaces �linear vs nonlinear behav-
ior�, it is useful to follow the evolution of the Au-O bond
length as a function of electric displacement, plotted in Fig.
17. While the bond length varies only weakly and follows a
linear trend for ZrO2 /Au, it covers a much wider range of
distances �2.2 to 3.1 Å� and displays a strong nonlinearity
for BaO/Au. We interpret the latter behavior as indicative of
breaking and reforming of the Au-O bond upon polarity
switching. Clearly, the breaking of a bond is a highly non-
linear event, helping to explain the calculated features of the
electrical response. This picture agrees fully with the argu-
ments of Ref. 7, where the bond stability �instability� was
correlated with the suppression �enhancement� of the ten-
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FIG. 16. �Color online� Interfacial equations of state, recon-
structed from the Schottky barrier values of Fig. 15, for a symmet-
ric BaO-�black circles� or ZrO2-terminated �red squares� capacitor.
The blue upward-oriented triangles refer to an asymmetric arrange-
ment with the BaO termination on top; the green downward-
oriented triangles have the BaO termination at the bottom.
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dency to polar instability of the capacitor structure. The
present results corroborate these ideas and provide further
evidence for the strong correlation between interfacial chem-
istry and electrical response.

Interestingly, while in the case of Pt /BaTiO3 /Pt the inter-
face bonding mechanism strongly enhances ferroelectricity,
in the present case of Au /BaZrO3 /Au the overall effect is a
slight suppression. We shall briefly discuss the origin of this
dissimilar behavior in the following section.

G. Enhancement or suppression?

Why do certain AO-terminated interfaces �e.g.,
BaTiO3 /Pt and BaTiO3 /Au� enhance the ferroelectric insta-
bility of the film while others �especially PbTiO3 /Pt but also,
to a smaller extent, the BaZrO3 /Au one discussed here� sup-
press it instead? While a definitive answer is not yet avail-
able, some qualitative trends can be explained in terms of the
frustrated bonding-environment model of Ref. 7. According
to this model, a flat layer in contact with the electrode pro-
duces a competition between the A-metal repulsion and the
-metal attraction. The buckling of the AO layer caused by a
bulk ferroelectric distortion of one sign or the other shifts the
balance, causing the bonding or the repulsive force to pre-
vail. In fact, even in the centrosymmetric capacitor geometry,
the interface AO layer is not flat but exhibits a certain degree
of buckling �with the A cation typically displacing toward
the oxide film� due to the broken-symmetry environment.
One can therefore expect some difference in behavior be-
tween perovskite AO-terminated films that show different
degrees of “natural buckling” at the surface of their cubic
reference phase. We computed the values of the AO rum-
pling of the free PbTiO3, BaZrO3, and BaTiO3 surfaces, find-
ing values of 0.136, 0.121, and 0.022 Å, respectively. In-
deed, these results indicate that the film with the much flatter
surface �BaTiO3� displays a strong enhancement of the polar
instability while those that are significantly buckled �PbTiO3
and BaZrO3� do not. While this is only a rough indication
and other factors are most likely at work, it suggests a cor-
relation that may help to explain our detailed numerical re-
sults.

H. From symmetric to asymmetric

We claimed earlier that it should be possible to use the
interface equations of state extracted from calculations on
symmetric capacitors to predict the equation of state for the
asymmetric case. We demonstrate this now. Our “asymmet-
ric” geometry is comprised of an 8-unit-cell BaZrO3 film and
a 12-layer Au slab, where the bottom and top interfaces �rela-
tive to the oxide� are of Au-BaO and ZrO2-Au type, respec-
tively. Thus, a positive d corresponds to the polarization
pointing toward the ZrO2-Au interface. The interface-specific
contribution to the reduced electric field, �̄I�d�=−L�d�
+R�d�, is plotted as the green curve in Fig. 16. Note that the
curve is linear for d�0 while it shows a significant nonlin-
earity for d�0, where the Au-O bond breaks, in agreement
with the discussion of the previous sections. We now use this
function to reconstruct the �̄�d� curve of the whole capacitor
by adding an appropriate number of bulk units as in Eq. �19�

�̄�d� = �̄I�d� + N�̄bulk�d� �46�

with N=7.5.38 Then we numerically integrate �̄�d� to obtain
the U�d� energy curve, which is plotted as the dashed green
curve in Fig. 18.

In the same figure we plot two other curves corresponding
to the symmetric geometries, which were obtained from the
symmetric curves in Fig. 16 in the corresponding way �with
N=8�. For all three curves we also plot, as symbols, the
values of U extracted directly from the first-principles calcu-
lations. The match is almost perfect for the symmetric cases
as expected since the potentials and energies were taken
from the same calculation; their agreement is just a test of
internal consistency. �Incidentally, note the close agreement
between red and black curves in Fig. 18, especially in the
central region, which is inherited from the similarity of the
corresponding red and black curves in Fig. 16.� The acid test,
however, concerns the asymmetric structure: the points were
extracted from a direct calculation on the asymmetric struc-
ture while the curve was inferred from the data on symmetric
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FIG. 17. �Color online� Interfacial Au-O bond distance as a
function of electric-displacement field. The sign of d follows the
convention that the electrode lies at z�0.
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FIG. 18. �Color online� Electric equation of state U�D� for three
capacitor configurations discussed in the text. Curves correspond to
integrating Eq. �19� �or Eq. �46��, where L,R�d� were extracted
from the symmetric capacitor calculations �solid curves in Fig. 15�
and �̄bulk�d� was extracted from the bulk calculation �middle panel
of Fig. 14�. Points correspond to the U�d� values explicitly calcu-
lated for symmetric BaO:BaO �black squares�, symmetric
ZrO2:ZrO2 �red circles�, and asymmetric BaO:ZrO2 �green dia-
monds� capacitors.

STENGEL, VANDERBILT, AND SPALDIN PHYSICAL REVIEW B 80, 224110 �2009�

224110-18



capacitors using our model of Eq. �19�. The match is excel-
lent, with less than a 1% discrepancy in the spontaneous
polarization at the minimum in Fig. 18, corresponding to
short-circuit boundary conditions. �The predicted and calcu-
lated D values are −22.1 and −22.2 �C /cm2, respectively.�
Note that the spontaneous D is significantly enhanced
��8%� compared to the bulk value. This is a consequence of
the nonlinearity discussed above, which induces a positive �̄I
for d�0 �see green curve in Fig. 16�. The prediction and the
actual calculation also nicely agree regarding the absence of
a secondary minimum at positive d. Interestingly, both strat-
egies would yield such a minimum if the capacitor were just
one unit cell thicker; this further confirms the accuracy of
our model.

While all these physical aspects compare very favorably,
Fig. 18 shows also some discrepancies in the actual values of
the internal energy U, in particular, concerning the depth of
the energy minimum �predicted and calculated �U values of
−38.4 and −41.4 meV, respectively�. We shall briefly dis-
cuss this discrepancy in the following Section.

I. Accuracy issues

We demonstrated in Sec. III that the locality principle
established in Sec. II holds very accurately, allowing one to
predict the electrical properties and energetics of capacitors
of varying thickness with excellent fidelity. In this respect the
discrepancy in the energy curves of Fig. 18 is somewhat
surprising and it is worth discussing its origin to make sure
that all aspects of the method are under control.

We find that the cause of the discrepancy is rooted in the
treatment of the Au electrode in the simulations rather than
in numerical �or formal� errors. In the symmetric calculation,
we used an 11-layer Au slab and from this data we con-
structed the green curve in Fig. 18. On the other hand, we
had to choose an even �12-layer� Au slab in the asymmetric
calculation, which yielded the green diamond symbols. It is
well known that quantum-size effects associated with Fermi-
surface nesting can persist to substantial thicknesses in thin
metal films.39 Thus, it is not unreasonable to expect the sur-
face of a 12-layer slab to behave slightly differently from
that of an 11-layer slab. To prove this point, we calculated
the work function of two free-standing slabs of 11 and 12
layers, and we found a difference of about 60 meV—enough
to produce non-negligible discrepancies in the capacitor cal-
culations. The use of a finite electronic temperature �to ac-
celerate convergence with respect to k-point sampling� helps,
in that it makes the one-particle density matrix of the metal
short-ranged in space. However, further exploration of these
issues falls outside the main scope of the present work and
we satisfy ourselves with advising the reader of this issue so
that it can be kept in mind when performing future calcula-
tions.

V. DISCUSSION

In the following, we discuss the implications of our work
by comparing our techniques and results to the relevant lit-
erature.

A. Locality

One of the crucial aspects of our work concerns the use of
the locality principle in the simulation of capacitor struc-
tures. As we mentioned in the introduction, at least two re-
cent theoretical works have reported phenomena which do
not appear consistent with this assumption. We shall briefly
discuss them here.

First, the authors of Ref. 11 reported, for BaO-terminated
Pt /BaTiO3 /Pt capacitors �structurally analogous to those
considered in Sec. III�, a “ferrielectric” LP pattern, with pro-
found qualitative deviations from the bulk pattern, affecting
the whole volume of the oxide film. This, in principle, im-
plies a sharp, qualitative, deviation from the locality prin-
ciple mentioned above. While we cannot provide a definitive
explanation for the origin of the disagreement with our re-
sults, we believe it might lie in the subtleties involved in the
LP construction for an overall metallic system such as the
ferroelectric capacitors under consideration. In contrast with
our work, where localization of the Wannier states is im-
posed in one dimension separately for each k point �as in the
original LP formulation in Ref. 19�, the authors of Ref. 11
used fully three-dimensional maximally localized Wannier
functions. Furthermore, they treated the metallic states rather
differently than here, in that they adopted a preliminary
disentanglement40 procedure before localizing the states by
means of the Marzari-Vanderbilt algorithm.17 Finally, the au-
thors of Ref. 11 might have taken different prescriptions for
the assignment of the Wannier functions to the individual
oxide layers, possibly introducing the LP equivalent of the
quantum of polarization in their reported values. Regardless
of which of the above factors may be responsible for the
discrepancy, the effect proposed in Ref. 11 appears likely to
be a consequence of the details of the Wannier localization/
grouping procedure and we therefore suggest that its physi-
cal significance should be judged with some caution.

Second, the authors of Ref. 10 considered
SrRuO3 /KNbO3 /SrRuO3 capacitors and reported an
interface-induced disruption of the ferroelectric soft mode of
the film with the appearance of a head-to-head “interface
domain wall” located 3 unit cells away from the electrode.
This was interpreted as an effect of the strong bonding at the
interface, which would “clamp” the interface dipoles to a
fixed value; this constraint would then couple with the ferro-
electric instability of the film, producing the calculated inho-
mogeneous polarization pattern. The spatial variation in P is
strongly asymmetric and takes place over approximately 6
unit cells at the positively polarized end of the KNbO3 film.10

This contrasts with our results, where the interface-induced
distortions are extremely local and heal completely within
the first perovskite unit cell adjacent to the interface. Even if
the metal-insulator interactions are somehow stronger for the
SrRuO3 /KNbO3 system than for our cases, this should just
be reflected in a stronger functional dependence in the inter-
face equation of state, modifying the strength of the depolar-
izing field. One should still expect a uniform polarization
deep in the insulator, unlike the inhomogeneous polar ground
state found by these authors. Therefore, it is difficult to un-
derstand their findings unless one of the fundamental prereq-
uisites for the formalism developed in this work might have
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broken down. For example, Junquera and Ghosez4 have em-
phasized the dangers of pathological band alignments which,
as an artifact of the band-gap problem of density-functional
theory, may lead to charge spillage into the perovskite at
certain perovskite-metal interfaces. We suggest that such a
possibility should be investigated for the SrRuO3 /KNbO3
interfaces considered in Ref. 10.

B. Relationship to Landau theory

Our approach has many points of contact with earlier
Landau-theory models of depolarization in thin-film ferro-
electrics. However, there are also some notable differences
that we shall emphasize in the following, in order to avoid
confusion or misunderstanding.

First, we note that our strategy is different in spirit from
what was done, for example, in Ref. 41. There, the authors
fitted the parameters of a Landau-type expansion to the cal-
culated first-principles values of the depolarizing field in
short-circuited capacitors. In contrast, in our approach the
first-principles engine works as a stand-alone tool that yields
the ground state energy and structure as a function of a well-
defined electrical variable �within a given set of specified
mechanical/symmetry constraints and thermodynamic en-
semble�. These data can then be fitted a posteriori to a poly-
nomial, thus obtaining an expression that bears a close re-
semblance to Landau-theory expansions but the latter is not a
necessary step.

Another difference concerns our use of an interfacial ca-
pacitance �or, equivalently, of an effective screening length�
that embodies all the physical ingredients contributing to the
electrostatics. Gerra and co-worker,42 on the contrary, made a
distinction between purely electrostatic screening and short-
range chemical bonding effects, and considered them sepa-
rately in the capacitor equation of state. While such a distinc-
tion appears desirable from a conceptual point of view,
implementing it in practice involves a kind of chicken-and-
egg problem. As we have shown in Ref. 7, screening and
interface bonding are strongly interrelated and it is not obvi-
ous how to distinguish cause and effect. At first sight, our
approach does not appear to provide a solution to the above
dilemma as we cast “everything” �chemical bonding and
short- and long-range Coulomb interactions� into a black
box, namely, the interface equation of state. However, on
closer inspection our method does implicitly provide such a
separation. In fact, by explicitly working as a function of a
controlled field �here the D field�, we automatically ensure
that only the ingredients that are electrical in nature are in-
cluded in the interface equations of state, VI�d�. The nonpo-
lar contributions, which are short-ranged and do not have
any direct impact on the electrostatics, merely enter the defi-
nition of the zero of the energy, and are therefore implicitly
�but rigorously� singled out.

Finally, we would like to comment briefly on our choice
of D as electrical variable; such a choice is rather convenient,
as we have shown in this work. Interestingly, using D is
frowned upon by some authors in the Landau-theory
community,6,14 especially in cases where depolarizing effects
are present. A detailed discussion of this issue would bring us

far from the main scope of our work. We limit ourselves to
noting that, by means of our fixed-D approach, we seek the
electronic and structural ground state at a given D within a
parameter space spanned by all the microscopic degrees of
freedom �which are implicitly present in our energy func-
tional�. This means that our description fully accounts for the
effects of the “background permittivity,” of hypothetical
competing instabilities, and of electromechanical couplings.
For this reason, it is free from the shortcomings described in
Ref. 14. An important point to stress is that, in well-behaved
cases, the electrical equation of state of a given system leads
to exactly the same description of the physics regardless of
which independent variable �electric field E, polarization P,
or electric displacement D� is used. This point is obvious in
linear dielectrics, where P=�E and D=�E. It still holds in
nonlinear dielectrics that have a single energy minimum as a
function of the applied field E. In more problematic cases,
the equation of state might become multivalued or even sin-
gular, depending on the choice of independent variable. In
our experience, D tends to be a very convenient choice, es-
pecially in these “difficult” situations.

C. Relationship to the effective-Hamiltonian approach

One of the strengths of our approach is the ability to re-
cast all the complexity of the interface interactions into a
smooth function of a single electrical variable. This naturally
leads to powerful modeling strategies as we demonstrated in
practice in Secs. III and IV. An obvious next step would be to
combine the interface information derived from first prin-
ciples with higher-level “effective Hamiltonian” descriptions
of the ferroelectric film,43,44 in order to describe phenomena
that involve larger length and/or time scales �e.g., ferroelec-
tric switching�.

Effective-Hamiltonian approaches have been used quite
intensely in the past few years to investigate size effects in
ferroelectric nanostructures45–48 such as films, wires, and
dots. Generally, the effective Hamiltonian is formulated and
fitted in order to describe bulk behavior, as follows. One first
identifies a reduced set of local-mode variables to describe
the amplitudes of the soft ferroelectric mode and strains
within each unit cell. Then a model of the energy, written as
an expansion in these local-mode degrees of freedom, is con-
structed, and the parameters in the expansion are fitted to a
database of first-principles calculations. Among the param-
eters determined in this way are some that correspond to
short- and long-range dipolar interactions. The finite-
temperature statistical behavior of the system can then be
simulated using Monte Carlo or molecular-dynamics tech-
niques.

In order to simulate a nanostructure, the effective Hamil-
tonian description is typically applied without modification
to a 2D, 1D, or zero-dimensional �0D� system. This approach
has allowed for important conceptual advances, for instance,
by elucidating the properties of polarization vortices in nano-
disks and nanorods;47 in such configurations the lower di-
mensionality is largely responsible for the peculiar behavior.
However, in the case of 2D systems such as ferroelectric
superlattices or thin-film capacitors, an important conclusion
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of our work is that the fine details of the interface bonding
and electrostatics are crucial to determining the overall
physical behavior of the system. In that sense, the simple
abrupt truncation of the dipolar interactions30 which is as-
sumed in the Heff simulations discussed above may fall short
of faithfully reproducing the overall response of a realistic
device.7 Including the interface-specific information in a
thin-film effective-Hamiltonian model would therefore be
very desirable.

For example, for a given interface, one could evaluate the
interface EOS of the Heff at zero temperature �T=0� and
compare with the one computed ab initio using the methods
described in this work. One could then modify the param-
eters of the Heff in the vicinity of the interface until the T
=0 interface EOS agrees with the first-principles one. This
would then enable one to answer important questions that
cannot be directly addressed from first principles. For ex-
ample, what is the temperature dependence of the interface
equation of state? Or, what is the impact of the electrode on
the stability of the monodomain state versus a polydomain
one? Finally, by making use of the locality principle dis-
cussed in this work, it would be relatively easy to analyze the
Heff results and compare them to the fully first-principles
values with significant benefit for both theories. To substan-
tiate these arguments, in the following we shall briefly dis-
cuss two selected Heff works that are particularly relevant in
light of our proposed strategy.

In Ref. 48, Bin-Omram et al. investigate the impact of
electrical and mechanical boundary conditions on the polar-
ization and strain of BaTiO3 and Pb�Zr,Ti�O3 �PZT� films.
For a BaTiO3 film at a 2.0% compressive strain, which
roughly corresponds to the SrTiO3 substrate assumed in our
calculations, the authors of Ref. 48 find a spontaneous polar-
ization that increases for thinner films with a value of
0.56 C /m2 at a thickness of 6 unit cells. This is qualitatively
similar to the effects we discussed in Sec. III for
Pt /BaTiO3 /Pt capacitors although significantly larger in
magnitude. We stress that such an enhancement is far from
being a systematic property of electroded BaTiO3 films;7 as
we suggested above, the surface terms in Heff should be
adapted to the specific electrode interface on a case-by-case
basis.

In Ref. 49 the authors report that 2D, 1D, and 0D ferro-
electric nanostructures are characterized by “dielectric
anomalies” in the form of a negative internal susceptibility
��int�. It is not unreasonable to think that the surface-induced
enhancement of the ferroelectric instability, which is built
into most Heff thin-film models, may be largely responsible
for the reported negative ��int� in the 2D case. Note that ��int�

is defined there as an average over the volume of the film,
unlike our definition of the local dielectric permittivity
��x�,50 which was introduced in Refs. 16 and 20. This further
highlights the conceptual advantage of rigorously separating
bulk and surface/interface effects by performing a local
analysis rather than global averages. Overall, we believe that
the methods developed in this work open interesting avenues
for the accurate simulation of ferroelectric nanostructures
within the Heff framework.

D. Interpretation of experimental data

In this section, we ask how one might best make contact
between an experimental set of electrical measurements on a
series of thin-film capacitors of varying thickness on the one
hand and the analysis tools we developed in Secs. III and IV
on the other. Of course, it is best if the experiment can ap-
proach intrinsic conditions insofar as possible. For example,
the experimental film should ideally be in a monodomain
state. This may be hard to achieve in short circuit, as depo-
larizing effects might induce a multidomain state6,51 but of-
ten may be obtained by applying a dc bias to the capacitor as
in Ref. 32. Also, the film should be as free as possible from
space charges arising from charged defects or trapped carri-
ers, which may contribute to band-bending effects not con-
sidered in the theory.

Our first prediction is that there exists a value of the ex-
ternal bias, A1

I that yields the same value d0 of the spontane-
ous electric displacement regardless of the film thickness
�provided that the interfaces and the film quality are similar�.
Our second prediction is that, around this bias value, the
inverse capacitance of the films should scale linearly with
thickness with the coefficient of proportionality being di-
rectly related to the bulk permittivity. Assuming a small
range of biases around A1

I , we can discard the third-order
coefficients A3 and write

�̄N�d� = A1
I + �d − d0�A2

�N� �47�

with

A2
�N� = A2

I + NA2
b. �48�

We end up with three coefficients that describe the electrical
properties of the capacitors and their dependence on thick-
ness.

To obtain this information, we believe it is best to repre-
sent the data in a �P , �̄� plot as in Fig. 11 rather than a �P ,E�
plot as is usually done �note that �̄ corresponds to minus the
applied bias potential V�. In this way, one obtains direct vi-
sual insight into the existence of a common intersection point
�P0 ,A1

I �. Note that the bulk A2
b coefficient provides, as a

byproduct, useful information on the dielectric properties of
the film through Eq. �39�, as it is independent of the specific
interface. �In principle, it depends only on the applied strain
due to epitaxial matching and of course on the operating
temperature.� By combining Eqs. �47� and �48� we obtain,
for the spontaneous polarization of a short-circuited capaci-
tor of a given thickness N

P0
�N� � P0

�b� − �4�

S

 A1

I

A2
I + NA2

b . �49�

Note that, in typical phenomenological models, the interface
is treated as a linear dielectric, which implies A1

I =d0A2
I . A2

I is
related to the interface capacitance CI and to the effective
screening length �eff by
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1

2
A2

I = CI
−1 =

4�

S
�eff. �50�

The factor of one-half on the left-hand side relates to the
assumption of two equivalent interfaces with identical elec-
trical properties.

VI. CONCLUSIONS

We have developed a comprehensive methodological
framework for the computation and analysis of ferroelectric
capacitors with realistic electrodes. Our method is based on
density-functional theory and on recently-developed tech-
niques for performing calculations at a given value of the
electric-displacement field. By making a rigorous separation
between the interface and bulk contributions to the electrical
equation of state of a capacitor, we obtain a compact model,
of full first-principles accuracy, for the electrical �and piezo-

electric� response as a function of bias potential and thick-
ness. We expect these advances to facilitate the comparison
of theory with experimental data. We also hope that it will
stimulate a fruitful interaction with other theoretical ap-
proaches based, e.g., on Landau theory or effective Hamilto-
nians. Application of similar strategies to investigating the
interface coupling between electric polarization, magnetism,
and other structural degrees of freedom �such as octahedral
tilting� that were not considered here are under way.
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