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Quantum theory of mechanical deformations
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We construct a general metric-tensor framework for treating inhomogeneous adiabatic deformations applied
to crystalline insulators, by deriving an effective time-dependent Schrodinger equation in the undistorted frame.
The response can be decomposed into “static” and “dynamic” terms that correspond, respectively, to the ampli-
tude and the velocity of the distortion. We then focus on the dynamic contribution, which takes the form
of a gauge field entering the effective Hamiltonian, in the linear-response limit. We uncover an intimate
relation between the dynamic response to the rotational component of the inhomogeneous deformation and the
diamagnetic response to a corresponding inhomogeneous magnetic field. We apply this formalism to the theory
of flexoelectric response, where we resolve a previous puzzle by showing that the currents generated by the

dynamic term, while real, generate no bound charges even at surfaces, and so may be dropped from a practical

theory of flexoelectricity.
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I. INTRODUCTION

Mechanical deformations are among the most basic per-
turbations that can be applied to a crystalline solid, and their
response is at the origin of many basic materials functional-
ities, such as elasticity or piezoelectricity. The development
of theoretical approaches to calculate and predict these prop-
erties from first principles has marked notable milestones
for modern electronic-structure theory, paralleling the equally
important development of density-functional perturbative ap-
proaches to lattice dynamics. In the case of uniform deforma-
tions, methods to compute the relevant response coefficients
are now well established, and part of the most popular sim-
ulation packages that are available to the public. Yet, with
the rising interest in flexoelectricity, and more generally in
functionalities that depend on the gradient of the strain field
rather than on the strain itself, the existing computational
approaches are of limited applicability, and their generaliza-
tion to cases where the deformation is inhomogeneous appears
far from obvious.

Flexoelectricity, describing the polarization response of a
crystalline insulator to a strain gradient, has received consider-
able attention in the past few years because of its fundamental
interest and potential relevance to energy and information
technologies. Recent advances in first-principles methods
have given a considerable boost to the field. The theoreti-
cal understanding of flexoelectric phenomena, however, still
presents daunting conceptual and practical challenges, many
of which are still unresolved. The purely electronic (clamped-
ion) contribution to the flexoelectric response, for example, is
riddled with subtleties, and proper methodologies to compute
it in the most general case are still missing. (Lattice-mediated
effects are comparatively much simpler to understand, both
conceptually and computationally; they consist of the dy-
namical dipoles produced by the internal relaxations of the
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primitive cell, and bear many analogies to the point-charge
model proposed by Tagantsev [1] long ago.)

The main issue resides in that, in order to define the
transverse components of the clamped-ion flexoelectric tensor
at the bulk level, one needs, in principle, to access the micro-
scopic polarization response to a variety of lattice distortions
(e.g., long-wavelength acoustic phonons, or displacements of
an isolated atom). Indeed, treatments based on the Berry-
phase formula are ruled out because a strain gradient breaks
translational periodicity; charge-density-based theories are
not viable either, as they yield only partial information on the
flexoelectric tensor components. Calculating the microscopic
polarization response implies establishing a time-dependent
perturbative framework, where the quantum-mechanical prob-
ability current is monitored in the course of a slow distortion
of the crystal. Such a procedure, however, falls outside the
capabilities of the publicly available electronic-structure pack-
ages. An implementation of the current-density-based theory
of flexoelectricity has only very recently been presented in
Ref. [2]. This implementation required the resolution of some
challenging formal issues regarding the current-density re-
sponse to a macroscopic deformation. A brief account of those
issues was given in Ref. [2], but is described more thoroughly
and in greater depth in the present paper.

The first, obvious, question concerns the physical rep-
resentation of a microscopic observable, such as the elec-
tronic probability current, in a context where the boundary
conditions of the Hamiltonian change in the course of the
transformation. In a nutshell, even if we limit our attention
to the simplest case of a uniform strain (these issues become
all the more severe if the deformation is inhomogeneous),
the atomic distortion pattern that one needs, in principle,
to apply in order to strain the crystal grows linearly with
the distance from the origin. (Recall that the macroscopic
strain is related to the first gradient of the displacement field.)
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This has two undesirable consequences: (i) the perturbation
(and hence all the microscopic response functions associated
with it) is nonperiodic and origin-dependent, even if both
the initial and the final state enjoy translational periodicity;
(i1) the perturbation is never small at the boundaries of a
large crystallite, which complicates its treatment within linear-
response theory. In Ref. [3] the above problem was elegantly
solved by combining the macroscopic deformation with a
simultaneous coordinate transformation. This way, one can
encode the strain field as a change in the metric of space while
the atoms remain at their original locations, thereby removing
the need for a nonperiodic and unbound lattice distortion.
Also, the transformed coordinate system naturally leads to a
sound definition of microscopic response functions, such as
polarization, charge density, and local electric fields.

The second conceptual issue is even more subtle, and
consists of making sure that the fundamental response quan-
tities of interest (e.g., the flexoelectric polarization) are well
defined, i.e., that they are independent of the rotations or
translations that were applied to the crystal in the course of
the deformation. This is required by a proper [4] theory of
electromechanical phenomena, which should depend on phys-
ically meaningful changes in the relative distances between
neighboring material points, and not on their absolute position
with respect to some arbitrary coordinate frame. In order to
make the problem tractable, in Refs. [3,5] we had to make
some simplifying assumptions on how the electronic currents,
J(r), respond to a rigid rotation or translation of the crystal
lattice, by postulating that

J(r) = v(r)p(r),

where p is the charge density and v is the velocity of the
material point r imposed by the rototranslation. This is akin
to assuming that the electronic cloud behaves as a classi-
cal charge distribution that is equal to the true quantum-
mechanical one. As we shall see, this is indeed correct in
the case of translations, but not in the case of rotations,
where there is a further contribution to the current that we
neglected in earlier works. It turns out, however, that this
additional piece is curl-free, so it is unclear whether it affects
the results. Settling this point appears as a clear priority:
the theory of flexoelectricity, as it stands, crucially relies
on this assumption in order to define [3] and calculate [6]
the transverse components of the bulk flexoelectric tensor. A
fundamental theoretical framework, where the microscopic
polarization currents are derived within a proper quantum-
mechanical treatment of deformations, is needed in order to
firm up the results obtained so far, and thereby pave the way
towards future developments in the field.

Here we attack this problem from its very root, by
incorporating coordinate transformations directly into the
time-dependent Schrodinger equation. This allows us to per-
form a formal analysis of the electronic probability cur-
rent that develops in the course of an arbitrary mechanical
deformation, and thereby to identify the relevant physical
contribution to the polarization response in the most general
case. Interestingly, we find that a nonuniform deformation is
generally accompanied by “gauge currents” produced by local
rotations of the sample. These currents are divergenceless and
correspond to the circulating diamagnetic currents generated

by an applied magnetic field (B). This result is explained
heuristically by recalling Larmor’s theorem, which relates the
Lorentz force on a charged particle in a uniform B field to
the Coriolis force on a massive object in a uniformly rotating
frame. By performing a long-wavelength analysis in the limit
of small deformations, we demonstrate that the bulk flexo-
electric tensor has a contribution from these gauge fields that
is proportional to the bulk diamagnetic susceptibility of the
material. Remarkably, such a contribution is exactly canceled
by an equal and opposite surface term. One is therefore free
to remove this term from both sides, leaving a description
of the flexoelectric polarization that is consistent with the
charge-density-based strategy of Ref. [6].

The present results demonstrate, once more, the intimate
connection between surface and bulk contributions to the
flexoelectric effect, and the intriguing connections between
the latter phenomenon and other, apparently unrelated, areas
of research (in this case, orbital magnetism). In addition to
providing a firm foundation to the existing theory of flexo-
electricity, we also provide an explicit derivation of how a
generalized (and time-dependent) coordinate transformation
of space is reflected in the most basic quantum-mechanical
operators, such as the Hamiltonian or the probability current.
This can be of immediate usefulness to a wide range of
physical problems, within and beyond [7] the specific context
of this work.

Note that describing deformations in terms of coordinate
transformations in a quantum mechanical context is a strategy
that already has a relatively long history [8—14]; our approach
has several points of contact with these works. It also has
a broad similarity in spirit to the theory of general relativ-
ity [15,16]; indeed, in the latter context, the problem of an
electron evolving in a curved spacetime has been studied at
length [17-19]. The derivations presented in such works, how-
ever, are oriented to the Lorentz-invariant framework, which
is not appropriate to the solid-state context. We are, instead,
interested in the behavior of the nonrelativistic Schrodinger
equation under a time-dependent deformation of space, which
is not treated in such theories. A derivation of the low-velocity
limit that, in principle, fits our scopes can be found in Ref. [20]
and others [21], but the class of transformations that are
considered there is restricted to rotations and boosts. Our
approach is more general, and recovers the results of Ref. [20]
as special cases (see Secs. II B 1 and I B 2).

II. GENERAL THEORY

We shall consider a generic time-dependent deformation of
the crystal lattice, where all atoms move from their original
location, R, according to a continuous vector function of
space and time, r(§, 1),

R, (1) =r (R}, 1). 1))

(Recall that « and [/ are sublattice and cell indices, respec-
tively.) The physical effects of the deformation described by
r(&, t) are best treated by operating an analogous coordinate
transformation that brings every atom back to its original
position [3]. This means that the atoms are immobile in the
(generally curvilinear) & frame, but the frame itself evolves
with respect to the Cartesian laboratory frame. All the effects
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of the mechanical perturbation are, in other words, encoded
in the metric of the deformation, rather than in an atomic
displacement pattern.

To see how the metric change affects the electronic Hamil-
tonian, it is useful to introduce a number of auxiliary quanti-
ties that will come handy later in the derivation. The first is
the so-called deformation gradient,

or;
hia = _r
08y

The determinant of the deformation gradient, & = det(h),
gives the local volume change with respect to the unperturbed
lattice configuration. From the deformation gradient we can
construct the metric tensor,

2

8r,- Bri
8op = 7 = highip = (WTh)yp, 3

which is another central quantity of the formalism; its de-
terminant is g = det(g) = h2. (Here and in the following
we use an implicit sum notation on indices, with Roman
and Greek indices used for Cartesian and curvilinear frames,
respectively.)

We shall define the wave functions in the deformed space
in such a way that they comply with the basic orthonormality
requirements. This means writing

() =h~ "2 E). )

It is easy to show that the wave functions v are orthonormal
in the Cartesian space provided that the “curvilinear” wave
functions v are orthonormal in the & space,

/ d’r Yl ()Y (r) = / d’r kP E@)) YL (ET))

= / d°E U ()P (6). S

Note that we shall work in a time-dependent context, which
is necessary in order to be able to discuss the polarization
response. In doing so we assume

Y, t)=h""2 P&, 1), ©)

i.e., the phase evolution of 1 is locked to that of 1. The choice
of the phase relation between ¥ and ¢ is mostly a matter
of convention, and can be regarded as a “gauge freedom” of
the transformed wave functions. Indeed, one could postulate
Y(r,t) =eYh™2 (&, 1), where ¢ is an arbitrary function
of space and time. While the physical conclusions should
not depend on ¢, the specific form of the time-dependent
Schrodinger equation in the comoving frame does. In partic-
ular, unfamiliar terms may arise in the Hamiltonian whose
physical interpretation needs some caution; we shall briefly
discuss an illustrative example in Sec. II B 1.

In the following sections our goal will be to start from
a conventional Schrodinger equation, written in Cartesian r
space, and progressively work out the curvilinear version in
& space, where the electronic wave functions are described

by V.

A. Time-dependent Schrodinger equation

The time-dependent Schrodinger equation can be written
in the original Cartesian frame as

2

;9 t-—PV +V t} t 7
zgwu,)— > (r, 1) |y(r, 1), @)

where we have set i = m, = 1. Multiplying through by /A
and carrying out the coordinate transformations, this becomes
(the detailed derivations can be found in Appendix A),

a - 5
i — ¥ =HY, 8
i ¥ 12 ®)
where the new effective Hamiltonian operator,

H =3P — Ap)E™ (By — A+ V + Veeom — 30, (9)

contains contributions arising not only from the potential and
kinetic terms on the right-hand side of Eq. (7), but also from
the time-derivative term on the left. Here pg = —id/d&z in-
dicates the canonical momentum in curvilinear space, g#7 =
(g’l)ﬁy is the inverse metric tensor, V(&,1) = V(r(£,1),1)
is the external potential represented in the curvilinear frame,
and we have introduced a number of additional quantities.
First, the “geometric” scalar potential Vyeom originates from
the kinetic energy operator, and reads as

Vgeom = %AﬂgﬁyAy + %aﬁ(gﬂyAy)v (10)

" 1 0h _10In(h)
“ T 2h0E, 2 &,

an

(Note the close relationship of the auxiliary field A, to the
contracted Christoffel symbol.) Second, we have a further
scalar and vector potential field originating from the time
derivative,

8r,- Bri
= ——, 12
¢ at ot (12)
ar; dr;
L= dnon| (13)
98, ot |,

Interestingly, both A and ¢ have the same form as the metric
tensor elements in Eq. (3), except that one or both real-space
indices have been replaced here with time. Equation (9),
together with definitions (10), (11), (12), and (13), constitutes
one of our central results.

The present theory of deformations bears an intriguing
similarity to electromagnetism, as in both cases the electronic
Hamiltonian acquires a gauge-dependent vector and scalar
potential contribution [see the discussion following Eq. (6)].
We shall see in the following that both A and ¢ have classical
counterparts in the fictitious forces that appear in the noniner-
tial frame defined by the coordinate transformation.

B. Physical interpretation

To see the physical interpretation of the new terms appear-
ing in the Schrodinger equation, it is useful to work out a
couple of simple examples.
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1. Galilean transformations

Consider a transformation of the type
r=£+v, (14)

where v is a vector constant with the dimension of a velocity.
We have hqp = gup = 8up, Ay = 0, and A, = v,. The result
is

32— Lom f+<v 12)~
i at_zmp—mv-p—mvyf —zmv v,

15)

where we have reintroduced the factors of electron mass, m,
and 7 to better illustrate the physical meaning of the various
terms. We have also used the fact that the potential in the
comoving frame (i.e., we assume here that the crystal is
uniformly moving with respect to the laboratory frame with
the same velocity v) is independent of time and equal to the
potential of the lattice at rest.

To see that Eq. (15) is reasonable, consider a free particle
Y (r, 1) = e'0Temio! with fiwy = p3/2m and py = fhiqp in
the original frame. Classically, the particle has momentum
Po — mv as seen from the moving frame. Equation (6) gives its
transformed wave function to be ¥/ (£, 1) = /% (@0—ao V)1
which is easily verified to satisfy Eq. (15). The first term
of Eq. (15) is just the kinetic energy (po — mv)*>/2m as
seen from the comoving frame; the extra —mv? /2 term is,
however, problematic to the extent that it implies that the
energy in the transformed frame cannot be associated with
the expectation value of the Hamiltonian operator. (Note
that the particle velocity is correct, even if the transformed
wave function appears to have the “wrong” phase at first
sight.)

The fact that the curvilinear-coordinate Hamiltonian does
not reproduce the correct kinetic energy in the comoving
frame may appear at first sight as a serious limitation of the
present theory. To ensure that this is not a real issue in the
context of this work, some additional words of comments
are in order. First, note that the Galilean covariance of the
Schrodinger equation is not automatic, but requires a spe-
cific assumption about the phase of the transformed wave
function. We could have certainly used such a prescription
in Eq. (6), and this would have restored the standard form
of the Schrodinger equation in the uniformly moving frame.
However, this would have been of little help in the context
of more general displacement fields (e.g., nonuniform in time
and/or space); in such cases it is not possible to reabsorb
the new gauge potentials with a phase shift. Second, solving
these issues is not essential to the scope of this work. As we
shall see shortly, we shall either be concerned with the static
energy of the system, or with the dynamical evolution of the
wave functions up to first order in the velocity; neither of
these is affected by the spurious O (v?) term that stems from
the “dynamic scalar potential” ¢. Further delving into these
intriguing fundamental issues, while desirable in a general
context, would bring us far from our present focus, and
therefore we regard this as a stimulating subject for future
investigation.

2. Rotating frame

Consider now a transformation of the type
r=R()§, (16)

where R(7) is a 3 x 3 matrix describing a rotation about a
given axis 6. We have

haﬁ = Rctﬂa h = 15 (17)

which implies that g;; = g"/ = §;;, and that A; = 0. On the
other hand, we have

A=wxE&, (18)

where w is the pseudovector whose direction coincides with
@, and whose modulus indicates the angular velocity. This
can be easily seen by writing an arbitrary rotation matrix in
exponential form,

Ry ="V, L) — —c7d, (19)

and by observing that A = RT R(r) £. We have

ih% = [ﬁ(p —mw x &>+ V(E) - %m(w X ‘;‘)2};.

(20)

The Hamiltonian of the system in the rotating frame of
reference is, therefore, identical to that of the system at rest
except for two additional terms: a gauge field and a quadratic
potential term. The latter is unbound from below; it diverges
like —p?, where p is the distance from the rotation axis. These
two terms have direct classical interpretations as the fictitious
forces (respectively, Coriolis and centrifugal) that appear in
the noninertial rotating frame of reference. It is interesting to
observe that the Coriolis force enters the Hamiltonian in the
exact same way as a uniform magnetic field, with the only
difference that the former acts on the particle mass, while the
latter on its charge. A magnetic field, in particular, can be
described by a gauge field of the type

_41
2c

The above derivations show that we can obtain the same phys-
ical consequences (at first order in the perturbation amplitude)
if, instead of applying a magnetic field, we rotate the system
with an angular velocity equal to

B x &.

w=-18 1)
2mc
This is, of course, the Larmor frequency. Thus, in the special
case of a rigid rotation, our theory correctly recovers Larmor’s
theorem in its known quantum-mechanical form [22].

C. Current density

The above derivations provide a general picture of how
the electronic Hamiltonian is modified by an arbitrary time-
dependent deformation. Since our main motivation stems
from flexoelectricity and, more generally, from the description
of electromechanical phenomena, in this subsection we shall
give special attention to the electronic current density. This
is necessary in order to extract useful information on the
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electric polarization that develops in an insulator following a
mechanical deformation.

First of all, we postulate a formula for the current density
that is associated with the Hamiltonian of Eq. (9),

Jg(§, 1) = =38P (—ig*a, ¥ +ivo, ¥ — 24, ¥ %). (22)

Note that f,g (&, t) describes the current density in the curvi-
linear frame; this means that the “convective” contribution,
due to the displacement of the coordinate frame itself with
respect to the laboratory, is not included. For instance, in the
limit of a rigid rototranslation, the laboratory current J is given
by J = R -J + vp, where R is a rotation matrix, v = ¥ is the
velocity, and p the charge density.

Now, we shall proceed to demonstrate that this formula
is indeed correct. By “correct” we mean that the probability
current satisfies two criteria, namely (i) the continuity equa-
tion, and (ii) the known transformation laws of the classical
four-current in the nonrelativistic limit.

1. Continuity equation

We need to show that

0 ~

—p| =—-Vi-J, 23

p t,OE g J (23)
where § = —|/|*> is the electronic charge density in the

curvilinear frame. The proof proceeds along the same lines
as in the textbook case of a standard electronic Hamiltonian
in the presence of a vector potential field. In particular, one
needs first to multiply both hand sides of Eq. (9) by V/*(&, ),
and then focus on the real part of the equation by summing
each term with its complex conjugate. One is left with the
time derivative of (&, ) on the left-hand side; after a few
manipulations, it is not difficult to show that the right-hand
side corresponds to —V - J. The only difference with respect
to the textbook derivation consists of the presence of the
inverse metric tensor, both in the kinetic energy operator of
Eqg. (9) and in Eq. (22); however, this does not entail any
special complication in the algebra.

As a note of warning, one should keep in mind that the
proof of Eq. (23) is valid only under the key assumption that
the external potential applied to the electrons is local. Thus,
the form of the current density as written in Eq. (22) is inade-
quate in cases where nonlocal pseudopotentials are adopted in
the calculation [2]. This issue, however, is not specific to the
present theory of deformations (it complicates the definition
of the current density already at the level of the standard
Cartesian-space Schrodinger equation), and discussing it in
detail would lead us far from the scope of this work.

2. Transformation laws

‘We next check whether the definition of the current density
that we postulated in Eq. (22) is compatible with the known
Galilean transformation laws of the four-current, which is
defined as J* = (p, J1, J2, J3). In particular, J# transforms
as a contravariant vector density,

- axH
JH =
oxY

v -1 9x”
J" det , (24)

0x°

where x* = (¢, x1, x2, x3) is the coordinate four-vector and
the barred (unbarred) symbols refer to the deformed (original)
frame. In our special case of a nonrelativistic mechanical
deformation, we have 7 = ¢, and the time is independent of the
space coordinates. By letting the barred and unbarred space
coordinates span the Cartesian r space and the curvilinear &
space, respectively, we obtain

p=h""p, (25)

ar, -
7 =n! (ﬁa—t’ + h,ﬂjﬂ) (26)

The transformation law for the charge density is satisfied by
construction; we need to prove that the same is true for the
current density.

To that end, we write

- ory,

1 1, — . Tk 7 . 7 Tk Y/
Jﬁ = _Ehﬁllhy;(_lw 3yll’+lway1/f _th)’ ot |w|2>’
@7

where we have expanded the symbols g#” and B, . By observ-

ing that h;,i, 0, = 0/0r,,, this can be conveniently rewritten as

NN A T R P
Jo= —sni (—igr Y g 2%y
A ﬁl( i ar; ! 8t| |

2 37‘[
31’[
=hh ', ——p), 28
pl ( 175 > (28)
where
Lo o . oy”

Jy=—=|—-iy*— 29
! 2< llﬂ 3}’1+lw 37‘1) ( )

is the probability current in the Cartesian frame. This is fully
consistent with Eq. (26), thus completing the proof.

III. BULK ELECTROMECHANICAL RESPONSE
IN THE LINEAR REGIME

In order to make contact with the linear-response ap-
proaches used to describe phenomena such as piezoelectricity
and flexoelectricity, we shall consider, in the following, a
continuous deformation that starts from the unperturbed state
at t = 0, and occurs slowly enough that it can be considered
small during a finite interval of time following ¢ = 0. In such
a regime, we can write the elastic deformation as

r=§+u@,1), (30)

where both the displacement field, u, and its time derivative
(velocity) are small. (This means that, in the linear limit,
all terms that are proportional to u?, uu, etc., can be safely
dropped.) We shall also suppose that the deformation is
smooth on the scale of the interatomic spacings. This implies
that only the lowest-order gradients of the displacement field,
u(g, r), are physically relevant. Finally, as a reminder, note
that we shall only deal with “clamped-ion” deformation fields;
i.e., we suppose that every atom in the lattice is displaced by
hand according to Eq. (1), and neglect any further relaxation
of the individual atomic sublattices. (Atomic relaxations are,
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of course, of central importance for a quantitatively correct de-
scription of the electromechanical response. However, lattice-
mediated effects are conceptually simpler to understand, and
have been extensively studied in earlier publications. Here we
shall only focus on the purely electronic response.)

A. Reciprocal-space analysis

Without loss of generality, we can represent u(&, ) in
Fourier space as a superposition of monochromatic perturba-
tions,

u. 1) =) u(q, et 31)

qo

In such a representation, the above conditions on adiabaticity
and smoothness can be formalized by requiring that u(q, »)
appreciably differs from zero only for small values of ¢ = |q|
and w. In order to derive the electromechanical properties, we
shall be concerned with the electrical current density as given
by Eq. (22), which can be conveniently represented in Fourier
space as well,

JE.0) =3 g wpe vt (32)

qw

[For a monochromatic perturbation at a given ¢ the mi-
croscopic polarization response, J(&, ), generally contains
all Fourier components of the type G + q, where G is a
vector of the reciprocal-space Bravais lattice. Here we shall
focus on macroscopic effects only, which are encoded in the
G = 0 component.] Then one can write the relevant coupling
coefficients as the linear relationship between u and J,

J(q, 0) = xV(q, ») -u(q, w), (33)

where xP(q, w) is a 3 x 3 tensor.

To see how the physical information contained in
x (q, w) relates to the electromechanical (polarization re-
sponse to a deformation) properties of the crystal, it is useful
to recall the relationship J = —iwP, where the polarization
P has been Fourier-transformed as in Eq. (32). Then, one
can immediately write, for the polarization response in the
curvilinear space,

P(q, ») = xP(q, 0) - u(q, ), (34)

where we have introduced the electromechanical response
function

p i
X( ) — _X(J)~ (33)
1)
Finally, one obtains the static clamped-ion electromechanical
response as the adiabatic w — 0 limit of the above,

@)
xP@ = x Vg0 =0) =i XL
dw =0

This procedure reflects the fundamental physical nature of

the electrical polarization, which is understood as the time

integral of the transient current density that flows through the

sample in the course of an adiabatic transformation of the
crystal.

Note that x®)(q) has a direct relationship to the po-

larization response tensors that were considered in earlier

works, e.g.,

Xeg (@ =Y Py . (37)

where FZ’K/S describes the contribution of a modulated dis-
placement (along B) of the atomic sublattice « to the macro-
scopic polarization along « (see Eq. (13) of Ref. [23]). (The

nuclear point charges are included in ?g,l(ﬂ’ following the

original definition [5,23], while they are absent from X(S;) by
construction; in the curvilinear space, the atoms do not move
from their original location, and hence do not produce any
current therein.)

B. Perturbation theory

To calculate x“ in a quantum-mechanical context, we
shall first derive (in real space) the current-density response to
a monochromatic perturbation of the type u(r, t) = Le'4T=i%!
and subsequently select its lowest Fourier component, as
required by the present macroscopic context. Even if the
following derivations will be carried out in curvilinear space,
as there is no longer a potential risk of confusion we shall
indicate the real-space coordinate as r and omit the “7”
symbol henceforth.

Consider the unperturbed single-particle density operator,

PO = S )0 )

n

where /(9 (r) are eigenstates of the unperturbed Hamiltonian,
Oy ) = 0] yO), (39)

(£ indicates the occupation of the state, which is either 0
or 1 for an insulating crystal in its electronic ground state.) In
the presence of the perturbation, the dynamical evolution of
the density matrix is described by the single-particle Liouville
equation

mz—? — [H(1), P, (40)

where F(r) is the curvilinear-frame Hamiltonian of Eq. (9).
(Earlier derivations of the first-order adiabatic current based
on the single-particle density matrix can be found in Refs. [24]
and [25].) Then, we can rewrite the current density of
Eq. (22) as

Jo(r, 1) = g Te(JsP), (41)

where g“ﬁ, as usual, refers to the inverse metric tensor (im-
plicit summation over § is assumed), the sum runs over the
valence wave functions, and we have introduced the “curvi-
linear” current-density operator Tt

_ pplr)(r| + r)(r|pg
2

The minus sign appears, as in Eq. (22), because in our units the
charge of the electron is —1. Note that 7, explicitly depends
on space and time via the effective gauge potential A(r, ¢) of
Eq. (13). Time dependence is also implicitly present in P via
Eq. (40).

jﬁ(r’ t) =

+ r) A (r, 1)(r|.  (42)
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In the linear regime, we can expand both operators, 7 and
‘P, in powers of the displacement amplitude, A,

Ju =T + 1T 4 (43)
P = PO 41,P00 + (44)

where the dots stand for higher-order terms that have been
dropped. By incorporating the above expansions into Eq. (41)
we readily obtain

3Ty (r, 1)

9 = Tr(j;mhg(m) + Tr(jw(mﬁuﬂ)).
B

(45)
[Note that the inverse metric tensor of Eq. (41) also depends
on Ag, which in principle would generate an extra term;
however, one can easily see that the first-order expansion
of g*# does not contribute to the current density in a time-
reversal-symmetric crystal; there are no circulating currents
in the ground state. Thus, in the present context g*¥ can be
safely replaced with a Kronecker delta.]

The expansion of the current-density operator of Eq. (42)
is relatively straightforward after observing that, in the linear

limit, Eq. (13) gives A = i = —iwke!9T~/“"; we obtain
ja(O)(r) — _pOL'r)(rl "; |r><r|pa, (46)
()‘f‘) iqr—iot
(r,t) = —iwdyg|r)e (r|. 47)

At order zero, we correctly recover the standard textbook
expression for the current-density operator in a Cartesian
space, which does not depend explicitly on time, while at first
order we have a real-space projection operator times some
complex prefactors. The only remaining task is now to derive
an explicit formula for the first-order density matrix, P*#),
which we shall do in the following paragraphs.

By linearizing the Liouville equation, Eq. (40), and by
assuming that the time dependence of the response is the same
as that of the perturbing field, we easily arrive at

POy = A = f)

€, —€n + 0

(48)

where we have dropped the superscript “(0)” on the wave
functions, eigenvalues, and occupancies to simplify the no-
tation, and H*#) relates to the expansion of the Hamiltonian
operator in powers of A,

H=HO + 1AM + (49)

(An explicit expression of H*#) will be derived shortly.) We
thus arrive at a closed expression for the current density of
Eq. (49),
dJa(r, 1)

dAg

— iwaaﬁeiq-r—iwtp(o)(r)

iy Wl TO @) W) (W[ A1) (fr — fon)

€, — €y +w

. (50)

where p©(r) = — 3" |, (r)|? is the ground-state electronic

charge density.

We shall now filter out the macroscopic component of the
response at wave vector q and eliminate the trivial phase
factor of e~'*". After performing both operations, we obtain
the desired current-response function as a Fourier transform,

O el 1 _iqr0Ja(r, 1)
X8 (q, ©) = / d’re 9T ———=, 51
; Q cell 3)\/3
By combining Eq. (51) with Eq. (50), we arrive at
Xap (q, @)
N .
= —lwaaaﬁ =+ elwt
70) F0-0) _
y Z (Yl T (@Y ) (Y| V) (fn f}n)7 (52)

— €, —€nt+ o
where we have introduced the reciprocal-space representation
of the unperturbed current-density operator

I0@ = - [
_§/d3r pa+ )

and N is the number of valence electrons in the primitive cell.
As a last step, it is useful to bring Eq. (52) into a simpler
form by observing that the occupation factor (f, — f,,,) only
selects cross-gap matrix elements. Thus, we can introduce the
first-order wave function response to the perturbation at the
frequency w as a sum over conduction states (c) only,

zqrpa_,r_p e—iar

e*f‘l'f, (53)

LH(A ’ v
— leZhhc 1/f| ﬂ(qw)|1ﬂ>

(Ap)
" (g, © p———

. (54

where we have made the (q, w) dependence of the first-order
Hamiltonian explicit, and rewrite Eq. (52) as a summation
over valence states (v),

Xep (@ @) = =i aa,g+2{ Wl IO @|v" (g, @)

(Ap)
+ (2 (—q. —)| [T ] W) 59)
To arrive from Eq. (52) to Eq. (55) we have used the following
general property of any first-order Hamiltonian that is associ-
ated with a monochromatic perturbation,

(HV(q, w)]' = AV (—q, —w), (56)

which follows from the continued Hermiticity of H(r, 1) in
the presence of the perturbation. Note that the current operator
is related to the first-order Hamiltonian in the presence of an
electromagnetic vector potential field, A,

JO(q) = —[A (@)1,

This means that Eq. (56) holds for the current operator as well,
thus completing the proof of Eq. (55).

In summary, the heavy algebra of this section has provided
us with an important result for the current response function,
Xaﬂ) To clarify what we have achieved so far, it is useful to

(57)
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rewrite Eq. (55) as
) __. N .
Xop (@ @) = —iw=dap + Fap(q. ©) + Fop(—q, —w),
(58)
where the auxiliary functions Fg can be expressed as sums
over occupied-state indices only,

Fup(@.0) = > (Wl TOW@| v (@ o). (59)

v

At first sight, our progress towards a numerically tractable
theory might appear only cosmetic, since an infinite sum
over unoccupied states is still present in the definition of the
first-order wave functions in Eq. (54). This is, in principle,
undesirable from the point of view of an implementation.
However, expressions like Eq. (54) can easily be replaced,
in the context of density-functional perturbation theory, by
computationally more palatable Sternheimer equations.

C. Frequency expansion

We shall now extract the static polarization response func-
tion, X;‘;)(q), by taking the zero-frequency limit of the current
response according to Eq. (36). Substituting Eq. (58) and
taking note of the fact that Fiz(q, w) = F;ﬂ(—q, —w), which
follows from the assumption of time-reversal symmetry, we
obtain

aFaﬁ (qv a))
dw

P

N .
Xap (@) = 8us + 2 (60)

w=0

Our next task, then, is to work out the frequency expansion
of the auxiliary function F,g(q, @), which in turn depends on
o via the first-order wave functions of Eq. (54). We shall,
first of all, separate the “static” (frequency-independent) and
“dynamic” contributions to the first-order Hamiltonian,

A (g, ) = A (@) — i0H* (). (61)

where we have set w = 0 in the first term, and collected the
remainder in the second term. (Note that there are no other
terms, e.g., dependent on w?, as we are working within the
linear approximation in the displacement field amplitude.) By
combining Eq. (61) and Eq. (54) we obtain then, for the wave
function response,

W (@ o) = [¥7 (g, 0 = 0) — iw|sy (@)

—io|p @)+ (62)

where the second and third terms originate, respectively,
from the frequency expansion of the energy denominator in
Eq. (54),

Gy (Y HO (@)1 )
|89 " (@) = —i Z W e

and of the first-order Hamiltonian, Eq. (61),

; 7 (hp)
|W§W(Q)) _ th (YelH ”_((DI%)_ (64)

. (63)

€y — €

Note that Eq. (64) is very similar in form to Eq. (63), except
for the power of two in the denominator and the factor of —i

appearing in the latter. In fact, one can show that |81/f1§)\ﬁ )(q))
is directly related to the adiabatic wave function response, at
first order in the velocity, to the “static” perturbation H*#)(q),
when such a perturbation is slowly switched on as a function
of time. To see this, one can go back to the Liouville equation,
Eq. (40), and perform an expansion in the velocity of the
perturbation, rather than its amplitude. First we write

m% — RO, PO, (65)

and use a trial solution of the type
P =~ PO + APV 0. (66)

Next, by expanding in powers of A we have, at order zero,
the usual adiabatic limit of the quantum system following its
instantaneous ground state,

(), PO = 0. (67)
Finally, at first order in i, we obtain
i, PO = [HO), PO, (68)

which after projecting over a basis of instantaneous eigen-
states of H () leads to

5 (Y |8.P 1Y)
(W PO ) = —i : (69)
€p — €Ep
(We have omitted the obvious parametric dependence on A of
all quantities in the above equation.) This result illustrates the
physical meaning of the additional energy denominator and
the factor of —i in Eq. (63).
Returning to our main argument, we are ready to carry out
the expansion of Fug(q, ). Plugging Eq. (62) into Eq. (59),
we obtain

Foup(q, @) = fap(q) — iw[ap(q) + Agap(q)] +--- . (70)

where the three contributions derive from the three terms on
the right-hand side of Eq. (62), respectively. That is, f,5(q) =
Fup(q,0) and

Zap(@) = Y (Wl IO (@)|89 (@), (71)

Agep(@ = Y WlIO@ @) (72

v

We shall refer to the above responses as as staticand dynamic,
respectively. It is important to note, in this context, that the
words “static” and “dynamic” do not refer to the physical
nature of these terms: Indeed, both contribute to the bulk
polarization field that results from a static strain gradient; also,
both pieces contribute to the (transient) macroscopic current
that flows at the bulk level when the deformation is applied
dynamically.

Instead, this nomenclature is motivated by the mathemat-
ical origin of these contributions, which stem respectively
from the first-order variation of the Hamiltonian operator, and
from the effect of the coordinate transformation on the time
derivative (see Appendix A).

125133-8



QUANTUM THEORY OF MECHANICAL DEFORMATIONS

PHYSICAL REVIEW B 98, 125133 (2018)

After plugging Eq. (70) into Eq. (60), we finally obtain the
polarization response function as

X5 @) = Fap(@) + AXap(@). (73)

Here xqp is the static part encoding the contribution of the
static first-order Hamiltonian via |81ﬂ( g )(q)),

)_(aﬁ ((I) = 2got,5 (Q), 74)

while the remainder in Eq. (73) is the dynamic part,

N
AXap(@) = 2A80p(a) + = 0up (75)

which arises due to the effective vector-potential field that
appears in the time-dependent Schrodinger equation, Eq. (9),
as a result of the coordinate transformation. Indeed, as we
shall see shortly, the perturbing operator 7 *#)(q) of Egs. (61)
and (64) corresponds to minus the first-order Hamiltonian in a
vector potential field,

A q) = =AY (). (76)

(The minus sign comes from the negative electron charge,
which implies that the velocity operator is g = pg + Ag in
the electromagnetic case.) For this reason, we shall refer to
this contribution as either “gauge field,” “vector potential,” or
“dynamic” henceforth.

The dynamic contribution A y,g(q) is unusual in the con-
text of the existing literature, and deserves further attention.
The clear priority at this point is to understand whether it
produces any contribution to the macroscopic electromechan-
ical tensors, and whether such contribution can be related
somehow to some well-defined (and possibly measurable)
property of the material. We shall primarily focus on this task
in the remainder of the paper.

D. Long-wave expansion

After dealing with the linear expansion in the deformation
amplitude and frequency (above subsections), there is one last
step that we need to take care of in order to arrive at the macro-
scopic electromechanical tensors: the long-wave expansion of
x®(q) in powers of the wave vector q. This readily yields the
clamped-ion piezoelectric (e) and flexoelectric (p) tensors at
first and second order in q, respectively,

— qyqsthap,ys + - . (@)

P .
Xu(tﬂ)(q) = 1qyCa,py

We shall separately discuss the expansion of ¥ and Ay in
the following, highlighting their respective contribution to the
aforementioned tensors.

Before doing so, we need to remove the incommensurate
phases from the operators and wave functions, as they are
problematic in the context of a parametric q expansion; the
standard approach to deal with this issue is to introduce a crys-
tal momentum representation. For the ground-state orbitals we
have

[Vk) = ™ "), (78)

where ¢,k are cell-periodic functions. Then, all the sums over
occupied states of the previous sections need to be replaced

by a sum over valence bands plus a Brillouin-zone average,

Z N Z/[d3k], (79)

where we have introduced the short-hand notation [d°k] =
Q/(2n Y3d3k. Note that the first-order wave functions contain
a shift in momentum space by q, which reflects the monochro-
matic nature of the perturbation,

}w(l)(q» _ el(k+q)r|¢(1) ) (80)

Finally, the cell-periodic operators are constructed in order to
conveniently reabsorb the above phase factors,

Hity = TR ) . (81)
Note that, consistent with Eq. (57), we shall define
7(0) (Ag)
jak q = (H )
Equation (56) becomes
(Ox)" = Okiq—q> (83)

where O stands for either 7(*) or a generic first-order Hamil-
tonian H.

7ik-l'jc((0)(q)ei(k+q)'r. (82)

1. Static contribution

Regarding the static part j;, we defer the detailed derivation

of the operator 7—[( ‘3 ' to Appendix B. Here we shall limit our-
selves to using some key properties of its small-q expansion,

A . > (B,
,H( ) lqnyl((ﬁV) - CIyCIBHl((ﬁ vé) 4+ (84)

which we summarize as follows:

€))] 7—[ ) vanishes at q = 0. This has to do with the fact
that the q —> 0 limit of a monochromatic displacement wave
is a rigid translation, and a rigid translation has no effect
whatsoever on the static physical properties of the crystal.

(2) The first-order term ’}—A[l(f Vs symmetric with respect to
By exchange, and corresponds to the uniform strain perturba-
tion of Ref. [9].

(3) Both properties propagate to the first-order static and
adiabatic wave functions, which can be expanded as

[ (@) = i [0%) + - (85)
[t (@) = iqy [8615) + -+ (86)
The functions |q)('S 7/)) in particular, correspond to the strain

response functions |1/f(7“” ) of Ref. [9].

The above considerations readily yield, by combining
Egs. (71), (74), (77), and (86), an explicit formula for the
contribution of j to the piezoelectric tensor,

Capy =2 / [d*k] Z dulJie |80 %), 87)

where J, 70 —87—[(0) /dk, is the macroscopic current oper-
ator. ThlS is easily shown to match Eq. (16) of Ref. [9] by
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rearranging the energy denominators,

> @l GO [50%7)

v

Ly (Dol o 19ck) (e 7L k)

(€vk — €cx)?

== (iBubu|tr), (88)

where we have introduced the standard definition of the
auxiliary “d/dk” wave functions,

DO ke | urc)
€k — €ck '

Buti) =i 3 ) (39)

Thus, the present theory yields the widely accepted formula
for the clamped-ion piezoelectric response as a long-wave
expansion of the static contribution to the electromechanical
response.

By pushing the q expansion to second order [recall
Eq. (77)], one can readily access the static [26] contribution

J

to the clamped-ion flexoelectric tensor, . While the resulting
formulas can be derived analytically, they are significantly
more complex (e.g., both the contribution of the uniform strain
and strain gradient response functions need, in principle, to be
taken into account), and their physical interpretation is not as
obvious as in the piezoelectric case. From the point of view of
the code implementation it might be convenient to calculate,
instead, the electromechanical response at finite ¢, and later
take the long-wave expansion of Eq. (77) numerically; we
took such an approach in Ref. [2].

2. Dynamic contribution

We now elaborate on the dynamic term and derive its
contributions to the piezoelectric and flexoelectric tensor. First
of all, we need an explicit expression for the operators that are
implicitly involved in Eq. (75). By combining Eq. (76) with
Eq. (82) we readily obtain

7 ' '0, A~ qo

jak,q = /Hl((),\q) = _(pka + 7) (90)
We can then write a closed expression for the intermediate
function Ag.s(q),

Agap(a) = — Lok Y Lkl o 2kl ecal(Pug 4 05 2

nc

which is clearly Hermitian in the Cartesian indices. (n and
¢ run, as usual, over valence and conduction states, respec-
tively). Note that A y,4(q) of Eq. (75) can then be recognized
as the usual electromagnetic response function (J response to
a spatially modulated A field) in the zero-frequency limit. This
is one of the central results of this work.

Its relevance to the calculation of the macroscopic elec-
tromechanical tensors can be appreciated by looking at the
lowest terms in its small-g expansion. At zeroth order in g we
have

N
—34,

o dep- 92)

AXaﬁ(q =0)= ZAgaﬁ(q =0)+

By invoking the f-sum rule, one can show that the result
vanishes, consistent with expectations: As we said, the zeroth
order in g corresponds to a rigid translation, which should not
produce any macroscopic electronic current in the reference
frame that moves with the crystal. Similarly, this can be
regarded as a manifestation of the gauge invariance of electro-
magnetism in the context of macroscopic electromechanical
response properties.

The first order in g also vanishes, again as a consequence
of gauge invariance. Physically, one can show that the q
derivative of Ax,s(q) describes the J response to a static
B field, or equivalently the M response (M is the orbital
magnetization) to a static A field; both are forbidden in
insulators, and only allowed in certain categories of metals in
a transport regime [27]. This unambiguously proves that the
contribution of the gauge fields, via the dynamical term A x,g,
to the macroscopic piezoelectric tensor identically vanishes,
and can be regarded as providing a formal proof (a posteriori)

, oD
Eck+q — €pk

(

that the metric tensor approach of Hamann er al. [9] rests on
firm theoretical grounds.

3. Relationship to orbital magnetism

The interesting physics, in our present context, occurs at
second order in g. By using Eq. (77) and substituting Eqgs. (73)
and (75), we can write the gauge-field contribution to the bulk
flexoelectric tensor as

1 3% A xoun (q)
2 0qidq;

_ Agum(@)

. (93
0qrdq; lq=0 ©3)

A/’l'mn,kl - -
q=0
To see that this expansion term is directly related to or-
bital magnetism (earlier derivations were reported by Vignale
([28]) and Mauri and Louie [29]), define the magnetic suscep-
tibility tensor as

My = Yoy Bg (94)

(M and B are the magnetization and the magnetic field,
respectively), which for a monochromatic A field implies (J =
—V xM, and B =V x A) that the magnetically induced
current density is

mag _pkn

T = €"qix oy €™ g Ay (95)

Now observe that, in our context, the vector potential is
the time derivative of the displacement field, and that the
polarization is the time derivative of the current. By taking
the time integral on both sides of Eq. (95) and by recalling
Eq. (34), we have then

AXon(@) ~ €™ qr x5 € " 1. (96)
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Now, we can derive both sides twice with respect to q, which
leads to

1
A,umn,kl — 5 Z(eamkéﬂnl + Eamleﬁnk)legag. 97)
af

In the special case of a solid with cubic symmetry, where
Xap = X™8,p, the above expression can be simplified by

using

amk _anl
E € € = (Smngkl - Sml(snk’
o

which leads to
mag

2

Thus, in a cubic solid only two independent combinations of
indices yield a nonzero value,

X
Avan,kl = (28mn8k1 - 8mI8nk - 8mk8nl)- (98)

mag

2

The fact that the flexoelectric response involves a contribu-
tion that is exactly proportional to the diamagnetic susceptibil-
ity may appear surprising at first sight, as this result combines
two material properties that are, at first sight, completely
unrelated. Yet, by recalling the equivalence between rotations
and magnetism discussed in Sec. IIB2, the above result,
which is one of the key messages of this work, becomes
reasonable: Certain components of the strain-gradient tensor
involve gradients of the local rotation. A uniform rotation, in
turn, produces an orbital magnetization, M; then, a rotation
gradient that is applied adiabatically to the crystal produces
a macroscopic current (recall the relationship from electro-
magnetism J = —V x M) that, integrated over time, yields a
macroscopic polarization.

To summarize this long section, we have achieved a de-
composition of the electronic flexoelectric tensor into two
physically distinct terms,

X
Apiin = x™8,  Aupn =— 99)

n=q+ Ap. (100)

At this point, we are left with the obvious questions of whether
the two contributions jt and Ap are separately measurable
and, if yes, of how they should be treated in the perspective
of comparing the results to the experiments. To provide a
reliable answer, however, one needs to account for the surface
contributions alongside the bulk ones, as we know that the two
form an undissociable entity in the context of the flexoelectric
response. We shall discuss this topic in the following section.

IV. MICROSCOPIC POLARIZATION RESPONSE
AND SURFACE CONTRIBUTIONS

To quantify the surface contributions to the flexoelectric
response of a finite object, we need to adapt the theory devel-
oped in the previous section to the calculation of the micro-
scopic polarization response to a deformation. (The physical
properties of the surface substantially differ from those of
the bulk, thus requiring a spatially resolved description.) In
particular, we shall be concerned with the response functions
)‘(;lﬁ (G) and A thﬁ (G), which we define by generalizing their

macroscopic counterparts, Eq. (74) and Eq. (75), as follows,

K@) =2 [ 1% 0wl Tow orals6 @),

8@ =2 [0 Y Bl Tacaldll @)

+ 8451 (G). (101)

The only difference with respect to the previous formulas is
that the polarization response is now calculated at G + q,
where G is a vector of the reciprocal-space Bravais lattice.
[Note that the average electron density, ne (G = 0), corre-
sponds to N /€2, consistent with the macroscopic formula,
Eq. (75).] Of course, the above expressions include the macro-
scopic response defined earlier as a special case,

Xas(G = 0) = xu(q),

where x stands for either j or Ay.

(102)

A. The role of the gauge fields

To make a more direct connection with the existing treat-
ments of the surface problem, we shall assume a slab ge-
ometry henceforth, with the surface normal oriented along
x, and periodic boundary conditions in the yz plane. As in
earlier works, we shall adopt open-circuit electrical boundary
conditions along x, as appropriate for a slab with free surfaces,
and focus our attention on the total open-circuit voltage that
is linearly induced by a strain-gradient deformation. To deter-
mine such “flexovoltage” [6] response we need the induced
electrostatic potential and this, in turn, is uniquely given
(modulo an irrelevant global constant) by the charge-density
response of the system to the perturbation. This observation
makes the analysis of a finite object conceptually simpler than
that of a bulk crystal; the explicit inclusion of the boundaries
allows us to study the charge rather than the polarization,
which is much easier to define and calculate.

The charge response functions that are associated with
the static and dynamic terms can be written as minus the
divergence of the polarization response, which in reciprocal
space can be written as (p stands for p or Ap, and x for either
X or Ax)

PA(G) = =i > (Gu + qu) Xy (G). (103)

Crucially, the dynamic gauge-field contribution to the charge-
density response vanishes identically,

Apg(G) =0. (104)

This result may appear surprising at first sight, but it is
really a simple consequence of time-reversal symmetry: In
the absence of spin-orbit coupling, a vector potential field
applied to the orbital degrees of freedom produces, in the
linear regime, a divergenceless circulating current, which does
not alter the ground-state electron density. Still, the situation
is paradoxical in light of the results of the previous section:
How can we reconcile the irrelevance of the gauge fields for
the electromechanical response of a slab, clearly stated by
Eq. (104), with their nonvanishing contribution to the bulk
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flexoelectric tensor, as expressed by Eq. (97)? The answer, as
we anticipated at the end of the previous section, resides in the
presence of surface contributions to the overall flexoresponse
of a slab that are equal in magnitude and opposite in sign to
Ap, leading to an exact cancellation of their combined effect.

To prove that such a cancellation indeed occurs, it suffices
to review Sec. II B 2, where the equivalence between a uni-
form rotation of the sample and an effective orbital magnetic
field is established; we shall see that this result can quantita-
tively explain both the bulk and surface contributions of the
gauge fields to the flexoelectric response. It is convenient, to
that end, to introduce a quantity T(r) corresponding to the
time integral of the orbital magnetization,

t
T(r) = / M(r, )dt, (105)
0
and since J = V x M = dP/dt, it follows that
P(r) = -V x T(r). (106)

Loosely speaking, T can be thought of as a kind of elec-
tric toroidization. In the linear-response regime, the dynamic
gauge-field term in the Hamiltonian produces a T field whose
amplitude is proportional to the local rotation of the sample
(we neglect the spatial dispersion of the orbital diamagnetic
response, which is irrelevant in the context of the present dis-
cussion) with respect to the unperturbed configuration [recall
Eq. 21)],

T(r) = —2x™0(r). 107)
Now consider a displacement field of the type
uy(r) = gxz, (108)

corresponding to a uniform shear strain gradient applied to
the slab, as illustrated in Fig. 1. The rotation angle is given by
0, = nx/2, and its curl is readily given by V x § = —§/2;
Egs. (105) and (106) then yield a contribution to the bulk
flexoelectric response equal to A P, = nx ™, consistent with
Eq. (99).

To gain a more intuitive insight into this result, one can
regard the strain-gradient deformation of the slab as a piece-
wise shear [Fig. 1(a)], which we suppose to be uniform within
individual segments. (The realistic physical picture is then
recovered upon reducing the segment length to zero.) The
rotation of each segment is associated with a circulating sur-
face polarization (black arrows), and as the rotation amplitude
linearly increases along x, the contribution of the facets that
lie next to each other (i.e., within the interior of the slab)
does not cancel out; on the contrary, they result in a uniform
P [red arrows in Fig. 1(b)]. In principle, a bulk polarization
would result in a net surface charge; however, the cartoon
of Fig. 1(a) clearly illustrates why here this is not the case.
Indeed, in addition to the aforementioned bulk effect, there
is also a polarization that develops at the outer surfaces of
the segments [green arrows in Fig. 1(b)]. Such a surface
polarization is oriented in-plane, and linearly increases along
the same direction x. This polarization field yields (recall p =
—V - P) a uniform, net surface charge that exactly cancels the
contribution of the bulk, thereby settling the paradox that we
described at the beginning of this section.

(b)

FIG. 1. Dynamical vector-potential contributions to the polariza-
tion of a slab subjected to a shear strain gradient. (a) Decomposi-
tion into circulating currents within segments. (b) Decomposition
between bulk and surface contributions.

Summarizing the above, there are two equally valid ways
to understand the gauge-field contribution to the polarization
field induced by a deformation, which are illustrated by the
two panels in Fig. 1. We can think of it either [panel (a)]
as the sum of local circulating currents that arise because
individual segments of the slab undergo a local rotation with
respect to the original configuration; or [panel (b)], as in
earlier treatments of the flexoelectric problem, as a sum of
bulk and surface contributions. In either case, the overall sum
yields a vanishing charge density, and is therefore irrelevant
in the context of an electrical measurement. The conclusion is
that we can discard the “dynamical” contributions to the flex-
oelectric effect altogether, and build a predictive theory of the
electromechanical response based on the static contribution
only.

B. Connection to the existing theory of flexoelectricity

Our next task is to clarify how all of the above relates
to the calculations of flexoelectricity that have recently been
reported [6,30,31]. These previous works based their analysis
on the microscopic response functions Pof{Kﬂ(r), which are
defined as the o component of the polarization response,
calculated in the laboratory frame, to a monochromatic dis-
placement of the sublattice x along the Cartesian direction
B. To summarize this approach, it is useful to begin by
considering the sum of the above sublattice displacements,
which corresponds to the polarization response to an acous-
tic phonon in the laboratory frame. Following Ref. [3] we
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shall define
(109)

Pos(r) = Z wep (F)-
By taking into account the transformation properties of the
current density between the laboratory and the curvilinear
frame in the linear regime of small deformations, one can then
write the following relationship,

Py (r) = 8app V(1) + xgs (), (110)

where the last term on the right-hand side is defined as the
Fourier transform of the microscopic response function X;’ﬂ =

)_(;1,3 + Athﬂ’

Xop (1) = (111)

D xas(G)e' ST,
G
and p©(r) is the ground-state charge density, inclusive of the
nuclear point charges.
To access the macroscopic electromechanical properties of
the system, a long-wave decomposition is performed [3],

qy4qs
PL(r) =Py (r)— e

lqu(l J/)(r) -

PE@) 4.

(112)
where the cell averages of the expansion terms yield the elec-
tronic parts of the macroscopic piezoelectric and flexoelectric
tensors,

1 I
—— | &@rPy" ) = eapy.

cell

(113)

1
2Q cell

consistent with the q expansion of the macroscopic x.s(q)
tensors defined in the previous sections. In fact, after ob-
serving that at ¢ = 0 the microscopic polarization response
function Xfﬁ (r) vanishes identically, one can use Eq. (110) to
directly relate the q expansion of the laboratory P response
to that of the curvilinear P response even at the microscopic
level by writing

FPrPE" (1) = tap.ys. (114)

X @) = igy x5 @) — qyasxgy’ )+ (115)

and equating terms at each order in q.

At this point, one would be tempted to proceed as in
Ref. [3], and identify the first- and second-order expansion
terms as the microscopic polarization response to a uniform
strain and to a strain gradient, respectively. (This step was a
crucial prerequisite to the calculation of the transverse com-
ponents of the bulk flexoelectric tensor that was performed
in Ref. [3].) This implies tentatively writing the induced
polarization as

P(r) = &5, (0PY, (r) + 8‘”( ") po

P,sys( )+, (116)
where gg, (1) is a spatially nonumform symmetric strain field,
and PV and PO describe the linear polarization response to
a uniform (U) strain and to its gradient (G), respectively. In
Refs. [3,6] it was assumed that such response functions simply
correspond to the q-expansion terms of P, ﬂ(r) In light of the
results of this work, however, an expression such as Eq. (116)
is physically problematic, as it implicitly assumes that the

polarization response to a rigid translation or a rotation of the
crystal vanishes. While we know this to be true for transla-
tions, rigid rotations do contribute to P(r) via the dynamic
gauge-field terms discussed in the previous section. As acon-

sequence, we cannot identify P, ﬂ (r) with either Xap y)(r) or,

equivalently, with — P( 1/)(r) PU py 18 symmetric W1th respect
to By by construction, whlle the other two functions implicitly
contain an antisymmetric contribution that is mediated by the
gauge-field rotation response.

As we anticipated in the previous section, an elegant solu-
tion to this problem consists of dropping the dynamic gauge-
field response altogether, and writing the theory in terms of
the static response function } only. The latter enjoys a q
expansion analogous to that of the total yx,

3@ =iq, 157 ) — gy 7"V @+, (A1)
with the key advantage that the first-order term is now sym-
metric under Sy exchange. This formally justifies the use of
Eq. (116), together with the definitions

Py () = 35" (@), (118)

PG 5,0 = 15570 @) + 7P @) — 57 @), (119)

where we have operated the standard permutation of indices
on the right-hand side of Eq. (119) in order to move from
a “type-I” (second gradient of the displacement field) to a
“type-1I" (first gradient of the symmetrized strain tensor)
representation of the strain-gradient tensor [5,23]. This way,
we can connect the present analytical results with the existing
theory of the flexoelectric response. Most importantly, this
allows us to formally reconcile the existing calculations of the
bulk flexoelectric tensor, which were based on an analysis of
the charge-density response in a supercell geometry [6], with
the more fundamental current-response theory that we have
developed in this work.

C. Calculation of the transverse components

To illustrate the above arguments, it is useful to explicitly
work out the example of a symmetric slab, finite in the
y direction, subjected to a transverse (i.e., flexural) strain
gradient deformation via the displacement field:

1y = 1xy, (120)
)

= —— 121

u, 5% (121)

(see Fig. 2). The symmetric strain tensor has only one nonzero
entry,

ou,
Exx =
ax

=ny, (122)

indicating a linear increase of the transverse component along
the normal to the slab surface, i.e., a constant strain-gradient
field of the type
08y
Sxx. y = ay =
By using Eq. (116), we can readily write the resulting polar-
ization field (within the linear approximation and discarding

(123)
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FIG. 2. Schematic illustration of the flexural deformation of a
slab. Thick arrows indicate the Cartesian axes; thick gray curves
indicate the slab surfaces.

higher-order gradient effects) as

IPO) _ U 1)+ PC_(r).
an

xx,y
To move further it is convenient to operate, as customary, a
macroscopic averaging procedure on the PV and PO functions
in order to filter out the irrelevant oscillations on the scale of
the interatomic spacings. This way, the in-plane spatial res-
olution is completely suppressed, leaving response functions
that depend on y only. Note that, by symmetry, the induced
polarization can only have nonzero y components,

IP,(y)
a’—ny =P )+ PS (), (125)

and that since the bulk is nonpiezoelectric the first function
on the right-hand side, P;’J“,(y), can only be nonzero near
the surface. These observations allow one to conclude that
the induced surface charge, o, is uniquely determined by the
second term on the right-hand side of Eq. (125); in the limit

of a thick slab, we can then write

(124)

5 _
9 _ Kt (126)
N €x
where
At = 2fl12,12 — 11,22 (127)

is the transverse component of the “barred” (no gauge fields)
bulk flexoelectric tensor in type-II form, and €4 is the bulk
relative permittivity at the clamped-ion level.

We stress that the above arguments, linking fit to the
surface charge o, and hence to the macroscopic electric field
that develops in the interior of the slab upon bending, Ey =
—0/€q (€ is the vacuum permittivity), hold under the hypoth-
esis that the effect of rotations is excluded from Eq. (116),
which can only be justified if the gauge-field contribution
is excluded from both bulk and surface contributions to the
overall flexoelectric response. This means that the explicit
calculation of the bulk flexoelectric tensor of SrTiO5; that was
carried out in in Ref. [6] really concerned j, and not the

total tensor 4 = & + Ap. We believe that the former quantity,
L, given its more direct relationship to the charge-density
response of the system, is physically more meaningful than
I, and should be preferred to the latter when reporting the
results of first-principles calculations.

D. A simple example

Consider a simple cubic lattice made of spherical, closed-
shell atoms, with a cell parameter that is sufficiently large
as to avoid any direct interaction between neighboring sites.
Such a crystal is, of course, unrealistic as there is no force
whatsoever keeping the atoms in place. Nevertheless, it is a
useful toy model to discuss some fundamental aspects of the
flexoelectric response, without the complications that charac-
terize a real material. This model was introduced in Ref. [3] to
illustrate some subtleties related to surface contributions; here
we shall use it to illustrate the two alternative definitions of
the bulk flexoelectric tensor, either excluding (jt) or including
(@) the dynamic gauge-field response.

The basic quantities that define the model are (i) the
spherical charge distribution p4(7) of each isolated atom, and
(ii) the lattice parameter ag. Then the charge density can be
readily written as

pr) = pullr = RY), (128)
R
where the sum runs over the Bravais lattice defined by ay.
To calculate the flexoelectric tensor via the current-density
response we need the microscopic polarization field that is
induced by the displacement of an isolated atom. As the atoms
are spherical, there are no long-range electrostatic forces
involved, and since they are noninteracting, one can readily
use the transformation laws of the probability current to write

Pap(x) = par(r)ap, (129)

where we have dropped the sublattice index k since we are
dealing with a single atom per unit cell. This equation reflects
the fact that the probability current associated with an isolated
spherical atom located at the origin and moving with uniform
velocity v is simply given by v times the atomic charge
density,

J(r) = vpa(r). (130)

Now, recall the definition of the flexoelectric tensor given by
Eq. (114). We have, for the three independent components,

=2 __ 2

ML = Us = BIoN Mt = TR

where Q is the quadrupolar moment of the static atomic
charge,

(131)

0= / d’rpq(r)x?, (132)

and the longitudinal (L), transverse (T), and shear (S)
components are given by

ML = M11,11, MS = M11,22,

WT = 212,12 — M11,22- (133)

To calculate the “revised” version of the flexoelectric ten-
sor we need to calculate the gauge-field contribution, which
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is in turn given by the macroscopic diamagnetic susceptibility
via Eq. (99),

Aup =0,
Apr = —2,me (134)

Aps = x™*,

Given the noninteracting nature of the spherical atoms, we can
apply Langevin theory to calculate x ™,

: Q
e = = 135
X 20 (135)
which immediately yields
W=y = 2, =0, (136)

Equation (136) matches the conclusions of earlier works,
where the flexoelectric tensor components were inferred from
the behavior of the macroscopic electrostatic potential under a
deformation. (The interested reader can find a detailed deriva-
tion in Supplementary Note 1 of Ref. [3], or in Ref. [23].)

By comparing the two “versions” of the flexoelectric ten-
sor, it is clear that the quantitative differences can be sub-
stantial, even in the trivially simple case of the toy model
described in this section. Further work is needed to assess the
impact of these effects on the calculation of flexoelectricity
in realistic materials. In any case, the discussion presented
should serve as a warning against potential misunderstandings
when interpreting the results of calculations of flexoelectric
responses.

V. DISCUSSION

It is important to stress that Eq. (116), together with the
definitions of Egs. (118) and (119), does not describe the total
polarization response, but only a part of it. This part is enough
for an exact description of electromechanical effects, as we
have seen in the case of flexoelectricity. One can wonder,
however, whether there is any physical significance that can
be associated with the part that we have discarded from our
analysis, i.e., the gauge-field contribution. In this section we
shall briefly discuss this topic.

The connection of rotations and orbital magnetization has
been noted earlier in other contexts; for example, it plays an
important role in the theory of molecular g factors. Ceresoli
and Tosatti [32] (CT) have shown how such quantities can be
understood (and calculated from first principles) as the Berry
phases that the wave functions accumulate in the course of
a rotation of the molecule around its center of mass. It is
interesting to analyze their approach in some detail, in order to
show its strong relationship to the topics of the present work.

CT base their formalism on the electronic ground state of
an isolated molecule, whose rotation state about the z axis is
measured by an angle, 6. The instantaneous ground state of
the molecule is defined by the lowest N eigenstates of the
Hamiltonian, which depend parametrically on 6,

HO)Yn(0) = €ul i (6)).

(e, does not depend on 6, as the energy of the system is
invariant upon rotations.) Then, by discretizing the [0, 2]
interval into M equally spaced points 6;, one can write the

(137)

Berry phase corresponding to a complete cycle as

y ~—Imlog [] det S, 6:11), (138)
i=1,M
where S are N x N matrices,
S (6:, 0;) = (Y (0;) ¥ (6;)), (139)

and we have enforced periodic boundary conditions on the
wave function gauge,

[V (Orr41)) = (¥ (61)).

Note that y is a well-defined physical observable in spite of
the arbitrariness of the wave function phases [33] and vanishes
identically in the absence of an applied magnetic field. The
strategy taken by CT was to assume that a small uniform
B field, oriented along the rotation axis, was applied in the
calculation of the instantaneous ground states that define y.
In particular, one can introduce the Berry curvature that is
associated with the two-dimensional parameter space (B, 6),

Qs = —21m 3 (] y ),

(140)

(141)

where the superscripts indicate the first-order wave functions
with respect to either B or 6. These, in turn, can be written as
sums over conduction states,
(Wel0H/OAI )
[YP) = ey (142)
C

€ — €

where 9 /OA is, as usual, the variation of the Hamiltonian
at linear order in the perturbation parameter. It is easy then
to show [33] that at linear order in B, y is the flux of Qpy
through the rectangle spanned by B and 27,

y = 27 BQp,. (143)

In order to recast the above result into the formalism
developed in this work, we shall choose an electromagnetic
gauge for the vector potential such that

A=iBxr, (144)

where B = (0, 0, B) and the coordinate origin coincides with
the rotation axis of the molecule. (y, of course, does not
depend on the electromagnetic gauge; the above choice has
been made in order to facilitate the analytic derivations that
follow.) Then, the first-order Hamiltonian with respect to the
external B is

N 1 A
AP =z / rx Jmdr, (145)
where J(r) is the current-density operator in the Cartesian
frame, and Z is a unit vector oriented along z.

One can then write

(0B @) = _%2 . /d3rr x (Y| T ()|89P),  (146)

where [§y?)) is the adiabatic counterpart of the first-order
wave function |1//,(l9)). We can recognize, in the integral, the
microscopic current-density field that is induced by a uniform
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rotation of the molecule,

0J(r) 2 ©)
o =2Re;(1/fn|..7(r)|5wn ). (147)
Then y can be readily rewritten, in the linear regime, as
0
y = B2 «fr X %d%; (148)

i.e., it is proportional to the z component of the electronic
magnetic moment, m, that is associated with the rotation,

p M= (149)
=TT — .
4 96
This also implies that
Qpy = L O (150)
BO= 0 a6

To summarize, y tells us the electronic contribution to
the magnetic moment associated with the rotation of the
molecule, which could be combined with the trivial contri-
bution from the nuclear motion to compute the g factor of
the molecule as a whole. Interestingly, though, the same y
is also closely related the magnetic susceptibility of the static
molecule. In particular, an earlier work [34] demonstrated that
the quantity we call y corresponds to the paramagnetic part of
the susceptibility of the molecule. The theory developed here
nicely fits with this result.

To see this, note that in the theory of molecular magnetic
susceptibility, the “diamagnetic” contribution is defined such
that it is given by the second moment of the ground-state
electronic density, and the “paramagnetic part” is defined as
the remainder. As we have discussed in Sec. II B 2, a uniform
rotation at a frequency w produces, in the rotating frame that
is rigid with the molecule, the same effects (at linear order)
as a uniform B field, i.e., the sum of the diamagnetic and
paramagnetic pieces just discussed. To get the total moment
in the laboratory frame, as reflected in y, we have to add
to this a trivial piece coming from the rigid rotation of the
ground-state electronic cloud, which is just minus the dia-
magnetic contribution to the susceptibility. Thus, it follows
that ¢ corresponds precisely to the paramagnetic part of the
magnetic susceptibility of the molecule.

Of course, the case of a molecule is relatively simple to
deal with. Being an isolated object, it does not present serious
technical issues no matter how the calculation is carried out
(either by using the Ceresoli and Tosatti approach, or the
linear response to B as discussed in the above paragraphs).
It would be interesting, however, to explore these ideas in the
case of extended solids, where orbital magnetic effects asso-
ciated with zone-center optical phonons have received some
attention in the past. In an infinite crystal, a finite magnetic
field (which CT used for calculating y via the Berry phase
approach) is far less obvious to apply, and our linear-response
strategy may prove handy. We shall leave this interesting topic
for future investigations.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have established a full-fledged quantum
theory of inhomogeneous mechanical deformations, by work-
ing within a linear-response density-functional framework.
An intimate and unsuspected connection to orbital magnetism
has emerged, where the latter naturally enters as a conse-
quence of a dynamically applied deformation of the crystal.
This effect produces a contribution to the bulk flexoelectric
coefficient that corresponds to the orbital magnetic suscepti-
bility of the material.

An obvious question that may be asked is whether this
unusual interplay of elasticity and magnetism can lead to
interesting new physics, beyond the topics that we discussed
in this work, in terms of experimentally measurable effects.
We believe that the best candidates may be magnetic materials
in proximity to a phase transition to a ferromagnetic state,
where the susceptibility peaks to huge values. However, ferro-
magnetism only occurs in the presence of spins, and whether
deformations affect the spin degree of freedom in the same
way we have shown for the orbital ones still remains to be
seen. Interest in this mechanism has been growing in the past
few years, with the proposal that surface acoustic waves may
be used to manipulate the magnetic state of nanoparticles [35].
Thus, we regard this as a stimulating avenue for future
research.

In the context of flexoelectricity, we expect that this work
will provide substantial simplifications to the practical calcu-
lation of the bulk flexoelectric tensor. Indeed, the static part
of the first-order Hamiltonian can be regarded as a monochro-
matic “metric” perturbation, which, after an appropriate long-
wave expansion, should directly yield the desired physical
constants. The method is straightforward to incorporate in a
standard linear-response code by following the prescriptions
of Appendix B. Further details on the implementation and
testing will be provided in a forthcoming communication.
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APPENDIX A: DERIVATION OF THE
CURVILINEAR-FRAME SCHRODINGER EQUATION

In this appendix we shall back up the results of Sec. IT A
with a more detailed derivation.

1. Potential term

The potential V(r,?) generally contains contributions
from the external potential of the nuclei, plus self-consistent
Hartree and exchange and correlation terms. As in this
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manuscript we have assumed an all-electron framework, the
external potential is that of the nuclear point charges. Thus,
V(r,t) reduces to an electrostatic (Hartree) term plus the
exchange and correlation potential,

V(r,t) = Vu(r, 1)+ Vxc(r, 1),
where Vy is the solution of the following Poisson’s equation,
V2Vt (r) = —47[ne(r) — pion(1)]. (A2)

Here pion is a sum of delta functions representing the nuclei,
ne(r) = | (r)|? the electronic particle density, and Vxc is the
functional derivative of the exchange and correlation energy
with respect to the electron density,
8Exc
dne (r) .
The transformation to a curvilinear coordinate system is
relatively easy for both the electrostatic and exchange and

correlation terms. First, we introduce the electron density in
the curvilinear frame,

fia(E, 1) = [PE D = h ' E DHnarE, 1),1), (Ad)

where we have used the shortcut # = det(h). Then, the Pois-
son’s equation in the curvilinear frame becomes

e (hg®P 35 Vi) = —47 (jiel — Pion)s

(AD)

Vxc(r) = (A3)

(A5)

where 9, = 9/9&, is the gradient operator in & space, Dijon =
h! Pion» and

g7 = (g Nup (A6)

is the inverse of the metric tensor. This means that, from
the point of view of the electrostatics, the curvilinear frame
is essentially equivalent to a Cartesian frame, with one ex-
ception: the vacuum permittivity, €y, must be replaced with
a (generally anisotropic) dielectric tensor, €, that in turn
depends on the metric of the deformation as € = €o/g g!
where g = detg = h%. The exchange and correlation en-
ergy, at the level of the local density approximation, can be
written as

Exc = / d’r ne(r)exc(ng (r))

= /d3€ i (§)exc(h™ (&) fia (§)), (A7)

which leads to a straightforward expression for the potential.

2. Kinetic term

To derive the kinetic contribution to H, one can start from
the Laplace-Beltrami operator and apply it to the curvilinear
representation of the wave function,

1 1 .
ViY(r, 1) = AL [hg“ﬁaﬁ(ﬁw@, r))}.

After some tedious (but otherwise straightforward) algebra,
one obtains

1 1 2 . 2 . 7
—zvzw, 1) = m(p,g — AP (B, +iANY(E, 1),

(A8)

(A9)

where p, = —id, is the canonical momentum operator in &
space, and A,, is the auxiliary vector field defined in Eq. (11).
This result almost exactly matches the expression derived by
Gygi [8], except for a sign discrepancy in the contribution of
the “vector potential” Ag [see Eq. (7) therein]. One can then

rewrite the kinetic contribution to H as
5(hp — i A" (By +iA,) = 358" By + Veeom (),

where Vgeom(§) corresponds to Eq. (10). Thus, the auxiliary
field A does not really act as a vector, but rather as a
scalar potential. Note that the A field essentially coincides
(apart from a factor of 1/2) with the contracted Christoffel
symbol I'}j ; thus, the operator p, + i A, can be thought as a
sort of covariant derivative [8] acting on the electronic wave
functions.

3. Time derivative

Our starting point is

ad d o
iEW(T, t) = lE[\/ |h—l(r’ f)|1/f(§(l'v t)v t)]a

where &(r, t) is the inverse coordinate transformation from r
space to & space, and

(A10)

Iyl = —aég(:;’ 2 (A1)

Now observe that
§(r(§,1),1) =8, (A12)

which implies that
%rz—%% s. (A13)

(Note that the time derivative on the left-hand side has to be
taken at fixed r, while the time derivative on the right-hand
side is at fixed &; this is usually obvious, but we made it
explicit here to avoid possible sources of confusion.)

We shall derive things piece by piece. First, the derivative
of the wave function,

% :ﬁ %@ (Al14)
ar |, ot |g  0& ot |
by using Eq. (A13) becomes
0y | _ov| _ oV bg or, AL5)
ar |, ot |y &g dr, ot |
We can now insert an identity operator,
| 0V v ek g onan| o
ot |, 0t |, &g dr, Or, 0& Of |
and finally rewrite the above as
| _ oy L0y
e A T (A17)
tl, 0t &,
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where Ag is the effective vector potential of Eq. (13). Second,
the time derivative of the volume prefactor reads as
r) .

1 fon
~ 2nvR\ ot g
(A18)

By using again Eq. (A13), this leads to

B 1 oh
2h/h 9t |,

dh 3k

a 1
3%‘,3 at

d 1 1 oh oh 0&3 0
—— - — ——ﬁ i . (A19)
2h/h at | 9&p Oy Ot
Now, recall Jacobi’s rule for the derivative of a determinant,
oh(\ oh j;
) _y, ' —=, (A20)
oA Yoo

where A is an arbitrary parameter on which the elements of h
depend. This allows us to write

a 1 1 35, 32“
2/ \ 9ry, dg 0

& 3%r; dEp Iy,
8rj 0§08 0, ot

(A21)

At this point, observe that for a matrix A that depends para-
metrically on A, we have

A~ (A AL
9A0) _ p 08, (A22)
o ar
We use this relationship to observe that
9§ 3%r; g

d&i
KL (3&) (A2

This allows us to write the derivative of the volume factor in a

compact form,
a 1| 1 9 (0§ or,
ahle 2Vh 0 (E W)'
By using the quantities that we introduced earlier, we can
equivalently write
a 1 1 0
W h " 2V )

After few straightforward steps of algebra, one finally
arrives at

Oy

at

8rj 0&;0&g Or;,

(A24)

(A25)

1

i 317/ —12 2 -
+—(aA 4 A
2\/ﬁ( 585y By + Dp8py Ay)V

o,

(A26)

Then, by observing that the effective scalar potential of
Eq. (12) can also be written as

¢ =Apgyl Ay, (A27)

one can combine Eq. (A26) with the kinetic terms that we have
derived in the previous subsection, leading to Eq. (9).

APPENDIX B: STATIC PERTURBATION
IN THE LINEAR REGIME

In this appendix we shall provide an explicit expression for
the “static” perturbation of Sec. IIID 1, in the specific case of

a monochromatic perturbation at wave vector . We shall also
show that it reduces to Hamann’s metric perturbation at first
order in q.

The first-order Hamiltonian can be decomposed as follows,

=T+ Ok 0+ e
where the four terms on the right-hand side are related,
respectively, to the kinetic D) operator, and the geometric,
Hartree, and exchange-correlation potentials. In the following,
we shall discard all the dynamical terms that emerge from the
time derivative. Note that all the operators in Eq. (B1) are
cell-periodic; i.e., the static curvilinear-space Hamiltonian can

be written, in the linear regime, as

HO) = HO 4 hpe ™A 4. (B2)

Note the use of r instead of & to indicate the coordinates in
curvilinear space; we shall follow this convention henceforth
(and omit the tilde on the curvilinear operators). For a
generic perturbation O, we shall also use the following
notation convention to distinguish the full operator from its
cell-periodic part,

O (@) = O, (B3)

1. Kinetic term

The curvilinear kinetic operator can be expanded, in pow-
ers of the deformation amplitude, as

52

A P ~ ~
T = jk_pkﬁgﬂy(r)pky‘}'""

where g4, (r) is the symmetric strain tensor associated with a
generic inhomogeneous deformation. In the specific case of a
monochromatic displacement wave, the strain reads as

(B4)

i .
epy(r) = E(Aﬂqy + X1, qp)e'dr. (B5)
This immediately leads to
A i R R R
Tiq = =5 (s +4p) Q- P+ (B + @) 4 Prgl. - (B6)
At first order in q, we have
aT
R4 = i prpiy = 1T, (B7)

aq)’ q=0

where we have indicated with a superscript (8y ) the response
to a uniform strain, eg,,, within Hamann’s formalism.

2. Geometric potential

By retaining only terms that are linear in the deformation
amplitude, we have

Vgeom = %actActa Aa = _%)‘ : (lqt)teié 4 (B8)
Then, one immediately obtains
i
Velem = =748 9"- (B9)

This structureless potential is irrelevant for either the uniform
strain or the strain-gradient response, as it is of third order

in q.
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3. Electrostatic potential

Recall Poisson’s equation in curvilinear space,

Oy (hgay ay Vi) = —4m (nel — Pion)- (B10)

In the linear limit one has

hgy) = Suy +i(h-Q8ay — kady — Ayqu)e™9, (B1)

Vi = Vi + dpel TV, (B12)

U P W (B13)

Nel —n

(Note that the ionic point charges do not move within the
curvilinear frame; thus, their density, pjon, 1S unsensitive to
the deformation.) By collecting the terms that are linear in Ag,
and by following analogous derivation steps as in Ref. [3], we
have

IV +iqPViE = —dn (nGh) + gy, (B14)

Ml .q met,

. . A
where the “metric density” n;ljt) q

ground-state Hartree potential,

is given in terms of the

()

i .
Nmet,q = E(aa +iqa)[80yqp — — 88,4419, VI_(IO).

Baﬂq)/
(B15)

At order zero in q, all the scalar fields involved in Eq. (B14)
manifestly vanish. [The kinetic and geometric perturbations
discussed in the previous subsections both vanish, yielding
a null first-order density; meﬁt)q vanishes as well, as it has
a leading dependence on q; the first-order potential then
vanishes as well as a consequence of Eq. (B14).] At first order

in q, one has

2v,(Ap) (Ag) (Ag)
VVH’{ = —4rn (e1;+” ),

met,

(B16)

where we have indicated the derivatives with respect to g,
calculated at q = 0 with a ¢ subscript, and

(B17)

met,{

(hp) P ©)
= — (V25,5 —28,05) V..
n 471( tB c98)Vy

Finally, by expressing the cell-periodic scalar fields in Fourier
space, we obtain

o 4| o G,gG
Viiy = a[nelf; (0)(% =) ®1®)

where n® = né?) — Pion 18 the ground-state electronic density

minus the ionic point charges (i.e., it corresponds to the oppo-

site of the total charge density of the crystal). After observing

A . ;
that nilfi,) zné’f 7)., one can easily verify that the above for-

mula coincides (modulo a factor of /) with Hamann’s Eq. (57).

4. XC potential

Starting from Eq. (A7), one can write the exchange-
correlation potential as

SExc

sn(&)

Vxe(§) = = exc(h™'n) + h'neye(h'n).  (B19)

(The prime symbol indicates a first derivative with respect to
the particle density.) After a few algebra steps, one arrives at
an expression for the perturbed potential,

Qcﬂzl(l‘) Kxc(l")[ Nel'q (r) — iggn (r)] (B20)
where
Kxc = 2exc () 4+ n Qe (n) (B21)

is the exchange-correlation kernel, and the contribution that
depends on n'® originates from the derivative of the inverse
determinant,

hl=1—ix-qe't (B22)
Again, the first-order potential vanishes at ¢ = 0 and coin-

cides with Hamann’s metric formulation of the uniform strain
perturbation at first order in q.
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